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Abstract
Wild animals can modulate ecosystem-climate feedbacks, e.g. through impacts on vegetation and
associated carbon dynamics. However, vegetation cover and composition also affect land surface
albedo, which is an important component of the global energy budget. We currently know very
little about the influence of wild animals on land surface albedo and the resulting climate forcing of
these albedo changes. Leveraging a unique, ecosystem-scale, semi-experimental approach, we study
how the local removals of the world’s largest, terrestrial grazer, white rhinoceros (Ceratotherium
simum), affected the coupling between fire dynamics, woody encroachment and surface albedo in
Hluhluwe–iMfolozi Park (HiP), South Africa. Our path analysis revealed that areas in the park
where more rhinos had been removed showed a stronger increase in burnt area and woody
encroachment compared to areas with fewer rhinos removed, which were both related to a decrease
in surface albedo. Increasing burnt area was further associated with higher rates of woody
encroachment, indirectly reinforcing the negative effect of rhino loss on albedo. Our study
demonstrates that removals of megagrazers in HiP were related to complex ecosystem-wide
cascades with measurable impacts on land cover and surface albedo and consequences on climate
forcing. This highlights the importance of restoring functional ecosystems by reinstating trophic
processes.

1. Introduction

Natural climate solutions (NCS) are ecosystem con-
servation and restoration actions that increase car-
bon storage and/or reduce greenhouse gas emissions
(Griscom et al 2017). Wild animals are important
drivers of ecosystem processes involved in climate
regulation (Cromsigt et al 2018) and an increasing

number of studies highlight the role of wild animals
in ecosystem carbon cycling (Schmitz et al 2018). This
has raised interest in the potential for the restora-
tion and conservation of wild animal populations as
a potential NCS (Schmitz et al 2023). Although the
restoration of animal populations may operate over
longer time scales than what is needed for immedi-
ate climate mitigation action (Sandom et al 2020),
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Figure 1. Study area: Hluhluwe–iMfolozi Park.

understanding the role of animals in the climate
system has never been more urgent, both for the stra-
tegic, long-term stewardship of the climate, and to
ensure that the ongoing biodiversity crisis does not
exacerbate our climate change mitigation challenges.

In addition to carbon dynamics, recent studies
re-emphasize the importance of biophysical feed-
backs between ecosystems and the atmosphere, par-
ticularly the effects of land cover changes on surface
albedo (Hasler et al 2024). These studies, together
with earlier work on albedo (see for instance Lashof
et al 1997) suggest that actions that increase the car-
bon storage of ecosystems (e.g. planting trees) may at
the same time reduce surface albedo, which could add
to climate warming and reduce, or in some systems
even reverse, the carbon removal benefits (Hasler et al
2024). When considering the role of wild animals in
climate system functioning, it is therefore important
to additionally consider their potential effects on bio-
physical feedbacks, and land cover albedo specifically
(Te Beest et al 2016, Salisbury et al 2023).

Megagrazers (>1000 kg), such as white rhino-
ceros (Ceratotherium simum, rhino from hereon)
consume vast quantities of forage per capita, can
tolerate low quality grass, and are largely immune
to population control by non-human carnivores
(Owen-Smith 1988). This allows them to have par-
ticularly strong effects on fire regimes and vegetation
structure (Hyvarinen et al 2021).Megagrazers remove
grass biomass, which would otherwise fuel fires,
thus limiting fire extent and frequency (Archibald
and Hempson 2016). In warm, high rainfall areas
with fast growth of grass biomass during the wet
season, megagrazers play even larger roles in sup-
pressing fire in the dry season compared to low
rainfall areas where grasses grow slower, through
their removal of large quantities of potentially flam-
mable biomass (Waldram et al 2008, Probert et al
2019). Furthermore, theymay shape tree–grass ratios,
through influencing the fire regime (Smit et al 2016,

Case and Staver 2017), but also through trampling
woody seedlings and through the partial release of
trees from grass competition (Riginos and Young
2007).

