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Genome-wide association study (GWAS) is a powerful tool for identifying marker-trait associations that can accelerate breeding
progress. Yet, its power is typically constrained in newly established breeding programs where large phenotypic and genotypic
datasets have not yet accumulated. Expanding the dataset by inclusion of data from well-established breeding programs with
many years of phenotyping and genotyping can potentially address this problem. In this study we performed single- and multi-
population GWAS on heading date and lodging in four barley breeding populations with varying combinations of row-type and
growth habit. Focusing on a recently established 6-rowed winter (6RW) barley population, single-population GWAS hardly resulted
in any significant associations. Nevertheless, the combination of the 6RW target population with other populations in multi-
population GWAS detected four and five robust candidate quantitative trait loci for heading date and lodging, respectively. Of
these, three remained undetected when analysing the combined populations individually. Further, multi-population GWAS
detected markers capturing a larger proportion of genetic variance in 6RW. For multi-population GWAS, we compared the findings
of a univariate model (MP1) with a multivariate model (MP2). While both models surpassed single-population GWAS in power, MP2
offered a significant advantage by having more realistic assumptions while pointing towards robust marker-trait associations across
populations. Additionally, comparisons of GWAS findings for MP2 and single-population GWAS allowed identification of population-
specific loci. In conclusion, our study presents a promising approach to kick-start genomics-based breeding in newly established
breeding populations.
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INTRODUCTION
Barley (Hordeum Vulgare L.) is the fourth most produced cereal crop
in the world. In 2021 its global production was 156 million tonnes
with the majority (>60%) originating from European countries
(FAOSTAT 2023). As barley is used for both animal feed and malt
production and cultivated both as a winter and a spring crop,
different market and consumer preferences exist leading to
different breeding programs maintained at breeding companies
(Charmet et al. 2023). An example of different breeding populations
is six-rowed and two-rowed barley that morphologically differ in the
number of grain-producing spikelets and grain size (Koppolu et al.
2013). Another example is the spring versus winter cultivars which
differ in their optimal growing season due to different vernalization
requirements and flowering times (Distelfeld et al. 2009; Fernández-
Calleja et al. 2021; Sasani et al. 2009). Historically, these breeding
populations are rarely mixed, are generated from different founders,
and have experienced different selection and drift. Consequently,
they are genetically differentiated in more genes than those
associated with vernalization, flowering time and row-type (Bengts-
son et al. 2017; Bustos‐Korts et al. 2019; Hamblin et al. 2010; Pauli
et al. 2014).
Determining the genetic architecture of key agronomic traits is

important for crop improvement. Genome-wide association

studies (GWAS) are common approaches to study the additive
genetics underlying traits and have successfully pointed to
genomic regions associated with agronomic traits e.g. plant
height and heading date in cultivated barley (Alqudah et al. 2016;
Pasam et al. 2012; Pauli et al. 2014; Wang et al. 2012). A successful
GWAS requires sufficient genetic variation for the trait of interest.
This has traditionally been obtained by using diversity panels of
largely unrelated individuals. However, there are several important
benefits of applying GWAS to populations from applied breeding
programs instead. First, findings are directly applicable to the
studied breeding program, as no identified quantitative trait loci
(QTLs) are already fixed by breeding (Würschum 2012; Quero et al.
2018). Another benefit is that breeding populations are typically
highly adapted to the environments where they are cultivated and
phenotyped. In barley, breeding populations have already proven
applicable in detection of QTLs for many traits including heading
date and lodging (Pauli et al. 2014; Tsai et al. 2020).
Comparing GWAS findings from multiple populations may be

useful for reliable inference of additive genetic effects. Previous
studies have used QTL colocalization analysis to identify
conserved as well as population-specific QTLs in several species
(Tao et al. 2020; Thareja et al. 2023). Another main reason for
studying multiple breeding populations is that older breeding
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populations with many years of routine phenotyping contain
genetic information that potentially can be transferred to the
smaller and more recently established populations. This is
important, as adaptation to new markets and changing climates
can call for new breeding programs. To ensure genetic progress in
these programs, application of genetic tools, including GWAS, is
important. However, sample size is a major limiting factor of the
statistical power to detect signals in GWAS (Sham and Purcell
2014). Combining populations for GWAS has earlier proved a good
strategy for detecting signals that remain undiscovered when
studying the individual populations (Gebreyesus et al. 2019; Zuffo
et al. 2022). Further, taking advantage of different linkage
disequilibrium (LD) patterns in different populations can be
helpful in fine-mapping QTLs (Rosenberg et al. 2010).
Yet, combining different breeding populations in a joint GWAS

analysis comes with challenges, as these populations are typically
not designed for joint analysis (Wallace et al. 2016; Quero et al.
2018). Heterogeneity between populations can result from the
populations being measured in different environments and/or
growing seasons, the populations exhibiting different LD patterns,
the phase of SNP and QTL alleles being reversed among the
populations due to recombination events, differences in interactions
between QTL and environments, and different interactions between
QTL and the genetic background i.e. epistasis (Begum et al. 2012;
Guillenea et al. 2022; Karaman et al. 2021). Thus, it cannot be
assumed that SNP effects are the same across populations, but
rather partly correlated (Karaman et al. 2021; Legarra et al. 2021). To
date, most multi-population association studies in plants have been
performed by adjusting for differences in environmental and
population means. Although loosening the extreme assumption of
a trait being genetically independent between populations, as
assumed when analysing populations separately, the assumption of
a trait being genetically identical between populations still remains
(Alqudah et al. 2016; Müller et al. 2019; Zuffo et al. 2022). Therefore,
GWAS models that allow for partial genetic correlations between the
same trait measured in different populations i.e. multivariate models,
make more realistic assumptions. In fact, studies on genomic
prediction across populations have demonstrated that using a
multivariate model to address trait genetic heterogeneity across
populations yields more accurate results than a univariate model (De
Haas et al. 2012; Lehermeier et al. 2015; Olson et al. 2012).
Here, we focus on a recently established Nordic Seed A/S

breeding population of 6-rowed winter (6RW) barley. It was
created to meet the market interest in hybrid barley populations
and consequently consists of parental hybrid components. Among
important breeding goal traits are synchronized flowering of male
and female parental components, making heading date a key trait.
Like most other barley breeding populations, another important

trait is stem lodging resistance, as lodging largely reduces grain
yield, quality, and complicates harvesting (Rajkumara 2008).
Because of its recent establishment in 2018, little phenotype
and genotype data has been accumulated in the 6RW population
so far. Nevertheless, additional datasets from three other barley
breeding programs that differ in their combinations of row (two-
rowed versus six-rowed) and growth type (winter versus spring),
are available for analysis. This study aims to (1) investigate the
genetic diversity between the 6RW and the remaining barley
breeding populations, (2) develop suitable GWAS models that
successfully combine 6RW with other populations to increase
detection power and precision, and (3) identify conserved and
population-specific QTLs associated with the studied traits.

