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Soil microbiomes show consistentand
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Increasing extreme climatic events threaten the functioning of terrestrial

ecosystems™2. Because soil microbes govern key biogeochemical processes,
understanding their response to climate extremes is crucial in predicting the
consequences for ecosystem functioning®*. Here we subjected soils from

30 grasslands across Europe to four contrasting extreme climatic events under
common controlled conditions (drought, flood, freezing and heat), and compared
the response of soil microbial communities and their functioning with those of
undisturbed soils. Soil microbiomes exhibited a small, but highly consistent and
phylogenetically conserved, response under the imposed extreme events. Heat
treatment most strongly impacted soil microbiomes, enhancing dormancy and
sporulation genes and decreasing metabolic versatility. Microbiome response to heat
in particular could be predicted by local climatic conditions and soil properties, with
soils that do not normally experience the extreme conditions being imposed being
most vulnerable. Our results suggest that soil microbiomes from different climates
share unified responses to extreme climatic events, but that predicting the extent of
community change may require knowledge of the local microbiome. These findings
advance our understanding of soil microbial responses to extreme events, and
provide afirst step for making general predictions about the impact of extreme
climatic events on soil functioning.

Understanding the response of soil microbial communities to climate
extremes, such as droughts, floods and temperature shifts, is crucial
for understanding changes in ecosystem functioning and improving
climate change projections®*. Factors driving the microbial response
to extreme events are multiple and involve complex interactions
between intrinsic and extrinsic factors, including microbial commu-
nity composition and diversity, soil properties and historical climate®.
Microbial traits, such as osmolyte production, that protect microbial
communities against drought stress may explain their response to
extreme events, whereas other traits such as those involved in carbon
and nutrient cycles—by physiological trade-offs linked with invest-
ment in response traits—may predict the consequences for soil func-
tioning®. However, the impact of extreme climatic events depends

not only on the resident microbial community but also on the soil
system’: for example, soils with a high organic matter content can be
more resistant to freezing®. Moreover, climatic properties may affect
ecosystem functioning by alteration of soil microbial communities® and
select for soil properties and microbial traits that dampen or amplify
microbial responses to climatic disturbances'®". Although interestin
soil microbial community responses to extreme climatic events has
surged in recent years, most of our knowledge comes from experi-
ments focusing on asingle soil or system'®5, potentially exacerbating
exaggeration bias'®. Moreover, our understanding of microbial com-
munity response to drought far exceeds that for other disturbances
suchas floods, heatwaves or soil freezing, which are also increasing with
climate change.
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Fig.1|Experimental design forimposing extreme climatic events and their
effects onsoils collected from across Europe. a,b, Sampled site locations

(a) and experimental set-up (b) for simulation of extreme climatic events.
ThelOcirclesrepresent those countries where three replicate grassland sites
within11km of each other were sampled, resulting in 30 sitesin total. Sites
represent the diversity of biogeographic regions presentin Europe: alpine
(AT, Austria), subarctic (SE, Sweden), Arctic (IS, Iceland), Atlantic (Ox, Oxford
and La, Lancaster, both UK), boreal (EE, Estonia), continental (DE, Germany),
Mediterranean (ES, Spainand GR, Greece) and steppe climate (RU, Russia).
c-h, The simulated climate extremes consistently shift soil microbial
communitiesinthe same direction despite their contrasting composition. Non-
metric multidimensional scaling (NMDS) ordinations of prokaryotic (n = 576) (c),
fungal (n = 574) (d) and shotgun metagenome (n =308) (¢) communities, based
on Bray-Curtis dissimilarities show that the origin of the sample (country and

Here we sought to ascertain whether there is a unified microbial
community response to extreme events across soil types and bioge-
ographic regions. We hypothesized that different extreme climatic
events shift soil microbial communities in distinct and consistent
directions. Specifically, we expected similar disturbances to shift soil
microbial communities in the same direction. For example, drought
and soil freezing, and potentially also heat, cause osmotic stress™*®
and may thus elicit a similar microbial response, whereas flooding
would have anopposing effect. In addition, we hypothesized that local
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site) is the main driver of microbial community composition, followed

by thetypeof disturbance and the time elapsed following the disturbance
(Extended Data Table1). The colour of pointsindicates the country of origin.
Partial redundancy analysis (RDA) ordinations show disturbance effects on
communities after controlling for site effects (black arrows). Prokaryotic (f),
fungal (g) and shotgun metagenome (h) communities exhibit a consistent shift
inresponse toindividual disturbances. Percentage of variance explained,
having conditioned on country andsite, is given on the RDA axes; only the first
two axes are shown. Total variance explained by all four constrained RDA axes is
2.7,3.6 and 8.8% for prokaryotic, fungaland shotgun metagenomes, respectively.
Conditional variance (country and site within country), as a proportion of total
variance, was 71, 68 and 91% for prokaryotic, fungal and shotgun metagenomes,
respectively. 2D, two-dimensional; DW, dry weight. Mapina adapted from

ref. 45, European Environment Agency CCBY 4.0.

climatic conditions select for soil microbial taxa exhibiting traits that
allow them to cope with extreme climatic events regularly occurring
intheir climatic niche. Thus, for example, soil microbial communities
from drylands should be more resistant to extreme drought through
the selection of drought-resistance traits.

To test these hypotheses, we imposed 4 different climatic distur-
bances tosoils collected from 30 European grasslandsin 10 countries,
coveringallimportant European biogeographic zones (Fig. 1a). Grass-
lands occupy awide range of soil types and climatic conditions, covering
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Fig.2|Ecologicalresistance andresilience strategies associated with the
500 mostabundant ASVs. a,b, ASVsassociated with prokaryotes (a) and

fungi (b). The central tree indicates the taxonomy of the 500 most abundant
ASVs, with tips coloured by phylum (more abundant ASVs are more intensely
coloured). Intherings surrounding the tree (one per disturbance treatment),
purple/blue coloursindicate ASVs that perform significantly worse following
disturbance (P< 0.05, two-tailed Wald test, relative to other organisms and to
the control treatment as fitted by a linear mixed-effects model across all soils,
treatments and samplings, without correction for multiple testing; n =548 and
586 samples for bacteria and fungi, respectively). Orange coloursindicate ASVs

40% of the Earth’s surface (Fig.1aand Supplementary Table1). They are
animportant reservoir of biodiversity and provide many benefits to
humans®. In controlled-climate cabinets, we subjected microcosms of
eachsoil toeither a2 week drought (‘drought’:10% of soil water-holding
capacity (WHC), 18 °C), flooding event (‘flood”:100% WHC, 18 °C), soil
freezing (‘freeze’: 60% WHC, 20 °C) or heatwave (‘heat’: 60% WHC,
35°C), alongside a control treatment that was maintained at constant
moisture and temperature (‘control’: 60% WHC, 18 °C), followed by
4 weeks of recovery. These particular disturbances were chosen to
represent extremes that are increasing with climate change? and are
considered extreme across all our sampled environments (Methods),
althoughnot necessarily comparablein their severity. We assessed the
response of soil microbial communities at the end of the disturbance
(sampling 1, or S1) and 1 day (S2),1 week (S3) and 4 weeks (S4) after end-
ingthe disturbance, by prokaryotic, fungal and shotgun metagenomic
sequencing (for assessment of shifts in microbial functional genes).
We assessed soil functioning by measuring microbial enzymatic
activities, microbial ability to use multiple substrates and carbon and
nitrogen pools and fluxes (Methods). In total, this experimental design
resulted in 600 independent microcosms (Fig. 1a,b).

Prokaryotic, fungal and functional gene communities were strongly
shaped by their origin (permutational multivariate analysis of variance
(PERMANOVA) R*=0.72, 0.74 and 0.68, respectively, for country and
site main effects combined, P< 0.001in all cases; Fig. 1c-e, Extended
DataTable1and Extended DataFig.1a-c,g), reflecting theimportance
of soil and climatic factors in the distribution of soil microbial com-
munities globally?®2, Despite the wide variation in microbial commu-
nity composition, the responses of prokaryotic, fungal and functional
gene community structure to the imposed extreme climatic events
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that performrelatively better following disturbance using the same criteria.
Theshade of colour indicates the dynamics of the response as showninthe
key:the darkest shadesindicate astatistically significant divergence from the
control atthe end of the disturbance, followed by a statistically significant
changeinthesame direction over the following month (thatis, not resilient).
The palest shadesindicate nosignificant change at the end of the disturbance,
butasignificant divergence over the following month. ASVs inwhich amodel
did notconverge areindicated by pale grey tiles across all four perturbation
rings.

were small but consistent among soils from diverse origins (Fig. 1f-h,
Extended Data Table1and Extended DataFig. 1; disturbance type and
sampling time combined, including their interaction, PERMANOVA
R?=0.017,0.018 and 0.018 for prokaryotes, fungi and metagenome,
respectively). Whereas the proportion of total variance explained by
extreme event treatments was small at the global scale (due to distinct-
ness of soil communities across sites), the disturbances explained
10-29,12-29 and 19-64% of variance, respectively, in prokaryote com-
munity, fungal community and metagenome composition at thelocal
scale (Extended Data Fig. 1h). With the inclusion of a higher number
of countries in our study, the proportion of variance explained by the
disturbances became lower and less variable among included coun-
tries (Extended DataFig.1h). Thus, there isacommon response to the
simulated extreme events that can be reliably quantified only when
assessing awide range of soils from different climates. As hypothesized,
drought and freeze shifted communities largely in the same direction,
demonstrating that drought-resistant microbes are also resistant to
freezing, probably because drought and freeze both decrease soil water
availability”. Increased soil water availability through flooding shifted
these communities in the opposite direction (along axis 2; Fig. 1f-h),
and heat treatment had the strongest effect on community composition
across prokaryotes, fungi and the metagenome (along axis 1; Fig. 1f-h).

