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Abstract

Understanding the distribution and dynamics of species is central to ecology

and important for managing biodiversity. The distributions of species in

metacommunities are determined by many factors, including environmental

conditions and interactions between species. Yet, it is difficult to quantify the

effect of species interactions on metacommunity dynamics from observational

data. We present an approach to estimate the importance of species interac-

tions that combines data from two observational presence–absence inventories
(providing colonization–extinction data) with data from species interaction

experiments (providing informative prior distributions in the Bayesian frame-

work). We further illustrate the approach on wood-decay fungi that interact

within a downed log through competition for resources and space, and facili-

tate the succession of other species by decomposing the wood. Specifically, we

estimated the relative importance of species interactions by examining how

the presence of a species influenced the colonization and extinction probability

of other species. Temporal data on fruit body occurrence of 12 species

inventoried twice were jointly analyzed with experimental data from two labo-

ratory experiments that aimed to estimate competitive interactions. Both envi-

ronmental variables and species interactions affected colonization and

extinction dynamics. Late-successional fungi had more colonization interac-

tions with predecessor species than early-successional species. We identified

several species interactions, and the presence of certain species changed the

probability that later-successional species colonized by −81% to 512%. The

presence of certain species increased the probability that other species went

extinct from a log by 14%–61%. Including the informative priors from experi-

mental data added two colonization interactions and one extinction interac-

tion for which the observational field data was inconclusive. However, most

species had no detectable interactions, either because they did not interact or

because of low species occupancy, meaning data limitation. We show how
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temporal presence-absence data can be combined with experimental data to

identify which species influence the colonization-extinction dynamics of

others. Accounting for species interactions in metacommunity models, in

addition to environmental drivers, is important because interactions can have

cascading effects on other species.
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colonization–extinction dynamics, dynamic occupancy model, metacommunity,
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INTRODUCTION

Understanding the distribution and dynamics of species
is central to ecology, as it allows us to better understand
population declines, predict past and future trends and
thus manage biodiversity. Variables such as the environ-
ment and dispersal are known to affect species distri-
butions, but interactions between species also affect
whether they are able to coexist. However, species inter-
actions are the least understood drivers of species distri-
butions as interactions are often difficult to quantify
(Case et al., 2005; Hortal et al., 2015).

Co-occurrence models have been used to study potential
species interactions in distribution data for a long time.
Co-occurrence models are based on analyzing which spe-
cies are present together in one location at one time, apply-
ing different concepts or methods, including co-occurrence
theory (Diamond, 1975; Gotelli et al., 2010), joint species
distribution models (Ovaskainen et al., 2017; Pollock
et al., 2014), and multi-species occupancy models (Rota
et al., 2016; Tobler et al., 2019). However, it is still unclear
how co-occurrence is shaped by species interactions
(Hortal et al., 2015). To improve these models, various
methods supplement the identification of interactions with
additional information (Morales-Castilla et al., 2015). For
example, body size or other traits can be assumed to reflect
trophic interactions (Laigle et al., 2018). Controlled experi-
ments can provide evidence for small subsets of species.
However, it is a challenge for co-occurrence analyses
to identify known interactions (Barner et al., 2018;
Hastings, 1987). Static co-occurrence models have been
found to be limited because it is ecologically unclear how
co-occurrence measured at a single time relates to species
interactions (Blanchet et al., 2020; Thurman et al., 2019).

In contrast to static distribution models, in dynamic
metapopulation models, the species distributions result from
colonization and extinction events (Levins, 1969), and these
can be affected by the presence of other species (Fukami
et al., 2010). Dynamics of multispecies communities
(metacommunities) are impossible to infer from one snap-
shot dataset (Götzenberger et al., 2012; Zurell et al., 2018),

but temporal metacommunity data can increase our
understanding of species distributions and their temporal
dynamics (Pagel & Schurr, 2012; Yackulic et al., 2015).
Dynamic models are preferred when the species’ current
distribution is not at equilibrium with the environment,
which is typically the case (García-Valdés et al., 2015). In
practice, dynamic models have predicted changes through
time better than static models (Briscoe et al., 2021) and
are thus preferred for prediction and management
(Cuddington et al., 2013).