Tree–grass ratios and fire dynamics are both key
determinants of surface albedo. In the short-term,
post-fire burn scars have a much lower surface albedo
compared to adjacent unburnt grassland, until the
burn scar is revegetated (Gatebe et al 2014, Dintwe
et al 2017). In the long-term, however, fires may also
strongly affect surface albedo by influencing tree–
grass ratios (D’Odorico et al 2006). While fire is
an important component of open, grassy systems,
increasing fire frequency may lead to decreasing fire
intensity due to reduced fuel build-up (Rodrigues
et al 2021). Lower intensity fires that are not able
to kill woody seedlings may in fact promote woody
plant establishment and recruitment to higher size
classes by temporarily reducing grass competition
(Walters et al 2004). Trees and other woody plants
are darker compared to grassy, herbaceous vegeta-
tion and heavily-wooded landscapes therefore have a
lower surface albedo compared to more open grassy
landscapes (Münch et al 2019). By affecting fire
regimes and tree–grass ratios, we, therefore, hypo-
thesize that megagrazers can have strong effects on
surface albedo of the grassland and savanna systems
they inhabit.

The last two decades have seen an upsurge in
the illegal killing of rhino (Nhleko et al 2022) ,
with significant removal rates in protected areas in
South Africa. For this study, we accessed 10 years
of spatially-explicit legal and illegal rhino removal
data from Hluhluwe–iMfolozi Park (HiP) (figures 1
and 2), creating a fine-scale (1× 1 km) removal map
showing strong spatial contrasts in removal intens-
ities. These intensity contrasts served as a unique
natural experiment to study how megagrazer loss
influenced changes in woody cover, fire, and sur-
face albedo. We also quantified the albedo-related
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Figure 2. Temporal (2010–2019) patterns of rhino loss in Hluhluwe–iMfolozi Park in South Africa, including legal (management)
and illegal (poaching) removals.

climate forcing from these landcover changes. We
predicted that rhino loss over the 10 years triggered
complex ecosystem-scale responses with strong coup-
ling between woody plant, fire and albedo dynamics.
More specifically, we expected (H1): greater burnt
area, fire frequency and rate of woody encroachment
withmore rhino loss, (H2): rhino loss to be associated
with woody encroachment directly (through a reduc-
tion in trampling) and indirectly through increasing
burnt area and fire frequency, (H3): burn scars and
woody vegetation to have lower surface albedo com-
pared to unburnt and more open grassland respect-
ively, that (H4): the effects of rhino loss on the fire
parameters were stronger in areas with higher rain-
fall and therefore greater primary productivity, and
that (H5): rhino loss-driven increases in burnt area
and woody vegetation led to a reduction in surface
albedo and a consequent increase in albedo-mediated
climate forcing and global warming potential
(GWP).

2. Methods

2.1. Study area
HiP, managed by Ezemvelo KZNWildlife (EKZNW),
is a protected area in northeastern South Africa
(28.44194◦S, 32.22949◦E), covering ∼960 km2 with
elevations ranging from 45 to 750 m. Annual rainfall
ranges from∼490 mm in the southwest to∼910 mm
in the northern hills, and most rain falls during sum-
mer (figures 3(a) and (b)) (Howison et al 2017).
Rainfall is considered a good predictor for grass bio-
mass in savanna systems (Deshmukh 1984). While
fire is actively managed through prescribed burning,
naturally-ignited fires occur regularly, with an aver-
age return interval of 2–4 years (Archibald et al 2017).
Fire extent and intensity are influenced by rainfall
and grazing (Archibald et al 2017), with higher rain-
fall areas burning more frequently (Waldram et al
2008). The park is dominated by savanna grasslands
and woodlands with a varying tree and grass cover,
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Figure 3. Spatial patterns in (A) the included study area, (B) mean annual rainfall, (C) rate of change in woody encroachment,
(D) mean annual burnt area, (E) fire frequency and (F) rate of change in albedo in Hluhluwe–iMfolozi Park in South Africa
(2010–2019) in 1× 1 km grid cells that were used for our analyses.

and patches of heavily grazed ‘grazing lawns’ are dis-
tributed throughout the park (Cromsigt et al 2017,
Cromsigt and Te Beest 2014). For at least four dec-
ades, the park has experienced strong woody plant
encroachment, where woody shrubs encroach and
replace open grass patches (Wigley et al 2010, Case
and Staver 2017). The park is among the very few
places globally that still hosts near-intact mega- and
large herbivore and predator communities.

