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A B S T R A C T   

With ongoing climate change the monitoring of tree diversity has become very important for avoiding or at least 
decelerating the loss of biodiversity and for maintaining forest ecosystem resilience. As part of such monitoring, 
spatial indices of tree diversity which are calculated for individual trees often serve as surrogates for more direct 
measures of biodiversity. Mainly for its efficiency and ease of application, relascope sampling is a widespread 
method applied in forest inventory of many countries and thus has often been suggested as a data source for the 
monitoring of tree diversity. Since the interaction between sampling design and spatial diversity indices is not 
always clear to data analysts, we reviewed existing estimators and experimentally examined a new one, con-
ducted extensive sampling simulations using different indices and estimators and additionally analysed the data 
from a large-scale forest inventory in Austria. We found that both forest structure and index algorithm greatly 
influence the sampling error. The largest source of sampling error was the index variance and contrary to our 
expectation not so much the bias due to spatial effects. For diversity indices related to distances, it has turned out 
to be best to apply estimators that include spatial edge correction methods. For all other indices an estimator 
performed better that included information on both the sample trees and their nearest neighbours, as it much 
reduced overall index variance. However, if possible the plus-sampling edge correction method should be 
applied.   

1. Introduction 

Ongoing human-induced climate change is currently unfolding at a 
pace that is considerably faster than what we know from past events of 
natural climate alterations (The Royal Society and the US National 
Academy of Sciences, 2020). Such an unprecedented rate can potentially 
imply a substantial loss of species that are unable to adapt quickly 
(McElwee, 2021; Román-Palacios and Wiens, 2020). Loss of species is a 
major concern in itself, however, research has also shown that biodi-
versity is crucial to ecosystem resilience and thus to sustaining terrestrial 
and marine ecosystems and habitats (Fischer et al., 2006; Matias et al., 
2013; Oliver et al., 2015; Yachi and Loreau, 1999). As a pre-requisite for 
stopping or at least decelerating the loss of biodiversity it is important to 
have efficient monitoring systems in place that provide the necessary 
information to be able to interpret ongoing trends correctly (Hoffmann, 
2022; Kühl et al., 2020). 

In forest ecosystems, individual-tree indices of spatial diversity are 
often considered surrogates for more direct measures of biodiversity, 
since forest ecosystems with complex structures usually provide more 
habitats that can accommodate a greater diversity of plant and animal 
species than forests with low tree diversity (Aguirre et al., 2003; Gadow, 
1993; Neumann and Starlinger, 2001; Pommerening and Grabarnik, 
2019). Such local measures of spatial tree diversity are based on the 
nearest-neighbour principle and are particularly informative, since they 
supply information about tree species, tree size and tree location diversity, 
see Table 1. They also have the advantage that they are comparatively 
easy to estimate from data collected in existing forest inventories that 
were carried out for other purposes and this can even be achieved 
retrospectively by analysing inventory data that have been collected 
some time ago (Motz et al., 2010; Sterba, 2008). 

The estimation of spatial tree diversity indices from simple, circular 
or rectangular sample plots (also referred to as fixed-area plots) is 
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comparatively straightforward. All trees whose stem-centre coordinates 
occur inside such plots are considered sample trees, i.e. they are included 
in the sample. Tree diversity indices can be calculated for each sample 
tree and arithmetic means of these sample-tree indices constitute the 
index estimate of each sample point which forms the centre of the 
sample plot. Naturally, trees outside the sample plots have zero inclusion 
probabilities and are therefore not included in the sample. The proba-
bility that a given individual is included in a sample is proportional to 
the sample plot area and the fixed-area sample plot constitutes the in-
clusion zone which is the same for all sample trees of a given fixed-area 
sample plot (Gregoire and Valentine, 2008; Mandallaz, 2008). 

Sampling tree diversity indices based on fixed-area plots usually 
carries a low sampling error (Motz et al., 2010). An important source of 
bias much discussed in spatial statistics (Illian et al., 2008) are edge 
effects which arise from the fact that some of the nearest neighbours of 
sample trees are just outside the sample plot but according to the sam-
pling design have not been accounted for. Such nearest neighbours are 
essential for the calculation of spatial tree diversity indices (Pommer-
ening and Grabarnik, 2019). One important method for mitigating edge 
effects is plus-sampling (Hui and Albert, 2004; Mauro et al., 2017; Motz 
et al., 2010), where off-plot tree neighbours of sample trees are 
measured as well. Information about such off-plot neighbour trees is not 
included in the sample but merely used to compute the spatial diversity 
indices. Often the measurement of off-plot neighbours is not possible in 
forest inventories primarily designed for other purposes, because this 
would constitute a considerable additional effort or the data available 
for the index calculation have already been collected in the past without 
considering plus-sampling and it is not possible to re-visit the sample 
plots for collecting additional information on tree neighbours. 

