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A B S T R A C T

Recent increases in fire activity in Sweden call for the quantification of forest fire susceptibility, in order to
develop management strategies to mitigate fire risk. Using the data from 100 large Swedish forest fires (>10 ha),
mapped from sentinel-2 images from 2016 to 2022, we explored the predictive power of vegetation properties in
estimating relative likelihood of fires within a landscape using logistic regression. To model spatially explicit fire
susceptibility within a given landscape, we used the outcome of logistic regression as an input into a cellular
automata model (CA model), which simulates fire spread in a 2D grid.
The CA was model calibrated on three fires that occurred between 2016 and 2022, then verified on six 2023

fires and featured a mean sensitivity of 0.74 and specificity of 0.79. The logistic regression model had an ac-
curacy of 54 %, showing increased fire susceptibility from high Scots pine volume (p-value = 0.02), and
decreased fire susceptibility from high volumes of deciduous trees and wet soil. Realistic outcomes of the CA
model and reliance of our approach on publicly available data with nation-wide coverage of vegetation cover in
Sweden allows for the development of an automated protocol of fire susceptibility assessment at the operational
level and its integration in existing decision support systems. This would allow forest owners to obtain estimates
of forest fire susceptibility for different forest management strategies.

1. Introduction

Forest fires have been a major disturbance shaping boreal landscapes
over the Holocene (Carcaillet et al., 2001; Kuosmanen et al., 2016).
Under natural conditions, fires drive natural forest succession, shape
forest structure and biodiversity, and mediate biogeochemical cycles
(Hollingsworth et al. 2013). In Sweden in the 1800s effective fire sup-
pression, and possibly a less fire prone climate, reduced fire’s impor-
tance as a factor controlling the structure of boreal vegetation
(Drobyshev et al., 2012). However, the future climate will likely be more
prone to forest fires (Krikken et al., 2021), which could challenge the
capacity of modern society to efficiently mitigate fire risks.

In the boreal zone, regional forest fire activity is closely related to
natural interactions between climate and fuel conditions (Flannigan
et al., 2001; Flannigan and Harrington, 1988). The development of the
Canadian Forest Fire Danger Rating System (CFFDRS), including the
Forest Fire Weather Indices (FWI) and Forest Fire Behaviour Prediction

System (FBP), has been of critical importance for quantifying and ana-
lysing the temporal dynamics of weather and fuel drying as controls of
fire hazard (Turner and Lawson, 1978; Wotton, 2009).

Fire spread and behviour models, such as the Canadian Forest Fire
Behavior Prediction System were built using data from empirical field
experiments and lab-based physical fuel models (McAlpine et al., 1990;
Wotton, 2009). These hybrid physical or semi-empirical models are
developed for a specific region and require substantial data collection to
develop region-specific fuel models (McAlpine et al., 1990; Wotton,
2009). This extensive data collection for the parameterization of a
Swedish fuel model has not yet been undertaken. Specifically, in Sweden
there are no spatially explicit models of fire activity, precluding the use
of available data on forest structure to assess fire risk in operational
settings. Low forest fire activity in Sweden during 1900s and most of the
2000s (Drobyshev et al. 2012) was a likely reason for such a lack of
interest in fire modelling.

Empirical (statistical) models relating properties of vegetation cover
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with the probability and properties of fire disturbance offer an alter-
native, and generally less data intensive pathway, to model forest fire
susceptibility at landscape scale (Adab, 2017; Pourghasemi, 2020; Pre-
isler et al., 2004). Forest fire susceptibility is defined as the probability
that an area of forest will burn based on the forest characteristics of the
location, excluding temporal aspects (Leuenberger et al., 2018). Such
models can be calibrated using openly available remote sensing data
(Ciesielski et al., 2022; Shang et al., 2020). Specifically, fire perimeters
and forest characteristics (stand structure and composition), can be
deduced from satellite imagery and used to model fire susceptibility.