2.2. Rhino removals in HiP
HiP has among the world’s highest white rhino dens-
ities (∼2 km−2), which have persisted for several
decades. Conservation efforts in the early 20th cen-
tury increased rhino numbers leading to ∼1500 by
the late 1960s. Concerns over high densities of rhino
in the park led to legal management relocations,
including range expansion (Linklater et al 2017).
These legal removals fluctuate annually in response to
management-determined density limits set for zones
within the park. However, since 2013, illegal poach-
ing of rhino surged due to rising demand for rhino
horn in Southeast Asia (Wildlife Justice Commission
(WJC) 2023). This led to halting of the legal rhino
removals in the park in 2016, while illegal poaching
continues (figure 2).

2.3. Experimental design
We assessed changes in woody plant, fire and short-
wave albedo dynamics along a gradient of rhino loss,
including legal and illegal removals at a 1 km2 spatial
scale. Although the average rhino home range often
exceeds a single grid cell (0.75–2.6 km2 for males,
8.9–20.5 km2 for females (Owen-Smith 1973)), this
scale allowed us to assess how localized changes in
woody cover, fire, and albedo relate to rhino removal,
capturing ecological processes that may be masked
at larger scales. To determine the rhino loss gradi-
ent, we received permission to use the GPS coordin-
ates for each white rhino removed (legally and illeg-
ally) between 2010–2019 (EKZNW Permit number
E/5141/02). This permit also allowed us to access
rhino aerial counts for the same period for parts of
our study area i.e. iMfolozi. Due to sensitivity around
rhino poaching, our permit prohibits displaying and
sharing spatial data on rhino removals or counts. We
overlaid the rhino removal locations and rhino count
data on a 1 × 1 km grid and calculated the total
number of individuals lost, and mean rhino dens-
ity for each grid cell over the 10 year period. With
only 0.5% of cells showing>10 rhinos lost, we reclas-
sified rhino loss values >10 as 10 to reduce uncer-
tainty from low sample size and high variance at high
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Table 1. Summary of the data acquisition for the analysis.

Target variable Data product Resolution Preprocessing References

Mean annual
rainfall
(mm yr−1)

Long-term mean
annual rainfall in
HiP.

180 m resolution
between 1935
and 2010

Mean annual rainfall data was
spatially extrapolated from 17
rainfall stations between 1935
and 2010 using elevation as
covariate by Howison et al
(2017). From this, we derived
mean annual rainfall
(mm year−1) for each
1× 1 km grid cell.

Howison et al
2017

Rate of woody
encroachment

MOD44B.006 Terra
Vegetation
Continuous Fields
Yearly Global 250 m
accessed with
Google Earth
Engine

250 m
resolution,
between 2010
and 2019

We used tree cover estimates
from the MODIS product as a
proxy for woody plant cover
(see figure 2 text S6 for quality
check). For each 1× 1 km
grid cell, we derived the mean
woody cover across the
sampling years (2010–2019),
and the rate of change in
woody cover as the slope of
the linear model with woody
cover as the response and year
as the predictor.

DiMiceli et al
2015, Gorelick et
al 2017

Mean annual
burnt area and
fire frequency

FireCCI51: MODIS
Fire_cci Burned
Area Pixel Product,
Version 5.1 accessed
with Google Earth
Engine

250 m
resolution,
between 2010
and 2019

We computed the mean
annual burnt area for each
1× 1 km grid cell over the
years from 2010 to 2019. We
also calculated fire frequency
for each grid cell as the
number of years that at least
one burnt pixel (250 m)
intersected the grid cell.