The estimation of spatial tree diversity indices is less straightforward 
in nested sample plots (Gadow et al., 2021; Häbel et al., 2019; Roesch, 
2008), where tree information from more than one sample plot is 
collected or the sample trees relating to the same sample point have 
different inclusion zones. Nested plots typically share the same sample 
point as plot centre but have different sizes which imply different in-
clusion probabilities associated with each tree depending on the plot the 
tree is assigned to according to the sampling design. In contrast to fixed- 
area plots, the design of nested sample plots also implies that not all 
trees are sampled between the sample plot centre and the radius of the 
largest plot. Since they are often part of the original spatial neighbour-
hoods, these unselected trees are a second source of sampling error in 
addition to edge effects. Typical examples of nested plots are concentric 
circular sample plots. The set of individual-tree inclusion zones associated 
with relascope sampling (also referred to as angle count (Barabesi and 
Fattorini, 1999; Bitterlich, 1948) or point sampling (Grosenbaugh, 
1958)) form a certain analogy to nested plots: In relascope sampling, 
each tree’s inclusion zone radius is proportional to its stem diameter and 
a viewing angle expressed by the basal-area factor. Therefore relascope 
sampling can be described as a sampling method where each tree of a 

sample has an individual inclusion zone or ‘sample plot’. Thus relascope 
sampling can be interpreted in terms of sampling that is based on cir-
cular sample plots. 

The application of nested plots and relascope sampling has turned 
out to be more efficient in forests with complex forest structure where 
tree sizes can vary considerably even at close proximity and small-sized 
trees can occur in great numbers whilst large trees are comparatively 
rare (Mandallaz and Lanz, 2001). These sampling designs have therefore 
often been introduced in countries where forest management followed 
the principles of continuous cover forestry (Pommerening, 2023) which 
promotes diverse forest structure. Both concentric circular sample and 
relascope sample plots are common in large-scale forest inventories, e.g. 
in regional and forest estate inventories but also in national forest in-
ventories (NFI). Particularly at this spatial scale, plus-sampling is often 
argued not to be affordable. Therefore the existence of different inclu-
sion probabilities for sample trees, the design-based exclusion of trees 
and the ignorance of off-plot neighbours of sample trees can lead to 
considerable sampling errors thus decreasing the quality of the moni-
toring information. However, nested plots and relascope sampling are a 
monitoring reality in many countries and an important source of tree 
diversity information. Many data analysts process nested-plot and 
relascope-sampling data for estimating measures of tree diversity and 
are unaware of the interaction between indices and sampling design. 
Our study therefore established the associated possibilities and 
limitations. 

The objectives of this paper are (1) to explain in detail the principles 
of estimating tree diversity indices from relascope sampling data, since 
this is not well documented in the literature, and (2) based on extensive 
sampling simulations to identify factors influencing the estimation of 
different diversity indices by using alternative, heuristic estimators. 
Finally (3) we validated all estimators using data from a real forest estate 
inventory in Austria and provided conclusions based on our findings. 

2. Materials and methods 

2.1. Spatial diversity indices 

We selected five different tree diversity indices measuring the di-
versity of tree location, tree species and tree size diversity (Table 1). 
These indices are often considered in the monitoring of tree diversity 
(Aguirre et al., 2003; Gadow, 1993; Neumann and Starlinger, 2001; 
Pommerening and Grabarnik, 2019), but they were also chosen to 
represent a range of different approaches to constructing such indices: 
One index included a ratio (Eq. 1 in Table 1), others used indicator 
functions (Eqs. 2, 3 and 5 in Table 1) and one was a combination of 
different approaches (Eq. 3 in Table 1). To include this range of index 
construction methods was important in order to understand how they 
interact with the relascope inventory design. 

The aggregation index of Clark and Evans (1954) is one of the earliest 

Table 1 
Definitions of the spatial tree diversity indices used in this study.  

Eq. Name Diversity 
of 

Formula Variable definitions 

(1) Aggregation index (Clark 
and Evans, 1954) 

Location R =
r

Er 

r – observed mean arithmetic distance between sample tree i and its first nearest 

neighbour; Er = 1/
(

2 ×
̅̅̅̅̅̅̅̅̅̅
N/A

√ )
with N – number of trees and A – sample plot area. 

(2) Species mingling 
(Gadow, 1993) 

Species Mi =
1
k
∑k

j=1
1
(

speciesi ∕= speciesj

)
1(A) = 1, if A is true, otherwise 1(A) = 0 

(3) Weighted species mingling 
(Hui et al., 2011) 

Species 
M′

i =
1

k × c
∑k

j=1
1
(

speciesi ∕=

speciesj

)
× si 

si – species richness among the k nearest neighbours of tree i; c = min(S, k + 1), where 
S – total species richness (either in the total population or at a specific sample point) 

(4) 
Size differentiation 
(Gadow, 1993) Size Ti = 1 −

1
k
∑k

j=1

min
(
mi,mj

)

max
(
mi,mj

) mi – size of subject tree i, mj – size of neighbour j 

(5) Size dominance 
(Aguirre et al., 2003) 

Size Ui =
1
k
∑k

j=1
1
(
mi > mj

)
See previous definitions  

A. Pommerening and H. Sterba                                                                                                                                                                                                              



Ecological Informatics 81 (2024) 102579

3

diversity indices quantifying the spatial pattern of plant dispersion. The 
index is very efficient and popular. Observed mean first-neighbour dis-
tance, r, is divided by the mean distance of a tree pattern where the tree 
locations are completely random, Er, (Eq. 1 in Table 1). Usually, the 
interpretation of R values is as follows: R > 1, if the pattern has a ten-
dency to regularity, R = 1, if it is completely random and R < 1, if there 
is clustering in a pattern. We also monitored the estimation of r sepa-
rately of R in order to better understand the behaviour of the R 
estimations. 

