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Abstract: Multispectral imagery from unmanned aerial vehicles (UAVs) can provide high-
resolution data to map tree mortality caused by pests or diseases. Although many studies
have investigated UAV-imagery-based methods to detect trees under acute stress followed
by tree mortality, few have tested the feasibility and accuracy of detecting trees under
chronic stress. This study aims to develop methods and test how well UAV-based multi-
spectral imagery can detect pine needle disease long before tree mortality. Multispectral
images were acquired four times through the growing season in an area with pine trees
infected by needle pathogens. Vegetation indices (VIs) were used to quantify the decline in
vitality, which was verified by tree needle retention (%) estimated from the ground. Results
showed that several VIs had strong correlations with the needle retention level and were
used to identify severely defoliated trees (<75% needle retention) with 0.71 overall classi-
fication accuracy, while the accuracy of detecting slightly defoliated trees (>75% needle
retention) was very low. The results from one study area also implied more defoliation
observed from the UAV (top view) than from the ground (bottom view). We conclude that
using UAV-based multispectral imagery can efficiently identify severely defoliated trees
caused by needle-cast pathogens, thus assisting forest health monitoring.

Keywords: unmanned aerial vehicle (UAV); multispectral imagery; pine needle disease;
Lophodermium; forest monitoring; surveillance

1. Introduction
Coniferous forests that include Pinus species are a valuable natural resource that plays

a crucial role in carbon sequestration, providing habitat to support biodiversity and the
provisioning of other ecosystem services. In Fennoscandian boreal forests, Scots pine (Pinus
sylvestris) is a dominant and economically important species, e.g., in Sweden, comprising
about 39% of the standing forest volume (SLU, 2024), and has a wide ecological amplitude
that is able to tolerate a range of soil conditions (Krakau et al. 2013). Despite being an
isohydric species [1], Scots pine can be very sensitive to drought [2–4]. In addition, Scots
pine is susceptible to several Ascomycota pathogens that cause needle blight or needle-
cast diseases which reduce the photosynthetic capacity of needles, leading to premature
defoliation, loss of tree vitality, and in severe cases, tree death. Examples of this include
Dothistroma septosporum, Lophodermella sulcigena and species of Lophodermium including
L. pinastri, L. seditiosum and L. conigenum [5–8]. Aside from the negative implications on
tree growth that are expected with the increased frequency and severity of drought events,
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climate change will increase the susceptibility of trees to biotic agents, including fungal
pathogens which can accelerate the mortality of already weakened trees [9–11]. Moreover,
changes in temperature, precipitation and humidity patterns can make conditions more
favorable for pathogens development, whereby even latent infections by fungi considered
to be endophytes can become opportunistic and cause disease on the host plant [12,13].

The traditional surveillance of forests using ground-based surveys is a valuable strat-
egy to account for current and periodic forest health conditions and can guide disease
management approaches to reduce potential losses in productivity. However, such surveys
are extremely laborious, costly, logistically challenging and only feasible at a small scale
(i.e., plot level). In addition, ground surveys based on visual assessments alone can be influ-
enced by human bias and potentially lead to inaccurate estimations of disease symptoms
(e.g., foliar discoloration) and the degree of defoliation and therefore skew estimates of
severity and spatial distribution of damage. Remote sensing technologies, including the use
of unmanned aerial vehicles (UAVs) [14], are emerging as a valuable tool for monitoring
forest health conditions that can alleviate the human bias and uncertainty expected of
in situ surveys and allow for increased operational flexibility to provide coverage over
large remote or inaccessible areas. High spatial and temporal resolution data can be cap-
tured from sensors based on subtle changes in the pigmentation composition of foliage
(e.g., chlorophyll and carotenoid) resulting from reduced photosynthesis activity which
may not be visible to the human eye [15–17]. These spectral or structural features associated
with responses of trees to abiotic- or biotic-induced stress can also be detected during the
early stages of infection, which is often critical timing for making informed decisions for
disease management to possibly curb disease outbreaks.

Nevertheless, different stress agents can cause different degrees of damage in trees, and
therefore, using remote sensing to identify damage can be easy or challenging, depending
on the stress agents involved. Some stress agents can cause acute stress and mortality
within one growing season, such as the wood-boring pest European spruce bark beetle
(Ips typographus L.) and pine wilt disease (PWD) caused by nematodes [18]. When trees
experience such acute stress and stop physiological activities, their spectral signature can
be used to identify them before their symptoms become visible to human eyes [17,19].
Other stress agents can cause chronic tree physiological reactions and symptoms, such as
drought, root rot caused by fungi or oomycetes, and needle-cast or blight diseases caused
by various fungal pathogens. Due to the limited physiological reactions and symptoms to
such chronic stress, some studies have shown it to be challenging to identify chronically
stressed trees with high accuracy [20]. A systematic review identified 99 publications
using UAV-based sensors on tree health monitoring published between 2012 and 2021.
Only 5.6% and 8.0% of the publications investigated stress caused by drought and fungal
pathogens, respectively [14]. Currently, there is a lack of research on detecting chronic
stress using UAV-based methods, and the limited number of studies has shown that it is
challenging to achieve high accuracy. Therefore, more efforts are needed to investigate
and develop methodologies for chronic stress detection. In 2021, a local outbreak of pine
needle disease was reported in mid-rotation Scots pine stands in southeastern Sweden.
Reconnaissance surveys indicated that trees exhibited both recent and prolonged exposure
to infection by one or more needle-cast pathogens, causing the discoloration and premature
defoliation of needle cohorts in the upper and lower tree crown (Matsiakh et al. manuscript
in preparation). The objective of this study was to (1) develop suitable methods for data
acquisition and analysis using multispectral UAV images for detecting pine trees that are
physiologically stressed as a result of pine needle-cast disease and (2) test the sensitivity
of spectral signatures for indicating the degree of damage based on the amount of crown
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defoliation and the early-onset physiological stress caused by needle disease while in a
pre-symptomatic phase.

2. Materials and Methods
2.1. Study Area and Field Observations

The study site was located near Nybro in Kalmar county, southeastern Sweden (lati-
tude 56.46274◦N, longitude 15.75898◦E) (Figure 1). The site is approximately 110 m above
sea level and comprised of predominantly Scots pine mixed with Norway spruce. The site
experiences a temperate climate (total annual rainfall = 628 mm, mean annual temperature
= 6.5 ◦C) and mesic soils. Two stands in the production forest were surveyed to estimate
the incidence and severity of disease. Trees in Stand 1 were approximately 70 years old and
in Stand 2 were 45 years old; the site index for both sites is T26. Nine and six plots with a
10 m radius were established in Stands 1 and 2, respectively (Table 1), and the inventory
was carried out in June. The amount of remaining needles of each tree was estimated per
upper and lower half of the tree crown as 100%, 75% and 50%, and then averaged to give
an overall severity rating per tree (Figure 2).
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Figure 1. Study area located in southern Sweden (a), plot and tree locations (b), symptomatic needles
showing chlorosis and brown spots caused by fungal pathogens (c), and photos showing variable
crown symptoms and defoliation of mature Scots pine trees in May (d), June (e), and August (f); red
circle denotes symptomatic branches. Plots 1–6 were in Stand No. 2 and Plots 9–14 were in Stand No. 1.
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Table 1. Stand and plot info.

