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Although the separate effects of water and nitrogen (N) limitations on forest growth are well known, the question of how to predict their 
combined effects remains a challenge for modeling of climate change impacts on forests. Here, we address this challenge by developing a new 
eco-physiological model that accounts for plasticity in stomatal conductance and leaf N concentration. Based on optimality principle, our model 
determines stomatal conductance and leaf N concentration by balancing carbon uptake maximization, hydraulic risk and cost of maintaining 
photosynthetic capacity. We demonstrate the accuracy of the model predictions by comparing them against gross primary production estimates 
from eddy covariance flux measurements and sap-flow measurement scaled canopy transpiration in a long-term fertilized and an unfertilized 
Scots pine (Pinus sylvestris L.) forest in northern Sweden. The model also explains the response to N fertilization as a consequence of (i) 
reduced carbon cost of N uptake and (ii) increased leaf area per hydraulic conductance. The results suggest that leaves optimally coordinate 
N concentration and stomatal conductance both on short (weekly) time scales in response to weather conditions and on longer time scales in 
response to soil water and N availabilities. 

Keywords: nitrogen uptake, optimality theory, plant hydraulics, Scots pine, stomatal model. 

Introduction 
Human-made increases in atmospheric carbon dioxide (CO2) 
concentration have led to rising temperatures and more 
drought events (IPCC 2014), which have major impacts on 
gross primary production (GPP) and forest growth. On one 
hand, one might expect higher temperatures to positively 
affect biomechanical processes of photosynthesis (Sage and 
Kubien 2007) and hence growth. On the other hand, more 
drought events increase the risk of hydraulic failure and higher 
mortality (McDowell et al. 2008, Ryan 2011). In addition, 
tree growth is limited by other factors, such as nitrogen (N) 
availability, which is particularly important in boreal forests 
in the northern latitudes (Tamm 1991, Binkley and Högberg 
2016, Högberg et al. 2017). Thus, interactive effects of water 
and temperatures on photosynthesis and growth are further 
influenced by plant nutrition and soil N accessibility, but it is 
not yet clear how to best incorporate them in process-based 
models. 

Process-based physiological models are well-suited for 
assessing the response of photosynthesis to different climate 
drivers. One such model is the well-established Farquhar 
and von Caemmerer model of leaf photosynthesis (Farquhar 
et al. 1980, Farquhar and von Caemmerer 1982). To account 
for resource limitation of photosynthesis, this model can 

be complemented with models of stomatal conductance 
and photosynthetic capacity, which is linked to leaf N 
concentration. Several semi-empirical models have been 
proposed to model the response of stomata, such as the 
Ball and Berry model (Ball et al. 1987), where the stomatal 
conductance (gs) is linearly related to the quantity AHr/Ca. 
Here, A is the carbon assimilation rate, Hr is the relative 
humidity, and Ca is the ambient CO2 concentration at the 
leaf surface. 

A limitation of the empirical models is that they can be 
safely applied only within the range of environmental con-
ditions and observations for which they were developed and, 
thus, may not be accurate under novel conditions or climate 
change. To overcome this limitation, adaptive models based 
on optimization principles have been developed. These models 
assume that the responses of gs and other plant variables to 
environmental variations are regulated by an optimal trade-
off between carbon gain and cost. In the case of gs, the  
apparent cost is the loss of water through transpiration. Based 
on this premise, Cowan and Farquhar (1977) proposed the 
optimal water-use efficiency hypothesis where the carbon 
gain was A and the cost was assumed proportional to leaf 
transpiration (E), i.e., net gain is A − E/λ, where  λ is a 
constant. However, observations have shown that the cost
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2 Fransson et al.

does not merely increase linearly with respect to E, but the 
slope steepens with rising E, as a result of increased absolute 
water potential and thus bringing the vascular system closer 
to xylem cavitation (Wolf et al. 2016). Mathematically, this 
means that the derivative of the cost function, with respect to 
E, should be an increasing function of E, defined, for exam-
ple, as a concave-up parabola (Wolf et al. 2016, Anderegg 
et al. 2018) or a sigmoid (Sperry et al. 2017). Following 
the approach of Sperry et al. (2017), Eller et al. (2018) 
proposed the SOX model in which the costs are a function 
of root–canopy hydraulic conductance, krc. The underlying 
assumption is that the cost will increase as the krc decreases 
due to the increase in absolute water potential necessary to 
maintain E. A similar assumption is also applied in the model 
by Sabot et al. (2022a). 

While the above-mentioned models have only considered 
the cost associated with water transport, other models have 
also incorporated the cost of maintaining photosynthetic 
capacity into the cost term (Friend 1991). Following similar 
ideas, Prentice et al. (2014) proposed that the cost of 
maintaining photosynthetic capacity is proportional to 
Vc,max/A, where  Vc,max is the maximum rate of RuBP 
carboxylation. The drawback of the Prentice et al. (2014) 
model is similar to that of the Cowan and Farquhar (1977) 
approach in that the cost associated with transpiration is 
proportional to E/A, thus its slope is not an increasing 
function of E (Sabot et al. 2022b). In contrast, a more recent 
approach by Joshi et al. (2022) and Flo et al. (2023), called 
the P-hydro model, optimizes both photosynthetic capacities 
and has a transpiration cost increasing with E linked to 
increasing negative plant water potential assumed to cause 
hydraulic limitation and damage (Joshi et al. 2022). Also, 
the recent model by Sabot et al. (2022a) optimizes not only 
the trade-off between hydraulic function and photosynthesis 
but also optimizes photosynthetic N and its distribution 
between different components, even accounting for the limited 
adjustment rates and associated delay of leaf N adjustments 
over time. However, none of the above-mentioned models 
explicitly accounts for the effects of varying soil N availability. 

In this study, we present a new leaf optimization model 
which combines the cost of maintaining photosynthetic capac-
ity, inspired by the P-hydro model (Joshi et al. 2022), with 
the hydraulic cost representation of the SOX model. Thus, 
we optimize not only stomatal conductance as in the SOX 
model but also the leaf N content. Our model also accounts 
for the difference in time scale between the regulation of 
stomatal conductance and leaf N content. This leaf-based 
optimality model is upscaled to allow calculations of canopy 
GPP and transpiration (Ec). In contrast to existing models of 
this type (Joshi et al. 2022, Sabot et al. 2022a), we include 
the cost of N uptake in order to account for variation in 
soil N availability. We test and validate the model against 
observed GPP from eddy covariance flux measurements and 
Ec estimates from stem sap-flow measurement for a Scots 
pine (Pinus sylvestris L.) forest in northern Sweden, where 
13 years of controlled annual fertilization has been admin-
istered alongside an untreated reference stand. This setting 
allows us to test our model with varying soil N availability 
and variable climate over several years. We show that the 
model predicts the seasonal pattern of GPP and Ec well. It 
also predicts the differences between control and N-fertilized 
stand as a consequence of different carbon costs of N uptake 
and leaf area per sapwood area. 