Gadow (1993) defined spatial species mingling as the mean hetero-
specific fraction of plants among the k nearest neighbours of a subject 
plant i (Eq. 2 in Table 1). Due to the discrete nature of outcomes for a 
given k, there are only k + 1 possible values Mi can take, i.e. 0/k, 1/k, …, 
k/k, where the number in the numerator denotes the number of neigh-
bours with a species different from that of tree i. All index values lie 
between 0 and 1. 

Hui et al. (2008) and Hui et al. (2011) proposed the species richness- 
weighted mingling index M′

i (Eq. 3 in Table 1) as an extension of the 
original mingling index by Gadow (1993) by merging the concept of 
species mingling with the concept of species richness. Accordingly, each 
Mi (from Eq. 2) is multiplied by the species richness si among the k 
nearest neighbours. Wang et al. (2021) amended the index definition by 
introducing term c in Eq. (3) to ensure that the maximum number of 
species that are theoretically possible in a group of k + 1 trees is limited 
by the number of species present in the forest stand or in the monitoring 
area studied. Values of M′

i are generally smaller and take a larger range 
of different values than those of Mi. 

Gadow (1993) defined size differentiation (Eq. 4 in Table 1) as the 
mean ratio of smaller-sized and larger-sized marks of the k nearest 
neighbours subtracted from one. Size differentiation produces contin-
uous results between 0 and 1 and Ti increases with increasing average 
size difference between neighbouring trees. 

The size dominance index (Eq. 5 in Table 1) was introduced by Hui 
et al. (1998) and Aguirre et al. (2003) and gives the proportion of the k 
nearest neighbours dominated by tree i. The index draws on similarities 
with the construction of the mingling index, thus transforming a 
continuous variable into a binary one and in analogy to the species 
mingling index also produces only k + 1 possible Ui values. 

All diversity indices were estimated for k = 1 nearest neighbour and 
those of Eqs. (2), (3), (4) and (5) were additionally estimated for k = 4 
neighbours to better understand the effect of k on the estimators. 

2.2. Sampling design and estimators 

2.2.1. General, non-spatial estimators 
The standard, unbiased inventory estimator used in the context of 

both simple, circular sample plots and nested plots includes so-called 
Horvitz-Thompson (HT) weights (Cochran, 1977; Gregoire and Valen-
tine, 2008; Horvitz and Thompson, 1952; Mandallaz, 2008). Assuming 
circular sample plots, for a sample tree i this weight is typically defined 
as 

wi =
1

r2
i × π (6)  

and is often expressed as the reciprocal of hectare, i.e. ha− 1. ri is the 
radius of the inclusion zone that tree i is related to according to the 
sampling design. The product r2

i × π is the area of this zone. As a 
consequence, a tree in a hypothetical, small inclusion zone carries a 
larger weight wi than the same tree in a large sample plot and corre-
sponding inclusion zone. The general idea of HT weights is to give rarer 
events larger weights than the more common events (Pommerening and 
Stoyan, 2006). wi is the reciprocal of the probability that tree i is 
included in the sample. 

Due to our validation data set (see Section 2.3.3) in this study, our 
interest is mainly in the estimation of sample point means rather than in 

the estimation of means for the entire sampling area. Using HT weights, 
the general, non-spatial sample-point estimator, ŷ, of an arbitrary 
characteristic y can be written as 

ŷ =
1

∑n
i=1wi

∑n

i=1
yi ×wi. (7) 

In Eq. (7), n is the number of trees included in the sample at a given 
sample point, i.e. the number of sample trees. In the remainder of this 
paper, we referred to Eq. (7) as the inventory estimator. 

2.2.2. NN1 and NN2 estimators 
Unlike traditional forestry characteristics such as tree stem diameter 

(usually measured at 1.3 m above ground level) or basal area (cross- 
sectional surface area at 1.3 m above ground level), tree diversity indices 
as used in this study are spatially explicit and their calculation involves 
not only characteristics of sample tree i but also characteristics of 
neighbouring trees j. This implies (1) that edge effects potentially occur 
and need to be accounted for. Also, (2) the question arises whether the 
simple HT weight of Eq. (6) is sufficient or whether the HT weight(s) of 
the nearest neighbours involved in the index calculation need to be 
considered as well. 