Following which species colonize a location first
(predecessors) and later (successors) can help to separate
the environmental conditions and species interactions
that affect the colonization and persistence of species
(Fukami et al., 2010). Here, we use the presence of
another predecessor species as an explanatory variable, in
the same manner as environmental variables (MacKenzie
et al., 2004). A temporal analysis can thus identify species
interactions that generate the metacommunity distribution
patterns, and the direction of the interaction (Kissling
et al., 2012). Therefore, interactions estimated from tempo-
ral data can be interpreted as dynamic interactions driving
the colonization–extinction processes (Kawatsu et al., 2021;
V�azquez et al., 2009). The dynamic colonization and
extinction interactions that we estimate can be mapped
to well-known ecological interactions. We consider neg-
ative colonization interactions to represent competitive
interactions where one species impedes the other from
establishing. We consider positive colonization interac-
tions to represent facilitation (Bertness & Callaway, 1994).
For extinction interactions when both species are present,
we consider positive extinction interactions to be competi-
tion, where the presence of a species increases the extinc-
tion probability of another species.

Despite the general advantages of models for temporal
dynamics rather than static patterns of metacommunties,
it is a challenge to estimate species interactions from only
temporal metacommunity dynamics (Ives et al., 2003;
Mutshinda et al., 2009). By leveraging prior knowledge
about the system, via “informative prior distributions” of
the Bayesian framework (Gelman & Hill, 2006), it is
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possible to identify additional interactions and reduce
uncertainty around estimates. An informative prior dis-
tribution will nudge the estimation of the interaction in
the direction of the additional data, which is useful
when data are sparse. The Bayesian framework also
helps in uniting data from different independent sources
and scales (Talluto et al., 2016), which is especially valuable
for data-hungry dynamic models with the aim to estimate
pairwise interactions in both colonization and extinction
with presence–absence information. There have been few
attempts to supplement dynamic metacommunity models
with independent data to infer interactions (see Kotta
et al., 2019 for a static occupancy model including known
interactions; Clark et al., 2020 for a population abundance
model with informative priors).

We aim to present a general approach that utilizes
additional independent experimental information to
model colonization–extinction dynamics of species in
the metacommunity. For example, the succession of
wood-decay fungi on a downed log has been both
observed in the field (Niemelä et al., 1995; Renvall, 1995)
and shown experimentally (Holmer & Stenlid, 1997;
Toljander et al., 2006). However, it is not understood to
what extent this succession is influenced by log charac-
teristics or interactions between fungal species (Fukami
et al., 2010). In a downed log, there is competition for
space and resources, and fungi interfere with or para-
sitize each others’ mycelia or they facilitate other species
by decomposing the log in a way that makes the environ-
mental conditions suitable for another species (Boddy, 2000).
The specific fungal species that occupy a log influences
log decay rates (Fukami et al., 2010; Fukasawa &
Matsukura, 2021). Therefore, understanding how fungal
species interact is important to understand log decay
rates and decomposition dynamics of forests, and to
develop biological control agents of wood-decay fungi
with pathogenic abilities, for example, the root-rot fungi
(Heterobasidion, Boddy, 2000). Here, we develop a
model for metacommunity dynamics of wood-decay
fungi that includes estimating interaction strengths
from observational temporal colonization–extinction data,
supplemented with experimental data.

We test effects of both environmental variables and
variables aimed to estimate species interactions, with an
aim of distinguishing co-occurrences based on shared
environmental preferences from actual species interac-
tions. The successional pathways in wood-decay fungi
may result from species having the same environmental
preferences for logs of a certain size or decay stage
(Jönsson et al., 2008; Moor et al., 2021). These shared
environmental preferences might be interpreted as
interactions, so what seems like a positive interaction
between two species is because they co-occur when the

environmental conditions are the same (Ovaskainen
et al., 2010; Pollock et al., 2014). Our specific questions
are as follows: (1) What is the relative importance of envi-
ronmental conditions and species interactions in driving
the metacommunity dynamics? We expect late-successional
species to have both more positive (facilitation; increasing
colonization) and more negative (competition; decreasing
colonization, increasing extinction) colonization interac-
tions than early-successional species, as they interact with
species present in the log. (2) Can informative prior distri-
butions based on experimental data increase the number of
identified colonization–extinction interactions?

MATERIALS AND METHODS

Modeling rationale and overview

We developed metacommunity models where the
response variable is log colonization or extinction of each
individual species. To statistically explain each species’
dynamics, explanatory variables were environmental
variables and the presence of other species on the log.
Thus, the occurrence of each other predecessor species
already on the log became an explanatory variable for
the modeled species, and the parameter is interpreted as
the species interaction. First, we fit species-level models
to experimental data, where competitive interactions
were estimated by placing species together and observ-
ing their survival and growth (Holmer & Stenlid, 1997;
Toljander et al., 2006). Next, we fit models to repeated
field inventories where the presence–absence of the
species on logs provide colonization–extinction data
(Figure 1). Finally, we test if including the species
interactions estimated from experimental data as infor-
mative priors improve the estimation of species interac-
tions in the field data. Specifically, interactions determined
from the experimental data were included as informative
priors in the estimation of the interactions in the
observational data.