MATERIALS AND METHODS
Populations and plant material
Four breeding populations, collectively comprising 5805 inbred barley
lines, were included in this study. The populations originate from Nordic
Seed A/S and differ in their combination of growth habit (winter versus
spring) and row-type (2-rowed versus 6-rowed). Further information on the
populations can be found in Table 1. In summary, the 2-rowed spring
population (2RS) comprised 3346 lines, the 2-rowed winter (2RW)
population comprised 1501 lines, the 6RW population comprised 511
lines, and the 6-rowed spring (6RS) population comprised 447 lines. All
stated population sizes are reported after outlier removal as described in
the section on principal component analysis (PCA).

Field experiments and phenotypic data
All populations were phenotyped for heading date and lodging. The number
of phenotyped plots varied by population and trait. In total, the phenotypic
data included growing seasons from 2013 to 2023, and a set of 16
geographical locations representing fields in Denmark, Germany, Finland, and
France (Table S1). Each year, new crosses were introduced and tested, while
some older lines were discontinued. Consequently, the set of lines differed
between years with a degree of overlap between adjacent years. Testing was
done annually in multiple locations. Within each combination of year-location,
genotypes were organized in trials in an alpha-lattice design with 2–3
replicates. Plants were grown in plots with sizes of 10–15m2. X and Y field
coordinates for each plot were noted within each trial and used to allow for
modelling spatial effects by moving average over adjacent plots within trials.
The heading date of a plot was measured as the date where 50% of the

main spikes (the first spike of the plant) had 1–2 cm of visible awns
protruding the flag leaf (BBCH scale 49–51). Heading dates were recorded
as days starting from May 1st. Stem lodging was visually scored on a scale
from 1–9, where 9 is most severe. Further details can be found in Table S2.

Genotyping, imputation and SNP filtration
DNA was extracted from 2-week-old seedlings using a Cetyl Trimethyl
Ammonium Bromide method as described by Orabi et al. (2014).

Table 1. Characteristics of the four breeding populations.

Population

6RW 2RW 6RS 2RS

Row type Six Two Six Two

Growth habit Winter Winter Spring Spring

Number of genotypes 511 1501 447 3346

Number of full-sib families 57 282 85 1255

Method of inbreeding DH DH Selfing with SSD in F4a Selfing with SSD in F4a

First genotyped crossingsb 2018 2011 2015 2005

Number of polymorphic markers 11811 11711 10862 11748

DH double haploid technique, SSD single seed descent.
aSpring lines were genotyped at F5 and phenotyped at F6, with some selected lines phenotyped at F7.
bYear of crossing for earliest genotyped lines. For all populations, except 2RS, this is also the year breeding programs were established i.e. breeding activities
were initiated. The 2RS breeding program has been running for more than 40 years.
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Individuals genotyped after 2013 were genotyped with the iSelect Illumina
Infinium 15 K SNP chip, remaining individuals were genotyped with the
iSelect Illumina Infinium 9 K SNP array. Genotyping by both arrays was
outsourced to TraitGenetics GmbH (Gatersleben, Germany). Genotypes
with the 15 K SNP were used as a reference for within-population
imputation of the 9 K genotypes. Imputation was performed using Beagle
v.5.4 with default settings and a sliding window of 150 cM. The imputation
accuracy was tested within populations using a cross-validation (CV)
scheme where the genotypes of q random individuals were set to missing
at the 15 K chip-specific SNPs. The parameter q was set so that it fitted the
number of genotypes to predict in the 9 K array. The procedure was
repeated 100 times. An average imputation concordance of 0.97–0.98 was
achieved. Prior to imputation, a SNP call rate filter of >0.8 was applied to a
larger set of both unphenotyped and phenotyped individuals (6RW=
1668; 2RW= 5431; 6RS= 945; 2RS= 17,732). After population-wise impu-
tation, the resulting VCF files were merged to produce one file containing
all genotypes. This file was filtered to only include phenotyped lines
(n= 5813) and SNPs genotyped in all four populations with a minor allele
count (MAC) of minimum 20. This yielded a total of 12,644 SNPs for further
analyses. The physical positions of all SNPs were obtained by aligning them
to the Morex v3 reference genome (Mascher et al. 2021).
The SNP density plot was made using the R-package “CMplot” (Yin et al.

2021). The median number of SNPs per million base pair (Mbp) was calculated
using VCFtools v.0.1.16 (Danecek et al. 2011). Finally, the median distance
between neighbouring SNPs was calculated using a custom R-script.

Population structure and outlier removal
To examine the overall population structure and to detect extreme population
outliers, PCA was performed in PLINK v.1.9 (Purcell et al. 2007). Extreme
population outliers were defined as genotypes where principal components 1
to 3 were closer to the median value of another population than the assigned.
In total this yielded 8 outliers; 3 from 6RS, 3 from 2RS and 2 from 2RW, that
were removed from the data. In addition, the genomic relationship and
genetic redundancy within populations were assessed using the off-diagonal
elements of the genomic relation matrix (G) as shown in Fig. S1. G was
calculated by VanRaden method 1 as described in VanRaden (2008).
Genetic structure and admixture were further analysed with the

software ADMIXTURE setting K from 2 to 40 (Alexander et al. 2009). To
find the optimal value of K, the software-integrated CV function was used
to perform a 10-fold CV at each K value.

Linkage disequilibrium
Intra-chromosomal LD was estimated between all pairs of SNPs within
populations. Two measurements of LD were calculated—one estimated
the traditional squared allele-frequency correlations (r2) and the other
corrected for kinship relationships (rV

2) using the method proposed by
Mangin et al. (2012). LD decay was examined by ordering SNP pairs by
distance followed by binning of data into groups according to their
physical distance. Bins consisted of 10 kilobase pair (kbp) intervals, i.e. the
first bin contained all SNP pairs with a distance of 0–10 kbp, the next bin all
pairs with a distance of 10–20 kbp etc. For each bin the average r2 or rV

2

value was plotted against the average distance between marker pairs and
a smooth curve was added in R using the loess function with a span of 0.3.
The persistence of allele phases between populations over distance

were examined by considering the described SNP bins. Using the same
approach as Schopp et al. (2017), linkage phase similarity (LPS) was
calculated within each bin by computing the cosine similarity of rv values
between population pairs. The results were plotted similarly to the LD
decay plots of single populations.