Padilla Parellada
2018, Gorelick et
al 2017

Rate of change
in annual
surface albedo

MCD43A3.006
MODIS Albedo
Daily 500 m
accessed with
Google Earth
Engine

500 m
resolution,
between 2010
and 2019

We extracted short-wave
white-sky albedo for the entire
park for each month between
2010–2019. We eliminated all
observations with poor
quality. We derived the rate of
change in annual albedo for
each 1× 1 km grid cell, as the
slope of the linear model with
mean monthly albedo as the
response and year as the
predictor. Here, each grid cell
had 12 albedo observations
per year (one per month).

Schaaf and Wang
2015, Gorelick et
al 2017

rhino loss values. We focused on the impacts of rhino
loss in grass-dominated savanna, the main white
rhino habitat where fire andwoody encroachment are
most prevalent. Thus, we excluded grid cells dom-
inated by forest or closed-canopy woodland (<25%
grass cover between 2015–2019, based on Copernicus
Global Land Cover Layers: CGLS-LC100 Collection 3
at 100 m resolution (Buchhorn et al 2020)) from fur-
ther analysis (white areas in figure 3(a)). The same
grid was used for all response variables consistently
for all years.

2.4. Data collection
We obtained data on mean annual rainfall, burnt
area, woody cover and surface albedo across the
park between 2010 and 2019. From these products
we derived mean annual rainfall, rate of change in
woody encroachment, mean annual burnt area, fire
frequency and rate of change in annual surface albedo
for each 1 × 1 km grid cell (see detailed descriptions
in table 1; figures 3(b)–(f)). We included both pre-
scribed and unprescribed fires because we lacked the
data to differentiate them. Prescribed fires typically
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target areas with high grass biomass, which would
likely burn naturally. Regardless of ignition source,
fire frequency and extent are driven by grass biomass,
so we expect both types of fires to respond similarly
to rhino loss.

2.5. Statistical analysis
We used piecewise structural equation models
(pSEM) in R (package: piecewiseSEM (Lefcheck et al
2016)) to test whether rhino loss and its interac-
tion with rainfall influenced woody encroachment
directly or indirectly via fire (fire occurrence, burnt
area and fire frequency), and whether fire, woody
encroachment, and rainfall affected the rate of change
in albedo.Webuilt the pSEMs based on a-priorihypo-
theses for each variable and the interactions between
the variables (see introduction), such that rhino loss
and rainfall were the primary predictors. We first ran
the model with fire occurrence (burnt vs. not burnt)
and mean burnt area as the fire parameters (pSEM
1 & 2 respectively, see below for difference between
1 and 2), and then with fire frequency as the fire
parameter separately (pSEM3).

Each pSEM sub-model was validated independ-
ently (see text S1 & S2 for detailed diagnostics for spa-
tial autocorrelation and model assumptions). Sub-
models withwoody encroachment and albedo change
as response variables met OLS assumptions and were
modeled linearly. However, due to the zero-inflated
Gaussian distribution of mean burnt area, we used a
hurdle model, separating fire occurrence (presence/-
absence) (pSEM1, modeled with a binomial glm in
base R) from mean burnt area magnitude (pSEM2,
modeled linearly for burnt cells). Both parts of the
hurdle model separately met model assumptions. We
modeled fire frequency (pSEM3), with a glm spe-
cifying Poisson distribution, where no overdispersion
was present.

2.6. Quantifying changes in land-cover and albedo
driven by rhino loss
For each open to semi-open savanna grid cell (grass
cover>25%) that burned and experienced rhino loss

over 10 years (26% of all cells analyzed, see table S1),
we calculated: (1) change in mean burnt area, and
(2) direct change in woody encroachment associated
with rhino loss by subtracting observed values from
model predictions without rhino loss. This approach
allowed us to control for variability between cells and
thus to isolate the effect of rhino loss. We also calcu-
lated (3) the indirect change in woody encroachment
by multiplying the change in mean burnt area (cal-
culation 1 above) by the slope of the mean burnt area
term in the pSEM2 submodel wherewoody encroach-
ment was the response (see text S3 for details).
Next, we calculated rhino-associated change in mean
annual albedo by multiplying the changes in mean
burnt area, direct, and indirect woody encroachment
by their respective slopes from the pSEM2 sub-model,
where rate of change in albedo was the response
(text S3).