Observational data

We pooled data from two studies that surveyed the pres-
ence or absence of wood-decay fruit bodies on a total of
1379 dead Norway spruce (Picea abies) logs. The logs
were surveyed twice, 6 years apart. The study sites were
composed of old-growth unmanaged forests where we
studied naturally fallen logs. In Brattiken nature reserve
(Sweden, 65�2500 N, 16�060 E), 843 logs were inventoried
in autumn of 1997 and 2003 (Edman & Jonsson, 2001;
Jönsson et al., 2008). In Rörstrand nature reserve

ECOLOGY 3 of 15

 19399170, 2025, 2, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecy.70014 by Sw

edish U
niversity O

f, W
iley O

nline L
ibrary on [24/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



(Finland, 60�2700 N, 25�110 E), 536 logs were inventoried
in autumn of 2002 and 2008 (Ottosson et al., 2014;
Ovaskainen et al., 2010). Among a total of 210 fungal
species identified, only 24 were present in both sites.
From those, we chose 12 species that were present on at
least 30 logs and grow predominantly on already dead
spruce logs (Table 1). Species are rare (average preva-
lence of 7%), so there were generally few species on each
log. In the original data, 16.5% logs had three to eight
species, and in the final data, only 6.8% of logs had three
to six species. We used additional repeat visit data to
account for imperfect detection (as Moor et al., 2021).
Dead fruit bodies were excluded from the analysis (but
see similar interaction results including dead fruit bodies
in Appendix S1: Table S1, Figure S5). We included two
log-level variables that are well-known to explain species
occurrences: log decay stage (Appendix S1: Table S2) and
log diameter (cm) (Appendix S1: Figure S3). All environ-
mental variables were transformed to mean zero and unit
standard deviation (subtracting the mean and dividing
each value by the standard deviation). We also included

the decay stage variable squared, as some species are most
frequent (in terms of occupancy, i.e., number of presences
divided by number of logs) in logs of intermediate decay.

Experimental data

To reduce uncertainty and improve estimates of species
interactions, we leveraged prior information from exper-
iments that estimated interactions. We identified two
published studies that placed wood chips or discs
inoculated with known species together, and recorded
growth rates and survival. One experiment tested
which species survived or went extinct when combin-
ing 1 to 16 wood-decay fungi (Toljander et al., 2006),
and the other recorded how many sectors of wood
substrate species were able to capture from each
other (Holmer & Stenlid, 1997). We reasoned that
these microcosm dynamics contained information on
the dynamics of colonization and extinction observed
in the field (See Appendix S1: Experimental data and

F I GURE 1 Model schema. (A) If the gray species has an increasing higher probability of colonizing logs with larger diameters more

often than logs with smaller diameters, there is a positive effect of log diameter on colonization. (B) If the presence of the brown species in

the first survey decreases the colonization probability of the gray species in the second survey, it has a negative colonization interaction on

the gray species. (C) If the presence of the gray species in the first survey increases the colonization probability of the brown species in time

2, it has a positive colonization interaction on the brown species. The corresponding interaction strengths matrix is shown in the middle.

Image credit: Hedvig Nenzén.
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informative prior estimation). Both experimental datasets
together contained data on 20 of the total 132 possible
pairwise (interspecific) interactions (Appendix S1: Figure S1).

Metacommunity dynamics modeling
framework with environmental and
species variables

For each successor species, we modeled colonization
and extinction dynamics driven by environmental con-
ditions and interactions with other predecessor species
(Figure 1) (Kery & Royle, 2020). Each log is a
resource unit “island” or independent patch in the
meta-community perspective, and the scale at which
fungi interact. This clear, well-defined scale helps
avoid scale-dependency issues that may hide interac-
tions (Münkemüller et al., 2020).

The colonization–extinction dynamics of all 12 species
were modeled independently one after another, and log char-
acteristics and presences of other predecessor species on the
same log were included as explanatory variables. Specifically,

the colonization probability (c) of species i on log n in time
t + 1 was modeled as being linear on the logit scale:

logit ci,n,t+1ð Þ¼ αc +
X

k

βi,kXk,n,t +
X

j

δi,jZ0
j,n,t, ð1Þ

where αc was the intercept, βi,k was the effect of environ-
mental variables, and δi,j was the effect of other species
j presence on colonization probability of the species i. X
was k environmental variables (decay stage, log diame-
ter), and Z0 was the presence or absence of other species
j (binary 0 or 1) on each log n in time t (Z was occurrence
of species i).