Variance components and heritability estimation
Traits were analysed by fitting the following linear mixed model using the
software package DMU (Madsen and Jensen 2013):

y ¼ X1μþ X2lþ Z1ga þ Z2gl þ Z3w þ
X15
j¼1

Zjsþ e (1)

Where y is the vector of phenotypic observations; µ is the overall mean; l is
the vector of the fixed effects associated with year x location effects; ga is
the vector of genomic breeding values for lines with ga � Nð0;Gσ2gaÞ
where σ2ga denotes the additive genetic variance and G is the genomic
relationship matrix; gl is the vector of residual line effects (not captured by
the additive marker effects); w denotes the interaction between

environment and genotype (year x location x line) with w � Nð0; Iσ2wÞ; s
is a vector of spatial effects with s � Nð0; Iσ2s Þ, which captures a moving
window containing the plot itself and the 14 surrounding plots within trials
when analysing the 6RW, 2RW and 6RS populations (Fig. S2). In the 2RS
population, no y-coordinates were provided, and therefore spatial effects
were modelled as independent fixed effects of x-coordinates. e is a vector
of residual effects with e � Nð0; Iσ2eÞ. X1 and X2 are the design matrices for
the fixed effects; µ and l, respectively. Z1, Z2, Z3 and Zj are the design
matrices for the random effects; ga, gl, w, and s, respectively.
To account for inbreeding, the reported additive genetic variance

component (σ2ga) and its standard error (SE) have been multiplied by the
average diagonal of the relevant G matrix. When the spatial variance was
calculated as a moving window summing over 15 plots, the spatial variance
component (σ2gs) and its SE were reported as the estimated value multiplied
by 15 to account for the contribution of 15 plots within the window.
The broad sense heritability (H2) and narrow sense heritability (h2) were

calculated as follows:

H2 ¼
cσ2ga þ cσ2glbσ2p (2)

h2 ¼
cσ2gabσ2p (3)

Both heritability measurements were calculated on a single plot as well
as a line mean (entry) level. For the single plot level, phenotypic variance
was calculated as:

bσ2p ¼ cσ2ga þ cσ2gl þcσ2w þ bσ2s þ bσ2e (4)

For the entry level, phenotypic variance was calculated as:

bσ2p ¼dσ2ga þ cσ2gl þcσ2wne þ
bσ2s
nr

þ
bσ2e
nr

(5)

Where ne and nr indicate the number of environments and the average
number of replicates per line across all environments, respectively.

GWAS models
All GWAS analyses were performed using the software DMU (Madsen and
Jensen 2013). GWAS was performed on a set of SNPs with MAC ≥ 30. When
combining populations, SNPs with a total MAC < 30 or with a MAC < 10 in
either population were excluded. GWAS was done as a single SNP
regression using an expanded version of the model stated in Eq. 1. It was
performed within populations (single-population GWAS) and by combin-
ing populations (multi-population GWAS) using either a univariate model
(MP1) or a multivariate model combining populations (MP2). In the MP1
model, the GWAS trait is treated as the same across populations. The
model is an expansion of the single-population model and includes a fixed
population effect. Further, the model nests fixed effects of environments (l,
Eq. 1) within populations. In contrast, MP2 treats the same trait in different
populations as genetically correlated using a multivariate version of the
previously presented GWAS models. In addition to the estimation variance
of SNP effect estimates, the covariance between estimation errors from
SNP regression was estimated for each pair of populations in MP2.

GWAS significance test and correction for multiple testing
Significance of GWAS marker effects were assessed using p values
calculated by applying a Wald test to z scores:

zi ¼
bbi

SEðbbiÞ (6)

Using the single-population and MP1 models, bbi is the estimated
regression coefficient of SNP i. When applying the test to MP2, bbi is the
sum of the np scaled estimated regression coefficients when combining np
populations. Thus in MP2 SEðbbiÞ the following equations apply:

bscaled;i ¼
Xnp
j¼1

cbi;j
SEðcbi;jÞ (7)
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cbi;j refers to the estimated regression coefficient of SNP i in population j.
In order to calculate the z scores of SNP regressions from MP2, the SE of

the estimated SNP effects are calculated as follows:

SE bbscaled;i� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
aTVia

p
(8)

Where a is a column vector of ones with dimension 1 × np where np is the
number of included populations. Vi denotes the variance-covariance
matrix of the scaled regressions for SNP i and has the dimension of np × np.
Due to the scaled nature of the SNP regressions, all the diagonal elements
in V are one. Each covariance between SNP regressions in different
populations were estimated as follows:

covðbbscaled i;j ;bbscaled i;kÞ ¼ covðcbi;j ; cbi;kÞ
SEðcbi;jÞSEðcbi;kÞ (9)

Where bbscaled i;j and bbscaled i;k are the scaled regressions of the ith SNP in
populations j and k, respectively.
To correct for multiple testing a Bonferroni correction was applied

setting the genome-wide significance threshold to 0.05/12,644= 3.95E-06.

Further statical analyses and modelling
The theoretical proportion of additive genetic variance explained (PVE) by
the ith marker was calculated as follows:

PVEi ¼ 2 � pi � ð1� piÞ � bbi2cσ2gα (10)

Where pi and bi are the allele frequency and the estimated regression

coefficient of the ith marker, and cσ2gα (not to be confused with cσ2ga) is the
additive genetic variance before multiplication with the average diagonal
elements of the G matrix.
Prior to modelling the genetic correlation between heading date and

lodging within a population, the data was limited to observations of plots
scored for both traits. The genetic correlation was then modelled by
expanding Eq. 1 to a bivariate model which included residual covariance.