We modelled the response of all fungal and prokaryotic amplicon
sequence variants (ASVs) to extreme climatic events. We measured
resistance (thatis, the ability to withstand a disturbance?) by displace-
ment in relative abundance at the end of the disturbance (S1), and we
measured resilience (that s, the ability to recover following a distur-
bance?) by the slope of the change over the following month (S2-S4;
Methods). Inline with recent findings from afield drought experiment



a b
Drought | Flood | Freeze [ Heat ]
Amino acids and derivatives -| 4 - ° - 50%
Carbohydrates - < b 4 - 45%
Cell division and cell cycle - —— = —s— —— 41% 0 59%
Cell wall and capsule - - - - 39%
Clustering-based subsystems -] - p - 55%
Cofactors, vitamins, prosthetic groups, pigments - - - - - 61%
DNA metabolism - +- e o] —— %
Dormancy and sporulation - - - - - 37% 63%
Fatty acids, lipids and isoprenoids - —-- — — —— 60%[lll40% Treatment effect
Iron acquisition and metabolism -| - | - P 72% | M No
Membrane transport - - lo- - - 43%
Metabolism of aromatic compounds - - - e |- 51% Yes
N Miscellaneous - e 1= T 49% Il 51% Model not converging
Motility and chemotaxis - +e— e —— —— 55% [l 45%
Nitrogen metabolism - — —— —— — 60% [l 40%
Nucleosides and nucleotides - + - - - 59% [l 41%
Phages, prophages, transposable elements, plasmids - - — - -] 20% IEA
Phosphorus metabolism —— —— —t — 51% [l 49%
Photosynthesis - - 4 I - 8%l 92%
Potassium metabolism - e et —— —— 40% 1l 60%
Protein metabolism - - - N - 38%
Regulation and cell signalling | - + - - 34% I
Respiration - | - b - 49%
RNA metabolism - - - p. - 45%
Secondary metabolism - o — < | 30% [l 70%
Stress response - - - - 55%
Sulfur metabolism - — o —3— — 56% Ml 44%
Virulence, disease and defence - — + - - 37%
T T T T T T T T T T T T — T T
2 & e o & ;& 9 » > &
$8 g &g °8 § 8 S 8§ 8 0 500 1000
/.\+ /(,;f P /,\+ /(,J+ ot /,\+ 3 + ot /\+ /(O+ ot Number of proteins

Effect of disturbance

Fig.3|Changesinabundance of proteinfunctions with extreme climatic
event disturbances. a,b, Functional classifications relative to controlin
metagenomic samples. a, Effects of disturbance on each of the 28 highest-level
functions; redindicatesanincreasein abundance following the perturbation
givenat thetop of the column, blue a decrease. One linear mixed-effects model
forthe proportion of reads was fitted per function using datafrom Sland S4
(n=280 metagenomic samples; Methods). The change in proportion with
disturbance, relative to control (+s.e.m.), as estimated by this model, isshown
onthe horizontal axis; functions with significant changes among treatments
(P<0.05, F; 55 two-tailed test, following false discovery rate correction for

across UK soil types and climates®, ASVs that are fully resistant formed
thelargest group (thatis, nosignificant difference between the relative
abundance of ASVs in disturbed and control samples and no change
in this difference over time (uncoloured in Fig. 2)). Among ASVs that
showed significant changes either positively or negatively (orange/
red and blue/purple, respectively, inFig.2), weidentified ten different
ecological response strategies (Fig. 2 and Extended Data Fig. 2). The
most common strategy that diverged from control was an increase or
decrease inrelative abundance that then remained stable (‘positive
impact, stable’ and ‘negative impact, stable’, respectively), which is
in contrast with the aforementioned field experiment in which most
dominant fungal and bacterial ASVs were resilient*. The distribution
ofthese strategies across ASVs was notably similar across disturbances
andbetween fungiand prokaryotes (Extended DataFig. 2). The propor-
tion of resistant ASVs was lowest in response to heat, confirming soil
microbial community sensitivity to warming®?¢ (Extended Data Fig. 2).
Toevaluate whether the ASV response could be predicted from phylo-
geneticinformation, we calculated the phylogenetic conservatism of
resistance and resilience (Extended Data Fig. 3). In both prokaryotic
and fungal communities, resistance to flood and heat was more phy-
logenetically conserved than that to drought and freeze. Resilience to
extreme climatic events was less conserved thanresistance, particularly
in fungi, and resistance to heat was more conserved in prokaryotes
thanin fungi. These findings are in contrast with previous work that
showslittle difference in phylogenetic conservation between microbial
response to different global change drivers, and between fungi and
bacteria®?, Considering that traits relying on complex genetic systems
aremore deeply conserved phylogenetically®, our results suggest that
heat and flood resistance mechanisms might be more complex than
those for other climate extremes.

Weidentified the functional genes responding to extreme climatic
events based on shotgun metagenomic sequencing (Methods).

multiple models on the analysis of variance (ANOVA) P value of the relevant
mixed-effects model, showninbold). WhenaDunnett’s test of a particular
disturbance versus control accounting for multiple testing within a mixed-
effects modelis significant (P < 0.05, two-tailed test), the pointis filled and
shownonacolouredbackground.b, Numbers (horizontal axis) and proportions
(figures in bars) of individual proteins with and without significant effects of
disturbanceineach of the 28 highest-level functions (P < 0.05 following false
discovery rate correction for multiple models). Inafew cases alinear mixed-
effects model did not converge for a particular protein (showningrey).

Overall, 46% of the total annotated genes differed in relative abun-
dance between control and disturbed samples at the end of the
disturbance (S1, 4,036 of 8,772 genes), with the proportion varying
across functions (8-61% across the highest-level functional categories;
Fig.3b; further details of lower-level categories are shown in Supple-
mentary Fig. 5). Relatively few genes showed a significant change over
time (9.6%), but those that did tended to be resilient (Extended Data
Fig. 4 and Supplementary Fig. 6). Functional gene abundances were
strongly correlated withinitial soil properties and climatic conditions,
withaclear divide between wet and dry environments. In organic soils
of environments with high precipitation, genesinvolvedin nitrogen,
potassium, aromatic compound and sulfur metabolism were more
abundant, as were those related to phages, signalling, motility and
virulence, disease and defence functions (Extended Data Fig. 5a).
By contrast, dry, hot soils with high pH (Extended Data Fig. 5b) had
a higher abundance of genes involved in dormancy and sporulation,
phosphorus and protein metabolism, carbohydrate metabolism
and cell division and cell cycle. These findings suggest a broad dis-
tinction between copiotrophic microbial strategies (organisms that
preferentially metabolize labile soil organic carbon pools and exhibit
high growth rates when resources are abundant, found in environ-
mentsrichinresources®) in wet climates and oligotrophicstrategies
(living in environments with very low levels of resources®’) in warm,
dry climates®.