The extinction probability (e) of species i on log n in
time t was modeled in a similar way:

logit ei,n,t+1ð Þ¼ αe +
X

k

γi,kXk,n,t +
X

j

εi,jZ0
j,n,t, ð2Þ

where αe was the intercept, γi,k was the effect of environ-
mental variables on extinction probability of species i and
εi,j the effect of other species j presence on extinction

TAB L E 1 Rows show species-specific colonization and extinction events and rates, mean occupancy in both surveys (number of

presences/number of logs), mean decay stage (% dead wood of log), and mean diameter of logs (cm) where species are present in the both

surveys, and the type of rot mechanism utilized by the species (brown or white rot).

Species
No. non-

colonizations
No.

colonizations
No.

extinctions
No. non-

extinctions
Probability of
colonization

Probability of
extinction

Prevalence
(% presences
on all logs)

Mean
diameter
(cm)

Mean
decay
stage

Decay
type

Fomitopsis
pinicola

1227 70 34 48 0.05 0.41 7.2 25.6 22.7 Brown

Heterobasidion
parviporum

1307 36 18 18 0.03 0.50 3.3 24.9 33.4 White

Trichaptum
abietinum

1068 98 144 69 0.08 0.68 13.8 25.3 20.4 White

Phlebia
centrifuga

1351 13 13 2 0.01 0.87 1.1 35.3 25.8 White

Phellinidium
ferrugineofuscum

1308 23 40 8 0.02 0.83 2.9 28.8 22.5 White

Fomitopsis rosea 1336 8 21 14 0.01 0.60 2.1 37.5 29.4 Brown

Postia caesia 1265 71 38 5 0.05 0.88 4.3 18.7 22.5 Brown

Neoantrodia
serialis

1191 99 64 25 0.08 0.72 7.7 22.1 30.6 Brown

Fuscoporia
viticola

1010 127 94 148 0.11 0.39 18.8 17.6 34.5 White

Gloeophyllum
sepiarium

1320 10 39 10 0.01 0.80 2.5 27.3 47.0 Brown

Skeletocutis
brevispora

1365 6 5 3 0.00 0.62 0.6 28.9 35.9 White

Phellopilus
nigrolimitatus

1029 101 65 184 0.09 0.26 19.4 28.0 70.1 White

Note: The species are ordered in increasing successional stage in the same order throughout the manuscript.
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probability of species i. For both processes, the intercepts
are the baseline log-odds of colonization–extinction of a
species in absence of other species and under average
environmental (abiotic) conditions. Species occupancy ψ
in the following year was.

ψi,n,t+1 ¼ 1−Zi,n,tð Þci,n,t+1 +Zi,n,t 1− ei,n,t+1ð Þ: ð3Þ

For all species, models included four environmental
variables, both linear and quadratic log diameter and
decay stage, and 11 species variables, resulting in 15 coloni-
zation variables and 15 extinction variables. The models
were fitted using a Bayesian approach, with the prior dis-
tributions described below. The estimation was carried out
using Markov chain Monte Carlo simulations with the R
library jagsUI (Plummer, 2003; R Core Team, 2018). Three
MCMC chains were run for each species, using 50,000 iter-
ations of three chains, of which 10,000 were discarded as
burn-in. Model evaluation was carried out through visu-
ally examining the posterior chains, and checking if the
potential scale reduction statistic (Ȓ) was below 1.1, which
indicates chain mixing (Gelman & Hill, 2006).

Estimating posterior distributions of
species interactions in experimental data

We estimated the posterior distributions of the coloniza-
tion and extinction interaction parameters (δij and εi,j,
Equations 1 and 2) from experimental data, so that they
could subsequently be used as informative prior distribu-
tions for these parameters in the modeling of the observa-
tional data. The Toljander et al. (2006) data contained
species presences and absences; therefore, we used exactly
the same Bayesian model with Bernoulli distributions that
was used to estimate posteriors from the observational
data (Equations 1 and 2). However, to reflect the fact that
the response variable in Holmer and Stenlid (1997) was a
count (number of wood disc sectors occupied by a species),
we instead used a Poisson distribution. We used the means
of the estimated posterior distributions (i.e., the species
interactions) as informative priors when updating the
modeling of the observational data. We did not use the
variance of the estimated posterior distributions as the var-
iance of the informative priors were set by the stochastic
search variable selection (SSVS) procedure (see below).