Power calculations
Power analyses were performed for each GWAS by iterating over values of
SNP effects (b) ranging from 0 to

ffiffiffi
2

p
by steps of 0.01. For each b value, the

power calculations were performed for a set of non-centrality parameter
(NCP) values as described by Sham and Purcell (2014):

NCP ¼ b

SEðbbÞ
 !2

(11)

The SE of each SNP effect (SEðbbÞ) originated from our actual GWAS on
each trait, which was reduced to the common set of 4812 markers with a
MAC ≥ 30 in all populations.
In the single-population and MP1 models, NCPs were obtained by dividing

the given b value by the vector of SEðb̂Þ produced by the GWAS models. For
MP2, NCP ratios were obtained by dividing the corresponding scaled b value
(Eq. 7) by the vector of SE of scaled b values (Eq. 8). The NCPs were used as
test statistics in a non-central chi-squared test with 1 degree of freedom and
a type 1 error rate set to the overall Bonferroni significance threshold. As
power calculations were applied to each NCP value, we averaged over SNPs
to obtain one power measurement per value of b2.

RESULTS
Distribution of SNP markers
A total of 5805 barley accessions were genotyped using a set of
12,644 high-quality SNPs. The largest number of SNPs were
mapped to chromosome 5H (2396) whereas chromosome 4H
contained the smallest number of SNPs (1258). Relatively few
markers were located in the centromeric regions of chromosomes,
the majority were located in non-centromeric regions (Fig. 1). With
this unequal distribution in mind, we reported SNP statistics based
on medians instead of means. The median distance between
neighbouring SNPs was 38.9 kbp, while the number of SNPs per
1 Mbp ranged from 0 to 45 (Table S3).

Population structure and LD decay
To examine the genetic relationships between the four breeding
populations we carried out PCA based on genotypic information
from all SNP markers. The first three principal components (PCs)
collectively explained 38% of across population genotypic
variance and clearly separated the four breeding populations.
PC1, which explained 23% of the total SNP variance, separated
spring-type breeding populations (2RS, 6RS) from winter types
(2RW, 6RW). PC2, which explained 9% of the variance, caused a
clear distinction of row-types. PC3 gave rise to a further genetic
separation of 6RW and the remaining populations (Fig. 2a). For
the admixture analysis, the CV error was minimized at the
maximum tested value of K= 40. The high value of K was caused
by comprehensive family structure in the data causing difficulties
in determining the optimal number of ancestral populations.
Nevertheless, results at K= 4 clearly distinguished the four
breeding populations, which generally showed little admixture
(Fig. S3, Fig. 2b). To investigate how the LD differed between the

Fig. 1 Density plot of the 12,644 SNP markers. Distribution of SNPs across the seven barley chromosomes. The colours of the bars refer to
SNP count within a 1Mbp window.
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populations, the average correlation between SNP pairs, before
(r2) and after correction for kinship (rv

2), were plotted as a
function of physical distance. The LD decay was estimated as the
distance where LD drops to 0.2. The LD patterns were similar for
6RS (2.4 Mbp), 6RW (2.3 Mbp) and 2RW (2.3 Mbp), but decayed
faster in the 2RS population (1.6 Mbp) (Fig. 2c). As expected,
much of the observed LD was due to extensive family structure

and kinship rather than physical linkage. Consequently, LD
decreased rapidly when correction for kinship was done. The
physical linkage between markers extended 285 kbp in the 2RW
population, 575 kbp in the 6RW population and 625 kbp in the
6RS population. In the 2RS population, correction for kinship
resulted in the LD decaying so rapidly that on average LD was
below 0.2 after 3016 bp (Fig. 2d, e).

Fig. 2 Population structure and LD of the four breeding populations. a the first three principal components displaying the genetic structure
of the four breeding populations. A rotating version of the plot can be accessed at: https://figshare.com/s/d399272943cb2384ce46. b A
barplot displaying the genetic admixture proportions of individuals at K= 4. c, d LD decay of populations without (c) and with correction
for kinship (d). The horizontal lines display r2 or rv

2 at 0.2. e Zoomed in version of population-corrected LD (rv
2) for the 2RS population at SNPs

distanced up to 500 kilobase pairs apart. In all panels, different breeding populations are colour-coded.
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Trait variances and heritability
All populations were scored for heading date and lodging (Fig. S4).
In general, the 6RW population was scored in fewer environments
(6–9) than the remaining populations, which were all scored in
9–18 combinations of year and location. Winter types showed
earlier heading dates than spring types, as expected due to their
earlier sowing, whereas populations with different growth and/or
row types behaved similar for lodging (Table 2).
For all populations, the heritability for heading date was greater

than for lodging. The broad sense entry-mean heritability ranged
from 0.93 (6RW, 6RS) to 0.95 (2RS) for heading date and from 0.52
(6RW) to 0.80 (2RS) for lodging. The phenotypic variance was
partitioned into five components: Additive genetics captured by
SNP markers (σga

2), the remaining line effect (σgl
2), spatial effects

(σs
2), interaction between lines and environments (σw

2) and error
(σe

2). For heading date, the largest proportion of variance was
assigned to the additive genetic variance in all populations. The
remaining line effect, i.e. genetic variance that is either non-
additive or additive effects not captured by the SNPs, was
negligible for the 2RW and 6RS populations, but contributed 3–7%
of the overall trait variance in 6RW and 2RS. The relative variance
explained by GxE was large in the 2RW population where it
explained 29% of the observed variance. The same parameter only
explained 16–19% of the overall variance in the remaining
populations. Spatial effects accounted for up to 12% of the
overall variance.
For lodging the largest proportion of variance was explained by

GxE or the model’s error term. The relative variance proportion
explained by GxE varied from 21% (6RS) to 40% (2RW), whereas
the additive genetic component only explained 17–33% of the
phenotypic variance. The relative contribution of spatial effects to
lodging variation was between 10% and 15% for all populations
except the 2RS population where spatial effects only contributed
2% to the overall variation. Genetic effects not captured by the
additive term explained none of the observed variance in the
populations except for 2RS where it explained 6% (Table 3).

Single-population GWAS
We performed single-population GWAS and identified genomic
regions associated with heading date and lodging within
populations (Fig. 3, Figs. S5–6). We detected 37, 23, and 3
significant marker-trait associations (MTA) for heading date in the
2RW, 2RS and 6RS population, respectively. For the 6RW
population, we found only one significant MTA. The identified
MTAs were located on chromosomes 2H, 3H, 4H and 7H (Fig. 3a).