Stand No. Plot No. Number of Trees
with Location Info

Mean DBH
(cm)

Mean Height
(m)

Number of
Healthy Trees

Number of
Infested Trees

1

1 22 18.3 15.6 1 21
2 16 20.4 16.6 1 15
3 16 22.1 17.2 3 13
4 19 18.1 15.9 7 12
6 15 18.8 15.0 4 11
7 21 17.1 15.5 8 13
8 20 19.9 16.5 5 15
9 20 19.0 15.1 8 12

Sum/Average 149 17.8 15.1 37 112

2

1 18 25.3 18.0 6 12
2 14 26.2 18.3 0 14
3 22 24.7 17.9 6 16
4 16 25.5 19.6 1 15
5 13 29.8 22.5 4 9
6 21 23.7 18.4 5 16

Sum/Average 104 25.2 18.8 22 82

Total/Average 253 20.6 16.5 59 194

2.2. Drone Image Acquisition and Preprocessing

Drone images were acquired four times (Table 2) from the study area using a MAIA
S2 multispectral camera (SAL Engineering Srl, Russi, Italy, and Eoptis Srl, Trento, Italy)
mounted on a DJI M210 RTK drone (SZ DJI Technology Co., Ltd., Shenzhen, China, Figure 3).
The camera had nine spectral bands with wavelengths similar to those of images from the
satellite Sentinel-2 (Table 3). The drone flew 120 m above ground with 80% forward and side
overlap, generating a nominal ground sampling distance (GSD) of 6 cm. Raw images from
MAIA camera were post-processed with the MAIA image-processing software (MAIA-1.4),
including geometric correction, co-registration of each band, radiometric correction of the
border effects, and radiometric correction using data from the MAIA Incident Light Sensor
(ILS). The post-processed images (Figure 4a) were used to generate orthomosaic images
(Figure 4b) using Agisoft Metashape Professional (Version 1.7.2, Copyright 2021 Agisoft
LLC., St. Petersburg, Russia), including aligning photos, optimizing alignment, building
a dense cloud, building digital surface models (DSMs), and building orthomosaics. The
orthomosaic images were radiometrically transformed to reflectance (Figure 4c) using the
known reflectance of the reference panels (1 m × 1 m). The four orthomosaic images were
manually georeferenced with each other. In the following sections, the four orthomosaic
images acquired at the four times were denoted as Images T1, T2, T3, and T4.

Table 2. Image number and acquired conditions.

Image Acquired Time Illumination Condition Solar Elevation

T1 30 June 2022 13:15 Sunny 54.4
T2 31 August 2022 10:05 Sunny 36.9
T3 23 September 2022 11:12 Cloudy 32.7
T4 23 September 2022 09:55 Sunny 28.5
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Table 3. Summary of the MAIA S2 multispectral camera specifications.

Band no. Color Center Wavelength (nm) Bandwidth (nm)

1 Violet 443 20
2 Blue 490 65
3 Green 560 35
4 Red 665 30
5 Red-edge 1 705 15
6 Red-edge 2 740 15
7 Red-edge 3 783 20
8 NIR 1 842 115
9 NIR 2 865 20
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2.3. Image Segmentation and Crown Spectrum Calculation

We used marker-controlled watershed segmentation presented by [21] to obtain the
crown images of individual trees. The segmentation was first conducted on the green-
band image, and the same mask was used for all the other bands. First, the images were
smoothed by a Gaussian filter, and the local maxima were obtained as the tree tops and
used as the markers for the watershed segmentation (Figure 5a). Then, the segmentation
(Figure 5b) was conducted using the SegmentTrees tool in the Lidar Toolbox in Matlab
(R2021b, MathWorks, Inc., Natick, MA, USA). Meanwhile, the pixels of the forest floor were
masked out by calculating the Normalized Green-Red Difference Index (NGRDI, Table 4,
Index 7, Figure 5b) from smoothed images and excluding the pixels with NGRDI < 0.15
(selected by visual evaluation of the masking results). Forest gaps with dark pixels were
masked out by the reflectance of the green band < 0.05 [21]. The tree tops obtained from the



Remote Sens. 2025, 17, 271 6 of 20

images were then matched with tree locations measured from the field, and the inventoried
health status and needle retention levels were linked to the crown segments (Figure 5b).
Crown segments were obtained (Figure 5c), and this study also tested the effective radius
of crown segments on estimating the tree vitality (Figure 5d). Spectral reflectance was
averaged from pixels within 0.25 m, 0.5 m, 0.75 m, and up to 2 m radius of a treetop
(brightest pixel in the green band), respectively, and the averaged spectral reflectance was
used to classify healthy and infected trees with comparison between different radii.
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Figure 5. Segmentation of individual tree crowns from Image C at Stand 1 Plot 7. (a) A flowchart
of the segmentation. (b) A true-color image covers 48 × 48 m area with the red circle marking the
plot area with 15 m radius and red triangles marking the local maximum being the markers for the
segmentation. (c) A true-color image covers 48 × 48 m area with the red circle marking the plot area
with 15 m radius, white * and red dots marking the paired tree locations from the image and the field
inventory, and yellow dots marking the tree locations inventoried from the fieldwork but missing
from the image. The forest floor areas were masked from the background image, showing black.
(d) Segments of individual tree crowns from the plot image. (e) Segments of individual tree crowns
showing pixels within 1 m and 0.5 m radius (marked as red lines) to the center pixel.

2.4. Vegetation Indices and Estimation of Tree Vitality

After obtaining the average reflectance from crown segments, we first presented
the spectral signatures of trees with different health statuses and tested the bands with
significant differences between the following tree groups in different images:

• Group A: healthy trees;
• Group B: infected trees with needle retention ≥ 75%;
• Group C: infected trees with needle retention < 75%.

