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Abstract
Methyl jasmonate (MeJA) is a volatile hormone produced by plants in response to stress. Exogenous application of MeJA 
enhances resistance to pathogens in conifers, but little is known if resistance is also enhanced in broad-leaf trees. This article 
reports on five independent experiments carried out to determine the preventive and curative effects of MeJA spray in broad-
leaf trees in response to relevant pathogens. In Castanea sativa seedlings, preventive MeJA spray at 1 mM was the most effec-
tive dose against Phytophthora cinnamomi, and protection lasted one year. For Quercus ilex and Q. suber seedlings, double 
spray of MeJA at 0.2 mM, before and after inoculation, and single spray of MeJA at 1 mM before inoculation were the most 
effective treatments against P. cinnamomi, respectively. MeJA spray had no effect on the mycorrhization of plants. Quercus 
robur and Fraxinus excelsior plants were sprayed with 0, 0.2, 1, 5 and 10 mM MeJA, before and after Phytophthora plurivora 
infection, but no protection was observed. Finally, Ulmus minor trees were sprayed at 1 and 10 mM MeJA, and protection 
against Ophiostoma novo-ulmi was dose- and genotype-dependent. It is concluded that MeJA spray can induce resistance 
in broad-leaf trees against widespread and highly virulent pathogens, but the effect may vary depending on the tree species 
and pathogen combination. Protection of broad-leaf trees could be obtained only if the appropriate dose and timing is used.
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Introduction

European chestnut (Castanea sativa Mill.), holm oak 
(Quercus ilex L.), cork oak (Quercus suber L.), pedunculate 
oak (Quercus robur L.), common ash (Fraxinus excelsior 
L.) and field elm (Ulmus minor Mill.) are native tree species 
in European forests. Alarmingly, the ecological functions 
and economic values linked to these species are increas-
ingly threatened by several fungal and oomycete pathogens. 
For example, the invasive Phytophthora cinnamomi is wide-
spread in southern Europe and threatens chestnut, holm oak 
and cork oak forests (Martín-García et al. 2015; Antonelli 
et al. 2023; Serrano et al. 2024). Phytophthora plurivora 
previously known as P. citricola is frequently found on a 
broad range of host species including pedunculate oak and 
ash (Jung et al. 2018). Dutch elm disease caused by the fun-
gus Ophiostoma novo-ulmi decimated the populations of 
native elms since its introduction to Europe in early 1970s 
(Martín et al. 2023). To secure the future of native European 
tree species, sustainable, environmentally friendly methods 
are urgently needed.
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Phytohormones are small signalling molecules, which 
regulate plant development and adaptation to stress, and are 
among the most studied compounds used to control biotic 
damage (Thakur and Sohal 2013; Camisón et al. 2019; Ali 
2021). Jasmonates including jasmonic acid (JA) are a major 
class of oxylipin-derived phytohormones crucial to plant 
defence against herbivores and necrotrophic pathogens (Zas 
et al. 2014; Wang et al. 2020). Exogenous application of 
methyl JA (MeJA), a volatile derivative of JA, activates sev-
eral defence-related metabolic pathways leading to the accu-
mulation of phytoalexins, enhanced carotenoid biosynthesis 
and increased activity of enzymes involved in the scaveng-
ing of reactive oxygen species and the synthesis of phenolic 
compounds (Jiang and Yan 2018; Ghorbel et al. 2021).

In conifer trees, the application of MeJA induces resist-
ance to harmful insects (Sampedro et al. 2011; Whitehill 
et al. 2014; Jiang and Yan 2018; Puentes et al. 2021) and 
pathogens (Krokene et al. 2008; Gould et al. 2009; Puentes 
et al. 2021; Wilkinson et al. 2022; Nunes da Silva et al. 
2025) under controlled and field conditions (Berggren et al. 
2023; Krokene et al. 2023; Zas et al. 2014). Side effects of 
MeJA-induced resistance in conifers have been documented, 
mostly in pine (Pinus spp.) and spruce (Picea spp.) (Huynh 
et al. 2024), and include transiently reduced tree growth 
and direct phytotoxicity (Gould et al. 2008, 2009; Sampe-
dro et al. 2011; Zas et al. 2014; Fedderwitz et al. 2020). 
By contrast to conifer trees, the effectiveness of MeJA as 
a resistance inducer and the occurrence of side-effects in 
broad-leaved trees are much less known (but see Tianzi et al. 
2018; Vivas et al. 2012; Whitehill et al. 2014).

There are significant gaps in our understanding regarding 
the durability and ecological consequences of MeJA treat-
ment on trees (Huynh et al. 2024). For instance, the effects 
of MeJA treatments on the interactions between trees and 
beneficial soil microbes have not been studied. Most broad-
leaved trees form symbioses with ectomycorrhizal fungi that 
have beneficial effects on plant nutrition and drought toler-
ance, and provide protection against root pathogens, such as 
P. cinnamomi (Cairney and Chambers 1997). Thus, impaired 
mycorrhization can lead to reduced resilience of forests to 
drought, more frequent infections by soil-borne pathogens, 
and reduced tree growth (Corcobado et al. 2015). It has been 
suggested that allocation costs arising from induced defence 
may have negative effects on the formation and functioning 
of mycorrhizae (Walters and Heil 2007), but as far as authors 
know these effects were not tested.