Selection of environmental and species
interaction variables

Given the large number of environmental and species
variables, we used SSVS to select important variables for

each species model (George & McCulloch, 1993;
O’Hara & Sillanpää, 2009). SSVS was a robust way to
combine variable selection and informative priors. As the
experimental data and the observational data are col-
lected differently, the posteriors from the experimental
data could potentially be poor priors for the observational
data if used directly as priors. We thus took a more cau-
tious approach in which the experimental data changes
the prior probability of an effect, which we can imple-
ment in SSVS. Instead of using an informative prior for a
variable that may be irrelevant for the modeled process,
SSVS uses an informative prior that may or may not be
relevant. SSVS is also a suitable alternative because it has
been shown to select among 60 potentially important
covariates (George & McCulloch, 1993) and is a one-step
selection approach because the irrelevant variables have
no effect on results.

SSVS estimates the probability that individual vari-
ables should be included in a regression model. To do
so, it uses two normally distributed prior distributions
for each variable, but with different variances. More
specifically, SSVS uses “spike and slab” prior distribu-
tions; the wide slab distribution (variance σ2 = 1.4)
(Northrup & Gerber, 2018) is selected for variables that
should be in the model, and the spike distribution
(σ2 = 0.01) is selected for the irrelevant variables. If the
inclusion of the variable is supported by the data, there
will be higher probability for the wide slab prior than
the spike prior, and vice versa. We set the prior proba-
bility of a wide prior, that is, a non-zero interspecific
interaction, to 0.2 (as Mutshinda et al., 2009). The
MCMC sampling then provides an estimate of the pos-
terior odds of whether a variable should be in the
model. Finally, we estimate the amount of evidence for
including or not including a variable in the model, the
Bayes factor (BF), which is the ratio of the posterior
odds and prior odds. We compare the prior odds of a
(environmental or species) variable being important (set
to 0.2, see above) to the posterior odds estimated by the
model. If the quadratic variable was selected by SSVS,
we always included the corresponding original linear
variable.

Combining informative priors and variable
selection to simultaneously identify
important interactions and select variables

We tested if informative prior distributions based on
experimental data can increase the number of identified
species interactions. To improve the estimation of species
interactions, we utilized informative prior distributions
obtained from combining interaction estimates from the
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experimental data with the SSVS variable selection
method. The mean (μ) of an informative prior for each
pairwise species interaction was taken from the experimen-
tal estimate (i.e., the posterior mean of δij_ εi,j, Equations 1
and 2). If there was no experimental data for an interac-
tion, the non-informative prior mean was zero. The two
prior variances (σ2) were set in the SSVS (wide or narrow
priors), for both informative and non-informative priors.
Thus, for example, say the posterior estimate of one spe-
cies’ effect on another was 0.5 in the experimental data.
In that case, the slab prior was N(0.5, 1.4) and the spike
prior was N(0.5, 0.01). If no experimental data were avail-
able for a species pair, the priors would be N(0, 1.4) and
N(0, 0.01), respectively. We present results from fitted
models combining informative priors for the 20 experi-
mentally tested species interactions with non-informative
priors for remaining species interactions, and for
non-informative priors for all species.

Effects of the environment and species
interactions on colonization and extinction
probabilities

We present results on colonization and extinction proba-
bilities for each species based on partial regression plots
for continuous environmental variables (linear and
squared terms were combined if both were used). A spe-
cies interaction strength was quantified as the estimated
value of the parameter associated with the species vari-
able (i.e., the presence and absence of another species on
a log). However, to obtain the species interaction on an
interpretable scale, the interaction was defined as the par-
tial effect of the interaction parameter of the species on the
colonization and extinction dynamics on the modeled spe-
cies average predictive difference, (Gelman & Hill, 2006).
In other words, the interaction strength was calculated as
the difference of a species’ probability of colonizing a log
without any species minus the probability of colonizing
a log if the interacting species was present. When calcu-
lating the interaction strength, we set the environmen-
tal variables to their mean (zero as they were scaled).
Species interactions δ (for colonization) and ε (for
extinction) can be zero (no interaction), positive (pres-
ence of species increases the probability of colonization
or extinction of another species), and negative (pres-
ence of species decreases the probability of colonization
or extinction of another species). We present all interac-
tion strengths in a S × S community matrix (Clark
et al., 2020; Ives, 2003), and also as the percentage dif-
ference of how the presence of the predecessor species
changes the colonization or extinction probability of
the successor species. For example, if the probability of

colonizing an empty log is 0.05, and with a certain pre-
decessor species it is 0.1, the percentage increase is 50%.

We carried out variance partitioning to assess
whether the selected environmental or species variables
for each species contributed the most variance to the
results. To do so, we multiplied the squared parameter esti-
mate for each variable by the variable’s variance, and
divided by the summed variance of all variables. The vari-
ance was calculated separately for species and environmen-
tal variables, and for colonization and extinction models.