The outputs from empirical models can be used to develop transition
rules for cellular automata (CA) models. CA models simulate fire spread
across a two-dimensional grid, adding a spatially explicit component in
fire modelling. Application of CA models in fire susceptibility prediction
has evolved from a purely theoretical concept to being able to calibrate
transition rules based on the fine-scale vegetation structure and topog-
raphy (Karafyllidis and Thanailakis, 1997; Sun et al., 2024). These
transition rules define the paths of least resistance through which a fire
is likely to move through the landscape, and can be defined either based
on several mechanistic assumptions (Trucchia et al., 2020) or derived
from fire susceptibility functions (Zheng et al., 2017; Jellouli and Ber-
noussi, 2022; Sun et al., 2024).

From the second half of the 20th century and into the early 21st
century, the weather conditions in Sweden have exhibited increased
temperatures, and likelihood of heatwaves (Wilcke et al., 2020), which
promote fire prone weather conditions. While the long-term average
annual area burned in Sweden is around 2900 ha (Sjöström and
Granström, 2022), forest fires in 2014 burned 12 500 ha and in 2018
burned 22 000 ha, causing considerable costs to Swedish society
(Eriksson et al., 2018). This observed increase in the number of large
fires in Sweden may indicate we have reached the capacity limit of
modern fire suppression. Future climate projections predict increased
fire season length, wildfire frequency and severity in Sweden (Krikken
et al., 2021). There is an increasing need for new management strate-
gies, which would integrate emerging fire risk into a wide range of
Swedish forest-related industries.

The current study evaluated the potential use of available Swedish
forest structure and soil moisture maps to assess forest fire susceptibility.
We hypothesized that: (H1) forest structure (tree species) and soil
moisture are informative predictors of forest fire susceptibility in Swe-
den. Alternatively, forest fire susceptibility may be more strongly
influenced by other environmental factors, such as topography and
climate. We developed statistical models operating on a subset of larger
(> 10 ha) modern (2016–2022) forest fires to identify forest properties
that increase burn likelihood in the presence of ignition. We then used
the best statistical model to drive a cellular automata model (CA model)
to provide a spatially explicit analysis of fire behaviour. The CA model
integrated the spatial distribution of predicted fire susceptibility and
firebreaks, including roads, to model fire spread. We evaluated CA
model performance on selected fire-affected landscapes using fire
perimeter maps of true area burned. The study time-period was defined
by the availability of sentinel-2 remote sensing products for the accurate
delineation of fires.

2. Methods and data

2.1. Study area

Sweden is located in Northern Europe, on the Scandinavian Penin-
sula. The North Atlantic Current and North Atlantic westerlies define the
southern region’s milder oceanic climate, due to the warm North
Atlantic Current (Roberge et al., 2020), whereas a colder continental
climate occurs in the north (Roberge et al., 2020; Wastenson et al.,
1995). The North and South have similar summer temperatures; how-
ever, winter temperatures vary widely, where mean January tempera-
tures are -14 ◦C in the north and just 0 ◦C in the south. Precipitation has a

pronounced east-west gradient, with higher rainfall occurring in the
west and ranges from 500–2000 mm per year (Wastenson et al., 1995).

The natural vegetation ranges from nemoral (temperate broad-
leaved forest) in the South to alpine in the North and encompasses six
biogeographical zones (Wastenson et al., 1995). Sweden is mostly
forested (~69 % of the surface area or 27.9 million ha), the majority of
which is production forest (23.5 million ha, Roberge et al., 2020). The
predominant production forest species are Scots pine (Pinus sylvestris)
and Norway spruce (Picea abies) making up 39.3 % and 39.7.7 % of
growing stock volume respectively (Nilsson et al., 2021).