In order to tackle problem (1), Hanisch (1984) and Pommerening 
and Stoyan (2006) introduced two alternative weights that share simi-
larities with HT weights and account for possible edge effects, NN1 and 
NN2, which were originally proposed in the context of point process 
statistics and therefore for data obtained from mapping forests. In both 
approaches, the tree diversity characteristic of tree i only contributes to 
the sample point estimate, if distance ci between tree i and its nearest 
neighbour is smaller than distance si between tree i and the sample-plot 
or inclusion-zone boundary (see Fig. 1). Checking up on the relationship 
between the two distances is handled by an indicator function, 1(ci < si), 
returning the value of 1, if the condition in brackets is true and 
0 otherwise. A simple alternative to Eq. (6) is to define a weight that only 
considers sample trees fulfilling condition ci < si: 

Fig. 1. Illustration of the working principle of the indicator function 1(ci < si). 
PS is the sample point coinciding with the centre of the circular sample plot. 
Points P1 and P2 represent locations of trees included in a relascope sample and 
for simplicity we assume that they have the same stem diameter. For point P1, 
1(ci < si) = 1, since its distance s1 to the sample plot boundary is larger than 
distance c1 to the nearest neighbour P(k)

1 and for P2, 1(ci < si) = 0, since s2 < c2. 
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w(2)
i = 1(ci < si)×wi =

1(ci < si)

r2
i × π (8) 

w(2)
i is the weight of the NN2 estimator, which is not ratio-unbiased 

(Hanisch, 1984; Illian et al., 2008; Pommerening and Stoyan, 2006), i. 
e. although intuitively appealing the estimator is not supported by sta-
tistical theory. An alternative to the NN2 estimator is the more sophis-
ticated NN1 estimator. This estimator not only excludes some sample 
trees in the same way as NN2, but also modifies the individual-tree in-
clusion zones and as a consequence the NN2 weights. The inclusion zone 
radius, ri, is reduced by distance, ci, between tree i and its nearest 
neighbour (Eq. 9). This reduction results in smaller individual-tree in-
clusion zones and larger weights, w(1)

i , of those sample trees that meet 
condition ci < si, particularly if ci is large. These potentially large 
weights, w(1)

i , are supposed to compensate for the data loss incurred due 
to the condition of the indicator function (Pommerening and Stoyan, 
2006). Weight w(1)

i is thus defined as 

w(1)
i =

1(ci < si)

(ri − ci)
2
× π

. (9) 

For estimating the sample plot means of spatial diversity indices, 
both weights, w(1)

i and w(2)
i , are used in the same way as wi in Eq. (7). Eq. 

(9) leads to ratio-unbiased estimations (Hanisch, 1984; Illian et al., 
2008; Pommerening and Stoyan, 2006), i.e. the NN1 estimator has a 
better statistical foundation than the NN2 estimator. 

When applying the NN1 and NN2 estimators, we expected only a 
partial bias reduction, since some small sample-tree neighbours P(k)

i 
(Fig. 1) not very far from the sample point are neighbours in nature but 
may not have been included in the relascope sample for design reasons. 
In that case, as an alternative other neighbours are considered in the 
NN1 and NN2 calculations, which potentially contribute to a bias. 

2.2.3. NN3 estimator 
We also studied the nearest-neighbour estimator suggested by Mauro 

et al. (2017), i.e. 

̂̈y =
1

∑n
i=1
∑k

j=1wi,j

∑n

i=1

∑k

j=1
yi × wi,j. (10) 

This estimator only involves the weights of the nearest neighbours of 
sample trees. In Eq. (10), k is the number of nearest neighbours 
considered and wi,j is the weight (Eq. 6) of the jth neighbour tree of 
sample tree i. Since in monitoring practice only sample data are avail-
able, these neighbour trees j are sample trees and, as mentioned in 
Section 2.2.2, may therefore partly differ from the Euclidean nearest 
neighbours observed in nature. 

2.2.4. NN4 estimator 
As an explorative line of investigation and as a logical “compromise” 

between and combination of the inventory estimator (Eq. 7) and Eq. 
(10), we designed a fourth nearest-neighbour estimator that not only 
includes the weights of the nearest neighbours of sample trees but also 
those of the sample trees. This NN4 estimator we defined as 

̂̃y =
1
2

(
1

∑n
i=1wi

∑n

i=1
yi ×wi +

1
∑n

i=1
∑k

j=1wi,j

∑n

i=1

∑k

j=1
yi ×wi,j

)

. (11) 

In Eq. (11), k is again the number of nearest neighbours considered 
and as in Eq. (10), wi,j is the weight (Eq. 6) of the jth neighbour tree of 
sample tree i. 

For calculating the aggregation index by Clark and Evans (1954), r 
(Eq. 1 in Table 1) is estimated according to Eqs. (7)–(11) and tree density 
λ = N/A is estimated in a non-spatially explicit way for each sample 
point as λ̂ = 1∑n

i=1
wi

. 

Whilst NN1 and NN2 address the edge-bias problem, the NN3 and 

NN4 estimators take care of the fact that information of sample tree 
neighbours also contributes to the index estimation. According to the 
sampling design, these neighbours are accounted for in inclusion zones 
different from that of tree i. As a consequence, these neighbours typically 
have weights, wi,j, that differ from those of sample tree i and are ignored 
by the estimators of Eqs. (8) and (9). 