RESULTS

Drivers of metacommunity dynamics

The metacommunity dynamics of all species were mostly
affected by environmental variables, but species interac-
tions had a minor effect on later successional species
(Figure 2). Environmental covariates explained all vari-
ance in colonization and extinction for the early succ-
essional species such as Fomitopsis pinicola and
Trichaptum abietinum, while species variables explained
around 10%–20% of the variance of later successional
Neoantrodia serialis and Phellopilus nigrolimitatus. For
most species, multiple environmental and species vari-
ables were important (Figure 2). However, for rare spe-
cies with low occupancy no variables were selected as
important, possibly due to sparse data.

Environmental effects

Five species showed an increasing probability of coloniz-
ing logs with larger diameters, including P. nigrolimitatus,
while Fuscoporia viticola colonized smaller-diameter logs
(Figure 3a, Appendix S1: Figures S8–S19). Eight of the
12 species had increasing probability of colonizing
a less-decayed log, especially the early-successional
F. pinicola and T. abietinum (Figure 3b). For extinction,
there was weaker evidence for environmental variables
influencing the dynamics. Fomitopsis pinicola and
P. nigrolimitatus had an increasing probability of going
extinct from smaller logs (Figure 3c). Several species
had an increasing probability of going extinct from a
highly decayed log (Figure 3d).

Species interactions

Species had both positive and negative colonization
interactions with other species, whereas only two spe-
cies had extinction interactions (Figures 4a and 5a).
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If F. pinicola and F. viticola occurred on a log 6 years
earlier, this increased the probability of colonization
of two other successor species (Figure 4a, with infor-
mative priors). For example, presence of F. pinicola
increased colonization probability of N. serialis by
512% (Figure 4c). Trichaptum abietinum had a negative
effect on the colonization probability of successor species,
and its presence decreased the probability of coloniza-
tion of Phellinidium ferrugineofuscum, F. viticola, and
P. nigrolimitatus by 70% (Figure 4c). One or two pre-
decessor species usually interacted with successor spe-
cies, and later-successional species were possibly affected
by more species than early successional species. Fewer
interactions were identified for extinction dynamics, and
presence of F. viticola increased the extinction probability
of F. pinicola by 14%, and P. nigrolimitatus increased the
extinction probability of N. serialis by 61% (Figure 5a,c).

Changed interactions when adding
independent experimental information

Adding information from experiments in the form of
informative prior distributions for the pairwise interac-
tions influenced the final estimated interactions for three

species pairs associated with colonization and extinction.
With informative priors, two additional interactions were
identified, one was dropped for colonization interactions
(Figure 4c,d), and one additional interaction was identified
for extinction interactions, compared with estimates from
models with non-informative priors (Figure 5c,d). For
example, the laboratory study (Holmer & Stenlid, 1997)
found a strongly negative effect of P. viticola on the
colonization probability of F. pinicola (Appendix S1:
Figure S1). This informative prior increased the
evidence that P. viticola had a negative effect on
F. pinicola colonization, so that it was included in the
final model (BF >3, Appendix S1: Figure S6). In con-
trast, the informative prior removed an interaction that
was identified with non-informative priors. There was
a positive interaction of F. pinicola on probability of
P. viticola colonization in both the prior and the interac-
tion estimated with non-informative priors (Appendix S1:
Figure S7). However, the value of the prior (0.7, from
experimental data) was lower than the interaction esti-
mated with non-informative priors (1.5). Therefore, the
informative prior pulled the estimate closer to zero and
away from the observational data estimate, weakening the
evidence and making the interaction unimportant as
defined by BF <3. For extinctions, the informative priors

F I GURE 2 Variance partitioning for both colonization and extinction dynamics of the study species ordered from early (left) to late

successional. The numbers above each species bar refer to the number of environmental (N env, including quadratic variables) and

interacting species (N sp) variables that were important for explaining dynamics.
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identified one additional interaction compared with using
only observational data (Figure 5c,d).

DISCUSSION

This study provides an approach to more accurately dis-
entangle environmental and species interaction drivers of
metacommunity dynamics by using independent experi-
mental data. Previous approaches have been suitable to
identify interactions between a limited number of other
species (Dubart et al., 2019; Rota et al., 2016). Few studies
have analyzed directional interactions between >10 spe-
cies (Clark et al., 2020; Kawatsu et al., 2021; Ottosson
et al., 2014), because the number of parameters increases
strongly whereby the statistical inference becomes diffi-
cult. Other studies of large metacommunities have

applied statistical approaches that examine residual correla-
tion in species co-occurrences (Ovaskainen et al., 2010;
Tobler et al., 2019). However, such approaches cannot
easily combine observational and experimental data.
Here, we show how to analyze a large number of poten-
tially interacting species by combining informative prior
distributions and variable selection in a Bayesian infer-
ence framework. SSVS was a rapid way to select
between many variables, which allows estimating direc-
tional interactions in even larger communities.