2.2. Data preparation

We digitized fire perimeters using available cloudless post-fire op-
tical images from Sentinel-2 satellites (10 m resolution). False-colour
composites (band combination Near Infrared – Red – Green) were
visually examined on the Sentinel Hub EO Browser at hotspots of ther-
mal anomalies from the FIRMS active fire product. We aggregated
centroids of FIRMS pixels, if they shared the same date, in Google Earth
Engine and extracted only the centroid points of these aggregations
(‘hotspots’). If the burned area was larger than 10 ha, then the image
chip was downloaded, and the fire perimeter was manually digitized in
the ArcGIS environment. We excluded unburned internal patches of
forest from fire perimeters. We did not include fires exceeding 1000 ha
that occurred during 2018 in the analyses. We argued that these large
fires occurred during conditions of extreme climatological fire hazard,
under which fuels burn indiscriminately, homogenizing the suscepti-
bility of different fuel types to fire. We digitized 162 fire perimeters of
100 distinct wildfires from 2016 to 2022 (Fig. 1a), which were used in
the statistical susceptibility analysis. Additionally, we digitized all six of
the large (>10 ha) forest fires that occurred in 2023 which were used to
verify the CAmodel, so as not to use the same fires to train and verify the
final model.

We used the SLU Soil Moisture Map (SLU, 2020) with three discrete
soil moisture classes: 1 – dry, 2 – mesic, 3 – wet and open water bodies.
The original resolution of this map was 2 m, hence, it was resampled to
25 m using nearest neighbour interpolation to match the resolution of
other raster layers. Land cover data was extracted from Svenska CORINE
marktäckedata, SCMD, the Swedish implementation of CORINE Landsat
classifications (Ahlcrona, 2003). Finally we used raster maps at 25 m
spatial resolution from SLU Forest maps 2010 (Reese et al., 2002, 2003),
which are the latest published data with forest volume covering all the
whole country. We extracted the total forest volume (m3 ha− 1), volume
of pine (Pinus spp.), spruce (Picea abies) and broadleaves. Broadleaved
volume was the cumulative volume of birch (Betula spp), oak (Quercus
spp.), European beech (Fagus sylvatica L.) and the volume of “other
broadleaves”.

The SLU Forest map data on standing volume (2010) preceded the
actual fires by between 6 and 12 years, necessitating map corrections to
account for forests that were harvested after the maps were made. To
address this, we obtained all polygons of clear-cuts from the Swedish
Forest Agency between 2000 and 2021 (Skogsstyrelsen, 2021), and if
tree harvest was conducted between 2010 (year at which raster maps
were produced) and the year of the respective wildfire, we converted
these pixels to non-forest area and excluded them from the further
analysis (Fig. 1b). We also excluded all pixels intersected by water
bodies, rivers (Swedish National Land Survey, 2021), railroads, or roads
(Trafikverket, 2022) in the same way.

We sampled forest structure and soil moisture at random points in
burned areas and within 30 mwide buffers around the fire perimeter. By
sampling unburned points from such a narrow buffer, we assumed that
the probability of burning in this area was controlled by fuel properties
and was not limited by the probability of ignition.

The sampled points were at least 200 m away from each other to
reduce spatial autocorrelation. In total, we sampled 1155 points: 917
within fire perimeters and 238 within unburned buffers.
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We extracted forest properties and soil moisture data for each
sampled point. We selected 238 of the 917 points for the ‘burned’ subset
to match the size of the ‘unburned’ subset.

2.3. Fire susceptibility statistical model

We modelled fire susceptibility as a function of forest fuel structure
approximated by forest type, standing volume, and soil moisture con-
ditions. We wanted to investigate all available map data sources and
ensure that our model provided the best approximation of forest fire
susceptibility. To test the utility of increasing levels of detail in forest
structural data, we carried out the modelling in three stages. In the first
stage, the model tested soil moisture conditions on forested land, with
no information on the forest structure itself. The second stage model
tested a combination of soil moisture conditions and land cover data that
classified vegetation into four forest types: coniferous, broadleaved,
mixed species stands or temporarily non-forested (predominantly clear-
cuts). In the third model, forest cover data was replaced with the best
available spatial resolution open-source information on forest structure,
providing standing volume estimates for pine, spruce, or broadleaved
species.