Theory and model 
Model description 
A flowchart of the model is provided in Figure 1 and detailed 
descriptions of the sub-models are presented in the succeeding 
subsections. Our model calculates daily stand-level canopy 
GPP and canopy transpiration (Ec) based on leaf area index 
(LAI), canopy height (H), and climate data (see Table 1 for 
a full list of necessary inputs). We assume that physiological 
response is controlled by two plastic variables: the stomatal 
conductance (gs) and foliage N mass-based concentration 
(Nm,f ) of a leaf/needle situated at the top of the canopy. The 
plastic variables are determined by optimization with respect 
to a fitness proxy, which represents the net carbon gain per 
leaf area. Central to the optimization is the instantaneous 
fitness proxy, G, which is calculated as the instantaneous leaf-
level carbon assimilation of a leaf/needle situated at the top 
of the canopy (A) subtracted by the cost of maintaining tran-
spiration and photosynthetic capacity (the potential electron 
transportation of a leaf situated at the top canopy, Jmax). 
The cost of maintaining transpiration reflects drought-related 
loss of soil-canopy conductance (ksc) due to xylem embolism, 
which corresponds to a proportional loss of function of the 
supported leaf area and its carbon assimilation. The cost 
of maintaining potential photosynthetic capacity (Nr + Nu) 
is related to two contributing processes: (i) respiration of a 
leaf and its supporting roots and stem tissues (Nr), which is 
assumed proportional to leaf N content, and (ii) the carbon 
cost of N uptake (Nu), which depends on soil N availability. 
The calculation procedure of G is as follows: first, A and 
Jmax are calculated using a mechanistic physiological model. 
A and Jmax are functions of climate variables (above canopy 
photosynthetic active radiation, I0, ambient air temperature, 
Ta, ambient CO2 partial pressure Ca, vapor pressure deficit 
VPD), and the two plastic variables. Next, ksc is calculated by 
the hydraulic model (HM) with VPD, soil volumetric water 
content (θ), H, and  gs as input. Using these calculations in an 
iterative optimization algorithm, the cumulative fitness, i.e. 
the integral of G, over a week is maximized by optimizing 
Nm,f and daily gs values (two gs values for each day and 
one Nm,f value for the entire week). Subsequently, daily GPP 
and Ec are calculated by upscaling the leaf-level values to the 
stand-level. Here, the stand LAI and the daylight hours (�tg) 
are used as additional input. 

Leaf level photosynthesis model 
The leaf level carbon assimilation is calculated in a stan-
dard fashion as a balance between  the rate of assimilation  
(carbon demand) and the mass transport of CO2 into the 
leaf through stomatal and mesophyll conductance (carbon 
supply). The assimilation rate A (mol m−2 s−1) is calculated  
as the minimum of electron transport-limited assimilation 
rate, Aj, and the carboxylation-limited assimilation rate, Ac, 
(Farquhar et al. 1980). We assume co-limitation, i.e. that 
Ac = Aj (coordination hypothesis, Chen et al. 1993, Maire 
et al. 2012, Wang et al. 2017, Smith et al. 2019), thus, 

A = 
J 
4 

ci − Γ ∗ 

ci + 2Γ ∗
. (1)  

In Eq. (1), ci (Pa) is the intercellular partial pressure of CO2, 
Γ ∗ (Pa) is the CO2 compensation point, and J (mol m−2 s−1)
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Eco-physiological model of forest photosynthesis 3

Figure 1. The model is composed of four main modules: leaf level photosynthesis model (LPM), hydraulic model (HM), objective function (OF) and 
upscaling module (UM). These modules are accompanied by an optimization routine (OR). To run the model, the following inputs are required: ambient 
air temperature (Ta), above canopy photosynthetic active radiance (I0), ambient CO2 partial pressure (Ca), vapor pressure deficit (VPD), soil volumetric 
water content (θ ), daylight hours (�tg), canopy height (H) and stand leaf area index (LAI). OR is used to determine the value of the plant variables, 
stomatal conductance (gs) and mass-based foliage nitrogen concentration (Nm,f ) of a leaf situated at the canopy top, by maximizing the trait performance 
measure (G). G is determined by OF with soil-canopy conductance (ksc), carbon assimilation (A) and potential rate of electron transport (Jmax) as input. 
A and Jmax are calculated by LPM with Ta, I0, Ca, VPD, gs, Nm,f as inputs. ksc is calculated by HM with VPD, θ , H and gs as inputs. Once an optimum is 
found, UM upscales leaf-level values to stand-level and we get the model output: per ground area canopy GPP, and canopy transpiration (EC). 

Table 1. Model input. Value ranges are taken from weather data and modeled size data for the fertilized and control stand at Rosinedal experimental site. 
The data measurements are from 2015 to 2018, during the growth period. 

Symbol Description Range (units) 

Climate and environmental input 
Ta Ambient air temperature −5.1 to 30.8 (◦C) 
I0 Above canopy photosynthetic 

active radiance 
1.8–63.5 (mol m−2 day−1). These values are estimated from solar radiation data using 
the conversion rate 1000 W m−2 ≈ 2300 μmol m−2 s−1 (2.2.1.a, Landsberg and Sands 
2010) 

Ca Ambient CO2 partial pressure 38.5–40.9 (Pa) 
VPD Vapor pressure deficit 45.5–1420 (Pa). Estimated from vapor pressure data and calculated saturated vapor 

pressure values. Saturated vapor pressure is calculated as a function of Ta (Alduchov 
and Eskridge 1996) 

θ Soil volumetric water content 9.9–29.8 (%) (−0.42 to −0.13 MPa soil water potential) for the fertilized stand and 
6.7–21.1 (%) (−0.64 to −0.19 MPa soil water potential) for the control stand

�tg Daylight hours 10.2–20.3 (h). The daylight hours are calculated using Eq. (17) from Jenkins (2013) 
Stand and tree size input 
H Canopy height 19.07–19.87 (m) for the fertilized stand and 20.86–21.36 (m) for the control stand 
LAI Leaf area index (projected) 2.38–2.45 (m2 m−2) for the fertilized stand and 2.21–2.30 (m2 m−2) for the control 

stand 

is the rate of electron transportation; see Eq. ( 2). 

J = 
αII + Jmax −

√
α2II 

2 + 2αIIJmax
(
1 − 2θJ

) + J2 
max 

2θJ 
. (2)  

In Eq. (2), II (mol m−2 s−1) is the irradiance incident 
on a leaf, Jmax (mol m−2 s−1) is the potential electron 

transportation, θJ (−) is a measure of the curvature of the 
light response curve and α (−) is the quantum yield. 

The mass transportation of CO2 into the chloroplast 
through stomatal and mesophyll conductance is given by 
Fick’s law: 

A = g 
(ca − ci) 

P 
. (3)  

In Eq. (3), g (mol m−2 s−1) is the combined stomatal (gs) 
and mesophyll (gm) conductance, and P is the atmospheric
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4 Fransson et al.

pressure (Pa). We assume that gm is proportional to gs, thus 
g ∝ gs. Specifically, we assume g ≈ 0.42gs (Wang et al. 
2017). Because the demand and the supply equations need to 
be balanced, we get: 

g 
P 

(ca − ci) = 
J 
4 

ci − Γ ∗ 

ci + 2Γ ∗ ⇐⇒ c2 
i +

[
JP 
4g 

+ 2Γ ∗ − ca

]
ci 

−
[

JP 
4g 

Γ ∗ + 2caΓ ∗
]

= 0. 