Here, we report results of five independent experiments 
in which the efficacy of exogenous application of MeJA to 
induce resistance in (i) C. sativa, Q. ilex and Q. suber seed-
lings against P. cinnamomi, (ii) Q. robur and F. excelsior 
seedlings against P. plurivora and (iii) U. minor trees against 
O. novo-ulmi was tested. We tested the hypothesis that MeJA 
spray protects broad-leaf trees against oomycete and fungal 

pathogens. The effect of MeJA spray on the growth of Q. 
ilex, Q. suber, Q. robur and F. excelsior was studied. Addi-
tionally, the impact of MeJA spray on the mycorrhization of 
chestnut, holm and cork oak seedlings was assessed.

Materials and methods

Plant material

Plant material from six deciduous tree species that are native 
in European forests, i.e. C. sativa (European chestnut), Q. 
ilex (holm oak), Q. suber (cork oak), Q. robur (European 
oak), F. excelsior (European ash) and U. minor (field elm), 
were used (Table 1). Since the induced response of trees 
varies depending on the species, progeny and age (Van 
Loon 1997; Puentes et al. 2021), we tested this variation 
by using plant material heterogeneous in age and origin. 
The six-month-old seedlings of C. sativa, Q. robur and 
Q. suber originated from natural forests in Extremadura, 
Spain, and were purchased from La Dehesa nursery (Val-
deobispo, Spain). The two-year-old seedlings of Q. robur 
originated from Orrängen, Götaland, and were obtained 
from Ramlösa Plantskola AB nursery (Helsingborg, Swe-
den). The two-year-old F. excelsior plants, cloned through 
stem cuttings from six genotypes selected for their superior 
growth, were obtained from the clone collection of Forestry 
Research Institute of Sweden, Skogforsk (Ekebo, Sweden). 
The seven-year-old U. minor trees, replicated in vitro from 
Atinia (U. minor var. vulgaris = U. procera) (Gil et al. 2004), 
and CC-VG4.2 clones within the Spanish elm breeding pro-
gram were selected because of their high susceptibility to 
Dutch elm disease. All trees were grown in pots in a con-
trolled environment glasshouse at ~ 25 °C (65–70% relative 
humidity and natural daylight) and watered once a week, 
except the elms, which were planted in an experimental plot 
at 1 × 1 m spacing at Centro Nacional de Recursos Genéticos 
Forestales Puerta de Hierro, Madrid, Spain.

Pathogens and inoculum preparation

Three pathogens were used in the study (Table 1). First, an 
A2 strain of Phytophthora cinnamomi, since this oomycete 
is responsible for the ink disease in chestnut and decline of 
holm oak and cork oak and causes widespread mortality of 
trees in southern Europe (Jung et al. 2018). The strain, coded 
P90, was isolated from the rhizosphere of a Q. ilex tree in 
Puebla de Guzmán, Spain, and has been shown to be highly 
virulent in Q. ilex (San-Eufrasio et al. 2021). The inoculum 
was prepared following Jung et al. (1996) and incubated at 
23 °C in darkness for four weeks.

A virulent strain of Phytophthora plurivora (AV1007), 
isolated in 2016 from a bleeding canker on a diseased 
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European beech (Fagus sylvatica) in Malmö, Sweden 
(Vetukuri et al. 2018), was used. The inoculum was obtained 
from mycelial cultures on potato dextrose agar (PDA) that 
had been incubated at room temperature in the dark for 2 
weeks.

Ophiostoma novo-ulmi isolate (CC-CC1) was obtained in 
2020 from an infected U. minor tree in Cáceres (Spain). Iso-
late mycelial plugs were grown on malt extract agar (MEA) 
two months prior to the experiment at 22 °C in the dark 
and were subcultured every 15 days. Four days before the 
experiment, mycelial plugs from fresh colonies were grown 
in Erlenmeyer flasks with liquid Tchernoff medium (Mar-
tín et al. 2023) under constant shaking at 22 °C to induce 
sporulation. Spores were collected by centrifugation and 
resuspended in sterile distilled water.

Inoculation methods

Inoculation of Phytophthora cinnamomi was carried out by 
using the soil infestation method (Jung et al. 1996). Briefly, 
the soil was inoculated by mixing 12 mL of inoculum with 
the first 3 cm of substrate in each individual cell, taking care 
not to damage the roots of the seedlings. After inoculation, 
to promote sporangia production and zoospore release, the 
seedlings were watered, left for one day and then flooded 
with non-chlorinated water for two days.