We fit the models on a subset of 79 % of the data, taken from both the
fire perimeters and buffers, and used the remaining 21 % to validate the
models.

We developed a logistic regression model

ln
[
Px

1 − Px

]

= β0 + β1 X1 + β2 X2 + β3 X3…….

where Px is the probability of success (response variable is 1), β0 is the
intercept, β1 X1 is the slope of the first explanatory variable, β2 X2 is the
slope of the second explanatory variable.

This parametric binary classification approach allowed us to esti-
mate a statistical significance of the model predictors. We tested the
model fit using the R package DHARMa (Hartig and Lohse, 2022) by
using Kolmogorov-Smirnov test to compare distributions and Moran’s I
test to evaluate residual spatial autocorrelation. We relied on R package
mctest (Imdad et al., 2019; Imdad and Aslam, 2018; Imdadullah et al.,
2016) to identify the multi-collinearity between predictors, using vari-
ance inflation factor with a maximum of 5. The model generated a fire
susceptibility map, which showed the likelihood of each pixel to be
‘burned’ as a value ranging from 0 to 1. Depending on the model
(Table 1), the predictions were based on soil moisture classes (model #
1), soil moisture classes and forest types (model # 2), and soil moisture
classes and tree species volume (model # 3).

2.4. Cellular automata model

We used a cellular automata model (later referred to as CAmodel), to
model fire behaviour in a forested landscape using maps of roads, fire-
breaks and predicted fire susceptibility maps from our statistical model
(see above). The CA model generated the relative probability of burning
of each cell in a landscape, should effective ignition take place.

The CA model simulated cell-by-cell fire propagation in forested
landscape represented as a set of 25× 25 m cells. For a single fire spread
experiment, we randomly placed three ignitions within the landscape in

Fig. 1. Location of fire perimeters used in the study within the vegetation zones of Sweden (a); an example of a digitized fire perimeter and its unburned buffer
zone (b).
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question. To propagate fire beyond the cell where ignition took place
(“ignition cell”), we sampled a value from a random uniform distribu-
tion constrained by 0 and 1 and compared it with the cell-specific
probability of being burned (obtained through application of fire sus-
ceptibility model). If the random number fell below that probability, the
CA model “burned” that cell. After going through a subset of cells
bordering with the “ignition cell”, the CA model revisited cells that
bordered the burning cell and used the same uniform distribution
approach to evaluate which cells should be burned (SI Fig. 4).

The CA model employed several “stoppage rules” that defined the
moment when each fire experiment was considered complete. First, we
allowed the model to attain at least 50 iterations to ensure that fires
could attain a minimal spread (typically reaching the size of few hect-
ares) before any stoppage rules were applied. The model stopped the
experiment when the increase in the total burned area per iteration fell
below 0.1 % of the total forest area in the studied landscape or until one-
third-of the landscape burned. We assumed that under this condition,
fire suppression efforts to control fire would effectively prevent fire from
further spread. At maximum, a single fire experiment was allowed to
reach 1000 iterations, and 500 fire experiments make up one run. One
run is carried out on each landscape to simulate fire spread. (Figure 5 in
SI).

Forest roads are an important modifier of fire suppression effec-
tiveness in modern Sweden. Road density positively affects the number
of ignitions and negatively affects the size of fires (Pinto et al., 2020).
Since our statistical fire susceptibility model did not explicitly calibrate
the relationship between road density and fire spread, we empirically
estimated this using a “proximity coefficient” and a “road coefficient
parameterized from a subset of 3 fires. The proximity coefficient defined