(4) 

Eq. (4) is a quadratic equation and ci is given by the greater 
of the two roots. Thus, we have an expression for ci as a 
function of g, II and Jmax, i.e., ci

(
g, II, Jmax

)
. Similarly, we 

get an expression for the carbon assimilation (Eq. (5)) by 
substituting Eq. (4) into Eq. (3). 

A
(
g, II, Jmax, ca

) = 
g 
P

(
ca − ci

(
g, II, Jmax

))
. (5)  

Temperature dependency of photosynthetic parameters and 
its acclimation to annual temperature cycle 
We use the Arrhenius equation and the model from 
Tarvainen et al. (2018) to estimate the short-term temperature 
dependency of the photosynthetic parameters. Specifically, 
the temperature responds of Γ ∗, is modeled by using the 
Arrhenius equation (Landsberg and Sands 2010), 

Γ ∗ = Γ ∗ 
ref exp

(
EA,Γ

(
T − Tref

)
TRTref

)
. (6)  

In Eq. (6), R = 8.314 (J K−1 mol−1) is the gas constant, 
EA,Γ (J) is the activation energy of the parameter, T is the 
temperature (K), and Γ ∗ 

ref is the parameter value at a reference 
temperature Tref (298 K). 

We use equation 4 from Tarvainen et al. (2018) to model 
the short-term temperature responds of Jmax, 

Jmax = Jmax,optfJmax(T) 

= Jmax,opt 
ED,J exp

(
EA,J(T−Topt) 

TRTopt

)
ED,J − EA,J

(
1 − exp

(
ED,J(T−Topt) 

TRTopt

)) . (7)  

In Eq. (7), ED,J (J) is the deactivation energy, EA,J (J) is the 
activation energy and Jmax,opt is the value of Jmax at optimal 
temperature Topt (K). 

On a longer timescale, parameters may acclimate to the 
annual temperature cycle. Specifically, the magnitude of the 
light response curve follows the trend of the temperature 
cycle while the shape of the curve remains constant (Hari 
and Mäkelä 2003, Mäkelä et al. 2004). Mäkelä et al. (2004) 
enforced this property by assuming that the quantum yield 
is proportional to Jmax. For our model, we achieve the 
same effect by assuming that both Jmax and the quantum 
yield, α, follow the same seasonal cycle, specifically, α = 
Xtαseason and Jmax = XtJmax,season (Ta, Na). Here, αseason and 

Jmax,season
(
Ta, Nm,f

)
are parameters representing the seasonal 

apex of α and Jmax, respectively, and Xt ∈ [0, 1] is a variable 
accounting for the reduction of α and Jmax due to the seasonal 
variation in temperature. Note that Jmax,season

(
Ta, Nm,f

)
depends on the ambient air temperature, Ta, and  the  N  
concentration per leaf mass, Nm,f . If these equations are 
substituted into Eq. (2) we get Eq.  (8). 

J = 
Xt 
2θJ

[
αseasonII + Jmax,season

(
Ta, Nm,f

)
−

√
αseason2II 2 + 2αseasonJmax,season

(
Ta, Nm,f

)
II

(
1− 2θJ

)
+ Jmax,season

(
Ta, Nm,f

)2
]
. 

(8) 

The time-dependent variable Xt (−) is a function of the 
delayed ambient air temperature, St (◦C), see  Eq. (9). 

Xt = 

⎧⎨ 

⎩ 

0, St ≤ Smin, 
St−Smin

�S , Smin < St < Smin + �S 
1, St ≥ Smin + �S. 

, (9)  

In Eq. (9), Sminis a parameter representing the minimum 
threshold for the activation of photosynthesis, and �S ≥ 0 
is a parameter controlling when the photosynthetic capacity 
reaches its seasonal peak. Thus, Jmax increases linearly with 
respect to St in the temperature range Smin < St < Smin + �S. 
The delayed temperature, St, is the effective temperature to 
which the photosynthesis has acclimated to, i.e., the tempera-
ture that determines the level of activation of photosynthesis 
(Xt, Eq.  (9)). Because this acclimation takes time, St lags 
behind the current temperature, which is modeled using a first 
order delay dynamics model (Mäkelä et al. 2004, 2008): 

St =
(

1 − 
1 
τ

)
St−1 + 

1 
τ 

Tt, S0 = T0. (10) 

In Eq. (10), Tt is the ambient air temperature at time t, T0 
is an initial temperature of a temperature time series, and τ is 
a parameter controlling the temperature delay; a higher value 
of τ equals a longer delay in the temperature response. 

The effect of N concentration on the photosynthetic capacity 
We assume that the seasonal apex of Jmax,opt is propor-
tional to the per leaf-mass N concentration, Nm,f , i.e. 
Jmax,opt

(
Nm,f

) = aJ maxNm,f (Franklin 2007, Landsberg and 
Sands 2010). Here, aJ max is a proportionality parameter. 
Thus, Jmax,season

(
Ta, Nm,f

) = Jmax,opt
(
Nm,f

)
fJmax (Ta) and 

Jmax = XtJmax,opt
(
Nm,f

)
fJmax (Ta). 

Hydraulics model 
If gs and VPD are given, we can calculate the canopy transpi-
ration per leaf area, E: 

E = 
1.6gsVPD 

P 
. (11) 

In Eq. (11), P is the atmospheric pressure (Pa). We assume 
that the water flow between root and leaf is in steady-state 
and negligible non-stomatal water loss, which means that E 
equals the water uptake. We use Darcy’s law to calculate the
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Eco-physiological model of forest photosynthesis 5

canopy water potential, ψc (MPa), as a function of soil water 
potential, ψs, and  E (Eller et al. 2018): 

ψc = ψs − Hρg10−6 − 
E 

ksc 
. (12) 

In Eq. (12), ρ = 997 (kg m−3) is the density of water, g = 
9.82 (m s−2) is the gravitational acceleration and ksc (mol m−2 

leaf s−1 MPa−1) is the soil-canopy conductance. ksc decreases 
from a potential maximal value, ksc,max, as water potential, ψ , 
declines according to the vulnerability function, P (ψ): 

P (ψ) = 
ksc 

ksc,max 
=

(
1 
2

)(
ψ 

ψ50,sc

)bsc 

. (13) 

In Eq. (13), ψ50,sc is the water potential resulting in half of 
the maximum conductivity, i.e. P

(
ψ50,rc

) = 0.5, and  bsc is a 
shape parameter controlling how fast ksc decreases with the 
water potential. 

We calculate ψs from the effective soil saturation, Se (−), by 
applying equation 2.19 from Jansson and Karlberg (2011): 

ψs = ψa S
−1/λ 
e . (14) 

In Eq. (14), ψa is the air-entry tension and λ (−) is the pore 
size distribution index of the soil. 

The effective saturation is a function of soil water content 
(Jansson and Karlberg 2011), θ (−): 

Se = 
θ − θr 
θs − θr 

. (15) 

In Eq. (15), θs is the saturated soil water content and θr is 
the residual water content. 