Genes involved in dormancy and sporulationincreased in relative
abundance across flood, freeze and heat (Fig. 3a; change in propor-
tion ranging from 7.21+ 0.67 x 10 s.e.m. in heat to 1.7 + 0.67 x 10~
s.e.m.infreeze, P<0.0001 and P=0.047, respectively), suggesting
community-level selection for these traits across a variety of stresses.
Heat treatmentelicited the greatest number of significant functional
changes (11at P < 0.05, Dunnett’s test), with 10 out of 11 of those changes
being negative (Fig. 3a). Consistent with thisimpact of heat, for bacteria
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correlations withresistance-resilience across perturbations. b, Relationship

of soil functional measurements (enzyme activities, microbial substrate use,
gas fluxes and soil Cand N concentrations) and the relative abundance of
finest-scale functional categories (proteins) from the metagenomes. Distances
among soil samples were calculated for both the relative abundances of all
functional categoriesin the metagenomes and each of the four classes of
functional soil measurements. For each treatment and time point, coloured

we find that both realized growth (origin:terminus ratio; Methods) and
capacity for growth (measured by the estimated copy number of the
16S ribosomal RNA operon, whichis highly variable among organisms
and related to maximum growthrate® %), decreased relative to control
in heat at the end of the disturbance (S1) (Extended Data Fig. 6b,c).
Subsequently, during recovery, organisms with greater realized growth
increased (Extended Data Fig. 9b; F, 15, =12, P= 0.00054; sampling time
effect in linear mixed-effects model), potentially facilitated by the
greater capacity for dormancy and sporulationimmediately following
heat (Fig.3a). The greatest growth responses following heat occurred
in copiotrophic communities from cold, acidic environments (eight
of the ten most actively growing communities were from Austria and
Sweden; Extended DataFig. 6a). There was also anotable relationship
ofbacterial response to heat with that of fungi—the more fungal com-
munities were impacted, the more positive was the bacterial growth
response (slope, 0.71+ 0.23 s.e.m., t;g; = 3.1, P=0.0028, all measured
relative to control, Wald test, mixed-effects model). This increased
bacterial growth with more impacted fungal communities was not
found in other disturbances (interaction between fungal impact and
treatment F; 5, = 4.1, P= 0.0073; Extended Data Fig. 6a). Together
with a decrease in carbohydrate metabolism (change in proportion,
2.5+0.6 x107, P=2.0 x107; Fig. 3a), which suggests lower metabolic
versatility, this is consistent with arelative increase in copiotrophs fol-
lowing heat***!, Thus, whereas both heat and flood favour organisms
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witha ‘boom-and-bust’strategy, and bothinitially cause abust (reduc-
tioningrowth; Extended DataFig. 6b,c), itis heat that enables a subse-
quentbacterial boom specifically where the fungi are most disrupted
(Extended Data Fig. 6a), suggesting a release from competition or
antibiosis*?,

Inline with our hypothesis, the magnitude of microbial community
response to extreme climatic events depended on their original envi-
ronment. We calculated the resistance and resilience of metagenome
responses to extreme climatic events (Methods), and found that resist-
ance andresilience to heat, drought and, to alesser extent, freeze were
lower in communities from cold and wet climates, whereas resistance
and resilience to heat and, to a lesser extent, drought were higher in
communities from warmer and drier climates (Fig. 4a). Moreover, we
were able to constructa predictive model that explains 58 + 4% of vari-
ance (mean = s.d.) inthe response across perturbations in unseensoils
(by cross-validation) based only oninitial soil properties and climate
(Extended Data Fig. 7a; the addition of soil and country effects to this
model did notimprove its fit). Model prediction is most effective for
heat perturbation, where soils from warmer than average climates
resisted heat treatment increasingly well, but freeze increasingly
poorly, with higher mean annual temperatures of the site (Extended
Data Fig. 7b). A similarly distinct response to flood and drought was
associated with soil moisture (Extended Data Fig. 7c), despite pre-
diction being much less effective for these perturbations (Extended



Data Fig. 7a). As with the effect of our experimental perturbations
on community composition (Extended Data Fig. 3), this model relies
on the inclusion of a broad range of countries representing differ-
entbiogeographicregions (Fig.1a): prediction of resistance in whole
unseen countries had relatively poor explanatory power, restricted to
heat perturbation and was itself more variable (26 + 20% mean + s.d.;
Extended DataFig. 7d). Theseresults support the ideathat, in extreme
environments, deterministic processes are more important than sto-
chastic processes in determining microbial community composi-
tion* ¥, and areinline withstudies finding reduced microbial response
toeither asecond disturbance or adisturbance similar to their native
climate!®®#°, They highlight that predicting the magnitude of micro-
bialresponse to extreme events requires knowledge of local microbi-
omes. We also found that communities more resistant and resilient
to heat had a higher abundance of genes involved in dormancy and
sporulation, as well as carbohydrate, protein, amino acid, phosphorus
and DNA metabolism, but lower abundance of nitrogen and potassium
metabolism (Extended Data Fig. 8), again emphasizing the different
response to heat of communities from cold and wet environments
and those from warm, dry climates®.

Our imposed extreme climatic events strongly affected fluxes of
both greenhouse gases (CO,, CH, and N,0) and soil C and N avail-
ability, but less so enzyme activities and the microbial ability to use
different substrates, which were mainly driven by country of origin
(Extended Data Table1and Supplementary Figs.1-3). Importantly, we
found adirect link between metagenome structure and soil function-
ing: when metagenomes were more similar, measured soil functions
were typically more similar within the end-of-disturbance sampling
(S1) and sampling following 4 weeks of recovery (S4) in each treat-
ment. Specifically, in all treatments, both at S1and S4, metagenome
composition was strongly correlated with enzyme activities, and with
substrate-induced respiration—that s, the ability to use different car-
bon substrates (Fig. 4b). On further inspection, we found that genes
involved in photosynthesis, virulence and phages were consistently
driving these correlations (Extended Data Fig. 9). However, these cor-
relations do not allow for partitioning between the direct effects of soil
microbial communities onsoil processes and the feedbacks of altered
soil nutrient and C availabilities to microbial community composi-
tion and process rates, which will both have arole in longer-term soil
response to altered climatic conditions*. For example, alterations in
photosynthesis genes (Fig. 3) may directly drive soil processes whereas
theimpact of alterationsin phage-related genes may be indirect, which
warrants further investigation®.

Together, our results indicate that contrasting extreme climatic
events shift soil microbial communities in distinct, predictable direc-
tions. The response of functional microbial community composition
couldbe predicted by both the type of disturbance and soil and climatic
properties, and was linked to enzyme activities and the ability to use
different carbon sources, suggesting that extreme events may have
consequences for soil carbon storage through their impacts on soil
microbial communities®*. Our results show that extreme climatic
events will probably affect soil functioning most strongly in regions
thatdo not normally experience similar extreme conditions, which are
also those that are warming most rapidly**. They also emphasize that
informationonlocalsoil properties and climateis key to predicting the
impacts of climate extremes on soil functioning. These insights into the
microbial community and environmental attributes that determine soil
microbial responses to extreme climatic events provide afirst step for
making general predictions of the impact of extreme climatic events
on soil functioning.
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Methods

Study sites and soil sampling

We limited our study to natural or extensively managed grasslands
across Europe, aimingto cover the widest range possible of climates and
soil types. Our grassland network consisted of ten locations (referred
to as countries) covering most biogeographical regions in Europe®
(Fig.1a,b and Supplementary Table 1): alpine (AT, Austria), subarctic
(SE, Sweden), Arctic (IS, Iceland), Atlantic (UK-Ox, Oxford and UK-La,
Lancaster, both UK), boreal (EE, Estonia), continental (DE, Germany),
Mediterranean (ES, Spain and GR, Greece) and Steppic (RU, Russia).
Climatic data associated with the collection sites were obtained from
the WorldClim database in April 2018 (ref. 46), based on observations
recorded between1960 and 1990 at 2.5 minresolution, using the coor-
dinates of the sites. We captured a wide range of MAP values, varying
from 223 mm in Russia to 1,383 mm in Austria, whereas MAT varied
between-2°CinSwedenand14.5 °Cin Spain. Seasonal variability varied
depending onthelocation, with Spain having the highest precipitation
seasonality (38 mm) and UK-Oxford the lowest (14 mm). Russia varied
the mostin regard to temperature seasonality (38.5 °C) and Iceland
the least (14 °C). We aimed to collect soil samples at peak microbial
biomass, whichis close to peak vegetation biomass, whenthe average
temperature was the closest to 18 °C—that is, in spring for southern
locations and following snow melt, in summer, for northernlocations.
In May 2018 we collected soil from Russia, Greece, Spain and Estonia,
followed by Germany and Oxford in June, Austria and Iceland in July
and Lancaster and Sweden in August.