Phytophthora plurivora was inoculated using the stem 
inoculation method (Kurbetli et al. 2022). A wound was 
made in the bark in the middle of the stem using a sterile 
scalpel, and a mycelial plug from the edge of a growing P. 
plurivora colony was inserted into the wound and sealed 

with Parafilm® (American National Can Co., Neenah, 
USA).

Ophiostoma novo-ulmi was inoculated with a spore 
suspension at a concentration of  106 blastospores  mL−1 
(Martín et al. 2010). Two drops of inoculum were applied 
into the xylem of each tree through a transverse cut made 
with a sharp blade 5 cm above the level of the soil, allow-
ing absorption of the inoculum. At the end of the study, O. 
novo-ulmi and each Phytophthora species were re-isolated 
from symptomatic tissues of inoculated plants.

Experimental layout

In five independent experiments, suspensions at differ-
ent concentrations of MeJA (Sigma-Aldrich, #39270-7) 
in 0.5% ethanol (v/v) in deionised water were used. The 
solutions were shaken vigorously until a uniform milky 
emulsion was obtained. The aerial part of each tree was 
sprayed with ca. 2 mL of each solution separately up to 
run-off, and the aerial part of control plants was sprayed 
with 0.05% ethanol (v/v) in deionised water. Trees treated 
with different MeJA concentrations were kept in separate 
greenhouse cabinets for 48 h and then arranged in a fully 
randomized design. The growth conditions of plants were 
25 °C, 60% relative humidity and natural daylight. Elm 
trees were MeJA-sprayed with ca. 1 L per tree by using 
a motorised wheelbarrow sprayer. In all experiments, the 
soil surface of trees was covered by filter paper to prevent 
the product from dripping onto the ground.

Table 1  Summary of tree species, pathogens and doses of MeJa tested and main results of five independent experiments (– = result not available; 
yes = at least one dose of MeJA protected/cured trees from infection)

Tree species 
(development 
stage)

Pathogen MeJA dose (mM) Effect tested Increased 
resistance

Effect on growth Effect on 
mycorrhization 
(experiment 5)

Experiment 1 Castanea sativa 
(seedlings)

Phytophthora cin-
namomi

0, 0.04, 0.2, 1, 
5, 10

Preventive; pre-
ventive + cura-
tive

Yes – No

Experiment 2 Quercus ilex 
(seedlings)

Phytophthora cin-
namomi

0, 0.2, 1 Preventive; cura-
tive; preven-
tive + curative

Yes Negative No

Quercus suber 
(seedlings)

Phytophthora cin-
namomi

0, 0.2, 1 Preventive; cura-
tive; preven-
tive + curative

No Positive No

Experiment 3 Quercus robur 
(seedlings)

Phytophthora 
plurivora

0, 0.2, 1, 5, 10 Preventive; cura-
tive; preven-
tive + curative

No No –

Fraxinus excelsior 
(seedlings)

Phytophthora 
plurivora

0, 0.2, 1, 5, 10 Preventive; cura-
tive; preven-
tive + curative

No No –

Experiment 4 Ulmus minor 
(young ramets)

Ophiostoma 
novo-ulmi

0, 1, 10 Preventive Yes – –
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Experiment 1. MeJA to protect Castanea sativa 
against Phytophthora cinnamomi

In May 2021, six-month-old chestnut seedlings were sprayed 
with MeJA at 0, 0.04, 0.2, 1, 5 and 10 mM concentrations 
based on previous research (Vivas et al. 2012; Zas et al. 
2014; López-Villamor et al. 2021). Six days later, the trees 
were challenged with P. cinnamomi soil infestation. To test 
a double application of MeJA, four days after being P. cin-
namomi-infested, half of the inoculated trees were sprayed 
again, at the same concentration. This period was selected 
to coincide with pathogenesis of ink disease (Camisón et al. 
2019), particularly when the pathogen switches into a necro-
trophic phase (Fernandes et al. 2021).

The plants were ca. 25 cm high and were arranged in 
root trainers of 15 cells, each cell containing a single plant 
and 33 cL of Sphagnum peat (Kekkilä Professional®, Van-
taa, Finland). One root trainer per MeJA concentration was 
used to assess the effect of the preventive treatment, and one 
root trainer per MeJA concentration was used to assess the 
effect of the preventive + curative treatment (n = 15 plants). 
An additional root trainer of non-treated plants was used as 
a control (n = 15). Thus, the experiment included 195 trees 
corresponding to 6 MeJA concentrations × 2 treatments × 15 
plants, and 15 additional control trees. In April 2022, the 
vegetative budburst of all plants was assessed following 
Solla et al. (2014). In May 2022, all plants were inocu-
lated with P. cinnamomi for a second time. Tree mortality 
was assessed monthly for 2 years, and tree growth was not 
assessed.