2.3. Data 

For simulating the approximate equivalence of large estate in-
ventories, two fully mapped large forest areas were identified in Austria, 
i.e. Hirschlacke and Rosalia forest areas. In addition, we used data from 
a real large-scale forest inventory in Kammer forest for validation. 

2.3.1. Hirschlacke forest area 
The Hirschlacke forest area (48.64 N, 13.96 E) is situated in the 

northwestern corner of Austria, near the borders to the Czech Republic 
in the North and to Germany in the West. When Hirschlacke was 
established as a research forest in 1977, the trees were 120 years old and 
dominated by Norway spruce (Picea abies L. KARST.). The forest also in-
cludes smaller proportions of silver fir (Abies alba MILL.) and beech 
(Fagus sylvatica L.). After 1977, the Hirschlacke forest area was treated 
by a combination of local, individual-based crown thinnings and target 
diameter harvesting (Reininger, 2000) for achieving a transformation to 
a complex-structured forest. After 40 years of treatment and observa-
tion, the Hirschlacke forest area is approaching a structure reminiscent 
of that which is typical of single-tree selection systems (Sterba, 2004). 
For the sampling simulation study, a 153 × 166 m large rectangular sub- 
plot and the data of the 2017 survey were used. 

2.3.2. Rosalia forest area 
The Rosalia forest area (48.72 N, 16.17 E) is situated in the Rosalia 

Mountains in the eastern part of Austria at the northern border between 
the federal states Lower Austria and Burgenland. The area is part of the 
university forest of the University of Natural Resources and Life Sci-
ences, BOKU, and includes a mixture of mainly Norway spruce, Scots 
pine (Pinus sylvestris L.), larch (Larix decidua MILL.) and beech. Before 
1980 the forest area was managed as part of an agricultural estate with 
irregular, selective single-tree harvests which gradually gave rise to a 
complex CCF structure. Later on the ownership changed and the forest 
structure was simplified (Sterba, 2004). When the monitoring data were 
analysed in 1997, the forest was 98 years old with only a small cohort of 
young trees. For the simulation study, a 170 × 164 m large rectangular 
sub-plot and the data of the 1997 survey were used. 

2.3.3. Kammer forest area 
In 2006, a large-scale forest inventory based on relascope sampling 

with basal area factor 4 m2 ha− 1 was performed in the Kammer forest 
area (47.93 N, 13.60 E), a 750-ha forest district which is owned by the 
same Prämonstratenser Chorherrenstift Schlägl in Upper Austria that 
also owns the Hirschlacke forest area. A detailed description of the sites 
and the location of the forest area are given in Sterba (2008). Trans-
formation to CCF had started here 40 years ago, i.e. the forest already 
has a considerable degree of complexity. Similar to the Hirschlacke 
forest area, Kammer is dominated by Norway spruce but also involves 
silver fir and beech. The inventory included a total of 245 sample points, 
but only 169 were used in this study, as they included more than three 
sample trees as required by the diversity-index estimators NN1-NN4. In 
the spirit of plus-sampling, the first neighbour of each sample tree was 
additionally measured irrespective whether this neighbour was included 
in the sample or not. These data were used for a validation of the results 
obtained from the sampling simulations. 

The highest densities both in terms of the number of trees and basal 
area per hectare occur in the Hirschlacke forest area (Table 2, Fig. 2). 
The Kammer forest area has the lowest basal area but the second highest 
number of trees per hectare. Quadratic mean diameter is by far the 
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largest at Rosalia and, owing to the high number of small, regenerated 
trees (Fig. 2A), the smallest at Hirschlacke. Tree density is also reflected 
well by the average distance between a tree and its first nearest neigh-
bour, r. The quantity is largest at Rosalia and smallest at Hirschlacke. 
Apparently the tree locations form the most regular spatial pattern at 
Kammer forest area and there is a moderate cluster formation at Hirs-
chlacke. Species mingling is moderately high in Rosalia and Kammer 
forests, but very low at Hirschlacke, mostly due to the dominance of 
Norway spruce. Stem-diameter differentiation is highest at Hirschlacke, 
but size dominance has a maximum at Rosalia and a minimum in the 
Kammer forest area. 

The stem-diameter distributions show the strong influence of Nor-
way spruce at Rosalia (Fig. 2B) and Kammer (Fig. 2C). European beech is 
also very prominent in these two forests so that both forest areas are 
clearly mixed in terms of species proportions. By contrast, the Hirs-
chlacke site is almost entirely made up of Norway spruce, which explains 
the previously mentioned low species mingling value in Table 2. Hirs-
chlacke (Fig. 2A) shows clear signs of approaching a negative expo-
nential diameter distribution which is typical of selection forests 
(Pommerening, 2023; Schütz, 2001). A similar trend seems to exist for 
Kammer (Fig. 2B), however, since the stem-diameter distribution is 
estimated from the inventory data of a forest estate, the underlying 
samples were drawn from multiple forest stands across a very large area. 