the spatial extent of the effect, i.e. distance from the road at which a
reduction in burn probability took place. The road coefficient defined
the intensity of road effect, i.e. level of reduction in the burn probability
for road-affected cells. In particular, we allowed these coefficients to
vary from 0 to 1 (road coefficient) and from 1 to 7 (proximity coeffi-
cient). The road coefficient of 0 implied that cells crossed by the roads
had zero probability of being burned, while the value of 1 implied no
change in the burning probability, associated with the presence of the
road. In the case of proximity coefficient, “1″ indicated a situation where
reduction in burning probability was applied only to the cells crossed by
the road; “7″ indicated that the effect extended up to seven cells away
from the road (with linear distance from the road being 210 m). We
tested for 20 unique values randomly sampled for respective ranges of
each coefficient, resulting in 400 unique coefficient combinations. For
each combination, we ran a simulation consisting of 500 runs (each –
with up to 1000 single experiments) and calculated verification statistics
(see below). By exploring the pattern of such statistics, we selected the
optimized values of coefficients, which were later used to run the CA
model (Figure 6 in SI). Specifically, the algorithm tracked the value of
the skill statistics (see below) and selected combination of coefficients
that tended to maximize its value within fire-affected landscape.

The outcome of the CA model was a matrix of cell-specific relative
burn probabilities, i.e., estimates of forest fire susceptibility. To obtain
these estimates, the model kept track of the number of times a cell was
“burned” by the model, and divided it by the total number of experi-
ments in a run (there are 500 fire experiments in one run). (Figure 5 in
SI).

To evaluate performance of the CA model, we ran it on landscapes
with fires that occurred in 2023. We hypothesized that the model would
project higher probabilities of fire for true burned cells compared with
the whole landscape (composed in reality of both burned and unburned
cells). To test this assumption, we used Kolmogorov-Smirnov test and a
measure of model skill based on the normalized difference in the
probabilities of two groups of cells:

model.skill =
Pburned − Pall

Pall
,

where Pburned and Pall were the mean probabilities of burning for true
burned and all cells, respectively. A value of model.skill above zero
would be indicative of skill which is a better than a random guess.

We validated the model on data from six fires that occurred in 2023.
We calculated road network density (proportion of number of cells with
roads to total number of cells), species-specific volume proportions to
total volume stock, and proportion of cells with wet soil moisture (class
= 3) to total number of cells in landscape. We extracted these metrics to
understand how they could contribute to model skill for a specific
validation site (Table 2).

We calculated false positive and false negative rates (FPR and FNR
respectively) for each landscape for relative probability thresholds
starting from the 0 to 100 percentile. For each fire landscape, we
selected the optimal threshold as the percentile with lowest cumulative
FPR and FNR, sensitivity and specificity values were calculated at these
thresholds for each individual landscape (Table 3 in SI). The optimal

Table 1
Summary of candidate fire susceptibility models.

Variable Estimate Standard error p-value

Model No 1 Soil moisture classes
Intercept 0.05 0.13 0.70
Indicator of mesic soil moisture -0.22 0.26 0.39
Indicator of wet soil moisture -1.96 0.55 <0.01
Model No 2 Land cover types and soil moisture classes
Intercept -0.05 0.14 0.74
Broadleaf forest class -0.57 0.72 0.43
Mixed forest class 0.29 0.51 0.57
Non-forest class 0.45 0.26 0.09
Indicator of mesic soil moisture -0.24 0.26 0.36
Indicator of wet soil moisture -2.01 0.55 <0.01
Model No 3 Species-specific volume predictors and soil moisture classes
Intercept -0.11 0.25 0.66
Pine volume 0.01 0.00 0.03
Broadleaf volume -0.03 0.01 0.01
Spruce volume 0.00 0.00 0.29
Indicator of mesic soil moisture -0.14 0.27 0.59
Indicator of wet soil moisture -1.76 0.56 <0.01
Final model
Intercept -0.12 0.23 0.61
Pine volume 0.01 0.00 0.02
Broadleaf volume -0.02 0.01 0.01
Indicator of wet soil moisture -1.77 0.55 <0.01

Table 2
Results of CA model runs on fire-affected landscapes used for validation, using the optimal threshold percentile of 0.73, and proportion of the landscape allocated to
each variable.