Experiment 2. MeJA to protect Quercus ilex and Q. 
suber against P. cinnamomi

Based on results from Experiment 1, in May 2022 one-year-
old holm oak and cork oak trees were sprayed at 0, 0.2 and 
1 mM MeJA concentrations. In order to evaluate the effect of 
MeJA as a preventive, curative or preventive + curative treat-
ment against P. cinnamomi (Pc), the following eleven groups 
of plants were used: (i) treated at 0 mM and not inoculated 
(CC), (ii) treated at 0.2 mM and not inoculated (0.2), (iii) 
treated at 1 mM and not inoculated (1), (iv) treated twice at 
1 mM (1 + 1), (v) treated at 0 mM and Pc-inoculated (Pc), 
(vi) treated at 0.2 mM and Pc-inoculated (0.2 + Pc), (vii) 
treated at 1 mM and Pc-inoculated (1 + Pc), (viii) Pc-inoc-
ulated and treated at 0.2 mM (Pc + 0.2), (ix) Pc-inoculated 
and treated at 1 mM (Pc + 1), (x) treated at 0.2 mM, Pc-inoc-
ulated and treated at 0.2 mM (0.2 + Pc + 0.2) and (xi) treated 
at 1 mM, Pc-inoculated and treated at 1 mM (1 + Pc + 1). Pc 
inoculation was performed one week after the MeJA treat-
ments, and the second MeJA treatment was applied ten days 
after soil infestation. The timing of the second treatment was 
selected to coincide with pathogenesis of Pc in the two oak 

species (Luque et al. 2002), particularly when the pathogen 
switches into a necrotrophic phase (Redondo et al. 2015).

The Q. ilex and Q. suber plants were ca. 15 and 24 cm 
high, respectively, and were arranged in root trainers of 
24 cells, each cell containing a single plant and 33 cL 
of Sphagnum peat (Kekkilä Professional®, Vantaa, Fin-
land). One root trainer per treatment was used (n = 15 
plants). The experiment comprised 528 trees correspond-
ing to 2 species × 11 treatments × 24 plants. Tree mortality 
was assessed monthly for one year, and tree height was 
assessed before treatments and at the end of the vegeta-
tive period.

Experiment 3. MeJA to protect Q. robur and Fraxinus 
excelsior against P. plurivora

In July 2021, two-year-old European oak and European ash 
trees were sprayed at 0, 0.2, 1, 5 and 10 mM MeJA concen-
trations. Twelve days later, the trees were challenged with P. 
plurivora. To test a possible curative effect of MeJA, eight 
days after being P. plurivora-infected, a group of non-treated 
trees was sprayed at the same five MeJA concentrations. 
To test a possible effect of a combination of preventive and 
curative MeJA treatment, an additional group of treated 
and P. plurivora-infected trees were sprayed with same 
concentrations.

The Q. robur and F. excelsior plants were in average 63 
and 44 cm high, respectively, and were planted in 3L pots 
containing Sphagnum peat (Kekkilä Professional®, Vantaa, 
Finland). The experiment comprised 180 trees correspond-
ing to 2 species × 5 MeJA concentrations × 3 groups × 6 
plants. Two months after inoculation, tree height was meas-
ured; then, plants were harvested and the outer bark/epi-
dermis of the plants was removed, to measure the lesion 
length above and below the point of inoculation (Kurbetli 
et al. 2022). Tree height was assessed before treatments and 
at the end of the vegetative period.

Experiment 4. MeJA to protect Ulmus minor 
against Ophiostoma novo‑ulmi

In May 2022, 7-year-old ramets of two field elm clones were 
sprayed with MeJA at 0, 1 and 10 mM concentrations based 
on previous research (Vivas et al. 2012). One week later, the 
trees were challenged with Ophiostoma novo-ulmi. At this 
time, trees were 2.6 to 3 m tall. The experiment comprised 
30 trees corresponding to 2 clones × 3 MeJA concentra-
tions × 5 ramets (i.e. tree replicates). Disease severity was 
evaluated 30, 60 and 120 days after inoculation by record-
ing the percentage of leaf wilting in the crown (Martín et al. 
2008). Tree growth was not assessed.
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Experiment 5. Does MeJA spray affect 
ectomycorrhizal infection and symbiosis?

In spring 2022, single and double MeJA spray treatments 
were applied before and after inoculation of Pisolithus tinc-
torius on C. sativa, Q. ilex and Q. suber trees. MeJA at 0 
and 1 mM and six-months-old seedlings were used. To test if 
MeJA affects mycorrhizal infection, the plants were sprayed 
once (45 or 15 days) or twice (45 and 15 days) before inocu-
lation with P. tinctorius. To test if MeJA alters mycorrhizal 
symbiosis, the plants were sprayed once (45 or 15 days) or 
twice (45 and 15 days) after inoculation with P. tinctorius.