2.4. Sampling simulation 

To study the behaviour of the estimators explained in the Section 2.2 
and the interaction between the relascope sampling design and the tree 
diversity indices (Section 2.1), we carried out sampling simulations in 
the fully mapped forest areas described in the Section 2.3. The sampling 
simulator simulated systematic sampling grids at a random angle to the 
plot boundaries and at a distance of 25 m between grid points. These 
grid points were the sample points where relascope samples were 
simulated. Based on the definition of the basal area factor (van Laar and 
Akça, 2007), trees were included in the sample, if 

‖PS − Pi‖ < ri =
50̅̅̅

v
√ × di. (12) 

In Eq. (12), PS is an arbitrary sample point, whilst Pi is the location of 
sample tree i (see Fig. 1). The expression ‖PS − Pi‖ denotes the Euclidean 
distance between points PS and Pi. The individual inclusion zone radius 
of tree i is ri and depends on basal area factor v and on the tree’s stem 
diameter di. The basal area factor defines the sample size at each sample 
point, i.e. more trees are included with smaller values of v than with 
larger ones (Bitterlich, 1984). We ran independent simulations for v = 1,
1.5,2,2.5,…,5. 

For each basal area factor, we simulated as many independent in-
dividual sampling grids as necessary to obtain at least 100,000 sample 
points in each of the two forest areas, i.e. Hirschlacke and Rosalia. For 
each of the nine basal area factors and approximately 100,000 sample 
points we estimated the tree diversity indices of Table 1 according to the 
standard inventory estimator of Eq. (7) and additionally by using the 
NN1 (Eq. 9), NN2 (Eq. 8), NN3 (Eq. 10) and NN4 (Eq. 11) estimators. We 
compared the results of these estimations with those obtained from 
applying again the standard inventory estimator of Eq. (7), however, 
this time using plus-sampling. The results of the estimations that 

included plus-sampling were treated as a reference. One should note that 
the estimation of spatial diversity indices including plus-sampling can 
still be biased, because some trees around the sample point, particularly 
small trees at larger distance from the sample point, may not have been 
included in the sample due to the selective sampling design (cf. Eq. 12) 
and therefore the spatial pattern formed by the sample trees may sys-
tematically misrepresent the underlying spatial tree pattern in nature. 
Still, this comparison is very meaningful for tree diversity monitoring, as 
edge effects are often perceived as the most important source of bias in 
the estimation of spatial tree-diversity indices from forest inventory data 
and plus-sampling is currently the standard recommendation for 
addressing this problem. Accordingly, plus-sampling was also applied in 
the Kammer validation data set (see Section 2.3.3). 

For evaluating the simulation results and as an expression of sam-
pling error we quantified relative root mean squared error (rRMSE) 
defined as 

rRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
m− 1

∑m
i=1(ŷi − yi)

2
+

(

1
m

∑m
i=1(ŷi − yi)

)2
√
√
√
√

y
, (13)  

where ŷi is the ith estimated diversity index per sample point, yi is the 
corresponding ith estimation based on plus-sampling, m is the number of 
simulated sample points (m ≈ 100,000) and y is the mean diversity 
index based on plus-sampling. In addition we also calculated the relative 
bias as 

rBias =
∑m

i=1(ŷi − yi)

my
, (14) 

For this analysis we used our own R code (R Development Core 
Team, 2023) and the spatstat R package (Baddeley et al., 2016). 

3. Results 

3.1. Sampling simulations 

In terms of general patterns and trends, the results obtained from the 
extensive sampling simulations are similar in both forests with the 
exception that the relative root mean square error (rRMSE) had a ten-
dency to be generally larger in the Hirschlacke forest area (Fig. 3) than at 
Rosalia (Fig. 4) which can be attributed to the difference in tree location 
diversity as expressed by the aggregation index, see Table 2. This 
outcome emphasises that the sampling error strongly depends on forest 
structure and therefore can differ from forest to forest. 

All rRMSE values are comparatively large highlighting the general 
difficulty to estimate spatial diversity indices from relascope sample 
data. 

Generally, as expected, the sampling error decreases with increasing 
sample size. The rate of decrease much depends on the forest and the 
diversity index. For example, all estimators show a strong response to 
sample size (indicated by the curvature of the graphs) for diversity index 
M(1) in Fig. 4 whilst for indices M(4) (Eq. 2 in Table 1) and M′(4) (Eq. 3 in 
Table 1) in Fig. 3 we can only see a weak response of the five estimators 
to sample size, i.e. the curves are almost horizontal lines. 

It was interesting to observe that in both forests for the same di-

Table 2 
Population basal area, G, number of trees per hectare, N, quadratic mean diameter, dg , nearest-neighbour distance, r, aggregation index, R, species mingling, M(1), 
stem-diameter differentiation, T(1), and stem-diameter dominance, U(1), (see Table 1) in the three study areas Hirschlacke, Rosalia and Kammer. For Kammer forest, 
the diversity indices were calculated using plus-sampling for the first Euclidean neighbour which was included in the inventory.  