2.7. Rhino loss and climate forcing
For each open grid cell, we derived the change in
radiative forcing at the top of atmosphere (∆RFTOA)
resulting from the albedo change (∆α) through the
three different pathways (P1- fire, P2- direct woody
encroachment and P3 indirect woody encroachment)
using the following formula from Chen (2021):

∆RFTOA =−12

24
× Isurface ↓ ×∆αP1−P3 ×

√
Ta

where 12
24 refers to the average daylight of 12 h per day,

Isurface↓ = is the mean annual incoming solar radi-
ation at the surface between 2010 and 2019, averaged
over the park i.e. 192.5 Wm−2 extracted from LSA
SAF (Trigo et al 2011), and Ta is the average upwelling
transmittance across the park between 2010–2019, i.e.
0.547 (see text S4 for detailed calculations for deriving
Ta).

We derived the GWP of the rhino-loss
derived albedo changes over the 10 year period
for each grid cell that lost rhino through each
of the three pathways (P1–P3) expressed in
CO2 equivalents (CO2e) using the following
formula extracted from Zhu et al (2024).

GWP∆αP1−P3 =
S×∆RFP1 - P3

AE×AF
× ln2×MCO2 ×mair ×CO2ref

∆F2x ×Mair
× 1

TH

where S = area impacted by the albedo change, or
the grid cell size (i.e. 1.0 × 106 m2), AE = the
Earth’s surface area i.e. 5.1 × 1014 m2, AF = air-
borne fraction of CO2 over 100 years i.e. 0.48, Mair

and MCO2 = molecular weight of air and CO2

respectively i.e. 28.95 g mol−1 and 44.91 g mol−1,

mair = mass of the atmosphere i.e. 5.148 1015 Mg,
∆F2x = radiative forcing per doubling of current
CO2 in the atmosphere (W m−2), CO2ref = the
reference partial pressure of CO2 in the atmo-
sphere i.e. 389 ppm and TH = time horizon i.e.
100 years.
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Figure 4. Scatter plot showing the relationship between rhino loss and mean rhino density in the iMfolozi part of
Hluhluwe–iMfolozi Park in South Africa (2010–2019) derived for 1× 1 km grid cells that were used for our analyses. The vertical
black lines indicate standard errors for mean rhino density at each rhino loss value.

3. Results

3.1. Rhino loss
The number of legal removals of rhino varied from
8 in 2010 to 75 in 2016, but then stopped, while
the number of illegal removals increased from 19
in 2013 to 106 in 2019 (figure 2). Rhino loss took
place in 259 out of 886 (29.2%) the open to semi-
open savanna grid cells. There was no clear rela-
tionship between mean rhino density and rhino loss
(figure 4).

3.2. Woody plant cover, fire and albedo
Across the years, mean woody plant cover among
the analyzed grid cells varied between 6% and 65%
within a grid cell. Woody encroachment (positive
rate of change in woody cover) took place in 90% of
the open to semi-open savanna grid cells, with the
slope (β estimate) ranging between −1.32 and 1.56
with a median of 0.41 ha km−2 yr−1. Mean burnt

area per grid cell ranged from 0 to 62 ha, averaging
16 ha, and fire frequency ranged from zero to seven,
with an average of two fires over 10 years. No fires
occurred from 2015 to 2017 likely due to a 2014–2016
drought limiting grass biomass (Mbatha et al 2018 ).
Rate of change in albedo varied from 1.0 × 10−3 to
−2.2× 10−3, with 83% of cells analyzed experiencing
a decrease and 17% an increase (see figures 3 and 5).