Single-population GWAS for lodging revealed 19, 32, and 1
MTAs in 2RS, 6RS, and 2RW, respectively. No significant MTAs were
detected for lodging in the 6RW population. The lodging MTAs
were spread across all chromosomes except 6H (Fig. 3b). A
comprehensive list of all significant MTAs for both traits can be
found in Table S4. To point towards candidate genes, MTAs were
grouped into candidate QTLs by considering the full genomic
interval spanned by the significant markers contributing a visual
GWAS peak. In Table 4 each of the resulting candidate QTLs are
described by the most significant SNP and its closest gene. In total,
single-population analyses pointed to seven QTLs for heading
date and six QTLs for lodging. Among the candidate QTLs for
heading, one detected in 2RS was located in a major vernalization
gene VRN-3, and another detected in 2RW was located in the
photoperiod gene Ppd-H1 (Turner et al. 2005; Yan et al. 2006)
(Fig. 3a).
Further, single-population GWAS found two QTLs associated

with both traits, which are results of the broad 6RS-specific
candidate QTL on chromosome 2H and the 2RS-specific
candidate QTL on chromosome 3H. The latter colocalizes with
the well-known semi-dwarfing gene sdw1/denso (Jia et al. 2009).
To explain the overlap of traits in the two populations, we found
significant genetic correlations between heading date and in the
6RS (−0.51) and 2RS (−0.31) populations. In contrast, genetic
correlations between the traits were non-significant in the 6RW
population and positive (+0.33) in the 2RW population
(Table S5).
We observed no physical overlap of QTLs between any of the

populations within traits. Most of the identified QTLs were found
in the populations with larger sample size (2RS and 2RW). Notably,
the 2RW population yielded many MTAs for heading date spread
across chromosome 2H making it difficult to separate and
identify QTLs.

Persistence of allele phases between populations
For both traits, only one marker exhibited significance above the
threshold in the 6RW population. To gain more statistical power to
uncover MTAs in this population, we sought to transfer informa-
tion from the other populations. To access how well-suited the
different breeding programs were for combined GWAS, we
studied LD phasing between the populations. For all pairwise
populations, the LPS decreased with increasing marker distance.
For markers distanced <10 kbp apart, phases tended to be
preserved between populations. The largest LPS (0.79) was
observed between 6RW and 2RW at a distance up to 14 kbp,

Table 2. Phenotypic data overview of all traits in the four populations.

Trait Population Min.a Max.b Mean SDc CVd n.o.e n.e. f

Heading date 6RW 3.0 25.0 13.9 4.1 0.29 3681 9 (4, 5)

2RW 1.0 40.0 14.6 6.1 0.42 9712 18 (7, 5)

6RS 32.0 73.0 53.6g 9.3 0.17 4911 18 (4, 5)

2RS 32.0 66.0 47.0 7.6 0.16 13.374 18 (9, 7)

Lodging 6RW 1.0 8.0 2.0 1.7 0.85 1624 6 (3, 4)

2RW 1.0 9.0 2.1 2.0 0.95 8899 16 (7, 6)

6RS 0.9 8.0 1.9 1.3 0.68 2405 9 (4, 5)

2RS 1.0 9.0 2.8 2.0 0.71 17.362 15 (8, 5)
aMin., Minimum trait observation.
bMax., Maximum trait observation.
cSD, Standard deviation.
dCV, Coefficient of variation.
en.o., number of observations.
fn.e., number of unique year x location combinations (environments)—listed in parenthesis is the number of years followed by the number of locations.
gThe later heading date of the 6RS population compared to the 2RS is due to later sowing of the 6RS population. This is the case as the populations are grown
in different geographic regions. If the populations were grown in the same location, the 6RS heading date is expected to be 10–14 days earlier than 2RS.
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and the persistence of allele phases for these two populations
remained high (LPS >= 0.5) for markers distanced up to 1.4 Mbp
apart. We also observed moderate agreement between the
linkage phases of 6RW and 6RS, and between 2RW and 6RS
where the LPS at short distances (<10 kbp) were up to 0.70–0.71
and remained high (LPS >= 0.5) up to distances of 595–645 kbp.

In contrast, the 2RS population showed a lower consistency in
linkage phases with the other populations. The lowest LPS was
observed for 6RW and 2RS where markers distanced within 10 kbp
showed an LPS of 0.49 (Fig. 4a). In general, we found that the
persistence of phases highly reflected the genetic relationship
between populations (Fig. 2a, b).

Fig. 3 Manhattan plots for single-population GWAS. Overlaid Manhattan plots of single-population GWAS results for (a) heading date and
(b) lodging. The y-axes display −log10 of p-values. The results for each population are displayed with a unique colour and shape. The x-axes
display the genomic position of markers by chromosome. The horizontal dashed lines indicate the Bonferroni-corrected significance threshold
at −log10(p)= 5.4. The position of the well-known genes Ppd-H1, sdw1/denso, and VRN3 are indicated with labels.

Table 3. Trait variances and heritability in the four populations.

Population

Trait Parameter 6RW 2RW 6RS 2RS

Heading date σga2 3.80 (0.38) 6.74 (0.50) 2.58 (0.24) 2.93 (0.18)

σgl2 0.21 (0.09) 7.11E- 03 (8.11E- 04) 4.13E -06 (0.06) 0.32 (0.04)

σw2 1.20 (0.08) 3.51 (0.12) 0.82 (0.05) 0.74 (0.04)

σs2 0.77 (0.04) 0.27 (3.5E- 02) 0.52 (0.04) 0.24 (0.04)

σe2 0.49 (0.02) 1.78 (0.04) 0.98 (0.03) 0.50 (0.01)

H2 (entry) 0.93 (8.44 E- 03) 0.94 (5.98E-03) 0.93 (7.37E-03) 0.95 (3.71 E-03)

h2 (entry) 0.88 (0.03) 0.94 (0.01) 0.93 (0.03) 0.86 (0.02)

H2 (plot) 0.62 (0.03) 0.55 (0.03) 0.53 (0.03) 0.69 (0.02)

h2 (plot) 0.59 (0.04) 0.55 (0.03) 0.53 (0.04) 0.62 (0.02)

Lodging σga2 0.46 (0.08) 0.35 (0.04) 0.38 (0.05) 0.79 (0.07)

σgl2 2.37E- 06 (0.08) 8.4E -03 (0.03) 5.4E -07 (0.03) 0.21 (0.03)

σw2 0.79 (0.09) 0.85 (0.03) 0.24 (0.03) 1.06 (0.04)

σs2 0.34 (1.38E -2) 0.32 (5.03 E -03) 0.11 (1.88E -2) 0.08 (0.08)