Threereplicate sites per country were selected to encompass awide
range of soil types presentin European grasslands, for a total of 30 rep-
licate sites, closely situated within countries (0.05-11.76 km apart).
According to the World Reference Base* (https://soilgrids.org), our
study included seven soil type categories, most of these belonging
to the Haplic Cambisols (16), followed by Haplic Podzols (6), Haplic
Kastanozems (3), Haplic Luvisols (2), Petric Calcisols (1), Rendzic Lep-
tosols (1) and Haplic Gleysols (1). The most acidic soils were collected
inAustria (pH 4.73), with those from Spain having the highest pH (7.89).
Within eachreplicatesite, seven1x 1 m?plots were arranged atleast 5 m
apart. Weremoved vegetation and stones and randomly sampled four
soil cores from each plot with a 3-cm-diameter soil corer (0-15 cm). We
carefully sterilized the collecting tools with ethanol 70% and distilled
water and sampled the soil with gloves to avoid cross-contamination.
Soil cores were pooled and sieved at 4 mm to form one homogenized
composite soil sample per replicate site. Soil samples were transported
in cold boxes to the laboratory and stored at 4 °C before analysis or
to the establishment of microcosms. We measured WHC by immers-
ing 100 g of fresh soil in water overnight and measuring the mass of
water at saturation (100% WHC) following 4 h of drainage at 18 °C.
We determined soil moisture content following drying at 105 °C for
48 h. This information was used to calculate the amount of fresh soil
corresponding to100 g of dry soil, and to maintain the moisture of the
microcosms during the experiment.

Microcosm procedure and harvest

For eachreplicatesite, fresh soil was thoroughly mixed and dispatched
into20 pots (240 ml, 7.6 cmdiameter across the top). We subsampled 20
and5 g of soil forinstant determination of initial soil moisture and nutri-
entconcentrations, and stored 4 g of soil at =20 °C for DNA-based analy-
ses. Considering the variability in soil density, WHC or initial moisture of
soil derived from the different sites, the amount of soil per microcosm
was standardized by dry weight (100 g dry weight per pot). Micro-
cosms were placed for 7 days in a Percival AR-66L2 growth chamber
(CLF PlantClimatics), open to the air, at 18 °C to allow acclimatization
of microbial communities and adjustment of soil moisture to 60% WHC
with milliQ water. Following this period, microcosms were randomly
divided into five treatments. Temperature and moisture parameters

were manipulated as follows for 14 days: control (18 °C, 60% WHC),
drought (18 °C,10% WHC), flood (18 °C,100% WHC), freeze (-20 °C, 60%
WHC) and heat (35 °C, 60% WHC). Application of these treatments for
2 weeksimposed extreme disturbance onsoils fromalllocations used—
for example, temperatures of —20 °C do not commonly occur evenin
Arcticsoils*whereas 35 °Cisrarely exceeded in semiarid systems and
during extreme heatwaves***°. All treatments were placed in the same
growth chamber and grouped by replicate site, where control exhibited
the same environmental parameters as the acclimatization period: for
drought we stopped watering the pots when moisture reached 10%
WHC (Supplementary Fig. 4) and, for flood, microcosms were placed
in plastic cups and submerged 1 cm above the soil surface. Freeze and
heat samples were placed in a separate freezer and growth chamber,
respectively, for the duration of the disturbance. At the end of the dis-
turbance, one set of microcosms was harvested (see below) and the
remainder returned to the main growth chamber, randomized within
block (replicate site). Moisture content for drought was brought back to
60%WHC and, for flood, microcosms were drained until they reached
the appropriate moisture content (Supplementary Fig. 4). To maintain
moisture contentat 60% WHC, the respective microcosms were watered
by weight every 2 days with milliQ water. We sacrificed one microcosm
per treatment and per replicate site at four sampling times: end of
disturbance (S1) and at1(S2), 8 (S3) and 26 (S4) days following the end
of the disturbance (5 x 3 =15 pots per harvest). This resulted in a total
of 600 microcosms: 10 countries x 3 replicate sites x 5 treatments x
4 sampling times. Ten Russian samples at S2 were excluded from the
study because of insufficient soil amount.

At each sampling time, we measured the emission of greenhouse
gases in the dark by placing the microcosms into 500 ml airtight Kil-
ner jars covered in aluminium foil. The jars were sealed and 10 ml gas
samplestaken sequentially in the headspace withasyringe at 0,10,20
and 30 min. Gas samples were transferred to 20 ml pre-evacuated glass
vials, and CO,, N,0 and CH, concentrations analysed by gas chroma-
tography (GC Agilent 7890B). All gas concentrations were converted
into fluxes based on soil dry weight (microgram of gas per gram of dry
soil per hour). Fluxes were calculated considering the variationin both
headspace volume (soils have different bulk densities depending on
their origin, and headspace gas volume decreased by gas sampling)
and temperature at each measurement. Microcosms were then thor-
oughly homogenized, with immediate subsampling of 20 and 5g to
determine soil moisture and nutrient concentrations. In addition, we
stored 52 g (40 + (6 x 2 g)) of soil at —20 °C for DNA-based analyses,
MicroResp and enzymatic profiles. DNA was extracted within3 months
following freezing.

Soil analyses and microbial activity
Dissolved carbon and nitrogen in initial soil samples (n=30) and all
microcosms (n =590, 600 - 10 Russian samples as described above)
were extracted from 5 g of soil (fresh weight) in 35 ml of milliQ water,
shaken for10 min at 220 rpm and centrifuged for 15 minat 4,000 rpm.
Water extracts werefiltered through cellulose papers (Whatmanno. 1,
11 pm) and syringe filters (0.45 um), and filtrates were stored at 4 °C for
amaximum of 15 days. Filtrates were analysed on a Seal AutoAnalyzer3
Segmented Flow Multi-chemistry analyser (Mequon) to measure dis-
solved nitrogen. Dissolved organic nitrogen was obtained by sub-
tracting total dissolved inorganic N (NH,"-N and NO,™-N) from total
dissolved N. Dissolved organic carbon was obtained from the same
filtrates analysed on a 5000A TOC analyser (Shimadzu). Soil pH was
measured oninitial samples (30 samples) by the water method using
avolume ratio of 2:5 fresh soil:milliQ water. Total soil C and N were
determined by high-temperature combustion (150 mg of oven-dried,
ground subsamples), followed by thermoconductometric detection
onaVario EL cube (Elementar Analysensysteme).

Substrate-induced respiration profiles were measured by the Micro-
Resp method® on soil samples collected at S1and S4 (280 samples).
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Soils were defrosted overnight at 4 °C. We used the microplate filler
device (300 pl) to standardize the volume of soil added in each well
of the deep-well microplate (1.2 ml) and recorded the mass of soil
added. We prepared detection microplates with a pH indicator gel
to estimate the amount of CO, produced by a colourimetric method
(3% agar,2.5 mM NaHCO,,150 mMKCland 12.5 pg ml™ cresol red). We
dispensed 25 pl of eight substrate solutions relevant to soil microbial
activity separately to the wells: water, glucose, fructose, carboxym-
ethyl cellulose, citric acid, malic acid, alanine or asparagine. Carbon
substrates were prepared to a concentration of 12 mg C g™ soil/water,
corresponding on average to 30 mg glucose g™ soil/water solution.
Initial absorbance of the detection plates was determined at 570 nm
on a Clario Star microplate reader. We incubated the sealed system
deep-well microplate/detection plate for 6 hat 25 °Cin the dark before
measurement of final absorbance. Respiration rates (microgram of
CO,-C per gram of dry soil per hour) were calculated according to
ref. 51.

Enzymatic activity assays were performed on soil samples at S1and
S4. Microbial potential enzymatic activities were assessed for acety-
lesterase, B-glucosidase, phosphatase and leucine-aminopeptidase,
withmethylumbelliferyl- and 7-amino-4-methylcoumarin-conjugated
substrates (Sigma-Aldrich), using the protocol described in ref. 52.In
brief, atotal of 1.5 g of frozen soil was mixed with 20 ml of milliQ water
and shaken for 20 min at 400 rpm. We added 30 pl of soil solution to
amicroplate containing 170 pl of substrate solution at 300 mM, and
incubateditat28 °Cfor3h.

DNA extraction and sequence processing

We extracted total DNA from 250 mg of frozen soil from the initial sam-
ples (n=30) and microcosm samples (n = 600 - 10) using the DNeasy
PowerSoil ProKit, following the manufacturer’sinstructions (Qiagen).
Tubes were vortexed for 10 min at 1,200 rpm on a FastPrep-96 instru-
ment (MP Biomedicals) at maximumspeed, and DNA was eluted in 80 pl
of the elution buffer. DNA integrity and quality were validated by run-
ning DNA samples onal.5% agarose gel at 75 V for 55 min, and by check-
ing 280:260 absorbance ratios with the Clario Star microplate reader
(BMG LABTECH). We quantified DNA concentrations by fluorimetry
using the Quant-iT dsDNA Broad-Range Assay Kit (Life technologies)
with the Clario Star microplate reader. DNA solutions were splitamong
three tubes and stored at —20 °C until use for whole-metagenomic
sequencing and prokaryotic and fungal metabarcoding.