The significance was tested between (1) Group A and Group B + C, and (2) Groups
B and C, using a two-sided Wilcoxon rank sum test, which hypothesizes samples from
continuous distributions with equal medians against the alternative that they are not.
Fourteen vegetation indices (IVs, Table 4) were calculated and selected to estimate the
health status. Linear Discriminant Analysis (LDA) was used to evaluate and compare the
capacity of each VI to discriminate trees with different health statuses. LDA models the
difference between the classes of data, and thus, the classification accuracy can indicate
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how well each VI of damaged trees separates from healthy trees [17,21–23]. Four models
were tested in the study to present the separability of those groups:

• Model I classified Group A vs. B + C;
• Model II classified Group A vs. B vs. C;
• Model III classified Group A vs. C;
• Model IV classified Group B vs. C.

In each model, samples were randomly selected to balance the sample size from
each group, and classification accuracy, i.e., the number of correctly classified samples in
proportion to all samples, was averaged by 20 times of random sample selection. Overall
accuracy was calculated as the ratio between correctly classified samples and all samples.
Results from Stands 1 and 2 were presented separately because of the potential difference
between stands.

In addition, the classification results were further validated based on the VIs distribu-
tion. For example, if the VIs indicated infected trees with higher vitality than healthy trees,
the classification was determined as invalidated, as LDA can only present the separability
between several groups without testing whether the distributions were reasonable.

Table 4. Details of the vegetation indices (VIs) used.

No. Abbr. Name
Definition for MAIA S2/Sentinel-2 Bands

(https://www.indexdatabase.de/
accessed on 30 November 2023)

References

1 REIP Red-edge inflection
point (guyot) 700 +

(
(Red+Red_edge3)

2 −Red_edge1
Red_edge2−Red_edge1

)
× 40 [24]

2 MR-DSWI1 Multiple Ratio Disease–Water
Stress Index 1

Red_edge1
Green × Red_edge1

Red_edge3
[21]

3 MR-DSWI2 Multiple Ratio Disease–Water
Stress Index 2

Red_edge1
Green × Red_edge1

Red_edge3 × NIR2
Red_edge3

[21]

4 MR-DSWI3 Multiple Ratio Disease–Water
Stress Index 3

Red_edge1
Green × Red_edge1

Red_edge3 × Red
Green [21]

5 MR-DSWI4 Multiple Ratio Disease–Water
Stress Index 4

Red_edge1
Green × Red_edge1

Red_edge3 × NIR2
Red_edge3 × Red

Green [21]

6 NDRE2 Normalized Difference Red-edge
Index 2

Red_edge3−Red_edge1
Red_edge3+Red_edge1

[25]

7 NGRDI Normalized Green–Red
Difference Index

Green−Red
Green+Red [26]

8 NDVI Normalized Difference
Vegetation Index

NIR2−Red
NIR2+Red [27]

9 GLI Green Leaf Index (Green−Red)+(Green−Blue)
(Green+Red)+(Green+Blue)

[28]

10 PBI Plant Biochemical Index NIR2
Green [29]

11 GNDVI Green Normalized Difference
Vegetation Index

NIR2−Green
NIR2+Green [30]

12 CIG Chlorophyll Index Green NIR2
Green − 1 [31]

13 CVI Chlorophyll Vegetation Index NIR2×Red_edge1
Green×Green [32]

14 NDRE3 Normalized Difference Red-edge
Index 3

NIR2−Red_edge3
NIR2+Red_edge3

[33]

3. Results
3.1. Crown Segmentation

After crown segmentation and matching with field data, 123 trees out of 149 trees were
successfully segmented from all four images in Stand 1 and 99 out of 104 trees from Stand
2 (Table 5). The segmentation success rates were 90%, 89%, 94%, and 90%, respectively,
using Images T1, T2, T3, and T4. Undersegmentation occurred in trees with small crowns

https://www.indexdatabase.de/
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or when two tree crowns were close to each other. The success rate was higher in Image T3,
which was acquired under diffused light conditions, while the other images were acquired
under direct light with shadows and bright forest floor in the images, thus influencing the
watershed segmentation. Figure 6 shows the distribution of needle retention in Stands 1
and 2.

Table 5. Number of trees segmented from images.

Stand No. Plot No.
Number of Trees Inventoried Number of Trees Segmented from the Images

Healthy Infected All T1 T2 T3 T4 All Healthy Infected

1

1 1 21 22 19 17 22 20 15 1 14
2 1 15 16 14 16 16 16 14 0 14
3 3 13 16 14 15 16 16 14 2 12
4 7 12 19 18 18 19 19 18 6 12
6 4 11 15 13 15 15 15 13 3 10
7 8 13 21 20 19 20 18 15 4 11
8 5 15 20 20 19 19 19 17 4 13
9 8 12 20 19 19 20 18 17 7 10

Sum 37 112 149 137 138 147 141 123 27 96

2

1 6 12 18 17 17 18 17 17 5 12
2 0 14 14 14 14 14 14 14 0 14
3 6 16 22 22 21 22 22 21 6 15
4 1 15 16 16 16 16 15 15 1 14
5 4 9 13 13 13 13 12 12 3 9
6 5 16 21 21 20 21 21 20 5 15

Sum 22 82 104 103 101 104 101 99 20 79

Total 16.5 59 268 240 239 251 242 222 47 175
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Figure 6. Distribution of the needle retention based on disease severity scoring in two stands from
the trees with successfully segmented crown images.

3.2. Spectral Signatures and Significant Tests

The spectral signatures of different tree groups from different images and stands are
presented in Figure 7. When a tree becomes infected and reduces vitality, the chlorophyll
concentration usually decreases, causing decreases in the reflectance of Bands 1–5 while
increasing in Bands 6–9. In this study, we assumed healthy trees to have higher vitality
and thus higher chlorophyll concentration than infected trees, and so did the infected trees
with needle retention ≥ 75% compared to ones with needle retention < 75%. In Stand 1,
Bands 1–4 from infected trees had significantly higher reflectances than healthy trees in
Images T1 and T3, while no significant differences were observed between infected trees
with different needle retention levels (Figure 7a1,a2). Significant differences were also
found in Image T4 in Bands 6–9. However, the variations of those bands within groups
in Image T4 were also large. In Stand 2, many bands from healthy and infected trees
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significantly differed in Images T3 and T4. However, the reflectances were opposite to
what was assumed, indicating that healthy trees were more stressed or defoliated than
the infected trees. When comparing infected trees with different needle retention levels in
Stand 2, Bands 1–4 showed significantly higher reflectances among trees with more severe
defoliation, matching our assumption that infected trees with lower needle retention were
more stressed and had lower vitality.
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Figure 7. Spectral signatures of tree groups in Stand 1 (a1,a2) and Stand 2 (b1,b2) from four different
images. (a1,b1) show spectral signatures of healthy and infected trees, and (a2,b2) show spectral
signatures of infected trees with >75% needle retention and <75% needle retention.