Inoculation was carried out in June 2022 by using a spore 
suspension in distilled water as inoculum. At this time, 
C. sativa, Q. ilex and Q. suber plants were ca. 12, 10 and 
23 cm high, respectively, and were arranged in root trainers 
of 15 cells, each cell containing a single tree and 33 cL of 
Sphagnum peat (Kekkilä Professional®, Vantaa, Finland). 
Ten mL of inoculum including ~ 1.6 ×  107 spores/mL was 
directly injected into the substrate of each tree by using a 
plastic syringe (González-Ochoa et al. 2003). The experi-
ment comprised 180 inoculated trees corresponding to 3 
species × 2 MeJA concentrations × 2 tests (before vs after 
inoculation) × 3 treatments × 5 seedlings, and five additional 
non-inoculated trees per species.

Four months after inoculation, the percentage of root tips 
colonized by P. tinctorius was assessed in five root samples 
taken randomly from each tree. Approximately 50 lateral 

root tips per tree were examined under a stereomicroscope 
(Olympus SZX10, Japan) and classified as mycorrhized 
(typically shorter, thicker and yellow) or non-mycorrhized 
(Sebastiana et al. 2013). Tree height was assessed before 
treatments and at the end of the vegetative period.

Statistical analyses

To analyse the time to death of trees inoculated with P. cin-
namomi, survival time analysis based on Kaplan–Meier esti-
mation was used (Solla et al. 2011). To evaluate the effect 
of MeJA treatments on tree height, leaf wilting, necrosis 
length or percentage of mycorrhization, one-way analysis 
of variance (ANOVA) was performed using the treatment as 
a single factor. To identify significant differences between 
means, Tukey’s multiple comparison tests at p < 0.05 were 
used. Data were analysed with Statistica v10.0 (StatSoft Inc. 
2011).

Results

MeJA at 1 mM protected chestnut against P. 
cinnamomi

In Experiment 1, at the end of the first vegetative period, 
mortality of P. cinnamomi-infected C. sativa trees sub-
jected to 0  mM MeJA was 40% (Fig.  1A). Preventive 

Fig. 1  Survival probabilities of Castanea sativa trees sprayed with 
methyl jasmonate (MeJA) and challenged with Phytophthora cinnam-
omi (Pc; preventive treatment) (A), or sprayed with MeJA, challenged 
with Pc and sprayed with MeJA again (preventive treatment + cura-
tive treatment) (B). Trees were neither sprayed nor inoculated (con-

trol, dotted line) or sprayed at 0  mM (black dashed line), 0.04  mM 
(blue line), 0.20  mM (green line), 1  mM (orange line), 5  mM (red 
line) and 10  mM (black line) MeJA concentrations and inoculated 
(n = 15). Different letters indicate significant differences between sur-
vival curves (log-rank test, p < 0.05)
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treatments of MeJA at 0.2, 1 and 5 mM reduced tree mor-
tality in relation to the 0 mM MeJA treatment by 53, 62 
and 67%, respectively (Fig. 1A). On the contrary, the pre-
ventive MeJA treatment at 10 mM enhanced tree mortal-
ity in relation to the 0 mM MeJA treatment by 75% and 
caused phytotoxicity in young leaves ten days after appli-
cation (Fig. 2A).

By spraying the trees again after inoculation, MeJA at 
0.2 and 1 mM was able to impede mortality, fully pro-
tecting all the 15 P. cinnamomi-infected chestnuts dur-
ing the whole vegetative period (Fig. 1B). The protection 
induced by MeJA at 1 mM after single (preventive) and 
double spray lasted two additional years, i.e. no additional 
tree mortality was observed in 2022 and 2023 although 
trees were re-inoculated in 2022. The protection induced 
by MeJA at 0.2 mM and other concentrations failed after 
the plants were re-inoculated in 2022 (Fig. S1). One year 
after treatments and P. cinnamomi infection, only in trees 
sprayed with 1 mM MeJA (Fig. S2), leaves started to flush 
ca. 15 days earlier than the leaves of control trees.

MeJA at 0.2 mM protected holm oak against P. 
cinnamomi

In Experiment 2, one year after inoculation, Q. ilex and Q. 
suber trees sprayed with water (control treatment) and chal-
lenged with P. cinnamomi showed 79 and 12% mortality, 
respectively. In Q. ilex, MeJA spray increased the survival of 
trees, with the treatments 0.2 + Pc and 0.2 + Pc + 0.2 provid-
ing the best protection (Fig. 3). In Q. suber, MeJA spray did 
not increase the survival of trees, and some of the treatments 
(i.e. 0.2 + Pc + 0.2, 1 + Pc and Pc + 1) increased tree mortal-
ity (results not shown).

Tree height in Q. ilex was significantly impaired by Pc 
inoculation and/or MeJA treatments (Fig. 4A). The treat-
ments that showed best protection in Q. ilex (i.e. 0.2 + Pc, 
1 + Pc and 0.2 + Pc + 0.2) did not enhance tree growth 
(Fig. 4A). However, in Q. suber MeJA spray at 0.2 and 
1 mM as preventive and at 0.2 mM as curative enhanced 
tree growth (Fig. 4B).