We calculate krc by solving Eq. (16) (Sperry and Love 2015). 

ksc = ksc,max

∫ ψc,pd 
ψc 

P (ψ) dψ 
ψc,pd − ψc 

. (16) 

In Eq. (16), ψc,pd = ψs − Hρg10−6 is the pre-dawn canopy 
water potential. We use Simpson’s 1/3 rule to approximate the 
integral in Eq. (16) and the equation is solved by applying a 
fix-point iteration method. 

Plant optimization 
We define the instantaneous fitness proxy, G (mol m−2 s−1), 
as the instantaneous carbon assimilation rate at top of the 
canopy, A = A

(
gs, II0 , Jmax

)
, times a reduction factor kcost, 

representing the effect of reduced plant conductance under 
water stress (Eller et al. 2018), minus the cost of maintaining 
Jmax, i.e. (Nr + Nu)Jmax. Thus, 

G = A − A
(
1 − kcost

) − (Nr + Nu) Jmax 

= Akcost − (Nr + Nu) Jmax. (17) 

In Eq. (17), Nr (−) represents the leaf respiration cost as 
the ratio between dark respiration (Rd) and  Jmax, which  is  
linked to leaf N because photosynthetic capacity and Jmax 
increases with leaf N concentration associated with photosyn-

thetic proteins. Nr was estimated based on measured Jmax and 
Rd (night and daytime values) in Scots pine (Kellomäki and 
Wang 1997). Because Nr is based on the ratio of fundamental 
leaf biochemical processes with similar climatic responses 
(Wang et al. 2020) it is relatively constant among species and 
climate conditions. Nu represents the carbon investment (fine-
roots, mycorrhiza, exudation) for nutrient uptake required 
to construct and maintain Jmaxwhich is expected to strongly 
depend on soil N availability. 

The costs of hydraulic risks and damage are represented 
by the parameter kcost = (

ksc − kcrit
)
/
(
ksc,max − kcrit

)
(Supplementary material of Eller et al. 2018).  Based on the  
commonly observed lethal loss of conductivity of 88% (Liang 
et al. 2021), here we assumed kcrit = 0.12ksc,max and the 
A

(
1 − kcost

)
cost term we assume that: (i) each fraction of ksc 

corresponds to an equal loss in functional leaf area and thus 
assimilation loss and (ii) in the event of hydraulic failure and 
fatal embolism, i.e., when krc decreases and approaches 0, the 
loss should be equal to the total carbon gain. 

While G represents the instantaneous fitness reward, we 
assume that Nm,f and gs regulate such that the accumulative 
fitness, i.e., the integration of G over time, is maximized. Fur-
thermore, we assume that: (i) Nm,f optimizes on a weekly time 
scale and gs on a sub-daily time scale. (ii) Nf is constant over a 
week’s period. (iii) The day-to-day change of the weather vari-
ables within a week is neglectable compared to the within-day 
variation. (iv) The daily integration of G can be approximated 
by the sum of two instantaneous function values according to 
the two-segment daily model (SDM-2, Wang et al. 2014). The 
original segmented daily model assumed that the nonlinear 
response of A can be approximated by a piecewise linear 
function, i.e. the response curve can be approximated by a 
number of line segments and that weather variables (specifi-
cally radiation, temperature and relative humidity) follow a 
sine function. With these assumptions, we propose a two-
step optimization routine (OR). In the first step, we optimize 
Nm,f and two gs values to maximize the integral of G over 
a specified week (long-term optimization). The two gs values 
represent the within-day variation of stomatal conductance 
(one gs value for each segment in SDM-2) for an average day 
within the specific week. In the second step, we maximize 
the daily integral of G for each day in the specified week 
by re-optimizing the two gs value for each day (fine-tuning). 
Here, we use the optimal weekly Nm,f value from the previous 
step as input, and the two average-day gs values from the 
first step are used as initial guesses for the optimization algo-
rithm. Additional information regarding plant optimization 
is available in the supplementary information (Methods S1 
available as Supplementary data at Tree Physiology Online). 
In order to use the SDM-2 approximation, we need to esti-
mate within-day values for the weather variables. To this 
end, we use the same trigonometric functions from Wang 
et al. (2014) to model the diurnal change of the ambient 
temperature and radiation; the remaining weather variables 
are either calculated from these (VPD) or are assumed to be 
constant during the day (Ca and θ ), see Methods S1 for more 
information. 

The optimization problem is solved by using the imple-
mentation of Broyden–Fletcher–Goldfarb–Shanno (BFGS) 
algorithm from the Optim.jl package (Mogensen and Riseth 
2018). We search the optimum in the range 0.007 ≤ Nm,f ≤ 
0.05 and 0.001 ≤ gs ≤ gs,crit for each gs and Nm,f value. 
Here, gs,crit is the stomatal conductance which results in 
P (ψc) = 0.12.

D
ow

nloaded from
 https://academ

ic.oup.com
/treephys/article/45/2/tpae168/7950994 by Sw

edish U
niversity of Agricultural Sciences user on 17 February 2025

https://academic.oup.com/treephys/article-lookup/doi/10.1093/treephys/tpae168#supplementary-data
https://academic.oup.com/treephys/article-lookup/doi/10.1093/treephys/tpae168#supplementary-data


6 Fransson et al.

Upscaling to stand-level 
Stand level primary production 
We assume that Jmax and gs acclimate to irradiance, 
resulting in a proportional relationship with irradiance level 
(Landsberg and Sands 2010). Then, the instantaneous GPP 
per ground area of canopy vegetation (GPP of trees), GPPc, is  
calculated as: 

GPPc =
∫ LAI 

0 
A

(
gs, II, Jmax

)
dLAI 

=1 − exp
(−k × LAI

)
k 

A
(
gs, II0 , Jmax

)
. (18) 

In Eq. (18), LAI is the leaf area index (projected area), 
and k and II are the light extinction coefficient and irradi-
ance incident on a leaf, respectively, see Methods S2 (avail-
able as Supplementary data at Tree Physiology Online) for 
further details. Analog to the plant optimization routine, 
we employ the SDM-2 approximation (Wang et al. 2014) 
to calculate daily GPP value from instantaneous values. In 
order to compare with eddy-covariance data (ecosystem GPP, 
GPPe), we accounted for understory vegetation GPP, GPPg, 
to calculate GPPe = GPPc + GPPg. We assume that light use 
efficiency (LUE, defined as GPP/absorbed light) is the same 
for both vegetation layers (Tian et al. 2021). GPPc can then 
be upscaled by using an upscale factor, ζ = GPPe/GPPc. 
The value of ζ depends on the understory vegetation LAI 
and corresponding light extinction coefficient (see Methods 
S3 available as Supplementary data at Tree Physiology Online 
for more information). We estimate that ζ ≈ 1.2 for the 
fertilized stand and ζ ≈ 1.13 for the control (see Table S1 
available as Supplementary data at Tree Physiology Online). 
These corresponding contribution of GPPg to GPPe was 17% 
and 12% for the fertilized stand and control, respectively. This 
is in line with previous estimates (Chi et al. 2021). Hereafter, 
we will refer to GPPe as simply GPP. 