3.3. Path analysis and biophysical cascades
The effect of rhino loss on burnt area was strongly
mediated by rainfall. Specifically, grid cells that lost
more rhinos had a larger area burnt at mean annual
rainfall>550 mm yr−1 rainfall, with 67% of the ana-
lyzed cells above this rainfall range. This effect was
reversed at very low rainfall levels <550 mm yr−1

with just 33% of the cells falling under this rainfall
range. Rhino loss was not significantly related to fire
occurrence or fire frequency. While cells that burnt
had lower rates of woody encroachment compared
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Figure 5. A violin plot and scatterplots showing the relationship between rhino loss and (A) fire occurrence, (B) mean annual
burnt area and (C) fire frequency, which are both grouped by rainfall level, (D) rate of change in woody cover and (E) rate of
change in annual albedo in Hluhluwe–iMfolozi Park in South Africa (2010–2019) derived for 1× 1 km grid cells that were used
for our analyses, with trendlines fitted using LOESS smoother. The vertical black lines indicate standard errors, and the grey
shaded area indicate 95% confidence intervals.

to cells that did not burn, of those cells that burnt,
a larger area burnt was associated with higher rates of
woody encroachment. Cells with a larger area burnt
and more frequent fires and higher rates of woody
encroachment experienced greater decrease in albedo
(figure 6).

Our model suggests that losing 818 rhinos
between 2010 and 2019 across HiP overall accoun-
ted for a 8.89 km2 increase in mean annual burnt
area, and at the rate of 0.34 ha km−2 yr−1 when aver-
aged across the grid cells that lost rhino, 1.49 km2

(0.06 ha km−2 yr−1) direct increase in woody cover
and 0.26 km2 (0.01 ha km−2 yr−1) indirect increase in
woody cover through fire-related impacts (figure 7).

3.4. Rhino loss and climate forcing
Over the 10 year period at the 1 × 1 km grid
scale, rhino loss-driven increase in mean annual
burnt area as well as direct and indirect woody
encroachment resulted in decreases in mean annual
albedo by 3.7 × 10−5, 8.2 × 10−6 and 1.4 × 10−6

respectively. These changes corresponded to increases

in radiative forcing at the top of the atmosphere
(RFTOA) by 2.7 × 10−3 Wm−2 (with a GWP of 1
845 tCO2e km−2 yr−1), 5.8 × 10−4 Wm−2 (or 2 405
tCO2e km−2 yr−1) and 1.0 × 10−4 Wm−2 (or 2 380
tCO2e km−2 yr−1) respectively (figures 7 and 8).

4. Discussion

Using a unique semi-experimental approach, our
study shows how removals of the world’s largest ter-
restrial grazer were linked to complex ecosystem-
wide biophysical cascades. Specifically, we showed
that rhino loss was associated with larger area burnt,
except where rainfall was low enough to limit grass
fuel build up even in the absence of rhino, and higher
rates of woody encroachment overall (due both to
the direct effect of rhino loss and the indirect effect
of larger fires). Larger area burnt and more woody
encroachment were both associated with stronger
declines in surface albedo, corresponding to increases
in climate forcing and GWP.
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Figure 6.Model output from our piecewise Structural Equations Models where we tested the effects of rhino loss and rainfall on
fire, the rate of woody encroachment and rate of change in albedo, and the effects of fire and the rate of woody encroachment on
the rate of change in albedo. All open grid cells were used for the pSEM. The figures in the green and orange boxes indicate the
sub-model estimates from each three model runs, such that pSEM1 is a model with fire occurrence as a binary variable, pSEM2 is
a model with burnt area as a continuous variable (here, we only included cells that burnt) and pSEM3 is a model with fire
frequency as the fire parameter. Green arrows indicate positive estimates, orange arrows negative estimates. The significance levels
are as follows: ∗∗∗ indicates p< 0.001, ∗∗ p< 0.01, and ∗ p< 0.05. ‘NS’ indicates a non-significant estimate p> 0.05.

4.1. Coupling betweenmegagrazer loss, fire
patterns, woody encroachment and land cover
albedo
As predicted, rhino loss was associated with an
increase in area burnt, but only for grid cells
with >550 mm rainfall per year, and higher rates
of woody encroachment overall. One mechanism
through which rhino influence fire is the creation
and maintenance of ‘grazing lawns’ (Archibald et al
2005, Waldram et al 2008), a specific community of
grazing-tolerant, short-statured grass species that are
outcompeted by tall-statured grasses in the absence
of grazing. These lawns act as natural fire breaks,
reducing the extent and frequency of fires (Hempson
et al 2015, Johnson et al 2018). Another mechanism

beyond grazing lawns is the general reduction of
tall grass biomass, and thus grass fuel for fire,
by grazing (Capozzelli et al 2020). For example,
Waldram et al (2008), found that management-
led rhino removal and the subsequent increase in
grass biomass accumulation increased fire extent in
both low and high rainfall areas of HiP. Similar
to our finding, they showed that fire responses to
rhino removal were stronger in the higher rainfall
Hluhluwe part of the park than in the drier iMfolozi
part.