σe2 0.65 (0.04) 0.58 (0.02) 0.42 (0.02) 1.10 (0.02)

H2 (entry) 0.52 (0.07) 0.66 (0.03) 0.78 (0.03) 0.80 (0.01)

h2 (entry) 0.52 (0.08) 0.65 (0.05) 0.78 (0.07) 0.63 (0.04)

H2 (plot) 0.21 (0.05) 0.17 (0.02) 0.33 (0.04) 0.31 (0.02)

h2 (plot) 0.21 (0.04) 0.17 (0.02) 0.33 (0.05) 0.24 (0.02)

Listed in parantheses are the standard errors of the parameter estimate.
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As the persistence of phases remained positive for all pairwise
comparisons of populations, it suggested that on average we did not
observe reverse phases between populations. However, it was still
possible that some regions had reverse phases between populations.
To evaluate this, we studied the LPS between correlations of all
possible marker pairs located within overlapping windows of 1Mbp.
We only observed negative LPS values of windows three times across

all chromosomes and pairwise comparisons of populations. The most
negative of these (LPS=−0.27) was found by comparing 6RS and
2RS on chromosome 1H (Tables S6–S11). Based on this, we
concluded that for the presented data, phase inversions between
populations were not common, hence we did not expect SNP effects
in different populations to cancel each other out when applying
multi-population GWAS models.

Fig. 4 The basis and potential for combining populations in GWAS. a Linkage phase similarity (LPS) between pairwise populations for SNP
pairs at different distances. SNP pairs are binned in groups of 10,000 bp intervals. b Genetic correlations of heading date between
populations. c Genetic correlations of lodging between populations. d, e Power plots for different GWAS models applied to heading date (d)
and lodging (e). The x-axes show the squared value of a hypothetic SNP effect. The y-axes show the statistical power of GWAS for a given
marker size. Different lines types are used to display different models, whereas line colours refer to the combination of populations subjected
to GWAS. The dashed horizontal lines indicate a power of 0.9.
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Cross-population genetic correlations and multi-
population GWAS
Despite finding no overlapping MTAs in the four populations for
the same trait, a trait scored in different populations could still
share some of their genetic architecture i.e. similar QTL effects
across genetic backgrounds. Using a bivariate GWAS model we
estimated the cross-population genetic correlations. We observed
higher cross-population genetic correlations for heading date
compared to lodging. For heading date, the correlation between
populations decreased with increasing genetic distance resulting
in the largest genetic correlation (+0.76) between 6RW and 2RW,
and the smallest genetic correlation (+0.25) between 6RW and
2RS (Fig. 4b). For lodging we observed the largest genetic
correlation (+0.52) between 6RW and 2RW, and the smallest
genetic correlations between 6RW and 6RS (+0.03) and 2RW and
6RS (−0.05) (Fig. 4c).
We combined the 6RW data with datasets from other

populations in multi-population GWAS analyses using two
different models. MP1 combined the populations in a univariate
model and thereby assumed a cross-population genetic correla-
tion of +1. To account for the inaccuracy of this assumption, we
applied MP2, which was a multivariate model treating a trait
scored in the different populations as different but genetically
correlated traits. Since our aim was to improve GWAS of the 6RW
population, we combined it with one of the other populations at a
time (6RW:2RW, 6RW:6RS, 6RW:2RS) and by using data from the
two genetically closest related populations (6RW:2RW:6RS), or all
four populations (6RW:2RW:6RS:2RS).
Power analyses revealed that the multi-population GWAS

models yielded higher power to detect MTAs compared to the
single-population GWAS model under the assumption that the
QTL effects were the same across populations. For heading date,
MP2 obtained a power of 90% for SNP effects as low as 0.3 days
per alternative allele when combining all four populations,
whereas effect sizes needed to be 1.4 days per alternative allele
for similar power in single-population GWAS in 6RW. For lodging
in 6RW, an effect size as low as 0.07 per alternative allele resulted
in a theoretical power of 90% when applying MP2 GWAS to all
four populations, whereas effect size per alternative allele needed
to be much larger in the 6RW population (b= 0.8) to obtain the
same power using the single-population models (Fig. 4d, e).
In multi-population GWAS, combining the target population

(6RW) with other breeding populations gave rise to a total of 15
and 9 candidate QTLs for heading date and lodging, respectively
(Figs. 5, 6, S5–6). No additional candidate QTLs were detected
when combining all four populations (Fig. S7). We found that the
SNP effects in MP1 was significantly dominated by the larger
population and substantially overestimated (Table S12). As a
result, we do not consider MP1-specific QTLs as valid candidates,
and therefore, Table 5 only reports the candidate QTLs identified
by MP2. Since some of the same candidate QTLs within traits were
found across combinations of populations, the detected candidate
QTLs can be reduced to four and five non-overlapping candidate
QTLs for heading date and lodging, respectively (Table 5). Among
the MP2 multi-population analyses, we identified three candidate
QTLs that were only detected when combining populations and
not when subjecting the included populations to single-
population GWAS (Figs. 5, 6). The locations of these QTLs are
highlighted in Figs. 5 and 6. Notably, when combining 6RW and
6RS in GWAS for heading date, associations located on chromo-
some 2H 24.4–25.9 Mbp appear. This region overlaps with the Ppd-
H1 gene detected for heading date in the 2RW population
(Figs. 3a, 5b). The proportion of genetic variance explained by all
MP2 GWAS QTLs ranged from 0.1% to 13.8% in 6RW, from 0.1% to
15.1% in 2RW, from 0.2% to 19.4% in 6RS, and from 0.5% to 11.2%
in 2RS. Of the identified QTLs for heading date, the chromosome
2H signal located at 24.4–25.9 Mbp explained the largest
proportion of genetic variance in 6RW (8.3%) (Table 5). For the

lead marker in this region, 6RW homozygotes for the G allele had
on average 14.7 days from May 1st until heading, whereas
homozygotes for the T allele had only 13.4 days. In the remaining
populations, substituting homozygosity of the G allele with
homozygosity of the T allele, reduced the average heading date
from 17.2 to 13.4 days after May 1st (2RW), and from 53.7 to
48.4 days after May 1st (6RS). No variation was observed for the
marker in the 2RS population (Fig. S8). Among the identified
candidate QTLs for lodging, the lead marker on chromosome 2H
at 650.5 Mbp explained the largest amount of genetic variation in
6RW (13.8%) (Table 5). Homozygotes for favourable allele (G/G)
had a mean score of 1.8 across all environments, whereas
homozygotes for the unfavourable allele (A/A) had a mean score
of 3.2. In the remaining populations, the average lodging score of
genotypes changed from 3.1 to 2.1 (2RW), from 3.0 to 1.9 (6RS),
and from 4.5 (2RS) to 2.8 when substituting A/A with G/G (Fig. S9).