Canopy transpiration 
We neglect the effects of boundary layer conductance (com-
bined leaf and canopy boundary layer); thus, the instanta-
neous canopy transpiration Ec is calculated as: 

Ec = gC 
VPD 

P 
. (19) 

In Eq. (19), gC is the canopy conductance. The canopy 
conductance is calculated as: 

gC = 1.6
∫ LAI 

0 
gsdLAI = 1.6gs,top 

1 − exp
(−k × LAI

)
k 

. (20) 

See Methods S2 (available as Supplementary data at Tree 
Physiology Online) for further details. Again, we employ the 
SDM-2 approximation (Wang et al. 2014) to calculate the 
daily values for Ec. 

Data 
The data used for model calibration are based on measure-
ments from the experimental site Rosinedal (64◦10′ N, 19◦45′
E). The site is a 90-year-old naturally regenerated Scots pine 

forest, regenerated with seed trees in 1920–25. In 1955, the 
stand was pre-commercially thinned, followed by thinnings 
in 1976 and 1993. The experiment was established in 2005 
and annual N fertilization started in 2006 with addition of 
100 kg N ha−1 year−1 from 2006 to 2011, and reduced to 
50 kg N ha−1 year−1 in 2012 (Lim et al. 2015). We used 
weather data and measured tree dimensions from the fertilized 
and the control stand as input for the model; see Table 1 
for a full list of input variables and Figure 2 for a depiction 
of the weather data time series. Briefly, stem diameter was 
measured at 1.3 m (DBH) annually for all trees in each of 
the three mensuration stands (1000 m2) for each treatment 
stand. Tree height and length of live crown were measured 
on 20 trees per stand, using Vertex 4 Ultrasonic Hypsometer 
(Haglöf Inc., Sweden). We developed a relationship between 
height and DBH following the recommendation of Näslund 
(1947); parameters of the function were estimated each year 
for each stand and then applied to all individual trees. Based 
on destructive tree harvests in June 2006, October 2012 and 
October 2018, we developed allometric equations for foliage, 
stem and branch biomass. From 2012 and 2018 harvest sam-
ples, subsets of fresh foliage samples were scanned and dried 
to estimate specific leaf areas. Biomass of each component was 
predicted based on a combination of the tree dimensions and 
the developed allometric equations. We estimated leaf area 
index by multiplying foliage biomass and specific leaf area 
estimates. Model outputs were calculated using daily data and 
validated against the eddy-covariance based ecosystem GPP 
estimates (Zhao et al. 2022) and  EC values for the growth 
periods of 2015–18. The growing seasons were assumed 
to start when daily mean temperature was ≥5 ◦C for five  
successive days and end when daily mean temperature was 
<5 ◦C for five successive days. The EC values are estimated 
using the empirical model from Tor-ngern et al. (2017) with 
corresponding parameter estimates for the study site provided 
in that paper. Daily partial pressure of atmospheric CO2 
[CO2] was collected from Integrated Carbon Observatory 
System (ICOS) tower at Svartberget, 10 km north of the site 
(www.icos-sweden.se). We used Level 1 datasets (basic quality 
control) and Level 2 datasets (the full quality control) at 150 m 
height. Level 1 was available from 2015 throughout 2020, 
excepting 2018 data, while Level 2 was available from 2017. 
We based our [CO2] input on the Level 1 data with gap-filling 
the 2018 missing data using a correlation between Level 1 and 
Level 2 for overlapped measurement points (2017 and 2020, 
[CO2] at Level 1 = [CO2] at Level 2 × 0.783 + 781; n = 742 
daily mean [CO2]). 

Parameter estimation 
The set of unknown parameters of the model, θ (see Table 3 
for a full list of estimated parameters) that could not be 
estimated based on measurements were estimated by fitting 
the model to observations. The remaining model parameters 
were taken from other sources, see Table 2. To minimize the 
effect of data outliers, we assume that model and measure-
ment errors are Laplace distributed (Tian et al. 2021), i.e. 
yi,j,k − M

(
Xj,k, θ

)
i,j,k = ei,j,k ∼ Laplace

(
0, ai,j + bi,jM(θ)i,j,k

)
. 

Here, yi,j,k denotes the response variables (the measured vari-
ables), Xj,k are the collection of explanatory variables (tree 
size and climate data). M is the model output, ei,j,k are 
the model errors, Laplace

(
μ, b

)
is the Laplace distribution 

with location parameter μ and scale parameter b > 0.
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Figure 2. Weather data for the fertilized (F) and control (C) stand at the experimental site Rosinedal during the growth period between 2015 and 2018. 
Climate drivers: daylight hours (�tg) (a), ambient air temperature (Ta) (daily max, red curve, daily min, green curve and daily mean, blue curve) (b), daily 
photosynthetic active radiance (I0) (c), vapor pressure deficit (VPD) (d), soil volumetric water content (θ ) of the fertilized stand (F) and the control (C) (e), 
ambient CO2 partial pressure (Ca) (f). These values were used as input for our model. 
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Table 2. Parameter values used in the model. 

Parameter Description Value (units) Reference/note 

GPP model parameters 
Γ ∗ 

ref/EA,Γ The CO2 compensation point at 
25 ◦C/Activation energy of Γ ∗ 

4.17 (Pa)/23.42 (kJ mol−1) Table 3. 1 in Landsberg and Sands 
(2010) 

EA,J/ED,J/Topt Activation energy of Jmax/deactivation 
energy of Jmax/optimal temperature for 
Jmax 

47.4 (kJ mol−1)/200 
(kJ mol−1)/305 (K) 

(Tarvainen et al. 2018) 

θJ Curvature of the light response curve 0.7 (−) Table 1 in Landsberg and Sands 
(2010) 

k Light extinction coefficient 0.52 (−) (Tian et al. 2021) 
m Leaf transmittance 0.05 (−) Ch. 5.1.1 in Landsberg and Sands 

(2010) 
Hydraulics model parameters 
ψ50,sc/bsc Water potential which causes 50% loss 

in soil-canopy hydraulic 
conductivity/sensitivity of soil-canopy 
hydraulic conductivity to water potential 

−2.7 (MPa)/2.15 (−) ψ50,sc and bsc are estimated from 
Aguade et al. (2015) 

θs/θr Saturated soil water content/residual 
water content 

0.41 (−)/0.006 (−) From unpublished Pf-curve 

ψa/λ Air-entry tension/pore size distribution 
index 

−0.098 (MPa)/1 (−) From unpublished Pf-curve 

Nitrogen cost parameter 
Nr Ratio between dark respiration and Jmax 0.0056 (−) Estimated from Kellomäki and 

Wang (1997) 
Variance parameters 
aEc,j/bEc,j The parameters which control the 

variance of the error distribution for Ec 
(mm day−1/−) 

0.069/0.15 (j = Fertilized) 
0.043/0.18 (j = Control) 

Tian et al. 2021 

yNm,f ,j,k /aNm,f ,j/bNm,f ,j The response variable and parameters 
which control the variance of the error 
distribution for Nm,f (Kg Kg−1/Kg 
Kg−1/−) 

0.021/0.0023/0 (j = Fertilized 
and for all k) 
0.012/0.0023/0 (j = Control and 
for all k) 