3.3. Effective Radius of the Segmentation

The effective radius was first studied by comparing the classification accuracy when
using different crown radii from the tree segments. The accuracy between 0.25 and 0.5 m
radii was similar, while most VIs in most images decreased when the radius was increased
from 0.5 to 2 m (Figure 8). We used 0.5 m as the radius in the following analysis. Note that
the accuracy of different VIs in Figure 8 was insufficient to evaluate the classification, as
more detailed analyses were needed and presented in the following sections.
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3.4. Effective VIs and the Distribution

In Stand 1, the classification accuracy was higher when using Images T1 and T3
(Table 6). Using VIs including MRDWSI3, NGRDI, NDVI, GLI obtained higher accuracy
than using other tested ones. The accuracy was higher when classifying Group A (healthy)
and Group C (severely defoliated trees, needle retention < 75%), while the accuracy was
very low with other classification models, implying that VIs could only indicate when trees
have severe stress and damage in Stand 1. The highest accuracy was 0.71 using NGRDI on
Image T3 to distinguish healthy and severely defoliated trees (Table 6). The distribution
of the VIs of different classes also indicated that the severely defoliated trees were more
stressed and damaged than the healthy ones (Figure 9a1–a4). However, the δVIs between
images, which can theoretically indicate tree growth within a growing season, showed no
stable trend that the healthy group grew more than the infected groups (Figure 9c1–c4).

Table 6. Classification accuracy using different images and different VIs with image radius = 0.5. The
relatively high classification accuracy validated with the VIs distribution is highlighted.

Stand
No.

VIs

Classification I
A vs. B + C

Classification II
A vs. B vs. C

Classification III
A vs. C

Classification IV
B vs. C

Image
T1

Image
T2

Image
T3

Image
T1

Image
T2

Image
T3

Image
T4

Image
T4

Image
T1

Image
T2

Image
T3

Image
T4

Image
T1

Image
T2

Image
T3

Image
T4

1

REIP 0.50 0.54 0.49 0.59 0.34 0.37 0.35 0.39 0.56 0.50 0.51 0.62 0.52 0.56 0.56 0.52
MR-DSWI1 0.60 0.56 0.53 0.53 0.43 0.40 0.39 0.36 0.61 0.55 0.57 0.52 0.54 0.54 0.57 0.53
MR-DSWI2 0.62 0.58 0.54 0.54 0.43 0.40 0.40 0.35 0.62 0.56 0.57 0.51 0.54 0.53 0.56 0.53
MR-DSWI3 0.66 0.62 0.57 0.58 0.46 0.41 0.42 0.38 0.67 0.57 0.67 0.57 0.56 0.54 0.57 0.50
MR-DSWI4 0.64 0.61 0.61 0.58 0.46 0.42 0.43 0.37 0.64 0.59 0.67 0.56 0.56 0.54 0.57 0.50

NDRE2 0.64 0.55 0.59 0.51 0.45 0.39 0.40 0.36 0.66 0.55 0.60 0.52 0.57 0.53 0.56 0.53
NGRDI 0.68 0.58 0.67 0.60 0.47 0.39 0.49 0.43 0.68 0.52 0.71 0.61 0.52 0.54 0.62 0.56
NDVI 0.67 0.58 0.61 0.56 0.49 0.40 0.44 0.37 0.69 0.58 0.68 0.55 0.56 0.52 0.59 0.51
GLI 0.66 0.54 0.64 0.64 0.45 0.40 0.45 0.44 0.65 0.52 0.65 0.68 0.49 0.53 0.54 0.53
PBI 0.64 0.57 0.60 0.55 0.46 0.40 0.41 0.38 0.67 0.57 0.63 0.56 0.54 0.51 0.53 0.52

GNDVI 0.63 0.61 0.57 0.54 0.44 0.41 0.40 0.41 0.64 0.61 0.56 0.57 0.53 0.53 0.51 0.53
CIG 0.63 0.59 0.62 0.54 0.45 0.38 0.40 0.38 0.65 0.55 0.63 0.56 0.55 0.52 0.51 0.52
CVI 0.63 0.57 0.60 0.53 0.45 0.39 0.41 0.36 0.68 0.55 0.62 0.54 0.53 0.51 0.49 0.55

NDRE3 0.53 0.54 0.55 0.63 0.37 0.37 0.37 0.46 0.54 0.57 0.55 0.71 0.51 0.54 0.54 0.67

2

REIP 0.59 0.59 0.74 0.73 0.42 0.39 0.49 0.51 0.52 0.60 0.78 0.76 0.59 0.51 0.53 0.55
MR-DSWI1 0.54 0.57 0.63 0.69 0.43 0.39 0.43 0.48 0.57 0.51 0.64 0.67 0.60 0.57 0.47 0.52
MR-DSWI2 0.51 0.57 0.63 0.67 0.43 0.39 0.43 0.47 0.56 0.51 0.62 0.68 0.60 0.57 0.45 0.52
MR-DSWI3 0.57 0.51 0.56 0.53 0.44 0.41 0.41 0.38 0.62 0.52 0.52 0.50 0.61 0.63 0.59 0.56
MR-DSWI4 0.55 0.52 0.54 0.53 0.44 0.42 0.38 0.36 0.65 0.54 0.50 0.52 0.63 0.62 0.58 0.54

NDRE2 0.53 0.53 0.62 0.66 0.43 0.41 0.42 0.46 0.54 0.52 0.61 0.66 0.64 0.62 0.56 0.51
NGRDI 0.58 0.53 0.53 0.55 0.43 0.43 0.37 0.43 0.70 0.57 0.52 0.60 0.69 0.63 0.58 0.57
NDVI 0.53 0.53 0.55 0.53 0.44 0.44 0.41 0.40 0.60 0.55 0.52 0.52 0.68 0.64 0.63 0.59
GLI 0.57 0.55 0.52 0.57 0.47 0.45 0.38 0.41 0.70 0.63 0.55 0.64 0.69 0.62 0.63 0.59
PBI 0.56 0.52 0.66 0.62 0.49 0.37 0.45 0.43 0.60 0.53 0.62 0.62 0.66 0.54 0.52 0.50

GNDVI 0.53 0.52 0.66 0.62 0.43 0.39 0.45 0.44 0.56 0.54 0.64 0.62 0.61 0.54 0.56 0.51
CIG 0.53 0.52 0.65 0.64 0.43 0.37 0.44 0.43 0.55 0.54 0.65 0.62 0.63 0.53 0.53 0.51
CVI 0.54 0.54 0.63 0.63 0.43 0.40 0.42 0.43 0.64 0.56 0.61 0.56 0.57 0.54 0.53 0.55