Prokaryotic and fungal community composition of the initial and
microcosm samples at all sampling times (n = 620) was assessed by
sequencing the V4-5 region of 16S rRNA genes using the primers
515 forward GTGYCAGCMGCCGCGGTAA and 806 reverse GGACTACN
VGGGTWTCTAAT®, and established primers fITS7 (GTGARTCATCG
AATCTTTG) and ITS4 (TCCTCCGCTTATTGATATGC) coding the ITS2
region®, respectively. We followed the PCR protocols of the Earth
Microbiome Project®, and sequencing was performed using a two-step
Nextera approach on the lllumina MiSeq platform with V3 chemistry
(Ilumina). We used the DADA2 v.1.24 pipeline®* in R to trim, quality-filter
denoise and dereplicate the sequences, for generation of ASV tables
and to assign taxonomies. The UNITE dynamic database, released on
2 February 2019, and SILVASSU r132, released in March 2018, were used
for fungal and bacterial taxonomic assignment, respectively. Median
read numbers were 32,200 (interquartile range (IQR) 25,631-38,508)
and 38,410 (IQR 31,831044,246) for16S and ITS, respectively. Two rep-
licate sites from Spain (sites1and 3; n = 42) plus two further individual
samples were excluded from analyses due to low DNA yield and poor
recovery of reads, particularly for the prokaryotic amplicons, leaving
574 samplesintotal.

To determine the functional gene composition of our initial sam-
ples and our microcosms at S1and S4, the whole metagenome was
sequenced by the Centre of Genomic Research (28 initial samples
(ES1 and ES3 excluded) + 28 replicate sites x 2 sampling times x

5treatments = 308 samples). The llluminaunamplified fragment library
was prepared using the TruSeq PCR-free kit (350-base-pair (bp) inserts)
and shotgun sequenced in four lanes of the NovaSeq platform using
S4 chemistry (2 x 150 bp paired-end). llluminaadaptor sequences were
detected and removed with Cutadapt (v.1.2.1), before trimming with
Sickle 1.200 using a minimum window quality score of 20 and with
exclusion of reads shorter than 15 bp. Forward reads were then func-
tionally annotated using DIAMOND BLASTX (v.0.8)* using scripts and
procedures from the SAMSA2 pipeline (v.2) and the included SAMSA
formatted SEED subsystems database®®. Median read number for
metagenomes was 6,398,524 (IQR 4,704,883-8,216,799).

Statistical analyses
All statistical analyses were performed in R software v.4.2 or above®,
and most plots were generated using ggplot2v.3.3 (ref. 60). R packages
used in custom code (Code availability) to assist core analysis and plot-
tingwere:broom.mixed 0.2 (ref. 61), car 3.1 (ref. 62), cowplot 1.1(ref. 63),
eulerr 7.0 (ref. 64), fs 1.6 (ref. 65), ggordiplots 0.4 (ref. 66). ggrepel 0.9
(ref. 67), Hmisc 5.1 (ref. 68), ImerTest 3.1 (ref. 69), magrittr 2.0 (ref. 70),
pacman 0.5 (ref. 71), CARTOcolors 2.1.2 (ref. 72), pracma 2.4 (ref. 73),
RColorBrewer 1.1(ref. 74), seqinr 4.2 (ref. 75) and tidyverse:2.0 (ref. 76).
For visualization of therelativeimportance of the effect of treatment,
country, site and sampling time on taxonomic and functional gene
abundance data, as well as measures of soil functioning, we ran NMDS
analysis using the function metaMDS in the vegan package”’, Bray-
Curtis dissimilarity, followed by partial RDA, to visualize the relation-
ships between disturbance treatments and community composition,
controlling for country and site effects (vegan R functionrda). To test
the effect ofinclusion of different numbers of countries, total variance
explained by disturbance treatments was summed across all four RDA
axes. To quantify treatment effects on taxonomic and functional gene
abundance data, as well as measures of soil functioning, PERMANOVA
was performed on all except the initial samples, testing the effects of
disturbance, sampling time and their interactions with country andsite.
This wasimplemented using the adonis2 functionin the vegan package
on Bray-Curtis dissimilarities among Hellinger-transformed counts
and 999 permutations. All above assessments of beta-diversity used
rarefied data (rrarefy function in vegan), standardized to the sample
with the lowest numbers of reads (2,043 bacterial reads, 4,091 fungal
reads and 496,126 functional reads).

Individual resistance and resilience
For identification of different response categories, we fitted linear
mixed-effects models to each ASV using the Ime function in the nlme
R package v.3.1(ref. 78). These models fitted fixed effects of disturbance
treatment, sampling time (in days from S1) and their interaction on ASV
relative abundance. Random effects on the intercept wereincluded for
country and site within country. Differencesin variance (heteroscedas-
ticity) were accounted for with sampling depth (accounting for both
additive and proportional error, using the varConstProp function also
in the nlme package), and with each of the sampling points (S1-4). In
each case, the sign and significance of difference from zero (P < 0.05
or not by Wald test) were recorded for treatment effects (differences
in relative abundance from control at S1) and interaction terms (dif*-
ferencesinslope of relative abundance over time from control). These
were used to classify the ASV response to each disturbance in terms
of resistance (either significantly positively or negatively impacted
or resistant, with no significant impact at S1) and resilience (either
resilient—significant change in relative abundance over time in the
opposite direction to the impact, or diverging—significant change
over timeinthe same direction as the impact; or stable—no significant
change over time).

Phylogenetic clustering of these strategies was determined by
constructing a tree of the 500 most abundant 16S and ITS ASVs,
each aligned using kmer and secondary structure-guided alignment



with AlignSeqs from the DECIPHER R package v.2.24 (ref. 79). Trees
were constructed using FastTree v.2.1 (ref. 80), with pseudocounts
and a generalized time-reversible (gtr) model and rooted at the split
between archaea and bacteria for both 16S sequences and fungi at
the split between an outgroup comprising ASVs identified as belong-
ing to the basal-branching phylum Chytridiomycota® and the other
taxa. For eachdisturbance, a phylogeneticleast-squares model of both
impact of disturbance and change over time (that s, the treatment and
treatment:time effects for each ASV from the mixed-effects models
described above) was fitted using the caper v.1.0 package in R®. This
approach estimates a value and confidence interval for phylogenetic
signal in terms of Pagel’s lambda®,.

For estimation of the resistance and resilience of functional gene
categories, the arcsine square-root-transformed relative abundances
of functional genes at each level of the SEED Subsystems classifica-
tion®* were first calculated. Mixed-effects models were fitted to these
values with the Ime4 v.1 package®. This model used treatment and
sampling time as fixed effects, with site nested in country and all lower
SEED Subsystems levels nested (level2/level3/level4) as random effects
on the intercept. In addition, observation-level random effects (that
is, one level for a particular read-count in a particular sample, for a
particular gene in the SEED category being modelled) were fitted for
each country, to allow for different levels of variance among countries
(thatis, heteroscedasticity). Estimated resistance and resilience effects
were then extracted from the model in the same way as for the ASV
models above (treatment and treatment:time interactions, respec-
tively). P values were obtained for the significance of these treatment
contrasts, accounting for multiple comparisons with the glht function
in the multcomp v.1.4 package in R®, using Dunnett’s test and explicit
planned contrasts for treatment and treatment:time, respectively.

Growthrates

We quantified bacterial growth across whole communities, using the
ratio of bacterial origins and bacterial termini. Because bacterial chro-
mosomes replicate from asingle originto a terminus, actively growing
bacterial populations have, on average, a gradient in copy number
increasing from terminus to origin®¥, the basis of tools used to identify
thegrowth rates of particular microbes from metagenomic data®*°, We
counted matches to dnaA protein sequences, the replicationinitiator
proteinasamarker of bacterial origins, whereitis consistently found®,
andtothe dif DNA sequence, abroadly conserved 28 bp binding site for
the chromosome dimer resolution machinery and amarker of bacterial
termi®?, markers specifically validated in a community context®. For
each sample, we matched one of the paired-end metagenomic read
files (R1) to databases of 39,401 dnaA sequences taken from RefSeq”
release 215, and to a set of 578 dif sequences®. For identification of
dnaA sequences, we used DIAMOND v.2.0 (ref. 57) in translated (blastx)
mode set to ‘very sensitive’, counting every sequence in which at least
one match had an e-value of 0.001 or less as a hit. For identification
of dif sequences, we used nucleotide BLAST v.2.13 (blastn®) with
the blastn-short task settings, counting every sequence in which at
least one match had an e-value of 0.01 or less as a hit. Counts of origin
and terminus hits were converted to estimates of relative bacterial
growth by taking the difference between log, of the ratio of origin hits
to terminus hits in each treatment sample and the equivalent value in
the unperturbed control sample. These growth rate estimates were
analysed using a mixed-effects model with fixed effects of treatment,
sampling time, Bray-Curtis dissimilarities from control of the bacte-
rial and fungal communities and all possibleinteractions among these
effects. Random effects on the intercept of site nested within country
were included, along with an effect of treatment on variance, using
the Ime function in R as above. This complete model was reduced to
aminimal adequate model by stepwise removal of non-significant
effects using the stepAIC function from the MASS package v.7.3 (ref. 95).
Thisreduced model contained only main effects of treatment, sampling

time, the distance of the fungal community from control and the inter-
action between that distance and treatment.