Forest G [m2 ha− 1] N [ha− 1] dg [cm] r [m] R M(1) T(1) U(1)

Hirschlacke 38.7 938.3 22.9 1.6 0.96 0.17 0.37 0.51 
Rosalia 36.5 375.9 35.2 3.1 1.21 0.46 0.32 0.55 
Kammer 31.3 557.9 26.7 2.1 1.35 0.38 0.34 0.47  
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versity indices with k = 4 rRMSE was usually lower than with k = 1 
nearest neighbours. This finding was unexpected, since with increasing k 
the spatial neighbourhood and associated estimation errors potentially 
increase, which would also increase the problems of unobserved 
neighbours. 

Diversity indices U (Eq. 5 in Table 1) and T (Eq. 4 in Table 1) are 
generally associated with a lower rRMSE than M (Eq. 2 in Table 1). The 
combination of M and species richness in index M′ (Eq. 3 in Table 1) 
apparently leads to a marked increase of the sampling error. This is 
plausibly related to the variability of total species richness, S, estimated 
at each sample point. 

Only for the mean distance between a sample tree and its first nearest 
neighbour, r, and for R (Eq. 1 in Table 1), the NN1 (Eq. 9) and NN2 (Eq. 
8) estimators lead to a lower rRMSE than NN3 and NN4. In these two 
cases but also generally across all diversity indices the NN2 estimator 
results in a lower sampling error than the NN1 estimator. The rRMSE 
values related to r and R are nearly identical at Rosalia, whilst the dif-
ference between the two quantities is slightly greater at Hirschlacke. 
This seems to suggest that, in contrast to the other composite index, M′, 
the influence of estimated E r (Table 1, Eq. 1) on the sampling error of 
the aggregation index is comparatively low. The NN1 and NN2 esti-
mators are apparently poor choices for any diversity index not directly 
related to distances. 

Generally speaking the NN4 estimator (Eq. 11) that considers the 
weights of both sample trees and of the neighbours of sample trees is in 
most cases an improvement over the NN3 estimator (Eq. 10), although 
the improvement of NN4 over the inventory estimator (Eq. 7) is low 
except for diversity index U. Explorative test simulations have shown 
that averaging as in Eq. (11) retains a comparatively large influence of 
the weights of the sample trees as opposed to those of their neighbours 
and this appears to keep the overall sampling error low. The inventory 
estimator is generally the best choice for the M and M′ indices, whilst T is 
situated halfway between U and M in terms of the best choice of esti-
mator, where the inventory estimator, NN3 and NN4 largely show quite 
similar performances. 

3.2. Forest inventory analysis 

The analysis of the large-scale forest inventory in the Kammer forest 
area partly confirmed the results of the sampling simulation (see Section 
3.1) and partly offered new insights. Given an average sample size of 7.8 
trees per sample point (as a result of the application of basal area factor 4 
m2 ha− 1) the rRMSE values are lower than those in the Hirschlacke 
forest area but slightly larger or approximately the same compared to 
those obtained from the Rosalia simulations (Figs. 3, 4 and 5A). 

Similar to the simulation results we can clearly see that in terms of 
rRMSE the NN1 and NN2 estimators are the best choice for r and for R, 
whilst for M(1), T(1) and U(1) the inventory, NN3 or NN4 estimators result 
in the lowest rRMSE values (Fig. 5A). The good performance of the in-
ventory estimator for M(1) confirms the simulation results, whilst the 
poor performance of NN3 and NN4 for U(1) is surprising and difficult to 
explain. 

Of particular interest are the rBias results (Fig. 5B). For r and for R all 
estimators overestimate the indices using plus-sampling, whilst for M(1), 
T(1) and U(1) all estimators underestimate the indices based on plus- 
sampling. Across all five diversity indices it is always the NN2 esti-
mator followed by the NN1 estimator that leads to the lowest rBias 
values. By contrast, the NN3 and NN4 estimators often result in the 
largest values of rBias. This result was not so clear from the rBias results 
obtained from the sampling simulations (not shown). These results 
confirm that the NN1 and NN2 estimators have a better theoretical 
foundation whilst the inventory, the NN3 and the NN4 estimators 
apparently help reduce the overall variation. 
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4. Discussion and conclusions 