NDRE3 0.54 0.52 0.67 0.75 0.37 0.36 0.47 0.52 0.54 0.50 0.70 0.77 0.56 0.56 0.57 0.56

In Stand 2, many VIs indicated that the vitality of Group A (healthy) was lower than
that of Group B (needle retention ≥ 75%), higher than that of Group C (needle retention
< 75%), and higher than that of Group B + C (Figure 9). Therefore, the classification
accuracy of Classifications I and II was high if the indication mentioned above was true;
otherwise, the classification was based on the wrong assumption. Classifications III and
VI still classified Group A as having higher vitality than Group C and Group B as having
higher vitality than Group C; therefore, the classification matched with the assumption that
healthy trees should have higher vitality than infected trees. Similarly with Stand 1, VIs
including MRDWSI3, NGRDI, NDVI, and GLI obtained higher accuracy on Image T1 but
not Image T3. Moreover, the accuracy of distinguishing Groups B and C was also relatively
high using Image T1, which was followed by Image T2 and T3. Similar to Stand 1, δVIs in
Stand 2 indicated tree growth throughout the season, but there was no clear trend that the
healthy ones grew more than the infected ones (Figure 9d1–d4).
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distribution of δVIs in Stand 1 (c1–c4) and Stand 2 (d1–d4). 

  

Figure 9. Distribution of VIs of Groups A, B, and C in Stand 1 (a1–a4) and Stand 2 (b1–b4), and
distribution of δVIs in Stand 1 (c1–c4) and Stand 2 (d1–d4).

3.5. Regression of Needle Retention

Linear relationships between the four VIs and the needle retention (%) were found
when calculating the group average (Figure 10). In Stand 1, the correlation between group
foliation and group average VIs was very strong in Images T1 and T3, e.g., R2 of 0.99 when
using NGRDI in Image T3 (Figure 10a). However, the linear relationship was not as strong
for Stand 2 when including tree groups with all levels of defoliation. The VIs indicated
that the vitality of the group with 62.5% needle retention was always lower than the group
with 87.5% needle retention with all VIs and in all images. However, the tree group with
75% needle retention was an outlier in many images, and the vitality of healthy trees was
lower on average than the group with 87.5% needle retention in all images.

Although the linear relationships between the VIs and needle retention were clear
at the group level, the inner-group variation was very large, resulting in low accuracy in
distinguishing healthy and infected trees or infected trees with different defoliation levels
at the individual tree scale. The study did not find a clear trend in the seasonal effect, as
the accuracy on Stand 1 was similar when using images from June and September, and the
accuracy on Stand 2 was higher when using the image from June. Rather than a seasonal
effect, the light condition of the image influenced the estimation more obviously, as Images
T3 and T4 were from the same day in September, but the accuracy was higher when using
the image with diffused light (T3).
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4. Discussion
This study explored how well UAV-based multispectral images could be used to

estimate tree vitality decline caused by pine needle pathogens and how well the spectral
features obtained from the UAV images matched the visual interpretation of the disease
from the ground. Unlike many other studies on detecting acute stress that later led to rapid
mortality, this study investigated the detection of trees under chronic stress with minor
symptoms. According to the field inventory, almost half of the infected trees had only
12.5% needle loss, and most of the other half had 25–37.5% defoliation. Such minor
symptoms made it challenging to estimate the infection level accurately from ground or
UAV images.
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This challenge was shown from two perspectives in this study. First, this study
calculated many VIs shown in previous studies to positively correlate with leaf mass
and chlorophyll content. However, those VIs are known to have saturation effects, i.e.,
stop increasing the values with increasing leaf mass when it comes to large values. The
saturation effect could explain the better accuracy in distinguishing healthy trees and
trees that lost more than 25% of their needles but were not sensitive to smaller needle
retention changes. The low ability to identify trees with mild chronic stress using UAV-
based multispectral images was also demonstrated in a study on ash dieback trees infected
by Hymenoscyphus fraxineus. Although 100% user accuracy was obtained for the class with
50–80% dieback, the classification results showed large confusion between classes with
less damage with a kappa coefficient of 0.34 for five-class classification (0, 0–5%, 5–20%,
20–50%, 50–80%). Even when classifying trees with damage levels below and above 5%, the
accuracy was unsatisfactory (kappa coefficient of 0.67). The same data and classification
methods were used to classify healthy trees and trees infested with spruce bark beetle Ips
typographus, and the classification accuracy was much higher (kappa coefficient of 0.73),
highlighting that it was more challenging to identify trees with mild damage under chronic
stress than acute stress [34].

Second, determining the needle retention level for each tree was challenging during
the fieldwork and could lead to bias in reference data. The trees in the study were mature
and 15–20 m tall, so it was difficult to see through tree crowns and visually estimate the
defoliation on the upper part of the crown. The bias was more pronounced in Stand
2, where trees were bigger and taller than trees in Stand 1 (average height of 18.8 m vs.
15.1 m). The VIs showed that some trees were stressed, and symptoms of discoloration
of some trees could be seen from the UAV images (Figure A1). However, the symptoms
could not be seen from the ground and thus were inventoried as healthy trees. This result
underscores the importance of UAV imagery, as it can assist in the (early) detection and
monitoring of forest health with the high ability to capture detailed information from the
upper tree canopy. Our results showed a strong correlation between group-averaged VIs
and needle retention in Stand 1, indicating VIs could be good indicators of the damage
level. Using the same VIs for Stand 2 might result in a better estimation of the damage
level than the visual estimation from the field. Although the identification accuracy of
around 0.70 obtained in this study might not be satisfactory for monitoring purposes, it was
relatively high compared to other studies on chronic diseases. For example, a study used
a UAV-based camera to investigate the identification of spruce health issues associated
with stem damage caused by mechanical means or biotic (Armillaria ostoyae) factors. The
study found a significant difference (p < 0.05) in NDVI between healthy trees and trees with
mechanical damage and resin exudation, the latter of which is commonly associated with
basal lesions caused by A. ostoyae. However, the distribution of NDVI shown in the figure
had large overlapping values between the healthy and damaged groups, indicating poor
classification accuracy when separating the two groups [35]. Another study used a UAV-
based thermal camera to analyze how the canopy temperature could indicate trees with
red band needle blight disease caused by the fungus Dothistroma septosporum on diseased
Scots pine. The infection level was estimated from the ground as the proportion of infected
to uninfected tree crowns, which was expressed as a percentage of total live crown length.
Correlation was found between canopy temperature depression and disease level with
R2 between 0.27 and 0.41 [36]. A study used UAV-based hyperspectral images to classify
healthy trees, trees with the root rot pathogen Heterobasidion annosum, and trees in the
early stage of spruce bark beetle (I. typographus) infestation. The model identified 18 out of
28 trees infested by bark beetles, but only 3 out of 16 trees with root rot [20], underscoring
the challenges to identifying chronic diseases than acute infection, which was similar to the
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findings of [34]. A study used UAV images to detect brown spot needle blight caused by
Lecanosticta acicola (synonym = Mycosphaeralla dearnessii), and the detection accuracy was
59–67% for diseased trees, although deep learning models were used [32]. High accuracy
was only obtained in a study using close-range sensing (UAV images from 7–15 m altitude)
to estimate the disease severity of spruce infected by the needle rust pathogen Chrysomyxa
rhododendri, which can cause defoliation, reduced tree growth and hinder regeneration. A
significant linear correlation between the disease severity and image analysis characteristics
was found with an R2 of 0.98 [33].