Furthermore, wild and domestic large grazers
can limit woody encroachment through grazing-
related removal of seedlings and trampling impacts
(O’Connor et al 2014). Another mechanism,

9
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Figure 7. An illustration of the effects of white rhino loss in Hluhluwe–iMfolozi Park (2010–2019) on biophysical
climate-vegetation feedbacks through three different pathways. Rhino loss was associated with an increase in burnt area (P1) and
an increase in the rate of woody encroachment (P2). Rhino loss-driven increase in burnt area further was associated with an
increase in the rate of woody encroachment (P3). Mean annual burnt area and rate of woody encroachment were further
associated with stronger decrease in albedo. The radiative forcing values here are presented as radiative forcing at the top of
atmosphere i.e.∆RFTOA.

demonstrated by Voysey et al (2021) in HiP, is the
concentration of large browsers on rhino-created
grazing lawns, which limit woody plant survival
nearby the lawns. In addition to these direct effects,
we found that rhino loss was associated with more
woody encroachment indirectly through changing
fire patterns. While burnt area was linked to stronger
woody encroachment, fire occurrence (presence or
absence of fire) had the opposite effect, meaning
cells with fire had a lower rate of encroachment than
cells without fire. We speculate that there are two
alternative processes at play here. The cells without
fire mostly occurred in the drier south western part
of the park (figure 3). This region is dominated by
short grass, due to heavy grazing pressures, and hence
very little grass fuel. We suggest that the lack of fire
and heavy grazing in this area of the park promotes
woody encroachment (see the mechanisms discussed
by Sankaran et al 2005, Devine et al 2017 for semi-
arid savannas). For the cells with fire, a larger burnt
area was associated with stronger woody encroach-
ment. Here, we suggest that this is due to the fact that
most fires in HiP are relatively cool fires (Cromsigt,
personal observations). While intense fires typic-
ally reduce woody encroachment by killing plants
(Mapiye et al 2008, Smit et al 2016), low-intensity
fires, which do not kill saplings, may encourage
woody plant recruitment into fire-tolerant size classes
by temporarily reducing grass competition (Walters
et al 2004, Rodrigues et al 2021).

The aerial count data did not show a clear rela-
tionship between rhino loss and density (figure 4),
as rhino loss was variable across both low and high
densities, especially where rhino loss was very high.
This made it difficult to separate the effects of rhino
loss from density. However, the significant impact
of rhino loss on several ecological variables suggests
that it affected these variables due to reduced grazing
pressure, regardless of density variation. Importantly,
removing rhinos from high-density areas may have
less effect on grazing pressure than from low-density
areas, which could reduce the likelihood of detecting
an effect. Despite this potential bias, the presence of
an effect in our study supports the robustness of our
findings.

4.2. Consequences of rhino-loss-mediated albedo
changes for GWP
As expected, landcover changes driven by rhino loss
were further associated with reduced surface albedo
and increased GWP. Fire-related albedo change had
a positive GWP of 1 845 tCO2e km−2 yr−1. This is
much higher than the warming from below ground
carbon release resulting from increased fire fre-
quencies reported for sub-tropical savanna grass-
lands i.e. 77.02 tCO2e km−2 yr−1 (Pellegrini et al
2018, Zhou et al 2022) (figure 8). Furthermore,
the albedo changes from woody encroachment
in our study had positive GWPs of 2 380–2 405
tCO2e km−2 yr−1, which is more than twice as high
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Figure 8. Barplot comparing the global warming potential from albedo vs. carbon impacts (both above ground and below
ground) of rhino loss-driven changes in burnt area and woody encroachment. The albedo data are derived from the present study,
while the carbon impacts are derived from literature (see text S5 for details).

as the best-case scenario cooling effect from com-
bined above and below ground carbon sequestra-
tion. In fact, woody encroachers were reported to
sequester from 174.6–305.5 tCO2e km−2 yr−1 in
their above ground biomass at the 750–900 mm yr−1

rainfall areas of HiP, and either sequester up to an
additional 752.4 tCO2e km−2 yr−1 below ground at
750 mm yr−1 or release 170.7 tCO2e km−2 yr−1

from the soil carbon pool at 900 mm yr−1 rain-
fall areas (figure 8) (see text S5 for detailed
calculations).