Estimated from data Lim et al. 
(2015) 

The parameters ai,j and bi,j control the variance of the error 
distribution and we assume that the scale parameter is linear 
with respect to the model output (Tian et al. 2021). We 
also use data type-specific weights, wi, to weigh the impor-
tance of different data types. The subscripts i, j, k denotes the 
data type (GPP, EC or Nm,f ), the stand treatment (control 
or fertilized) and the data index (individual observations), 
respectively. This assumption leads to the following likelihood 
function: 

L (Y| θ , a, b) =
∏

i

∏
j

∏
k

[
1 

2
(
ai,j + bi,jM(θ)i,j,k

)

× exp

(
−

∣∣ei,j,k
∣∣

ai,j + bi,jM(θ)i,j,k

)]wi 

. (21) 

In Eq. (21), a, b are collections of ai,j and bi,j values, respec-
tively. The values for yNm,f ,j,k, aNm,f ,j and bNm,f ,j were estimated 
from data Lim et al. (2015) and the values of aEc,j and bEc,j 
were taken from Tian et al. (2021) (Table 2), while aGPP,j 
and bGPP,j were estimated in conjunction with the unknown 
model parameters and we used wEC = wNm,f = 1.0 and 
wGPP = 1.5. 

The parameter estimates,
(
θ∗, aGPP,j

∗, bGPP,j
∗), were deter-

mined by maximization of the likelihood function, i.e., 
θ∗, aGPP,j

∗, bGPP,j
∗ = arg maxθ ,aGPP,j,bGPP,j L (Y| θ , a, b). To  

find the maximum, we employed the adaptive differential 

evolution optimizer, a global optimization algorithm, from 
the BlackBoxOptim.jl package (Feldt 2018). 

We performed two parameter estimation and validation 
cases: one where all the parameters in Table 3 are shared 
between the two stand treatments, i.e., same parameter values 
were used for both treatments, with the exception of Nu 
and krc,max. Hydraulic conductance per leaf area (krc,max) is  
known to vary significantly among sites with water and N 
availability, and our hypothesis is that the carbon cost of N 
uptake (Nu) differs between the treatments. In the second 
case, none of the parameters in Table 3 were shared between 
the two stand treatments, i.e. the parameters were estimated 
separately for the control and fertilized stand. The result of the 
first case will be shown in the Results section and the result of 
the second case can be viewed in Methods S4 and Figures S3– 
S5 available as Supplementary data at Tree Physiology Online. 

Model testing and validation 
To validate our model, we excluded 20% of the datapoints 
(119 out of 588 datapoints) to form a validation dataset. The 
validation dataset was generated by randomly selecting data-
points from the complete dataset. The remaining datapoints, 
the training dataset, were used for parameter estimation. To 
minimize the effect of selection bias, we repeated the parame-
ter estimation and validation process 10 times for both cases, 
thus creating 10 random validations and training datasets. 

Because the representation of N limitation is a unique aspect 
of our model, we evaluated the impacts of excluding variation 
in key N variables, leaf N (Nm,f ) and N uptake costs (Nu), on
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Table 3. Estimated parameters. All parameters were shared among the stand treatments (fertilized F and control C), except when indicated by an 
asterisk (∗). 

Parameter Description (units) Estimates 

F C 

Nitrogen cost parameter 
Nu Cost parameter of C investment to N uptake to maintain Jmax (−) 0.0∗ 0.012∗ 

GPP model parameters 
αseason Seasonal apex value of quantum yield peak (−) 0.19 0.19 
aJ max Ratio between Jmax,opt and N concentration per leaf area (Nm,f ) 

(mol m−2 s−1 kg leaf kg−1 leaf N). 
0.02 0.02

�S Parameter controlling when the photosynthesis is at full capacity (◦C) 18.29 18.29 
τ Parameter controlling the temperature delay (days) 14.87 14.87 

Hydraulics model parameters 
ksc,max Maximum soil-canopy hydraulic conductance (per leaf area) 

(mol m−2 leaf s−1 MPa−1) 
0.00057∗ 0.00067∗ 

Variance parameters 
aGPP,j/bGPP,j The parameters which control the variance of the error distribution 

for GPP (g C m−2 ground day−1/−) 
0.41/0.08 0.41/0.08 

model results and performance in terms of the R2 values of 
GPP and Ec. Three alternative simulations were performed by 
(i) enforcing constant leaf N concentrations ( Nm,f ) over time,  
(ii) applying the same Nm,f for both fertilization treatments 
and (iii) applying the same soil N uptake cost (Nu) for both 
treatments. The results were compared to the default model 
case. We also evaluated the effect of removing soil water vari-
ation (θ ), which is another key driving variable. We tested to 
what degree the variability of θ effects the model predictions 
by running the model with the parameters from Table 2 and 
Table 3 with static θ values and comparing to the default case. 
We choose the static value of θ as the mean of the default θ 
time series for both stand treatments. 

Results 
The model can predict seasonal changes in GPP 
and EC 
The result for the parameter estimation is depicted in Figure 3. 
Estimated parameters are provided in Table 3. The  R2 in the 
training set for the run with the highest likelihood was 0.71 
(GPP) and 0.8 (EC) for the fertilized stand. The corresponding 
values for the control were 0.7 (GPP) and 0.79 (EC) (Table 4). 
(Error estimates for all 10 runs are depicted in Figure S1 
available as Supplementary data at Tree Physiology Online). 
Overall, our model was able to capture the inter-seasonal 
variation of GPP and Ec. However, there is a bias present 
when examining the model residuals (Figure S2 available as 
Supplementary data at Tree Physiology Online). Specifically, 
for the estimations of Ec the model overpredicts for lower 
Ec and underpredicts for lower values. For GPP, the model 
underpredicts for higher GPP values. 

The effect of soil N availability on GPP and EC is 
captured by hydraulic conductance per leaf area 
and the site-specific N cost 
The summary statistics of the shared and non-shared param-
eter estimation cases showed similar predictive performance. 
For the non-shared parameter case, the R2 was 0.72 (GPP) and  

0.81 (EC) for the fertilized stand and 0.75 (GPP) and 0.8 (EC) 
for the control stand (see Methods S4 and Table S2 available 
as Supplementary data at Tree Physiology Online). The result 
suggests that the difference between the two treatments can 
be well captured by the differences in N acquisition cost (Nu) 
and hydraulic conductivity per leaf area (ksc,max). Nu (unitless) 
was 0.00 and 0.012 and ksc,max was 0.57 and 0.67 mmol m−2 

leaf s−1 MPa−1 for the fertilized and control treatments, 
respectively (Table 3). 

Environmental drivers of leaf N concentration, 
stomatal conductance and water-use efficiency 
Figure 4 illustrates the variation in optimal stomatal conduc-
tance (gs) and leaf N concentration (Nm,f ) with respect to 
the weather variables, including irradiance (I0), mean ambient 
temperature (Ta), vapor pressure deficit (VPD) and soil  water  
content (θ). We calculated the Pearson correlation coefficients 
between the plant variables and the weather variables. For 
Nm,f the correlation was 0.01 (P = 0.81), −0.7 (P < 0.001), 
−0.26 (P < 0.001) and 0.3 (P < 0.001) for I0, Ta, VPD and 
θ , respectively. For gs the corresponding values were −0.58 
(P < 0.001), −0.43 (P < 0.001), −0.78 (P < 0.001) and 0.32 
(P < 0.001). The result indicates that the optimal value of 
Nm,f mostly respond to changes in Ta, whereas  gs responds 
mostly to the change in VPD and I0. Correlation values shown 
here are for the fertilized stand. The control showed similar 
results and these values can be viewed in Table S3 available as 
Supplementary data at Tree Physiology Online. 