This study also explored factors that might affect the identification, e.g., images ac-
quired from different seasons, different light conditions, and crown reflectance calculation.
The results from the spectral analysis demonstrated no seasonal trend of disease develop-
ment or decline in tree vitality during one growing season, as evidenced by (1) the spectral
separability of healthy and infected groups, which did not increase by the end of the season,
and (2) the fact that many VIs still increased in value from June to September, indicating all
trees, even the infected ones, still grew and increased leaf mass and chlorophyll content
(Figure 9b1–b4,c1–c4). When a tree is severely infected and suffers massive defoliation,
water relations are altered and photosynthetic activity is reduced, consequently slowing
tree growth [36]. However, the infected trees in this study did not show a trend of slowing
down growth compared to the healthy ones, as indicated by the δVIs (Figure 9b1–b4,c1–c4).
The study highlighted the differences in detecting trees under acute and chronic stress.
Trees under acute stress, such as European bark beetle infestation and pine wilt disease
caused by the pine wood nematode (Bursaphelenchus xylophilus), usually show seasonal
effects that are easy to detect declining trees late in the season but challenging at the early
stage [21,37–39]. In contrast, trees exhibiting chronic stress like those in our study could be
detected throughout the season.

Nevertheless, different classification accuracies appeared using different images T1 to
T4, which was probably due to the tree phenology and light conditions of the images. The
detection was better using images T1 (June 30), when trees started growing new needles,
and T3 (September 23), when the old needles naturally dropped off. While image T2 was
acquired on August 31, the foliage of both healthy and infected pine trees was still growing,
making it more challenging to identify defoliation covered by new needles. Images T3
and T4 were acquired on September 23 but with different light conditions. Under sunny
conditions, more radiance from the ground covered by cast needles could be captured by
the camera, thus affecting the classification. The results showed better classification when
using the centermost pixels in the crown than using entire crowns. Although branches at
the crown edges might provide more discolored needles for better classification, the crown
edges were also more likely to be affected by the ground radiance than crown centers.
These results are consistent with another study that found centermost pixels more efficient
for early detection than entire tree crowns [40].

This study also highlighted the importance of developing explainable classification
models than ‘black box’ models. Without evaluating the VIs distribution and disqualifying
classifications that indicated healthy trees being more damaged than infected trees, the
study would have given a very high accuracy, close to 0.8, which can be very misleading.
Many machine learning and deep learning models, such as Random Forest, Support Vector
Machine, and Convolutional Neural Network, can often be data-driven and train models
as black boxes without explainable classification standards. When working with forest
stress, especially chronic disease, one should be aware that errors and biases often exist
in visual-interpretation-based field data, and using data-driven models may result in
misleading conclusions.



Remote Sens. 2025, 17, 271 17 of 20

This study used multispectral imagery to detect infected trees, yet future studies can
explore the potential of hyperspectral imagery, which provides data that are more sensitive
to plant photosynthesis activities and physiological changes under stress [17]. In New
Zealand, a study used UAV hyperspectral imagery to detect Dothistroma needle blight,
caused by the fungi Dothistroma septosporum and D. pini, and the model of disease severity
was moderately precise (R2 = 0.52) using narrow-band hyperspectral indices. But the
study also found a marked improvement of the model (R2 = 0.85) when adding inverted
plant functional traits, highlighting the potential of UAV hyperspectral imagery when
developing explainable variables with 3D radiative transfer model [41]. As defoliation was
the main symptom of the studied pathogen infection, laser scanning data may be better for
the identification without saturation problems than optical data. Some studies have shown
an accurate estimation of defoliation caused by pine caterpillar Dendrolimus tabulaeformis
using terrestrial laser scanning data [42,43]. With the development of UAV-based laser
scanning techniques, there is big potential to develop accurate monitoring methods using
UAV-based laser scanning data.

5. Conclusions
This study investigated the possibility of detecting pine needle diseases using nine-

band multispectral drone images acquired four times across the season and different light
conditions. An automatic crown segmentation was carried out with an 89–94% successful
rate, and better disease detection was achieved using central pixels in crowns, e.g., <0.5 m
radius to the crown center. The best classification model appeared when classifying healthy
trees and trees with more than 25% defoliation, and the overall classification accuracy was
around 0.70 for different stands and using different VIs. VIs, including MRDWSI3, NGRDI,
NDVI, and GLI exhibited higher accuracy and robustness than many other tested VIs. Trees
with less than 25% defoliation did not show sufficient separation from healthy trees. When
grouping trees with the same needle retention levels, the averaged VIs showed strong
correlations (0.73–0.99 of R2) with the needle retention levels, but the VIs also showed large
within-group variance. We did not observe a clear trend of seasonal effects on detectability,
but we discovered that light conditions affected detectability significantly. In Stand 2, both
visual interpretation and spectral analysis on the drone images confirmed some infected
trees that failed to be identified from the ground-based survey. We conclude that using
multispectral drone images and implementing the proposed data analysis framework can
assist in identifying pine needle diseases in forest health monitoring programs.
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Growth and resilience responses of Scots pine to extreme droughts across Europe depend on predrought growth conditions. Glob.
Change Biol. 2020, 26, 4521–4537. [CrossRef]

https://doi.org/10.1111/pce.12572
https://www.ncbi.nlm.nih.gov/pubmed/25997464
https://doi.org/10.1016/j.foreco.2009.09.001
https://doi.org/10.1111/gcb.15153


Remote Sens. 2025, 17, 271 19 of 20

4. Bogachev, M.I.; Gafurov, A.M.; Iskandirov, P.Y.; Kaplun, D.I.; Kayumov, A.R.; Lyanova, A.I.; Pyko, N.S.; Pyko, S.A.; Safonova,
A.N.; Sinitca, A.M.; et al. Reversal in the drought stress response of the Scots pine forest ecosystem: Local soil water regime as a
key to improving climate change resilience. Heliyon 2023, 9, e21574. [CrossRef]

5. Jalkanen, R. The occurrence and importance of Lophodermella sulcigena and Hendersonia acicola on Scots pine in Finland.
Karstenia 1985, 25, 53–61. [CrossRef]