Our albedo-related GWP estimates are consist-
ent with Hasler et al (2024), who compared albedo
and carbon impacts from tree cover restoration. Our
findings suggest that albedo-driven warming from
woody encroachment may offset or even reverse
the cooling effect of carbon sequestration, espe-
cially in high-rainfall areas where soil carbon is
reduced. This is important, because many assess-
ments of woody plants on climate often overlook
albedo changes, potentially overstating their climate
benefits (Griscom et al 2017, Roe et al 2019).
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4.3. Significance and implications of the study for
understanding the role of megafauna in the climate
system
Importantly, our findings align with those of studies
on the consequences of late-Quaternary defaunation,
suggesting that this defaunation significantly altered
vegetation cover (Gill et al 2009, Doughty et al 2016,
Dantas and Pausas 2022), fire regimes (Gill et al 2009,
Rule et al 2012, Karp et al 2021) and surface albedo
(Doughty et al 2010, Brault et al 2013). Furthermore,
our findings provide contemporary empirical sup-
port for coupling between megafaunal loss, vegeta-
tion, fire and climate drivers.

This study advances our understanding of the
links between animals and the land-surface climate
feedbacks. We show that wild grazers may affect not
only carbon dynamics, but also important biophys-
ical climate feedbacks. Our GWP analysis addition-
ally confirms the importance of considering both car-
bon and albedo when estimating megafauna’s net
effects on the climate. While we focused on white
rhinos, similar mechanisms likely apply to other
large wild grazers and livestock in global rangelands,
which cover a very large part of the terrestrial surface
(UNCCD 2024). We call for further research on the
links between grazing, tree–grass ratios, fire, albedo,
and climate forcing in rangelands.

4.4. Limitations and future directions
While our study highlighted measurable effects of
megafauna-driven landcover changes on the albedo-
related climate forcing, the coarse spatial and tem-
poral resolution of our analysis, and various limita-
tions to the data used,mean that our estimated albedo
and GWP changes should be considered only ball-
park estimates (see further details in text S6). Thus,
the emphasis on the interpretation of our findings
should be on the relative differences across rhino loss
contrasts. To achieve more precise GWP accounting
from landcover-related albedo changes, there is a need
for data on albedo dynamics at finer spatial and tem-
poral resolution. This is however beyond the capacity
of current freely-available satellite data. More suitable
tools for such detailed analysis would include hand-
held or drone-based albedo meters that allow for
frequent, high-resolution measurements across space
and time (e.g. McGregor et al 2024). This approach
would advance our understanding of how landcover
changes driven by megafauna affect climate through
affecting albedo dynamics.

5. Conclusion

The impacts of wild animals on ecosystem car-
bon uptake and storage have recently gained much
interest. However, their potential to regulate bio-
physical climate-vegetation feedbacks remains largely
untested, limiting our understanding of their net
effects on the climate system. We demonstrated that

the losses of the world’s largest terrestrial grazer in
HiP between 2010 and 2019 was associated with com-
plex ecosystem-scale biophysical cascades, including
changes in burnt area, woody encroachment, and sur-
face albedo, with impacts on climate forcing. This
study suggests that large grazer assemblages at nat-
ural densities may have substantially impacted cli-
mate systems before global human-driven defaun-
ation, and highlights the potential of restoring these
processes and the role of wild animals in future Earth
and climate system functioning. Finally, these results
underscore the urgent need to integrate herbivory
into Earth-systemmodels to improvemodel accuracy
and explore herbivore effects under future scenarios.
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