MeJA did not protect Q. robur and F. excelsior 
against P. plurivora

In Experiment 3, two months after inoculation with P. plu-
rivora, lesions of 31.5 ± 11.2 and 22.2 ± 2.1 mm in length 
were observed on the stems of Q. robur and F. excelsior 
trees, respectively. In contrast, the length of lesions on mock-
inoculated Q. robur and F. excelsior trees were 0.8 ± 0.7 and 
1.0 ± 1.1 mm respectively. MeJA spray did not protect or 
cure any of the two species against P. plurivora (Fig. 5) and 
did not alter tree growth (results not shown). MeJA at 5 and 
10 mM was slightly toxic for Q. robur and F. excelsior, as 
necrosis in the tips of some leaves was observed (Fig. 2B, 
C, respectively).

Protection of MeJA against O. novo‑ulmi was dose‑ 
and genotype‑dependent

In Experiment 4, one and two months after inoculation of 
the highly susceptible Atinia elm clone, leaf wilting was 
lowest when trees were preventively sprayed with MeJA at 
1 mM (Fig. 6A). However, at the end of the experiment, 
MeJA spray was not able to decrease the leaf wilting caused 
by O. novo-ulmi in this clone (Fig. 6A). In the susceptible 
CC-VG4.2 clone, preventive treatment of MeJA at 10 mM 
reduced leaf wilting in relation to the 0 mM MeJA treat-
ment by 70% (Fig. 6B). No phytotoxic effects of MeJA were 
observed.

MeJA did not affect ectomycorrhizal symbiosis

According to Experiment 5, MeJA spray at 1 mM did not 
influence mycorrhizal infection or symbiosis of C. sativa, Q. 

Fig. 2  Side effects caused by methyl jasmonate (MeJA) foliar spray 
at 10 mM in Castanea sativa A, Quercus robur B and Fraxinus excel-
sior C. Three weeks after spraying, yellowing and necrosis started in 
the leaf apex and expanded towards the petiole
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ilex and Q. suber trees in relation to control plants, irrespec-
tive of single or double treatments. All trees showed vital 
ectomycorrhizal tips and percentages of mycorrhization with 
P. tinctorius per tree ranging from 19.6 ± 1.6 to 26.3 ± 4.0% 
(data not shown). At the end of the vegetative period, P. tinc-
torius-inoculated trees were ~ 15% taller than non-inoculated 
trees, irrespective of the species. MeJA spray at 1 mM did 
not significantly influence final height of trees (Table S1).

Discussion

Exogenous application of MeJA has been widely stud-
ied to help reducing the adverse effects of pest damage 
in forest trees (Sampedro et al. 2011; Semiz et al. 2012; 
Whitehill et al. 2014; Zas et al. 2014; Nunes da Silva et al. 
2025). However, the potential of MeJA to protect decidu-
ous trees from fungal and oomycete pathogens has remained 
poorly studied. In this study, the efficacy of MeJA foliar 
spray against pathogens was tested in six broad-leaved forest 
species widespread in Europe. In chestnut, this is the first 
study to evaluate the effect of MeJA in inducing resistance 
to P. cinnamomi. In a previous work, we observed that the 
presence of jasmonic acid (JA) and its conjugate JA-Ile in 
chestnut was related to constitutive and inducible resistance 

to P. cinnamomi (Camisón et al. 2019). Accumulation of JA 
and other oxylipins was observed in chestnut when inocu-
lated with P. cinnamomi (Saiz-Fernández et al. 2020). In our 
work, we observed that MeJA spray at 0.2 mM protected 
chestnut seedlings from P. cinnamomi, even if treatments 
were applied after inoculation. This finding is in accord-
ance with the previously described role of jasmonic acid 
in providing resistance to chestnut and other plant species 
(Cooper and Rieske 2008; Wang et al. 2011; Sulaiman and 
Bello 2024; Nunes da Silva et al. 2025) and emphasises the 
potential of MeJA in environmentally friendly control of 
ink disease.

Holm oak and cork oak trees are also suffering severe 
and widespread damage by P. cinnamomi (Encinas-Valero 
et al. 2022; Serrano et al. 2024). It has been shown that Q. 
ilex is more susceptible than Q. suber to P. cinnamomi (de 
la Mata et al. 2024). Indeed in the present study, cork oak 
seedlings were almost unaffected by the pathogen. In holm 
oak seedlings, MeJA spray at 0.3 mM increased the emis-
sion of green leaf volatile compounds (Semiz et al. 2012). 
These compounds are related to the expression of genes 
activating the synthesis of oxylipins that ultimately produce 
jasmonates in plants (Naeem et al. 2015). Jasmonate induc-
tion has been described as part of the defensive machinery 
of Q. ilex against P. cinnamomi, and exposure to MeJA of 