Growth capacity

Growth capacity was quantified using RasperGadel6S v.0.0.1 (ref. 96)
toestimate16S copy number per cellforeach prokaryoticASV. Thisgavel
asthe most frequent copy number, 2 as the median copy number and a
range of 1-18. The degree of confidence in that estimate (complete con-
fidence, 1) was highly variable (median, 0.58; range, 2.6 x10™* - 1.00).
These values were combined with ASV abundances to create aweighted
average expected copy number for each sample, which was compared
between treatment and control.

Community resistance and resilience

The resistance and resilience of microbial community structures
(prokaryotes, fungi and metagenome, as opposed to individual ASVs
or functional categories) were defined as the negative Bray-Curtis dis-
similarity between disturbance and control at S1and S4, respectively
(thatis, ifthe distance was high, the resistance/resilience was low)™*”.
To test for relationships between initial soil, climatic and microbial
properties and microbial community responses to extreme events
(resistance and resilience), as well as between those initial properties
andtheinitial relative abundance of each of the highest-level functional
categories and between the community response and those initial func-
tional categories, we used rank (Spearman) correlations across samples.
We also used rank correlations between distance matrices measuring
Bray-Curtis dissimilarity among the relative abundances of functional
categories and the Euclidean distance among rank-transformed indi-
vidual soil properties for each set of soil properties (enzymes: phos-
phatase, B-glucosidase, leucine-aminopeptidase and acetylesterase;
MicroResp: water, alanine, cellulose, citric acid, fructose, glucose,
glycine and malic acid; soil Cand N availability: DOC, DON, nitrate and
ammonium; gas fluxes: CO,, CH, and N,0) at either the S1 or S4 time
point. Pvalues were calculated using 999 permutations in the mantel()
functionin the vegan package. Heatmaps were clustered where neces-
sary using complete-linkage hierarchical clustering on the values of
the correlations.

Predictive model

An explicit predictive model of resistance and resilience (negative
log-transformed Bray-Curtis dissimilarity of metagenome gene abun-
dances in treatment from their control at S1and S4, respectively) was
fitted based on the 20 initial soil and environmental properties (four
temperature variables, four precipitation variables, eight carbon and
nitrogen variables, three water-holding variables and pH), along with
treatment and sampling time. These explanatory variables were each
standardized to a mean of zero, standard deviation of 1 and used as
explanatory variables in a random forests model®®. That regression
forest was fitted using the randomforest R package (v.4.7)°° with
10,000 trees and a default mtry parameter (one-third of explana-
tory variables randomly sampled at each split). A modified grouped
cross-validation of this model was carried out, in which the data were
splitinto training and test sets and with each training set containing
data from two replicate sites in each country; the test set contained
datafromthethirdsite. There are 19,683 unique ways of doing this split
(after exclusions, see above). Arandom forest model, as above, was fit-
ted to each of these training sets and used to make predictions for each
respective test set. The proportion of variance explained (coefficient
of determination) was calculated for each test set using the random
forest function. An alternative grouped cross-validation was carried
out where training sets comprised the data from six countries, and
test sets comprised those from the remaining four countries (these
proportions were chosen because they enable an estimation of error
foreachcountry and are close to the threefold cross-validation propor-
tions used above). There are 210 unique ways of doing this split, with
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models fitted and coefficients of determination calculated for each one
asabove. Forboth cross-validations, Pearson correlations were calcu-
lated between observed values and the mean value predicted across
cross-validation models for each site within each perturbation. Partial
dependence plots, which visualize the relationship between a variable
ofinterest and the response, also accounting for the average effect of
other predictors'®, were created using the pdp R package (v.0.8)™°.

Ethics and inclusion statement

This project was planned and executed in close collaboration with local
partners. Sampling adhered to local laws, and permission was obtained
fromlandowners. All local partners have beenincluded as coauthors.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All raw sequence files are deposited in the European Nucleotide
Archive at project accession PRJEB52753, with paired fastq files for
each sample under Run accession nos. ERR9712737-ERR9713356
(16S amplicons), ERR9713357-ERR9713976 (ITS amplicons) and
ERR9924623-ERR9924930 (whole-genome metagenomes). Derived
data are available at https://doi.org/ngfr, with explicit accessions for
raw data at ENA. Climatic data are available from WorldClim.org.

Code availability
Codeis available at https://doi.org/ngfr.
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Extended DataFig.1|Alternatively coloured versions ofthe NMDS and RDA
analysesinFig.1and percentage variance explained. Analyses areasin
Fig.1c-h,butinthe NMDS analyses (a-c), initial samples are shown as crosses,
withall other samples semi-transparent and in the RDA analyses (d-f) points

are coloured by country (inthe same way as in Fig. 1c-e). Euler diagrams (g) show
the percentage of variance explained. Ellipses have areas approximately
proportional to the variance explained by model terms thatinclude the effectin
question - Country (orange); Replicate site (yellow); Sampling time (pink) and
Treatment (green). Overlaps of ellipses correspond to interactionsamong
effects. Theresidual variance corresponds to the area only in the white, Total
Variance, ellipse. Values annotated on particular areas are the percentage variance
explained by thatareato the nearest1%. Thus, for example, theinteraction
among Country, Replicate site, and Treatment, represented by the overlap of
orange, yellow and greenellipses, accounts for 4% of the variance in prokaryotes,

fungi and measured functions, but 9% of variance in metagenomically inferred
functions. Note that this representationisinevitably imperfect, specifically
there aresmallellipse overlaps that do not represent any variance; these are
explicitly marked withazero. Datafrom Extended Data Table 1. The variance
incommunities explained by the perturbations depends onthe number of
countriesincluded (h). The total percentage community variance attributed
todrought, flood, freeze and heat perturbationsin the RDA analysis when
repeated with fewer countriesincluded in the data. The dashed lineindicates
the percentage variance explained by perturbations whenincluding all ten
countries (Fig.1f~h). Points, summarised by an overlying ‘violin’ (indicating the
density of points), correspond to the percentage variance forareduced dataset
missing all datafrom one or more of the countries. 30 randomly selected
combinations of dropped countries were analysed for each size of dataset for
Prokaryotes, Fungi and metagenomically encoded functions respectively.
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structure and differencesin variance among treatments) and both the initial
change at S1(impact) and change over time inrelative abundance, compared
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thekey (where thebluelineindicates astable control over timeand theredline
the effect of the treatment, shown by a shaded background) and indicated

by colour. Note the logarithmicscale. The taxonomic distribution of these
strategies isshown for the 500 most abundant ASVsin Fig. 2.
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Each pointrepresents an estimate (by phylogenetic generalised least squares
regression using the caper package, see Methods) of Pagel’slambda for
resistance or resilienceinresponse to a particular extreme climatic event
across aphylogenetic tree of either prokaryotes or fungi (the tree estimated
fromthe ASVs’'16S or ITS sequences, N=493 and 466 samples respectively,

see Methods). A value of 1would correspond to resistance or resilience to the
disturbance that evolved only randomly (according to Brownian motion) along
thetree, whereasavalue of O corresponds to no detectable similarity in the
resistance or resilience of related strains at all. Error bars correspond to 95%
confidenceintervals from the model. Resistance and resilience here simply
refer to theintercept and slope of relative abundance over time from the mixed
effects models of the 500 most abundant prokaryotic or fungal ASVs for which
suchamodel could befitted (494 and 466 ASVs respectively).
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Extended DataFig.4 |Resilienceinthe 28 highest-level functionsinresponse
tothe extreme climatic events. Analysis from the same models asFig. 3a

(N =280 metagenomic samples, see Methods) and showing the same as that
figure, except that values (points representing estimates from a mixed-effects
model +SE) indicate how the abundance of the functionin question changes,
relative to control, afteramonth of recovery (i.e. theinteractionbetween
treatment and time in a mixed-effects model). Asin Fig.3a,b, points are filled

Effect of disturbance

and contribute to the background colour if significantly different from the
control by Dunnett’stest. However, the colourin each case hereindicates
resilience, i.e.ifthe change over time (relative to control) goesin the opposite
directionto theinitial disturbance (resilience), thatis coloured red, whereas
non-resilient functions, where change over time goes in the same direction as
theinitial change, are coloured blue.
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Extended DataFig. 5| Correlations betweeninitial soil and climatic
properties and the 28 highestlevel functions. Correlations between the
measured properties of the initial soil samples and the relative abundance of
the 28 highest level functional categories in the metagenomes of those same
samples (a), and correlations between initial soil and climatic properties (b).