DISCUSSION
Population structure and LD decay reflected the breeding
history of barley
In agreement with previous studies, we found that breeding
activities have resulted in strong population structure of barley—
primarily due to the separation of winter and spring types and
secondarily due to the separation of ear row number (Rostoks
et al. 2006; Wang et al. 2012). Further, the observed LD decay rates
i.e. the amount of experienced recombination of the different
populations highly reflect the breeding history of barley. The
slower LD decay of the 6-rowed populations can be explained by
6-rowed barley descending from 2-rowed barley (Backes et al.
2006; Komatsuda et al. 2007). We especially observed an
extremely fast LD decay in the 2RS population. This clearly
reflected that the earliest breeding programs in Europe focused
on intensive breeding of 2-rowed spring barley, while the
concurrent winter barley breeding programs were minor (Fisch-
beck 1992). We found a moderate to high LPS when comparing
linked markers in the 6RW population with the 2RW and 6RS
population, but a low LPS when comparing the 6RW and 2RS
population. This is consistent with previous findings reporting a
decreasing LPS with increasing genetic distance between barley
breeding populations (Hamblin et al. 2010). In contrast to our
results, Hamblin et al. (2010) reported a low consistence of phases
even for close markers. Nevertheless, we found almost no cases of
reverse phases. Although surprising, this might be explained by
few events of recombination since the separation of the involved
breeding programs. The first line breeding programs for Nordic
cultivation of barley can be traced back to the beginning of the
20th century (Ortiz et al. 2002). The low haplotype divergence
observed between types may be explained by the effective
recombination in cultivated barley being low, as 10 years typically
has passed from the first crossings to cultivar releases in barley.
Further explanations can be found in introgression between types
e.g. the transfer of malting qualities between populations (Stock-
inger 2021).
Another consequence of selective barley breeding is the

scarcity of SNPs in the pericentromeric region of chromosome
2H in the 2RS population. Mascher et al. (2017) hypothesized that
this might be attributed to extensive breeding efforts aimed at the
favorable HvCEN allele found in this region. HvCEN contributes to
both determination of growth habits and geographical adapta-
tions, making it a likely GWAS result for heading date in the
remaining populations where some genetic variation still exists in
this region. In this context, we observed that the 2RW population
gave rise to multiple heading date associations scattered across
the pericentromeric region on chromosome 2H. As we have no
markers located in HvCEN (the closest being 2–3 Mbp away) and a
general absence of sufficient recombination in centromeric
regions, the associations might report HvCEN.
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Lodging showed a more quantitative nature than
heading date
We observed that lodging had a lower heritability than heading date.
This was caused by most of the total variance in lodging being
ascribed to environmental (GxE) and residual effects. The larger
environmental influence was expected, as stem lodging resistance is
a combination of many traits e.g. plant height, crown width, stem
diameter, and the structural stem components, all interacting with
environmental factors (Li et al. 2022). The larger residual variance
might indicate greater measurement errors linked to the lower
resolution of the scale for scoring lodging (1–9). It should be pointed
out, that we observed a low degree of lodging in all populations.
Interestingly, we found a lower heritability for lodging in winter
populations than in spring populations. We attribute this to the larger
environmental effects (GxE and spatial effects) on lodging experi-
enced by the winter populations, which might be related to winter

barley staying in the field for a prolonged period compared to spring
barley. Further, we observed a negative genetic correlation between
lodging and heading date in the spring populations—a trend that
has previously been reported in Northern spring barley breeding
material (Göransson et al. 2019). The relationship between these traits
led to a common candidate QTL on chromosome 3H, observed in the
GWAS on 2RS alone and in the following combinations 6RW:2RS
(both traits), and 6RW:2RW:6RS:2RS (lodging only). The QTL includes
the sdw1/denso gene, a semi-dwarfing gene where the mutant allele
is widely used in European spring barley to improve lodging
resistance and delay heading (Jia et al. 2009; Kuczyńska et al. 2013).

Multi-population GWAS increased power to detect
associations and MP2 had higher precision than MP1
We tested the power of the multi-population models compared to
the single-population model in the theoretical case where a SNP

Fig. 5 Overlaid Manhattan plot for heading date using multi-population GWAS models. The red circles display the GWAS results from the
univariate model (MP1) and the blue triangles display the results from the multivariate model (MP2) when performing GWAS on:. a 6RW:2RW.
b 6RW:6RS. c 6RW:2RS. d 6RW:2RW:6RS. The horizontal dashed lines indicate the Bonferroni-corrected genome-wide significance threshold at
−log10(p)= 5.4. Hexagons with numbers point towards candidate QTLs that were not found when performing single-population GWAS on the
involved populations. Golden hexagons refer to high-confidence candidate QTLs found by the MP2 model alone or by both models.
Candidate QTL1 points to chromosome 2H at position 24,418,356–25,879,587 bp. The position of the well-known genes Ppd-H1 and sdw1/
denso are indicated with labels.
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effect is the same in all tested populations. Consistent with
previous studies, combining populations resulted in higher power
than performing GWAS in either of the populations alone
(Gebreyesus et al. 2019; Hamazaki et al. 2020; Zhong et al.
2024). The theoretical increase in power of the multi-population
models compared to the single-population model can be
explained by a drastic increase in sample size and a resulting
lower SE of estimated SNP effects. However, in reality it is
extremely unlikely that effects are exactly the same in all the
combined populations, especially in the presented cases of
population-specific SNPs. For such SNPs, we do not expect an
increase in detection power using multi-population GWAS.
As expected, MP1 was highly influenced by the larger

population when combining dataset of unequal sizes. Further,
findings for both traits clearly demonstrated that cross-population
genetic correlations differ from 1, making the assumptions of MP1

highly improbable. In contrast, the MP2 model tests for common
effects between populations, and loosen the assumption of a trait
being genetically identical in the combined populations. Because
of more accurate model assumptions and equal representations of
populations in significance tests, MP2 is expected to produce
fewer type I errors than MP1 for the detection of shared MTAs.