The response of water use efficiency, WUE = GPP/Ec, 
to meteorological variables I0,Ta, VPD and θ are shown in 
Figure 4; here, GPP reference to the GPP of canopy vegetation. 
The correlation coefficients between wue and meteorological 
variables were −0.32 (P < 0.001), −0.51 (P < 0.001), −0.61 
(P < 0.001) and 0.16 (P < 0.001) for I0, Ta, VPD and θ , 
respectively. From the correlation values and Figure 4 we see 
that wue responds similarly to the various weather variables 
as gs. In contrast, the wue response showed little resemblance 
to the weather response of Nm,f , indicating that wue is mainly 
influenced by gs.
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Figure 3. Result from the parameter estimation case when most of the parameters are shared between the two stands, fertilized (a,b) and control (c,d). 
Panels (a, c) and (b, d) depict the data against the corresponding simulated values for ecosystem GPP and canopy transpiration (EC), respectively. The 
95% confidence interval of the fitted Laplace distribution (see Parameter estimation section) is depicted by the shaded area. 

The importance of N and soil water limitations for 
model results 
The effects of variability in leaf N (Nm,f ) and N uptake costs 
(Nu) did not exhibit strong impacts on the model’s ability to 
predict the observed GPP and Ec variation. The use of a static 
Nm,f value instead of a dynamically optimized and the use of 
equal Nm,f or Nu in both treatments, all had minimal impacts 
on the model’s fit to GPP and Ec observations (Tables S4 
and S6 available as Supplementary data at Tree Physiology 
Online). However, applying the same Nuin both treatments 
(Nu = 0.006) shifted the modeled mean Nm,f values to 1.5% 
in both treatments, which diverges strongly from the observed 

values (1.94% for the fertilized stand and 1.16% for the 
control, Lim et al. 2015). The use of static soil water content 
(θ ) had negligible impact on the model’s ability to predict 
observed GPP and Ec (Table S5 available as Supplementary 
data at Tree Physiology Online). 

Discussion 
Model scope and limitations 
Our model estimates canopy transpiration (Ec) and GPP based 
on optimal acclimation of stomatal conductance and leaf N 
concentration. The model can, for the most part, accurately
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Table 4. Model performance measure (RMSE, root-mean-square error; MAPE, mean absolute percentage error; R2, coefficient of determination) during 
the parameter estimation (training) and model validation (validation). Parameters where shared among both stand treatments (fertilized and control). 

GPP EC 

Training Validation Training Validation 

Fertilized 
RMSE 1.14 g C m−2 ground day−1 1.05 g C m−2 ground day−1 0.2 mm day−1 0.19 mm day−1 

MAPE 16.11% 16.3% 28.99% 26.11% 
R2 0.71 0.75 0.8 0.84 
Control 
RMSE 1.04 g C m−2 ground day−1 0.81 g C m−2 ground day−1 0.21 mm day−1 0.19 mm day−1 

MAPE 14.84% 14.57% 28.63% 26.04% 
R2 0.7 0.83 0.79 0.83 

Figure 4. Response of the optimal, stomatal conductance (gs, first row), leaf mass-based N concentration (Nm,f , second row) and water-use efficiency 
(WUE) to change in weather variables: above canopy photosynthetic active radiance (I0, first column), mean ambient air temperature (Ta, second 
column), vapor pressure deficit (VPD, third column) and soil water content (θ , fourth column). The blue circles correspond to the optimal trait values for 
the fertilized stand (F) and orange circles correspond to the control stand (C). Correlation values between traits and weather variables can be found in 
Table S3 available as Supplementary data at Tree Physiology Online. The figure was generated by applying the model to the environmental data 
(Figure 2) using parameters from Tables 2 and 3. 

predict observed inter- and intra-seasonal variation of Ec and 
GPP at the two study sites (Figure 3), although there is a 
moderate bias in the estimations of Ec and underprediction 
of GPP for higher GPP data values (Figure S2 available as 
Supplementary data at Tree Physiology Online). An exception 
is the growing season of 2018, where the site was hit by 
a severe drought period with very high VPD and low soil 

water in the middle of the growing season (Figure 2). During 
2 weeks in this period the model somewhat underestimates 
GPP and Ec for both the fertilized stand and the control, 
indicating an exaggerated reduction of stomatal conductance. 
This divergence may be caused by an underestimation of the 
actual soil water content available to the trees since soil water 
was measured at a maximum depth of 50 cm and the trees
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may have deeper roots. Rooting depth of these trees has not 
been measured, but Scots pine often has tap roots extending 
much deeper than 50 cm (Martinsson 1986). 

Our results demonstrate that the effect of fertilization can 
be captured by adjustments in only two parameters: max-
imum soil-to-canopy hydraulic conductance per leaf area, 
ksc,max, and the site-specific N acquisition cost parameter, Nu. 
The current version of the model predicts GPP and transpira-
tion for trees with a given LAI and potential hydraulic conduc-
tivity per LAI (ksc,max). As such, it is naturally unable to pre-
dict dynamics of these properties, which could be addressed 
in future versions of the model (see Outlook below). 

The impact of increased soil N availability 
The difference between our model and the previous models 
by Eller et al. (2018) and Prentice et al. (2014) is that we 
do not only account for optimal stomatal response but also 
optimize leaf N concentration. Another recent model that 
allows optimization of stomatal conductance and Jmax, which  
is functionally equivalent to our optimization of leaf N, is 
the model by Joshi et al. (2022). However, this model has a 
different hydraulic cost function and, more importantly, does 
not address variation in the cost of N uptake related to soil N 
availability. 

Our model allows us to account for the response to 
increased soil N availability. In agreement with our model 
predictions, it has been observed that increased soil N 
availability results in increased leaf N concentration (Lim 
et al. 2015, Tarvainen et al. 2016). This, in turn, has a positive 
impact on the potential photosynthetic capacity and the Jmax 
in our model. The model results suggest that the fertilization 
treatment radically reduced the trees’ C cost for N uptake 
(the unitless cost parameter Nu) from 0.012 to 0.0. However, 
without further empirical evidence, the zero cost of N uptake 
should be interpreted with care, rather as being too low to 
be separated from other costs by the model analysis than 
as an absolute zero value. Nevertheless, the large difference 
in N uptake costs agrees with the concurrent observed 
difference in C allocation to the components contributing 
to N uptake: fine-root, mycorrhiza and exudates production 
(Marshall et al. 2023). The low-cost uptake of N may be 
possible via mass flow of dissolved N in water uptake, 
which can be the dominant process of N uptake in fertilized 
conditions (Oyewole et al. 2017, McMurtrie and Näsholm 
2018, Henriksson et al. 2021) where the chemical profile of 
soil N is biased toward mineral forms (ammonium and nitrate, 
Inselsbacher et al. 2014) that are mobile in the soil solution. 
This effect may have been further enhanced by higher soil 
water in the fertilized stand related to a higher field capacity 
and more organic matter than in the control stand (Tian 
et al. 2021). Other than fertilized soils, this may occur under 
specific conditions where soil nitrification rates are high. In 
contrast, the control stand represents a more common boreal 
forest soil profile, where N is present mainly in organic and 
less mobile forms, which drives up the N acquisition cost. 