The informative priors are a tool to include additional
knowledge identified in experiments. However, to extrap-
olate from experiments to observational data, one must
assume that the same mechanisms occur in nature as in
the experiment. We assume this to be the case in our sys-
tem because fungi interact with specific species chemi-
cally through hyphal interference (Boddy, 2000), and that

F I GURE 3 Partial probability of each species colonizing (a,b) and going extinct from (c,d) a log with log diameter (a, c) and decay (b,d).

Lines only show species with important relationships as identified by SSVS model selection. Shown are also 95% Bayesian credible intervals.
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the identity of the interacting species in these chemical
interactions would be the same in nature and exp-
eriments. This assumption is supported because the
experimental species interactions were largely in the
same direction as estimated observational interactions
(Appendix S1: Figure S2). As the interactions are chemi-
cal, there is no introduced bias that the smaller-scale
experiments would only represent interactions in smaller
logs. Therefore we argue that in this system it is reason-
able to extrapolate from interaction experiments, and we
also show results without informative priors. However,

for other species groups simple experiments may not be
informative of more complex systems with indirect and
higher-order interactions in the field (Barner et al., 2018).

One limitation of our study is that inferences from
informative priors need to be interpreted carefully when
there is little observational data. In the Bayesian frame-
work, abundant observational data usually overwhelms
informative priors; thus, the observational data deter-
mines the estimated interaction. In the case of sparse
observational data as here, informative priors added
three interactions that could not be identified with

F I GURE 4 Colonization interaction strengths estimated with (a, c) informative and (b, d) non-informative priors. Rows indicate how

the colonization probability (color shading) of each successor species i is affected by the presence of predecessor (variable) species

j (columns). The gray boxes indicate that there was no evidence for that interaction (BF < 3). n indicates the number of important

interactions identified by SSVS model selection. The interaction strengths (a, b) are calculated as the species i predicted probability of

colonizing an empty log minus the predicted probability of colonizing a log occupied by species j. The percentage colonization changes (b, d)

are calculated as the difference in probability of colonizing a log with and without the predecessor species.
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observational data alone. However, for one interaction,
the informative prior overwhelmed the posterior based
on the observational data, making the posterior esti-
mate non-significant (based on BF <3). In cases where
there is enough information in the observational data
about the interaction, there may be little gained from
using informative priors, so non-informative priors are
probably preferred.

One of the goals in ecology is understanding the rela-
tive strength of interspecific interactions and environ-
mental conditions in shaping metacommunity dynamics.

The metacommunity approach allows us to separate
colonization and extinction dynamics, and we provide
evidence that both biotic species interactions and abi-
otic environmental variables affect the colonization
dynamics, while extinctions are mostly explained by
environmental conditions. The colonization dynamics
of most species were mostly explained by environmen-
tal variables (as Norberg et al., 2019). Even though they
were few, some identified species interactions were
strong, for example, if F. pinicola was present on a log,
the chance of observing N. serialis increased by 500%.

F I GURE 5 Extinction interaction strengths estimated with (a, c) informative and (b, d) non-informative priors. Rows indicate how the

extinction probability of each successor species i is affected by the presence of predecessor (variable) species j (columns). The interaction

strengths (a, b) are calculated as the species i predicted probability of going extinct from an empty log minus the predicted probability of

going extinct from a log occupied by species j. The percentage changes (b, d) are calculated as the difference in probability of going extinct

from a log with and without the predecessor species.
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As hypothesized, late-successional fungi had more col-
onization interactions with predecessor species than
early-successional species. This is probably because
late-successional fungi are forced to invest more in
competition compared with early-successional commu-
nities that colonize a fresh resource (Fukasawa &
Matsukura, 2021).