Theorder of the columns and rows is clustered by the value of the correlations.

Asterisksindicate the P-value for a 2-tailed correlation test of the rank
correlation differing from zero: ***<0.001<**<0.01<*<0.05<-<0.1,
uncorrected for multiple testing. Abbreviations: MAT - mean annual
temperature; Tmax - maximum annual temperature; C/Nratio - soil carbon

tonitrogenratio; Tlength - difference between Tmax and Tmin; WHC100 - soil
moisture content at 100% water holding capacity; Pmin - annual precipitation
minimum; MAP - mean annual precipitation; Total C - total soil carbon content;
Total N - total soil nitrogen content; WHC - soil moisture content expressed as
percentage of moisture content at 100% water holding capacity; Pmax - annual
precipitation maximum; DOC - dissolved organic carbon concentration;
Ammonium - plant availableammonium concentration; Tmin - minimum
annual temperature; DON -dissolved organic nitrogen concentration; Total
dissolved N - total dissolved nitrogen concentration; Plength - difference
betweenPmaxand Pmin; Nitrate - plant available nitrate concentration.
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Extended DataFig. 6 | Bacterial growth and growth capacity relative to
control. Growth estimated via the ratio of origins to termini (see Methods),
isshowninrelation to the distance fromthe control of the fungal community
inthe same sample (a), and the distribution across samples at different time
points (b), whichis also shown for growth capacity estimates (c), from 16S
rRNA copy numbers. Only bacteriaare considered because only bacterial
chromosomesreplicate fromasingle origin towards a single terminus,
enabling growth tobe estimated in this way. a, Growth equal to the controlis
indicated by the dashed black line. Coloured lines indicate country-level fits
from the mixed effects model (see Methods). Growth is estimated by the
differenceinrelative abundance of origins of replication (identified by
matches to the dnaA gene) to termini (identified by matches to the dif
sequence) in disturbed samples relative to control in the metagenomes.
Distanceto controlis the Bray-Curtis dissimilarity, between disturbed and
controlsamples, of the relative abundances of ITS sequence ASVs. Countries
areindicated by colour, asin Fig. 1. Facets are ordered by perturbation
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(horizontally) and sampling time (vertically). b, Bacterial growthin disturbed
samplesrelative to controlin the metagenomes. Zero indicates the same
degree of growth as the undisturbed control. Comparisons are made onalog,
scale,soavalue of 1wouldindicate twice as much growth (i.e. twice the ratio
of origins to termini) in disturbed than control and -1 halfas much growth.

¢, Increased bacterial growth capacityis associated with increased number

of copies of the 16S rRNA%*3% The average expected number of 16S rRNA copies
per cellforeachsampleis therefore estimated from our 16S data, weighted

by confidence. Both expected copy number per celland confidencein that
estimate were calculated using the RasperGadel6S software®® from the
16SrRNA data. The difference between treatment and control samplesis
calculated onalog,scale (i.e. double growth capacity in perturbed versus
control would give avalue of 1) for each sample at each sampling time (colour)
andineachtreatment. Times after disturbance are coded by facetaand colour
b-c:S1=directly after disturbance; S2 =1day; S3 =1week; S4 =1 month.



Article

a Drought [ Flood b Drought Flood |
7 7 4.25 7 I
,é/‘?: s 4 } \ hmm; ‘ Sampling time
oh 4 A‘g g‘ i 4 #“ 4 T e Si
4 4 o 4.00
4.0 A P LN - ,
N ,': 4/ , s S4
) ) 3.751 /' K
g 367 ' ! 3 ! ! Countr
2 /R?=015 /R?=-019 2 350 ',RZ——O 06 'IRZ——012 ’ ;
© 4 r=0.39 4 r=0.05 _‘g / 00 _ —— Austria
B ,/ p=0.0035 S/ p=071 b} s or=-002 o =009 )
B32{ 2 5.5 s p=089 s p=0.51 Estonia
8 Freeze || Heat ° Freeze [ Heat | -+ Germany
o y 7 © 4.251 Y ’ - Greece
: \ Y- i ;
& § Wa $p o h }# § - Iceland
0 401 Z R 0. 4.001 -o- Russia
AI: ° ¢ ° ’ 7
/7 N
; VR ] Span
3.61 ) K / Sweden
/7
/; ?2;004?’37 */’ ei:oosg,s 3.501 /R2=-0.11 R -~ UK-La
. S/ p=00013 4., Lep=3.ie-15 KRS A ‘ pig%so ~ UK-Ox
< ! ° 325 o . . —
30 35 40 45 30 35 40 45 30 35 40 45 30 35 40 45
Observed resistance Observed resistance
c Freeze | 4(1125 Drought
4.134 4120
[0} o
% 4.131 % 4115
® 4128 % 4110
2 ko)
O 4.125 O 4.105
9 Heat | B 4146 Flood |
S 379 O 4144
B o8 B 4142 S N—
o 3877 Q 4140 /]
2;2 = 4.138
’ 4136
-4 2 0 2 -4 2 0 2 4
MAT Moisture

Extended DataFig.7|Model predicting the magnitude of metagenomic
resistance andresilience from climate and initial soil properties.aThe

horizontal axis represents the observed resistance (measured as the distance
between control and perturbed treatments in metagenome gene abundances,
using negativelog Bray Curtis dissimilarity) eitherimmediately after perturbation
(S1, circles) or after amonth of recovery (S4, triangles). Colours represent

countriesasinFig.1. The vertical axis represents the prediction ofarandom
forestmodel (see Methods, N=152samplesin the training set of each cross-

validation run) trained on data notincluding any samples of the replicate site for
whichtheimpactis predicted. Pointsand error bars therefore represent mean
andsdrespectively for the predictions from models fitted to each possible split
ofthe datainto training and test sets. The mean coefficient of determination
(R? forall training-test set splits of the datais 0.58 (+0.04, sd). The coefficient
of determination (R?) of the observed versus mean predicted resistance within
eachperturbation, a2-tailed correlation test of the Pearson correlation coefficient

(r) and its probability (p) of being different from zero, are givenin the lower

right of each facet. Note the lack of Spanish samples as only one Spanish site was
included, meaning cross-validation was not possibleamongsites, giving N= 54
predictions for the correlations. b Alternative cross-validation grouped by
countries (largely confounded with biogeographic regions, Fig.1a) inwhich
modelsarefitted to datafrom 6 countries and tested on data from the remaining
four, giving N=>56 predictions for the correlations. Other aspectsasin parta.
cBased onamodel containing all the data (coefficient of determination R*=0.61,
N=224samples), the partial dependencies on meanannual temperature

(MAT) of outcomeinresponseto freeze and heat and d moisture of response
todrought and flood are contrasting for warmer climates (greater than average
temperatures) and drier soils (less than average moisture) respectively. Note
thatthe horizontal scalesin candd arestandardised, soavalue of zero
corresponds tothe mean across allsites, and the scaleisin units of standard
deviation.Ineach case, thesmoothline and error boundis aloess smoother
ofthe partial dependence within the random forest model.
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Extended DataFig.9|Drivers of correlationsbetween metagenomic and
measured functionsinFig.4b. Exampleisshowninaofthe correlation between
the distance matrixamong samples for metagenome-derived functions and the
distance matrixamong samples of measured enzymatic activities for the freeze
treatmentat time point S4 (included in Fig. 4b). Thisisarank correlation of 0.50,
whichis highly significantly different from zero (2-tailed Mantel test, N=756
inter-site comparisons, Nperm=999 P< 0.001). The blue dashed lines indicate
the10% and 90% quantiles of each distribution. The points falling beyond
theselinesonbothaxes (showninred) correspond tocomparisons between
particularsamples that are driving the correlation. Both for measured functions
b (inthis case four enzyme activities — ace = Acetate esterase enzyme activity;
glu=Beta-glucosidase enzymeactivity; leu=Leucine amino peptidase activity;
pho=Phosphatase enzyme activity each originallyin nmol/h/g drysoil) and the
metagenomic functional datac (many, 10,408, individual proteins) we ranked
theindividual distances within each of these site comparisons and plotted
themedianrankacross the selected site comparisons.Ineach case highranks
indicate large distances for comparisons from the upper right of partaand
small distances for comparisons fromthe lower left ofa. Thus a high median
rank suggests that the variable is consistentlyimportant for determining the
distance among samples in these extreme comparisons. Inb we show witha
dashed linethe expected median rankif all measures behaved similarly and
coloured by the divergence fromthis (ranking |(observed - expected)|/expected,
thensigned according to whetherit the observed value s greater or less than
expected). Incthedistribution of median ranks has two main modes, one