In times of climate change, monitoring of tree diversity is more 
important than ever for mitigating the loss of diversity and resilience in 
forest ecosystems (Fischer et al., 2006; Hoffmann, 2022; Kühl et al., 
2020; McElwee, 2021; Oliver et al., 2015; Román-Palacios and Wiens, 
2020; The Royal Society and the US National Academy of Sciences, 
2020). Spatial indices of tree diversity often serve as surrogates for more 
direct measures of biodiversity, but also provide strategic information 
on forest structure which is crucial to sustainable forest management 
(Aguirre et al., 2003; Gadow, 1993; Neumann and Starlinger, 2001; 
Pommerening and Grabarnik, 2019). To save costs, the monitoring of 
tree diversity is often combined with existing programmes or systems of 
forest inventory (Motz et al., 2010; Sterba, 2008) which raises the 
question of appropriate estimators, particularly when the measures of 
tree diversity are spatially explicit and the forestry characteristics 

estimated in the same surveys are not. 
Our study confirmed that estimating spatial diversity indices from 

relascope sample data leads to varied outcomes, since each tree included 
in the sample – subject to its size – has a separate and unique, circular 
inclusion zone. To add more complication, spatial tree diversity indices 
are based on the nearest-neighbour principle and following standard 
forest inventory protocols the neighbours of sample trees are usually not 
explicitly recorded in the sample. Furthermore, forest structure clearly 
impacts the sampling error, which was also reported by Häbel et al. 
(2019), and so does the algorithm of the diversity index. If possible, 
simple circular sample plots should therefore be preferred when moni-
toring spatial diversity indices. 

However, often the data analysist involved in monitoring has no 
choice or there are convincing arguments for using relascope samples. 
For example, as mentioned before, the sampling of tree diversity indices 
is often added to existing forest inventories (Motz et al., 2010; Sterba, 

Fig. 3. Relative root mean square error (rRMSE, Eq. 13) of the diversity indices of Table 1 over sample size, i.e. the mean number of sample trees per relascope 
sample plot in the Hirschlacke forest. Black – inventory estimator (Eq. 7), red – NN1 estimator (Eq. 9), blue – NN2 estimator (Eq. 8), orange – NN3 estimator (Eq. 10), 
green – NN4 estimator (Eq. 11). The upper index in round brackets indicates the number of nearest neighbours, k, used to estimate the corresponding diversity index. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2008) and nested sample plot methods as well as relascope sampling 
provide a number of efficiency benefits that simple circular sample plots 
cannot offer (Häbel et al., 2019). In that case it is good practice to sample 
off-plot nearest neighbours of sample trees as well (plus-sampling) or 
alternatively to determine the diversity indices in-situ, i.e. in the field, 
thus automatically involving off-plot nearest neighbours (Motz et al., 
2010). For logistic reasons or when existing (historic) inventory data are 
re-analysed for diversity indices, plus-sampling is often not possible. In 
such situations it is generally good advice to estimate only simple di-
versity indices which exclusively rely on a single source of information, 
since the sampling errors of components of diversity indices potentially 
add up to become very large when combined, such as in the case of 
weighted species mingling index, M′ (Eq. 3 in Table 1). In our study, 
small and large numbers of neighbours, k, did not make a big difference 
in terms of the sampling error. There was even a case, where the rRMSE 
values associated with T(4) (Eq. 4 in Table 1) were lower than those 

related to T(1) (Fig. 4). However, it may be prudent not to extend k 
beyond 4, particularly when the basal area factor is 4 or larger. 

NN1 and NN2 estimators (Pommerening and Stoyan, 2006) are 
generally associated with a low bias, although they were not originally 
designed for relascope sampling. Our results suggest that they can be 
considered safe options, since they are edge-correction methods that are 
more firmly based on statistical theory. Therefore, for indices directly 
related to distances, according to our results the NN2 estimator should 
be used. Unfortunately both NN1 and NN2 estimators have the disad-
vantage that they exclude the diversity index values of some sample 
trees. Since the number of sample trees per sample point if often small, 
such exclusions increase the index variance and thus the rRMSE in 
relascope-based forest inventories. Our simulation results highlighted 
that the variance between sample plots constitutes the largest contri-
bution to sampling errors. This variance is likely to increase in forests 
managed for continuous cover forestry or similar concepts 

Fig. 4. Relative root mean square error (rRMSE, Eq. 13) of the diversity indices of Table 1 over sample size, i.e. the mean number of sample trees per relascope 
sample plot in the Rosalia forest. Black – inventory estimator (Eq. 7), red – NN1 estimator (Eq. 9), blue – NN2 estimator (Eq. 8), orange – NN3 estimator (Eq. 10), 
green – NN4 estimator (Eq. 11). The upper index in round brackets indicates the number of nearest neighbours, k, used to estimate the corresponding diversity index. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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(Pommerening, 2023), as structural complexity is an important objec-
tive of this type of forest management. Compared to variance, the 
contribution of bias to the values of rRMSE is rather small. This is where 
the NN3 and NN4 estimators can help, since they are effective in 
reducing the overall index variation. They have performed well with all 
diversity indices other than distance and the aggregation index. In this 
context, it is particularly interesting that the NN4 estimator, which is 
based on the weights of both sample trees and of the neighbours of 
sample trees, has performed best with most diversity indices other than 
distance and aggregation index. Given the general aim to reduce the 
index variance, this finding seems to suggest that the information pro-
vided by sample-tree neighbours complements that of the sample trees 
and is with most indices more important than spatial edge-bias concerns 
that are explicitly corrected by NN1 and NN2. This is interesting and 
strategic information prompting future research to continue along these 
lines and to optimise estimators which result in low bias and low rRMSE 
values by balancing the weights of sample trees with those of their 
neighbours. 
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