6. Hanso, M.; Drenkhan, R. Lophodermium needle cast, insect defoliation and growth responses of young Scots pines in Estonia.
For. Pathol. 2012, 42, 124–135. [CrossRef]

7. Millberg, H.; Hopkins, A.J.M.; Boberg, J.; Davydenko, K.; Stenlid, J. Disease development of Dothistroma needle blight in
seedlings of Pinus sylvestris and Pinus contorta under Nordic conditions. For. Pathol. 2016, 46, 515–521. [CrossRef]

8. Ata, J.P.; Burns, K.S.; Stewart, J.E. Needle pathogens of Rhytismataceae: Current knowledge and research opportunities for
conifer foliar diseases. For. Pathol. 2024, 54, e12851. [CrossRef]

9. Sturrock, R.N.; Frankel, S.J.; Brown, A.V.; Hennon, P.E.; Kliejunas, J.T.; Lewis, K.J.; Worrall, J.J.; Woods, A.J. Climate change and
forest diseases. Plant Pathol. 2011, 60, 133–149. [CrossRef]

10. Gaylord, M.L.; Kolb, T.E.; Pockman, W.T.; Plaut, J.A.; Yepez, E.A.; Macalady, A.K.; Pangle, R.E.; McDowell, N.G. Drought
predisposes piñon-juniper woodlands to insect attacks and mortality. New Phytol. 2013, 198, 567–578. [CrossRef]

11. Oliva, J.; Stenlid, J.; Martínez-Vilalta, J. The effect of fungal pathogens on the water and carbon economy of trees: Implications for
drought-induced mortality. New Phytol. 2014, 203, 1028–1035. [CrossRef] [PubMed]

12. Jurc, D.; Jurc, M.; Sieber, T.N.; Bojovic, S. Endophytic Cenangium ferruginosum (Ascomycota) as a Reservoir for an Epidemic of
Cenangium Dieback in Austrian Pine. Phyton Ann. Rei Bot. Horn 2000, 40, 103–108.

13. Ryu, M.; Mishra, R.C.; Jeon, J.; Lee, S.K.; Bae, H. Drought-induced susceptibility for Cenangium ferruginosum leads to progression
of Cenangium-dieback disease in Pinus koraiensis. Sci. Rep. 2018, 8, 16368. [CrossRef] [PubMed]

14. Ecke, S.; Dempewolf, J.; Frey, J.; Schwaller, A.; Endres, E.; Klemmt, H.-J.; Tiede, D.; Seifert, T. UAV-Based Forest Health Monitoring:
A Systematic Review. Remote Sens. 2022, 14, 3205. [CrossRef]

15. Hernández-Clemente, R.; Navarro-Cerrillo, R.M.; Suárez, L.; Morales, F.; Zarco-Tejada, P.J. Assessing structural effects on PRI for
stress detection in conifer forests. Remote Sens. Environ. 2011, 115, 2360–2375. [CrossRef]

16. Ecke, S.; Stehr, F.; Frey, J.; Tiede, D.; Dempewolf, J.; Klemmt, H.-J.; Endres, E.; Seifert, T. Towards operational UAV-based forest
health monitoring: Species identification and crown condition assessment by means of deep learning. Comput. Electron. Agric.
2024, 219, 108785. [CrossRef]

17. Huo, L.; Koivumäki, N.; Oliveira, R.A.; Hakala, T.; Markelin, L.; Näsi, R.; Suomalainen, J.; Polvivaara, A.; Junttila, S.; Honkavaara,
E. Bark beetle pre-emergence detection using multi-temporal hyperspectral drone images: Green shoulder indices can indicate
subtle tree vitality decline. ISPRS J. Photogramm. Remote Sens. 2024, 216, 200–216. [CrossRef]

18. Luo, Y.; Huang, H.; Roques, A. Early Monitoring of Forest Wood-Boring Pests with Remote Sensing. Annu. Rev. Entomol. 2022, 68,
277–298. [CrossRef]

19. Li, N.; Huo, L.; Zhang, X. Using only the red-edge bands is sufficient to detect tree stress: A case study on the early detection of
PWD using hyperspectral drone images. Comput. Electron. Agric. 2024, 217, 108665. [CrossRef]

20. Honkavaara, E.; Näsi, R.; Oliveira, R.; Viljanen, N.; Suomalainen, J.; Khoramshahi, E.; Hakala, T.; Nevalainen, O.; Markelin,
L.; Vuorinen, M.; et al. Using Multitemporal Hyper- and Multispectral UAV imaging For Detecting Bark Beetle Infestation on
Norway Spruce. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B3-2020, 429–434. [CrossRef]

21. Huo, L.; Lindberg, E.; Bohlin, J.; Persson, H.J. Assessing the detectability of European spruce bark beetle green attack in
multispectral drone images with high spatial- and temporal resolutions. Remote Sens. Environ. 2023, 287, 113484. [CrossRef]

22. Huo, L.; Persson, H.J.; Bohlin, J.; Lindberg, E. Green Attack or Overfitting? Comparing Machine-Learning- and Vegetation-Index-
Based Methods to Early Detect European Spruce Bark Beetle Attacks Using Multispectral Drone Images. In Proceedings of the
IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; IEEE:
New York, NY, USA, 2023; pp. 546–549, ISBN 979-8-3503-2010-7.

23. Huo, L.; Yu, R.; Lindberg, E.; Persson, H.J.; Bohlin, J.; Li, N. Influence of Crown Pixel Selection on the Early Detection of Bark
Beetle Infestations Using Multispectral Drone Images. In Proceedings of the IGARSS 2024—2024 IEEE International Geoscience
and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; IEEE: New York, NY, USA, 2024; pp. 5218–5221, ISBN
979-8-3503-6032-5.

24. Guyot, G.; Baret, F.; Major, D.J. High spectral resolution: Determination of specral shifts between the red and the near infrared.
Int. Arch. Photogramm. Remote Sens. 1988, 11, 750–760.

25. Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T.;
et al. (Eds.) Coincident Detection of Crop Water Stress, Nitrogen Status, and Canopy Density Using Ground-Based Multispectral
Data. In Proceedings of the 5th International Conference on Precision Agriculture, Bloomington, IN, USA, 16–19 July 2000.

26. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150.
[CrossRef]

https://doi.org/10.1016/j.heliyon.2023.e21574
https://doi.org/10.29203/ka.1985.237
https://doi.org/10.1111/j.1439-0329.2011.00728.x
https://doi.org/10.1111/efp.12242
https://doi.org/10.1111/efp.12851
https://doi.org/10.1111/j.1365-3059.2010.02406.x
https://doi.org/10.1111/nph.12174
https://doi.org/10.1111/nph.12857
https://www.ncbi.nlm.nih.gov/pubmed/24824859
https://doi.org/10.1038/s41598-018-34318-6
https://www.ncbi.nlm.nih.gov/pubmed/30401938
https://doi.org/10.3390/rs14133205
https://doi.org/10.1016/j.rse.2011.04.036
https://doi.org/10.1016/j.compag.2024.108785
https://doi.org/10.1016/j.isprsjprs.2024.07.027
https://doi.org/10.1146/annurev-ento-120220-125410
https://doi.org/10.1016/j.compag.2024.108665
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-429-2020
https://doi.org/10.1016/j.rse.2023.113484
https://doi.org/10.1016/0034-4257(79)90013-0


Remote Sens. 2025, 17, 271 20 of 20

27. Rouse, J.; Haas, R.; Schell, J.; Deering, D. Monitoring Vegetation Systems in the Great Plains with ERTS. NASA Spec. Publ. 1974,
351, 309.

28. Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially Located Platform and Aerial Photography for Documentation of Grazing
Impacts on Wheat. Geocarto Int. 2001, 16, 65–70. [CrossRef]

29. Abdullah, H.; Skidmore, A.K.; Darvishzadeh, R.; Heurich, M. Timing of red-edge and shortwave infrared reflectance critical for
early stress detection induced by bark beetle (Ips typographus, L.) attack. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101900. [CrossRef]

30. Gitelson, A.A.; Merzlyak, M.N. Remote sensing of chlorophyll concentration in higher plant leaves. Adv. Space Res. 1998, 22,
689–692. [CrossRef]

31. Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms
for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [CrossRef]

32. Hunt, E.R.; Daughtry, C.S.T.; Eitel, J.U.H.; Long, D.S. Remote Sensing Leaf Chlorophyll Content Using a Visible Band Index.
Agron. J. 2011, 103, 1090–1099. [CrossRef]

33. Navarro, G.; Caballero, I.; Silva, G.; Parra, P.-C.; Vázquez, Á.; Caldeira, R. Evaluation of forest fire on Madeira Island using
Sentinel-2A MSI imagery. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 97–106. [CrossRef]

34. Kampen, M.; Lederbauer, S.; Mund, J.-P.; Immitzer, M. UAV-Based Multispectral Data for Tree Species Classification and Tree
Vitality Analysis. In Proceedings of the Dreiländertagung der DGPF, der OVG und der SGPF, Vienna, Austria, 20–22 February
2019.

35. Brovkina, O.; Cienciala, E.; Surový, P.; Janata, P. Unmanned aerial vehicles (UAV) for assessment of qualitative classification of
Norway spruce in temperate forest stands. Geo-Spat. Inf. Sci. 2018, 21, 12–20. [CrossRef]

36. Smigaj, M.; Gaulton, R.; Suárez, J.C.; Barr, S.L. Canopy temperature from an Unmanned Aerial Vehicle as an indicator of tree
stress associated with red band needle blight severity. For. Ecol. Manag. 2019, 433, 699–708. [CrossRef]

37. Yu, R.; Huo, L.; Huang, H.; Yuan, Y.; Gao, B.; Liu, Y.; Yu, L.; Li, H.; Yang, L.; Ren, L.; et al. Early detection of pine wilt disease tree
candidates using time-series of spectral signatures. Front. Plant Sci. 2022, 13, 48. [CrossRef]

38. Li, N.; Zhang, X.; Huo, L. Identifying Nematode-Induced Wilt Using Hyperspectral Drone Images and Assessing the Potential of
Early Detection. In Proceedings of the IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala
Lumpur, Malaysia, 17–22 July 2022; IEEE: New York, NY, USA, 2022; pp. 512–515, ISBN 978-1-6654-2792-0.

39. Li, N.; Huo, L.; Zhang, X. Exploring Common Hyperspectral Features of Early-Stage Pine Wilt Disease at Different Scales,
for Different Pine Species, and at Different Regions. In Proceedings of the IGARSS 2023–2023 IEEE International Geoscience
and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; IEEE: New York, NY, USA, 2023; pp. 7575–7578,
ISBN 979-8-3503-2010-7.

40. Huo, L.; Lindberg, E.; Fransson, J.E.S.; Persson, H.J. Comparing Spectral Differences Between Healthy and Early Infested Spruce
Forests Caused by Bark Beetle Attacks using Satellite Images. In Proceedings of the IGARSS 2022—2022 IEEE International
Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; IEEE: New York, NY, USA, 2022;
pp. 7709–7712, ISBN 978-1-6654-2792-0.

41. Watt, M.S.; Poblete, T.; de Silva, D.; Estarija, H.J.C.; Hartley, R.J.L.; Leonardo, E.M.C.; Massam, P.; Buddenbaum, H.; Zarco-Tejada,
P.J. Prediction of the severity of Dothistroma needle blight in radiata pine using plant based traits and narrow band indices
derived from UAV hyperspectral imagery. Agric. For. Meteorol. 2023, 330, 109294. [CrossRef]

42. Huo, L.; Zhang, N.; Zhang, X.; Wu, Y. Tree defoliation classification based on point distribution features derived from single-scan
terrestrial laser scanning data. Ecol. Indic. 2019, 103, 782–790. [CrossRef]

43. Huo, L.; Zhang, X. A new method of equiangular sectorial voxelization of single-scan terrestrial laser scanning data and its
applications in forest defoliation estimation. ISPRS J. Photogramm. Remote Sens. 2019, 151, 302–312. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/10106040108542184
https://doi.org/10.1016/j.jag.2019.101900
https://doi.org/10.1016/S0273-1177(97)01133-2
https://doi.org/10.1078/0176-1617-00887
https://doi.org/10.2134/agronj2010.0395
https://doi.org/10.1016/j.jag.2017.02.003
https://doi.org/10.1080/10095020.2017.1416994
https://doi.org/10.1016/j.foreco.2018.11.032
https://doi.org/10.3389/fpls.2022.1000093
https://doi.org/10.1016/j.agrformet.2022.109294
https://doi.org/10.1016/j.ecolind.2019.03.036
https://doi.org/10.1016/j.isprsjprs.2019.03.018

	Introduction 
	Materials and Methods 
	Study Area and Field Observations 
	Drone Image Acquisition and Preprocessing 
	Image Segmentation and Crown Spectrum Calculation 
	Vegetation Indices and Estimation of Tree Vitality 

	Results 
	Crown Segmentation 
	Spectral Signatures and Significant Tests 
	Effective Radius of the Segmentation 
	Effective VIs and the Distribution 
	Regression of Needle Retention 

	Discussion 
	Conclusions 
	Appendix A
	References