Multi-population GWAS identified multiple QTLs with
common effects across populations
The MP2 combination of 6RW with other breeding populations
detected five candidate QTLs for lodging and four additional non-
overlapping candidate QTLs for heading date. Of these, one for
heading date and two for lodging were not found when
considering either of the populations alone. This can be explained
by too little power to uncover small marker effects in the 6RW
population, and alleles being too rare (MAC < 30) to pass the MAC

Fig. 6 Overlaid Manhattan plot for lodging using multi-population GWAS models. The red circles display the GWAS results from the
univariate model (MP1) and the blue triangles display the results from the multivariate model (MP2). a 6RW:2RW. b 6RW:6RS. c 6RW:2RS.
d 6RW:2RW:6RS. The horizontal dashed lines indicate the Bonferroni-corrected genome-wide significance threshold at −log10(p)= 5.4.
Hexagons with numbers point towards candidate QTLs that were not found when performing single-population GWAS on the involved
populations. Golden hexagons refer to high-confidence candidate QTLs found by the MP2 model alone or by both models. Candidate QTL 2
points to chromosome 1H at position 19,595,378 bp; Candidate QTL 3 points to chromosome 3H at position 570,634,774–570,635,897 bp;
Candidate QTL 4 points to chromosome 2H at position 380,356,960 bp.
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filter in the other population(s). Previous studies in maize have
also found that multi-population GWAS gave rise to many
associations not found when studying the individual populations
(Zuffo et al. 2022).
The additional candidate QTL detected in multi-population GWAS

for heading date, reports a genomic region on chromosome 2H at
24.4–25.9 Mbp containing the Ppd-H1 gene (Turner et al. 2005).
When performing single-population GWAS, detection of the gene
was limited to 2RW. This can be explained by the SNPs located
within the Ppd-H1 gene being close to monomorphic in the 2RS
population (MAC of 1), very rare in the 6RS population (maximum
MAC of 11) and no power to detect the region in the smaller
populations i.e. 6RS and 6RW. Ppd-H1 is the major gene determining
long-day response in barley (Alqudah et al. 2020). It has functionally
been validated in several studies, where mutations have been
coupled to reduced response to long-day photoperiods (Turner
et al. 2005; Parrado et al. 2023). Allelic variation has earlier been
identified both within spring and winter populations, it is therefore
expected that we can identify the gene when performing GWAS
within 2RW (Alqudah et al. 2016; Digel et al. 2016). Besides
detecting candidate QTLs that were not revealed by studying the
involved populations separately, multi-population GWAS found that
many of the candidate QTLs detected exclusively in single-
population analyses for the 2RW, 6RS or 2RS populations, pointed
to shared effects with the 6RW. Examples of such cases are the
beforementioned region associated with Ppd-H1, sdw1/denso, as
well as the lodging candidate QTL on chromosome 7H identified
when performing GWAS within 6RS and by combining it with 6RW.
The latter candidate QTL overlaps with a relatively large region
found by Zhang et al. (2022) for stem related traits in barley. The
identification of shared effects between populations is highly
relevant, as QTL consistency provides evidence of shared additive
genetics of the studied traits when comparing populations of
different growth and row types. Further, it provides some validation
of the identified QTLs, and ideally, if effects are large enough, it can
provide inputs for marker-assisted selection (MAS) in an under-
powered population, where no markers are detected by single-
population GWAS. However, while this study detects several
significant associations for both traits, the amount of variance
explained by the individual SNPs were generally not large enough
to be good candidates for MAS. Hence, a more suitable strategy for
accelerating genetic improvement of lodging and heading date in
the studied breeding population might be genomic selection.

Some QTLs were population-specific
Consistent with earlier studies, not all candidate QTLs detected in
single-population GWAS were detected in multi-population GWAS
(Gebreyesus et al. 2019; Zuffo et al. 2022). Possible explanations
are non-existing allelic variation of the QTLs in all combined
populations, imperfect LD between QTLs and causal loci, or that
the underlying genes have no effect on the phenotype in a given
population due to interactions with the environments and/or
epistasis (Legarra et al. 2021). Among the population-specific
candidate QTLs that are undetected in multi-population GWAS is
the heading date QTL found in population 2RS on chromosome
7H at 41.8 Mbp. The underlying gene (Vrn-H3) regulates the
vernalization requirements in barley, and allelic variation typically
differentiates spring and winter types of barley (Yan et al. 2006).
Another 2RS-specific signal is the lodging-related candidate QTL
on chromosome 4H at 19.1 Mbp, previously detected by Tsai et al.
(2020) for its association with both lodging and straw breaking.
This overlap is expected, as their study analysed a subset of the
2RS data we analysed (Tsai et al. 2020).

Combining populations in GWAS comes with computational
and statistical challenges
We combined up to four populations in joint GWAS. Theoretically,
there are no limits to how many populations one can combine.

However, as the number of combined datasets grows, the
computational demands of MP2 becomes more resource-inten-
sive, and the interpretation of the detected regions becomes
harder. Here, we did not detect any new signals when performing
multi-population GWAS across all four populations. This is
expected, as few markers were common enough to pass the
MAC filter of 10 in each population. Although QTLs were detected
when applying the multivariate model to three and four
populations, these were mostly a result of shared effects of two
of the combined populations or a very large effect in the large 2RS
population. However, we did observe a few cases of significant
marker effects shared across all three populations including the
association of heading date and the Ppd-H1-containing region,
and the candidate QTL for lodging on chromosome 2H at position
650,512,028 bp explaining 13.8% of the genetic variation in 6RW.

Conclusions and applications for future research
Overall, the study demonstrated that combining datasets from
different breeding populations of barley can increase the power to
detect GWAS associations. This proved particularly useful in
identifying significant MTAs for the recently established 6RW
population with limited data, where single-population GWAS
struggled to detect significant associations.
For future applications of the MP2 model to more than two

populations, we suggest focusing on differences in genetic effects
between groups of populations. With the data presented here
such an analysis could test for different marker associations
between growth (spring versus winter) or row types (2-row versus
6-row).
Although we did not observe reverse phases between the

studied populations, this could be different for other more diverse
populations (Deng 2001; Lin et al. 2007; Teo et al. 2009). Our
presented MP2 model can easily be modified to test for
differences of scaled SNP regressions, and consequently allow
identification of shared candidate QTLs with opposing signs in
populations.
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