inthe middle of the distribution, close to the null value (vertical black line),
corresponding to measurements that are not consistently far or close between
samples and therefore notdriving the correlation, and one on the right,
corresponding to comparisons thatare consistently associated in the
correlation-driving comparisons. We selected this second mode (taking all

comparisons withamedian rank above 9,000, indicated by the vertical red line)
and looked at their corresponding highest-level functionsind. Here, the bars
indicate the numbers of these high-ranking comparisons thatinvolve proteins
inthe given functional category, whereas the black blobs indicate the numbers
of proteinsin that category that would have been expected, had therebeena
random selection. Colour thenindicates the ranked divergence between these
two, coloured by direction (asinb). Thereis under-representation of awide
range of smaller categories, such as Sulfur Metabolism and Metabolism of
Aromatic compounds. We conducted these same analyses for all pairs of
distances, all treatments and timepoints shown as aMantel correlationin
Fig.4b, taking amedian and interquartile range (pointand error bars shown)
across these correlations for measured functions e and metagenomic
functions, f(N =756 site-site comparisonsin each case). Amonglaboratory
functional measurements, none was particularly strongly associated with
positive correlations, though specific substrate activities (citricacid, Cellulose
and Malicacid) were consistently notdriving the correlation. In contrast, the
metagenomic functions, f, showed several high-level categories that were
particularly over-represented in positive associations: Photosynthesis, Phages,
Prophages, Transposable elements and Plasmids and Virulence, Disease and
Defence; followed by Ironacquisition and metabolism, Dormancy and
Sporulation, Protein Metabolism, Secondary metabolism. Amore disparate
range of metagenomic functions was un-associated with the measured
functions. This suggests that particularly important relationships for driving
the metagenomic association with measured functions may be those scoring
highlyinboth eandf, suchasg, the negative associationbetween the
proportion of photosynthetic genesand the response to glucose addition
(N=278samples, rank correlation =-0.40, P=3.8 x107'?), each of which varies
substantially across countries (colour).
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Extended Data Table 1| PERMANOVA results of the effect of treatment (extreme climatic event), sampling time, country, and
site on microbial communities

Prokaryotes Fungi Metagenome Function
Variable R? F P R? F P R? F P R? F P
Treatment 0.0083 Faz08 <0.001 0.010 Faz06 <0.001 0.011 Faz72 0.005 0.052 Fasso <0.001
4.5 6.4 2.2 20
Sampling time 0.0028 Fs.208 <0.001 0.0025 Fs, 206 £0.001 0.0015 Fio 0.24 0.000 Fssso 1.0
2.0 2.1 1.2 -0.086
Country 0.53 Fo.208 <0.001 0.47 Fo, 206 <0.001 0.56 Fo, 72 <0.001 0.34 Fo,589 <0.001
126 128 51 58
Site 0.19 F18,208 <0.001 0.27 F1g,206 <0.001 0.12 Fig72 <0.001 0.093 Fa0, 589 <0.001
23 36 5.4 71
Treatment: 0.0060 Famn 0.21 0.0056 Elrs 0.04 0.0055 Fa72 0.28 0.086 oo <0.001
Sampling time il il il 11
Treatment: 0.029 Fa6,208 <0.001 0.0039 — <0.001 0.054 Fa6,72 0.027 0.029 Figsan 0.14
Country 1.7 2.7 1.2 1.2
Sampling time: 0.016 F7.208 0.003 0.014 o <0.001 0.012 Fon 0.32 0.052 (oo <0.001
Country 1.3 13 11 2.9
Treatment: 0.041 Fr2,208 <0.001 0.043 Fi2, 206 £0.001 0.090 Frn 0.34 0.044 Fao, 589 0.90
Site 1.2 1.5 1.0 0.84
Sampling time: 0.026 Fsa,208 0.27 0.023 Fsa, 206 0.24 0.022 Fis72 0.38 0.040 Feo, 589 0.46
Site 1.0 1.0 1.0 1.0
Sampling time: 0.050 Fi04.208 0.22 0.046 Fio4, 206 <0.001 0.044 Fa6,72 0.46 0.11 Fios, 589 <0.001
Treatment: 1.0 1.1 1.0 1.5
Country
Residual 0.097 0.084 0.087 0.15
Total 1.0 1.0 1.0 1.0

See Methods for model descriptions. Bold R? values indicate those for which the uncorrected probability of being greater than zero P<0.05, in a one-tailed permutation test with the F and
P values given. R? values are plotted out in Extended Data Fig. 1g.
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Data collection  Data collection not involving software

Data analysis Most analysis was carried out with R version 4.2, using the following key packages:
broom.mixed 0.2, caper 1.0, car 3.1, cowplot 1.1, DADA2 1.24, DECIPHER 2.24, eulerr 7.0, fs 1.6, ggordiplots 0.4, ggplot 3.3, ggrepel 0.9, Hmisc
5.1, Ime4 1.1, ImerTest 3.1, magrittr 2.0, MASS 7.3, multcomp 1.4, nime 3.1, pacman 0.5, pals 1.9, pdp 0.8, pracma 2.4, randomForest 4.7,
RasperGadel6S 0.0, RColorBrewer 1.1, seqinr 4.2, tidyverse 2.0, vegan 2.6
In addition, the following stand-alone software was utilised
FastTree (2.1)
Diamond (0.8 and 2.0)
BLAST (2.13)
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- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All raw sequence files are deposited in the European Nucleotide Archive at project accession PRIEB52753, with paired fastq files for each sample under Run
accessions ERR9712737-ERR9713356 (16S amplicons); ERR9713357-ERR9713976 (ITS amplicons), and ERR9924623-ERR9924930 (whole genome metagenomes).
Derived data and all code are available at https://doi.org/ngfr with explicit accessions for the raw data at ENA. Climatic data are available from WorldClim.org
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description The experiment was a factorial design between treatment (a factor with five levels) and sampling time (a factor with four levels, S1-
S4, though some analyses only used S1 and S4 and there was also an Initial sample for each soil). A nested sampling approach was
taken with three replicate sites sampled within each of 10 countries. A single pot of soil was utilised for each replicate site at each
sampling time in each treatment.

Research sample Samples from each replicate site comprised 4 pooled 3cm diameter x 15cm long soil cores

Sampling strategy For a fixed number of samples to be analysed, the strategy was to maximise the diversity of soils sampled. This results in the design
with a single sample for each soil/treatment/time combination.

Data collection Laboratory data collection on soils carried out in Manchester by ON, CW and HL with sequencing data collected by CGR, Liverpool
and the UK Centre for Ecology and Hydrology (RIG, TG and BJ)

Timing and spatial scale  Samples were collected when the average temperature of the location was closest to 18 °C, i.e. in spring for southern locations, and
after the snow melt, in summer, for the northern locations. In May 2018, we collected soil from Russia, Greece, and Estonia and
Spain, followed by Germany and Oxford in June, Austria and Iceland in July, and Lancaster and Sweden in August. Three spatial scales
were used — European country-scale shown in Supplementary Fig. 1; replicate sites within countries, separated by 0.05—11.76 km;
cores within sites, taken from four random points within seven 1 m x 1 m plots were arranged at least 5 m apart.

Data exclusions Two replicate sites from Spain (sites 1 and 3; n = 42) were excluded from the analyses due to low DNA yield and poor recovery of
reads particularly for the prokaryotic amplicons

Reproducibility The clustering of replicate sites in Fig. 1 demonstrates reproducibility.

Randomization Location of soil cores within plots were randomised; assignment of soil samples to treatments was done randomly; physical locations
of microcosms on trays was randomised.
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Blinding On samples' arrival in Manchester all researchers were blinded to the identity of the samples by making their only identity the unique
random numbers allocated to them during the randomisation.

Did the study involve field work? |X| Yes D No

Field work, collection and transport

Field conditions Conditions at each site are given in the data file associated with the samples

Location
Locations, including latitude and longitude are given in the data file associated with the samples

Access & import/export  Soils were imported under DEFRA plant health licence 116619/374208/0 Valid from 01 January 2019 to 31 December 2019
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Disturbance Clearing of obstructions at the sites was limited to the 7 single square metre plots.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
D Antibodies |Z| D ChIP-seq
D Eukaryotic cell lines |Z| D Flow cytometry
|:| Palaeontology and archaeology |Z| |:| MRI-based neuroimaging

[ ] Animals and other organisms
[] clinical data

|:| Dual use research of concern
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