Fig. 3  Survival probabilities of Quercus ilex trees sprayed with 
methyl jasmonate (MeJA) at 0.2  mM (0.2 + Pc, orange line) and 
1  mM (1 + Pc, green line) and challenged with Phytophthora cin-
namomi (Pc) (preventive treatments), inoculated with Pc and sprayed 
with MeJA at 0.2  mM (Pc + 0.2, orange dashed line) and 1  mM 
(1 + Pc, green dashed line) (curative treatments), sprayed with MeJA 

at 0.2 mM (0.2 + Pc + 0.2, orange dotted line) and 1 mM (1 + Pc + 1, 
green dotted line) before and after being challenged with Pc (preven-
tive + curative treatments), or neither sprayed nor inoculated (control, 
black dotted line) (n = 15). Different letters indicate significant differ-
ences between survival curves (log-rank test, p < 0.05)
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Q. ilex embryonic lines has resulted in an increase of absci-
sic acid, jasmonic acid and phenolic compounds (Morcillo 
et al. 2022). Our results agree with the previous studies 
and provide evidence that MeJA has long-lasting effects 
as a defence elicitor, probably leading to increased long-
term resistance in Q. ilex, as it was observed in P. pinaster 
(Vázquez-González et al. 2022). Treatments with MeJA 
(0.2 mM) could thus help control Phytophthora in holm oak 
woodlands, where seedling establishment and tree regen-
eration often fail mainly due to Phytophthora soil infesta-
tion (Martín-García et al. 2015). In any case, the protection 
observed in the present work on seedlings should be tested 
in adults.

In the last 13 years, 56 chemical products have been tested 
to control Phytophthora of forest trees (López-García et al. 
2024), and some studies have shown limiting or inconsistent 

results. Several factors could explain why MeJA treatments 
did not protect F. excelsior and Q. robur against P. plurivora. 
First, the dose and the timing may not have been optimal 
to induce the defences. Second, the development of stem 
necrosis, used as a proxy for disease development (Cleary 
et al. 2017) may not fully correspond to the trees’ resist-
ance against root infections, as indicated for P. plurivora 
(Macháčová et al. 2024). Moreover, the high virulence of 
the pathogen used may allow the resistance threshold of the 
plants to be surpassed (Vivas et al. 2012). Therefore, the 
failure of MeJA treatments observed here should be consid-
ered with caution and the results validated in experiments 
by using soil infestation.

The plant species may also have played a role in the 
lack of protection provided by MeJA in F. excelsior and 
Q. robur. In a previous work, variation of MeJA to induce 
resin duct formation in pine species was species-dependent 
(López-Villamor et al. 2021) and other studies have shown 
that genotypes, families and provenances within species can 
exhibit different responses to MeJA (e.g. Moreira et al. 2013; 
López-Goldar et al. 2018; Puentes et al. 2021). However, no 
overall differences in the induction of resistance by MeJA 
when comparing different Pinus and Picea species through 
a meta-analysis were found (Huynh et al. 2024).

The results showed that MeJA was able to mitigate the 
external symptoms of elms affected by Dutch elm disease, 
although leaf wilting reduction was dependent on the MeJA 
concentration and the elm genotype used. The best concen-
tration was 1 mM MeJA for the highly susceptible Atinia 
clone, and 10 mM for the moderately susceptible CC-VG4.2 
clone. The observed differences between the elm genotypes 
in the response to MeJA supports previous research in coni-
fers also showing that MeJA effect is highly dependent on 
the genotype (Zeneli et al. 2006; López-Goldar et al. 2018; 
Moreira et al. 2013). The idea that the higher the host sus-
ceptibility, the higher the MeJA dose required, supported in 
our study when comparing the optimal dose against P. cin-
namomi in the least susceptible Q. ilex (0.2 mM) vs the more 
susceptible C. sativa (1 mM), was not supported in the case 
of the elm genotypes tested. Thus, the relationship between 
susceptibility and the dose required does not seem straight-
forward and factors such as the type of disease (e.g. vascular 
vs soil-borne), the biological scale (e.g. tree species, families 
or genotypes), the timing of MeJA application and environ-
mental factors can strongly affect the outcome of the induced 
resistance (Eyles et al. 2010). Previous research showed that 
MeJA at 50 and 100 mM did not protect U. minor against 
O. novo-ulmi (Vivas et al. 2012). Our results with lower 
doses were promising but again not enough to protect elm 
trees in the long term. More research by using lower MeJA 
concentrations and more elm genotypes is needed to deter-
mine if MeJA could be a useful compound to fight against 
O. novo-ulmi.