Fire landscape Num. Model Skill KS Test p-value Sensitivity Specificity Road density Proportion of the landscape

Pine Deciduous Wet

1 0.98 0.00 0.93 0.83 8.46 58.80 9.55 0.88
2 0.51 0.00 0.71 0.78 7.64 48.23 16.12 1.10
3 0.06 0.00 0.13 0.73 5.62 79.13 3.57 0.80
4 1.29 0.00 0.82 0.78 5.52 61.87 16.54 9.11
5 0.55 0.00 0.97 0.82 0.00 34.19 18.45 8.52
6 0.86 0.00 0.87 0.78 3.35 56.81 14.19 9.42
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threshold for our CA model was the mean of optimal threshold per-
centiles across all fire landscapes, and sensitivity and specificity were
calculated for all fire landscapes using this threshold (Table 2).

3. Results

3.1. Fire susceptibility model

The logistic regression model candidates showed varying perfor-
mance in predicting fire susceptibility. Upon validation, model #1,
trained only with soil moisture indicators as predictors achieved 59 %
overall accuracy, 36 % sensitivity (true positive rate) and 70 % speci-
ficity (true negative rate).

Model # 2, trained with forest cover type and soil moisture in-
dicators performed worse, with 40 % overall accuracy, 72 % sensitivity,
and 24 % specificity. Model #3, based on species-specific volume esti-
mates and soil moisture indicators achieved 54 % overall accuracy, with
58 % sensitivity and 52 % specificity.

The ability of the models to distinguish between dry and mesic soil
moisture class was poor (p-value = 0.59), therefore the dry and mesic
moisture classes were pooled. Wet soil was a significant predictor in all
three models. Additionally, pine volume and broadleaved volume were
significant in model 3. Model 3 was selected as the final model and non-
significant predictors (indicator of mesic soil moisture, and spruce vol-
ume) were removed.

Findings from our final model suggest (1) there is no deviation be-
tween observed and simulated data (Kolmogorov–Smirnov test p-value
= 0.55), (2) predicted data was not spatially autocorrelated (Moran’s I
test p-value = 0.86) and (3) our predictor variables did not produce
strong patterns of collinearity.

The final calibrated model tended to predict higher fire susceptibility
for pine stands with high growing stock volume and in drier soil con-
ditions. Whereas increased broadleaved volume stock resulted in lower
fire susceptibility (Fig. 2).

3.2. Outcome of cellular automata model

Following parameterization, we selected 0.25 as the road coefficient
value and 7 as the value of proximity coefficient. The CA model pro-
duced satisfactory results in five of six cases, the exception being

landscape #3, which performed poorly in all performance indicators
(Fig. 3 and Table 2). Kolmogorov-Smirnov p values for all landscapes
were below 0.05, indicating the model projected higher probabilities of
fire for the true burned cells than for that of the whole landscape.

With the exception of landscape #3, model skill ranged from 0.51 to
1.29. Sensitivity and specificity were also high and well-balanced indi-
cating that the CA model neither over nor under predicted fire suscep-
tibility. The majority of burned pixels had high predicted probability of
burning (Fig. 3C where the distribution of fire probability of burned
pixels are located to the right of the graphs for all landscapes).

Model skill was highest in landscape #4 (1.29), which had a high
proportion of pine, deciduous trees and a high number of cells with wet
soil. Landscape #1 had very high sensitivity at 0.93 and the highest
specificity at 0.83, road density was high but did not confine the fire
perimeter. Landscape #3 had low model skill of just 0.06 and sensitivity
of 0.13 showing a high number of false negatives and the fire perimeter
showed high conformity to the road. (Fig. 3B and C).

4. Discussion

4.1. Performance of fire susceptibility model

Forest structure and soil moisture provided realistic estimates of
forest fire susceptibility in Swedish forested landscapes. Scots pine
standing volume increased fire susceptibility, reflecting the availability
of easily burnable fuels in pine stands. In Sweden, stands dominated by
pine commonly occupy drier areas of the landscape (Päätalo, 1998)
which further increases their susceptibility to wildfire. Alternatively, an
increase in the volume of deciduous species lowered fire susceptibility,
broadly supporting the view of deciduous vegetation as less flammable
due to higher water content, as compared to coniferous fuels (Päätalo,
1998; Plathner et al., 2022). Stands with a dominant deciduous
component grow in wetter conditions, i.e. habitats evidently functioning
as firebreaks under moderate levels of climatological fire hazard. In line
with this interpretation, soil dryness, which was included in the analyses
as an independent factor, revealed a positive relationship with fire
susceptibility.