Besides the decrease in Nu, we also get an increase in LAI 
in the fertilized stand. Because the sapwood cross sectional 
area has not increased to the same extent, we get a 12% 
lower Huber value (sapwood area/leaf area) in the fertilized 
compared with the control stand (calculated from field mea-
surements). This contributes to the estimated 15% decrease 
in estimated conductivity per leaf area (ksc,max) in the fertil-
ized stand. These results may reflect an optimality response 

to a lower cost of N uptake and thus lower cost of leaf 
area. 

Given the novel representation of N limitation in our model, 
a relevant question is how important is N limitation for 
accurate GPP modeling? Based on the negligible impacts 
on the model’s ability to reproduce measured GPP and Ec 
of removing temporal- and treatment differences in leaf N 
(Table S4 available as Supplementary data at Tree Physiology 
Online) it may appear unimportant. The same result is also 
found for temporal variation in soil water content θ (Table S5 
available as Supplementary data at Tree Physiology Online), 
which is not too surprising since Figure 4 showed a low 
correlation between θ and gs as well as θ and Nm,f . 

However, these results are not necessarily evidence of irrel-
evance of the N-related variables but rather a lack of obser-
vational constraints. As the model is calibrated to reproduce 
observed GPP and Ec only, it can compensate for lacking 
effects of N or soil water by adjustments of parameters, 
even though they may have side effects on other processes 
and variables that are not constrained by observations. This 
is obvious from the results of applying the same N uptake 
cost in both treatments—it does not deteriorate the GPP and 
Ec predictions (Table S6 available as Supplementary data at 
Tree Physiology Online), but it leads to unrealistic leaf N 
concentrations. Thus, additional data, such as observations 
of seasonal variation in leaf N, would be valuable for better 
quantification of the importance of N limitation in our GPP 
modeling approach. 

The responses of leaf variables and water-use 
efficiency to weather variables 
Based on our results, we can infer that the optimal leaf N 
concentration (Nm,f ) is negatively correlated with tempera-
ture (Figure 4). This is in line with empirical observations 
for Scots pine (Zha et al. 2002), understory evergreen plants 
(Muller et al. 2011) and a global biogeographic pattern of 
different plant species (Reich and Oleksyn 2004). This is 
caused by the shape of the C assimilation curve and the cost 
of maintaining Jmax as a function of Nm,f . The optimum Nm,f 
will occur when the slope of the C assimilation function is 
equal to the slope of the cost line. When the temperature 
increases, the slope of the cost line increases more than the 
C assimilation curve, and thus, the optimal Nm,f will decrease 
(Figure S8 available as Supplementary data at Tree Physiology 
Online). This temperature effect further implies that the leaf 
N content should decrease with higher temperatures in the 
middle of the growth season (see Figure S7 available as 
Supplementary data at Tree Physiology Online). Because the 
model only accounts for photosynthetic N but no other forms 
(e.g. N for structural purposes or storage) that may respond 
differently, it probably overestimates the seasonal N variation. 
Furthermore, the model does not consider seasonal dynamics 
in the vertical N distribution in the canopy. Nevertheless, 
qualitatively similar seasonal variation has been observed in a 
nearby boreal Scots pine forest (Näsholm and Ericsson 1990) 
as well as a temperate Scots pine forest (Wyka et al. 2016). 

As expected, we found that stomatal gs correlated best with 
VPD. A  high  VPD leads to an increase in water loss and 
negative water potential for a fixed value of gs. Thus, gs is 
reduced in response to rising VPD, in order to reduce the 
hydraulic risk cost. Our results (Figure 4) further show that 
the stomatal gs is negatively correlated to the above canopy
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photosynthetic active radiance (I0). However, this correlation 
does not correspond to a direct relationship but reflects a 
correlation between VPD and I0 and confounding variation in 
other drivers, which was confirmed by running the model with 
fixed weather variables (except for I0) (Figure S9 available as 
Supplementary data at Tree Physiology Online). Furthermore, 
we found that the response of WUE to the environmental vari-
ables closely follows that of gs (Figure 4). Thus, wue is more 
strongly correlated to gs than Nm,f , which is not surprising as 
water used as transpiration is directly regulated by gs. In  all  
cases, soil water content (θ ) had a small impact on gs, Nm,f 
and WUE when θ is large (∼θ >  25% for the fertilized stand 
and θ >  15% for the control stand). For lower soil water 
content, a decrease in θ leads to decreases in gs,top, Nm,f ,top and 
wue, driving the observed positive correlation between θ and 
the plant variables and process rates. The difference between 
high and low θ is caused by the monotonically decreasing 
concave down shape of the vulnerability function, P (ψ). For  
low values of θ (highly negative soil water potential, ψs), 
the increase in cost associated with small changes in plant 
variables (the derivative of the cost with respect to the plant 
variables) is larger than for higher θ . 

In summary, while both gs and Nm,f correlated well with 
different weather variables, there is no significant correlation 
between the two plant variables (Pearson correlation = 0.014, 
P = 0.73 for the fertilized stand and 0.00072, P = 0.99 for  the  
control stand, Figure S6 available as Supplementary data at 
Tree Physiology Online). This implies that gs and Nm,f mostly 
respond to different meteorological variables. gs responds 
strongly to irradiance and VPD, while Nm,f responds strongly 
to the ambient temperature. 

Outlook 
The key scientific advancement made by this improved 
model lies in its ability to explain, and accurately predict the 
interacting effects of climate, soil water availability and soil 
N availability on GPP and transpiration, based on an eco-
evolutionary optimality principle (EEO), i.e. optimization 
based on eco-evolutionary theory. This capacity makes the 
model well-suited for studying the impact of climate change 
in N-limited boreal forests. Also, the effects of changes in soil 
N availability, such as fertilization practices and N deposition, 
can be studied by our model. However, one has to be careful 
when applying the model to severe drought conditions as it 
does not yet account for accumulation of hydraulic damages 
(Franklin et al. 2023). A challenge in applying our proposed 
model to other stands is the estimation of the carbon cost 
of N uptake, Nu. In future studies, this parameter could be 
estimated for different experimental stands and statistically 
linked to soil conditions at the stands, such as a nutrient 
limitation index (Van Sundert et al. 2020). The resulting 
relationships can then be used to model Nu at other sites. 
To address long-term effects on forest growth, the model can 
be extended with the capacity to predict carbon allocation 
to the different plant organs, such as branches, fine roots, 
stems and leaves. To this end, our model could be coupled 
with allocation models based on similar EEO principles (e.g. 
Franklin et al. 2012, Fransson et al. 2021). 
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