Fig. 4  Height of Quercus ilex A and Q. suber B trees sprayed with 
methyl jasmonate at 0  mM (white columns), 0.2  mM (orange col-
umns) and 1  mM (green columns) within preventive, curative and 
preventive + curative treatments against Phytophthora cinnamomi 
(Pc) (n = 15). Vertical bars are standard errors and different letters 
indicate significant differences between values within each species 
and treatment (Tukey’s HSD test, p < 0.05)
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Some of the main problems encountered in the use of 
resistance inducers in plants are the effects on yield and 
growth, phytotoxicity and the negative effects on beneficial 
mutualistic interactions (Heil 2002; Walters and Heil 2007). 
JA-mediated signalling regulates the trade-off between plant 
growth and the expression of defence (Li et al. 2022), and 
temporarily reduced plant growth was observed following 
treatment of trees with MeJA (Gould et al. 2008; Krokene 
et al. 2008; Vivas et al. 2012; Huynh et al. 2024). Here, we 
found a negative effect of MeJA on the growth of Q. ilex but 
not on that of Q. suber (Fig. 4), indicating species-depend-
ent sensitivity of tree growth to MeJA application within 
Quercus species. As a novelty, we report early leaf flushing 
one year after treatment with 1 mM MeJA in C. sativa (about 
15 days earlier than controls; Fig. S2), and although further 
research is needed, this result may indicate that MeJA spray 
would allow increased exposure of chestnut to late frosts 
and herbivory.

Phytotoxicity due to repeated and/or high concentra-
tion of MeJA application has been reported in Pinus spp., 
Fraxinus spp., Q. ilex and U. minor, expressed as yellow-
ing and necrosis of especially the younger leaves located 
in the upper part of the crown (Gould et al. 2009; Semiz 
et al. 2012; Vivas et al. 2012; Whitehill et al. 2014). We 

observed phytotoxicity in C. sativa, Q. robur and F. excel-
sior trees that were treated with MeJa 10 mM, which prob-
ably explains why treatments with this concentration were 
not effective. Treatments that induce resistance may also 
impact mutualistic interactions of treated plants with ben-
eficial organisms. Particularly the inducers that enhance 
suberization and lignification of tissues (Martín et al. 2008, 
2012), resulting in broad-spectrum resistance in plants, 
could alter plant–microbe mutualisms such as mycorrhiza-
tion and nodulation (Heil 2002; Walters and Heil 2007). Our 
results indicate that MeJA spray in chestnut, holm oak and 
cork oak seedlings did not affect P. tinctorius establishment 
or alter the mycorrhization rates.

Besides the benefits of applying MeJA to combat for-
est diseases, additional potential side effects and ecological 
implications should be considered. MeJA treatments can 
alter the production of volatile organic compounds (VOCs) 
(Amo et al. 2022), also produced by natural plant defence 
signalling (Dicke and Baldwin 2010), and may affect non-
target organisms such as pollinators, herbivores and ben-
eficial insects (Thaler 1999). The application of MeJA to 
Salix cinerea in a field trial led to increased attractiveness 
of oak saplings for insectivorous predators, including inver-
tebrates and birds (Mrazova et  al. 2023). Furthermore, 

Fig. 5  Necrosis length in the 
stem of Quercus robur A, B 
and Fraxinus excelsior C, D 
trees inoculated with Phytoph-
thora plurivora. Trees were 
treated with MeJA at different 
concentrations before (preven-
tive treatment A, C) and after 
(curative treatment B, D) being 
inoculated (n = 6). Vertical bars 
are standard errors, and different 
letters indicate significant differ-
ences between values within 
each species and treatment 
(Tukey’s HSD test, p < 0.05)
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MeJA treatments may induce changes in plant biochemical 
pathways and nutrient content by altering root exudates and 
bacterial rhizosphere communities (Doornbos et al. 2011; 
Carvalhais et al. 2013), which are crucial for ecosystem 
functioning and soil health (Pieterse et al. 2014). Lastly, 
continuous use of MeJA in agricultural or ecological set-
tings may lead to the development of resistance in target 
organisms or unintended adaptations in non-target organ-
isms, influencing the efficacy of future treatments and eco-
logical balance (Heil and Baldwin 2002; Thaler et al. 2012). 
Thorough consideration of these implications is thus needed 
to guide the responsible use of MeJA in management strate-
gies of forests.

Conclusion

For more than 20 years, methyl jasmonate (MeJA) has been 
used to study inducible defences in conifers and to increase 
their resistance to pests and pathogens. Despite the numer-
ous studies on the subject, few attempts have been made to 

quantify if MeJA protects broad-leaf trees against oomycete 
and fungal pathogens. Here, we present evidence of protec-
tive effects of MeJA on chestnut, holm oak and field elm, 
three of the most widespread and ecologically important tree 
genera in temperate and Mediterranean forests. Our findings, 
summarized in Table 1, emphasize the potential of MeJA as 
a resistance inducer, but also point out several knowledge 
gaps and a general need of field studies to explore the use-
fulness of MeJA treatments in sustainable protection of the 
threatened broad-leaf forests in Europe.
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Fig. 6  Changes in leaf wilting percentages in Atinia A and CC-VG4.2 
B Ulmus minor clones sprayed with MeJA at 0 mM (empty squares), 
1  mM (green triangles) and 10  mM (black circles) and challenged 
with Ophiostoma novo-ulmi (n = 5). Vertical bars are standard errors, 
and different letters indicate significant differences between values 
within each day (Tukey’s HSD test, p < 0.05)
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