Surprisingly the stand volume of Norway spruce neither significantly
increased nor decreased forest fire susceptibility. It is likely that other
landscape factors are more influential in controlling whether a spruce

Fig. 2. Estimated linear effects of different predictors in the final fire susceptibility model: Scots pine volume (a); broadleaved volume (b); wet soil moisture indicator
(c). Numbers in labels correspond to the number of points within quantile group (a-b) or specific soil moisture class (c).
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Fig. 3. Model predictions for validation sites: (a) fire susceptibility as assessed by empirical model; (b) fire susceptibility as assessed by CA model; (c) distribution of
fire susceptibility for all (grey) and true burned pixels (red).
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forest burns, for example, differences in likelihood of burning under
different climatological conditions, stand age (Päätalo, 1998) or
topography (Zackrisson, 1977).

4.2. Cellular automata model and its utility

Our CA model provided realistic burn probability predictions for five
out of six landscapes, with model skill being well above zero. Model
sensitivity and specificity values (Table 2) were high and balanced,
indicating the model neither over- nor under-predicted probability of
burning. We found that the CA model performed best in archetypal
Swedish landscapes, i.e. those featuring forestry roads, heterogeneous
forest structure, dominant pine and moderate abundance of deciduous
trees. In contrast to other fire behaviour simulators, which rely on
mechanistic fuel models and are intensive in terms of data, resource and
computational effort (Trucchia et al., 2020), our CA model relied on a
minimal set of variables and publicly available data. These settings
allow for potentially universal applicability of our approach across
Swedish production forests and possibly other Nordic countries with
such data available.

CA model skill showed variability as a function of road density in a
landscape. In areas with no roads, such as landscape # 5, the CA model
skill declined. On the one hand, this result indirectly supported our
parameterization of the road effects. Indeed, the CA model treated roads
as “reducers” of fire susceptibility and the improved performance seen in
landscapes with high road density suggested realism in defining road
and proximity coefficients (see Methods section). On the other hand,
lower skill in “roadless” landscapes pointed to limited skill of the model
in predicting fire spread across vegetation cover not fragmented by
roads. This is not surprising as the CA model did not use topography nor
wind data as inputs, in contrast to majority of existing studies modelling
fire behaviour (Pham et al., 2020; Pourghasemi et al., 2020; Sachdeva
et al., 2018; Sadat et al., 2016).

Despite the fact that the fire susceptibility was generally better
predicted in landscapes with higher road densities, we frequently
observed false negatives in parts of the forests studied where fire pe-
rimeters closely conformed to roads. In these cases, an area of low
probability was predicted nearer the road and yet all pixels up to and
conforming to the road did burn. Landscape # 3 illustrated this pattern
well, with the road defining the entire eastern fire perimeter and the
model sensitivity being low (Fig. 3). This pattern might indicate roads
were used as actual fire breaks with fire suppression effort during actual
fire, which did not extend away from the road into the burning stands.
The result might also suggest differences in the road impact on fire
susceptibility, which are dependent on local geographical context or
type of roads.

4.3. Methodological implications and study limitations

The complexity of fire behaviour parameterization often prevents its
efficient application in operational forest management. Integration of
functional relationships between fire, fuels, topography and local
climate requires massive data acquisition campaigns (Beverly and
McLoughlin, 2019), which are prohibitively costly for the majority of
forest managers. Our study demonstrates that a limited number of var-
iables from open-source datasets can provide robust inputs into spatially
explicit models generating skilful predictions of fire susceptibility.