We found interactions between 6% of species pairs (8 of
132 possible interactions). Some species had multiple posi-
tive or negative interactions with others that could yield a
successional pathway. Fomitopsis pinicola had a positive
effect on the colonization of two other species, including
F. viticola, which in turn had a positive effect on two other
species. F. pinicola occurrence is known to be positively
correlated with the presence of other species (Ylisirniö
et al., 2009) and thus overall log biodiversity (Pouska
et al., 2013). In an analysis of metacommunity dynamics
similar to this one but with DNA-based inventories
(Norberg et al., 2019), primary colonizer F. pinicola had a
positive effect on N. serialis, just as we found (but see
Kubartov�a et al., 2015). Fomtopsis viticola increased the
probability that two other species colonized the log and
decreased the probability that one other species went
extinct from the log, however this might be a statistical arti-
fact as it often occupies smaller, crown parts of the log
(Renvall, 1995) and hence may coexist by spatial separa-
tion. At the other extreme, T. abietinum had a negative
effect on the colonization of three species. Other studies
have also found that logs with T. abietinum were less likely
to host P. nigrolimitatus and F. viticola (Ovaskainen
et al., 2010; Ylisirniö et al., 2009). Overall, there were fewer
species interactions for extinction than colonization.

Our results support the idea that a dynamic
metacommunity model can better disentangle a random
co-occurrence from a species interaction that results in a
colonization or extinction. Compared with a snapshot
analysis of the same data (Ottosson et al., 2014), our
method identified five additional interactions. Previous
studies have found a positive (Ottosson et al., 2014;
Ovaskainen et al., 2010) or negative (Weslien et al., 2011)
association between F. pinicola and T. abietinum. Our
dynamic analysis shows that they do not interact despite
often co-occurring on the same log (Appendix S1:
Figure S4), but instead that they co-occur because they
have similar environmental preferences (large-diameter
logs) and occupy different parts of the log. They
may also be able to coexist because they have different
decay mechanism, as F. pinicola is a brown-rot spe-
cies and T. abietinum is a white-rot species (Ovaskainen
et al., 2010). The same could be true for interactions
between F. rosea and P. nigrolimitatus and N. serialis
identified in Ottosson et al. (2014), which in our case
was explained by shared environmental effect (positive

effect of log decay stage on extinction). Our results sug-
gest that data on distribution dynamics is more indica-
tive of species interactions than static distribution data
(Briscoe et al., 2021).

There are some limitations to this work. Species inter-
actions were difficult to identify because both observa-
tional and experimental data were limited. The few species
interactions identified may be because too few logs were
inventoried leading to few presences for these rare species
(low occupancy, Table 1). This generated a small amount
of data, which limits our statistical power to estimate
effects (Rajala et al., 2019). Even though it is known that
interactions among wood-decay fungi take place within
the log, Ovaskainen et al. (2016) found fewer interactions
at the log scale than at larger scales, and attribute this to
lower statistical power at the smaller scale with fewer
co-occurrences. There is also more stochasticity at the
smaller log scale than at larger scales (Norberg
et al., 2019). The 6-year inventory gap might be too long,
giving colonizers time to go extinct so they are never
observed. Another limitation is that our model only con-
siders pairwise interactions. Indirect and higher-order
interactions could be important drivers of metacommunity
dynamics (Clark et al., 2020), but studying species interac-
tions between all species would raise the number of inter-
actions exponentially. We focus on pairwise interactions
as only 6% of logs have more than two species.

The few interspecific interactions identified may also
be explained by the use of fruit body data, which results
in the detection of fewer species per log compared with
using DNA-based surveys (Kubartov�a et al., 2012; Saine
et al., 2020). Our limited number of species presences
may therefore have led to a lower statistical power to
infer interactions, as compared with species present only
as DNA (representing presumably mostly living or dead
mycelium) (Saine et al., 2020). DNA data has been shown
to yield consistent interactions, but also greater number
of species-to-species associations compared with fruit
body data (Saine et al., 2020). Therefore, including many
species detected as DNA traces in logs may lead to more
spurious interactions between species that are actually
not interacting (Saine et al., 2020). Interactions inferred
with fruit body data are less spurious because species typi-
cally form fruit bodies only after occupying sufficient space
and resources within dead wood (Ovaskainen et al., 2013),
and during this growth they are also more likely to interact
with other species (Kubartov�a et al., 2012).

In summary, we provide an analytic approach that
combines temporal presence–absence data with experi-
mental data, to understand how both environmental condi-
tions and species interactions shape metacommunity
dynamics. Accounting for species interactions is important
because interactions change species distributions and can
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have cascading effects on other species. Knowing which
and how species interact is important for managing biodi-
versity (Harvey et al., 2017; Niemelä et al., 1995). Herein,
F. pinicola and F. viticola had positive effects on coloniza-
tion probabilities of other successor species. Fomitopsis
pinicola is an important species for the old-forest forest
indicator species Pycnoporellus fulgens (Nitare, 2019)
and parasitized by the critically endangered Antrodiella
citrinella (SLU Artdatabanken, 2020; Wieners et al., 2023).
Combining observational and experimental data in a
Bayesian framework to identify species interactions, as
done here, can improve ecological understanding in other
communities.
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