The incentive to develop a new CA model was based on the obser-
vation that existing CA models need data inputs which are not currently
available for the entirety of the Swedish forests. Our model, in contrast,
relied only on publicly available datasets that cover all forests in Swe-
den. This ensures applicability of the model in operational planning
carried out by forest companies and private forest owners, which do not
commonly engage in acquisition of data on forest fuels.

Climate datasets available for the region are much coarser spatial
resolution than that used in our modelling approach, with no ability to

distinguish between variation in climatological conditions between 25×
25 m2 raster cells or within our burned and non-burned sites. The
exclusion of climate data as predictor variables in our models is
lamentable, but unfortunately impossible to obtain at this spatial scale
for past fires.

Poor representation of periods with extreme climatological fire
hazard and limited number of fires used for model calibration were
shortcomings of our analyses, which we plan to overcome during sub-
sequent model development. Both are instrumental for realistic model-
ling of fire spread. Periods of extreme fire hazard homogenize forest
fuels, effectively minimizing differences in their ability to carry fire
among different forest fuel types and making the whole landscape prone
to fast fire spread. Such conditions warrant an independent parameter-
ization effort, relying exclusively on fires that spread during such con-
ditions. In turn, the low number of fires analysed likely limited our
ability to capture a wider variability in vegetation cover as predictor of
fire spread. This low number of fires was a product of generally low
levels of fire activity in modern Sweden and our interest to minimize the
effect of active fire suppression through selection of large fires (see
Methods section). Future study may overcome this shortcoming by
aggregating data on older fires and, possibly, changing the fire size
threshold used in this study. Finally, quality of vegetation cover data
might have an effect on statistical skill of developed models. The SLU
Forest Maps 2010 are an approximation of parameter values from 2010,
as such forest parameter values were between 6 and 12 years out of date
for each fire event. SLU Forest maps have lower accuracy estimates of
deciduous tree volume in comparison to coniferous (Holmström et al.,
2017). True scarcity of deciduous trees in our study dataset, which
featured no fires in the nemoral zone, likely further affected parame-
terization of the deciduous vegetation in the model. We expect increased
statistical model performance with the use of soon to be available SLU
Forest Maps 2020, which will have both improved accuracy and
enhanced spatial resolution. The SLU Forest Maps we used can also be
integrated into Heureka, a widely used decision support system for
forestry operations in Sweden (Lämås et al., 2023). This existing inte-
gration should greatly facilitate development of a fire risk management
module for this system to address projected increases in forest fire risks
in the Nordic region (Krikken et al., 2021).

CRediT authorship contribution statement

Sara Sharon Jones: Writing – original draft, Visualization, Valida-
tion, Methodology, Formal analysis, Data curation, Conceptualization.
Maksym Matsala: Writing – original draft, Visualization, Validation,
Methodology, Formal analysis, Data curation. Emily Viola Delin:
Writing – review & editing, Data curation, Conceptualization. Nar-
ayanan Subramanian: Writing – review & editing, Data curation.
Urban Nilsson: Writing – review & editing, Supervision, Funding
acquisition, Conceptualization. Emma Holmström: Writing – review &
editing, Supervision, Project administration, Methodology, Formal
analysis, Conceptualization. Igor Drobyshev: Writing – review & edit-
ing, Visualization, Supervision, Project administration, Methodology,
Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests:

Igor Drobyshev reports financial support was provided by Swedish
Research Council Formas. Urban Nilsson reports financial support was
provided by Swedish Research Council Formas. If there are other au-
thors, they declare that they have no known competing financial in-
terests or personal relationships that could have appeared to influence
the work reported in this paper.

S.S. Jones et al. Ecological Modelling 499 (2025) 110942 

7 



Acknowledgements

This study was part of the following projects; Development of forest
management strategies to mitigate forest fires in Sweden (OASIS #
2019-00813), and Integrating risks of severe drought and fire into
management of Swedish production forests (RISK-DF # 2023-02509)
both funded by the Swedish Research Council FORMAS. We thank The
Forest Damage Centre of SLU for funding within the projects Optimering
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