
Automatic detection of ditches and natural streams from digital elevation 
models using deep learning☆

Mariana Dos Santos Toledo Busarello a,* , Anneli M. Ågren a , Florian Westphal b ,  
William Lidberg a

a Swedish University of Agricultural Sciences, Skogsmarksgränd, 901 83, Umeå, Sweden
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A B S T R A C T

Policies focused on waterbody protection and restoration have been suggested to European Union member 
countries for some time, but to adopt these policies on a large scale the quality of small water channel maps needs 
considerable improvement. We developed methods to detect and classify small stream and ditch channels using 
airborne laser scanning and deep learning. The research questions covered the influence of the resolution of the 
digital elevation model on channel extraction, the efficacy of different terrain indices to identify channels, the 
potential advantages of combining indices, and the performance of a U-net model in mapping both ditches and 
stream channels. Models trained in finer resolutions were more accurate than models trained with coarser res-
olutions. No single terrain index consistently outperformed all others, but some combinations of indices had 
higher MCC values. Natural stream channels were not classified to the same extent as ditches. The model trained 
on the 0.5 m resolution had the most balanced performance using a combination of indices trained using the 
dataset with both types of channel separately. The deep learning model outperformed traditional mapping 
methods for ditches, increasing the recall from less than 10% to over 92%, while the recall for natural channels 
was around 71%. However, despite the successful detection of ditches, the models frequently misclassified 
streams as ditches. This poses a challenge, as natural channels are protected under land use management 
practices, while ditches are not.

1. Introduction

The primary objective of the United Nations Agenda 2030 for Sus-
tainable Development is the protection of the planet from further 
environmental degradation (United Nations General Assembly, 2015), 
highlighting the importance of protecting and restoring water-related 
ecosystems. A similar goal is present in the European Water Frame-
work Directive (where policy changes implemented in 2000 brought an 
integrated approach to the management and protection of aquatic en-
vironments) adopted throughout the European Union. Furthermore, a 
proposal for new targets of nature restoration is currently being drawn 
up by the European Commission, aiming at successful restoration of 20% 
of the target area by 2030, and 90% by 2050 (Council of the European 
Union, 2023). However, the management strategies for applying these 
initiatives differ among countries.

Most countries use different sizes of riparian buffer zones to protect 
surface waters during land-use operations, but these policies vary when 
it comes to small streams. In Finland, for example, stream channels are 
protected through a forest buffer of minimum width (Ring et al., 2018). 
In Sweden, the Swedish Forest Act (Skogsstyrelsen, 2013) also pre-
scribes forest water protection through riparian buffers of variable width 
(Hasselquist et al., 2020). This is a necessary measure because over 75% 
of the total river network is estimated to be small streams (Bishop et al., 
2008), and therefore even small changes in the network can impact 
downstream channels dramatically. Even so, the data shows that after 
2004 as few as 25% of the small streams in Sweden were protected in 
such a manner, and when a buffer is present it usually has a width of 4 ±
0.4 m (Kuglerová et al., 2020), despite the recommended 5–30 m width 
of no-harvesting zones.

Some laws only address watercourses in general and do not 

☆ Link to the code: https://github.com/mbusarello/Automatic-Detection-of-Ditches-and-Natural-Streams-from-Digital-Elevation-Models-Using-Deep-Learning.
* Corresponding author.

E-mail addresses: mariana.busarello@slu.se, mariana.busarello@gmail.com (M.D.S.T. Busarello), anneli.agren@slu.se (A.M. Ågren), florian.westphal@ju.se
(F. Westphal), william.lidberg@slu.se (W. Lidberg). 

Contents lists available at ScienceDirect

Computers and Geosciences

journal homepage: www.elsevier.com/locate/cageo

https://doi.org/10.1016/j.cageo.2025.105875
Received 18 March 2024; Received in revised form 21 January 2025; Accepted 23 January 2025  

Computers & Geosciences 196 (2025) 105875 

Available online 27 January 2025 
0098-3004/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://orcid.org/0000-0002-4399-0804
https://orcid.org/0000-0002-4399-0804
https://orcid.org/0000-0002-6758-3971
https://orcid.org/0000-0002-6758-3971
https://orcid.org/0000-0002-2161-7371
https://orcid.org/0000-0002-2161-7371
https://orcid.org/0000-0001-5780-5596
https://orcid.org/0000-0001-5780-5596
https://github.com/mbusarello/Automatic-Detection-of-Ditches-and-Natural-Streams-from-Digital-Elevation-Models-Using-Deep-Learning
mailto:mariana.busarello@slu.se
mailto:mariana.busarello@gmail.com
mailto:anneli.agren@slu.se
mailto:florian.westphal@ju.se
mailto:william.lidberg@slu.se
www.sciencedirect.com/science/journal/00983004
https://www.elsevier.com/locate/cageo
https://doi.org/10.1016/j.cageo.2025.105875
https://doi.org/10.1016/j.cageo.2025.105875
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2025.105875&domain=pdf
http://creativecommons.org/licenses/by/4.0/


differentiate between natural channels and those altered or made by 
humans, while other laws go into more depth on different types of wa-
tercourses. For example, according to the Swedish Forestry Act 
(September 1, 2022) ditches are divided into two categories: “ditches” 
and “protective ditches”. Simple “ditches” are dug for permanent soil 
drainage to change the land use of an area. “Protective ditches,” on the 
other hand, are temporarily dug to mitigate groundwater level rise 
following clear-cutting. Protective ditches must not be cleaned, as they 
are temporary, and should not be more than 50 cm deep. No permit is 
needed to clean ditches, while digging new ones does requires official 
permission (Swedish PEFC, 2023). The idea is that ditches should 
gradually fill in with sediments and vegetation, eventually disappearing 
with time. The management of ditches can also include dam-
ming/plugging them to restore wetlands (Nieminen et al., 2018). 
Because of this variability in the practices which are allowed by law, 
knowing if a channel is natural or altered by man determines the best 
management choice.

Within the context of environmental impact, forest ditches can be 
strong anthropogenic emitters of greenhouse gases (Peacock et al., 
2021b), with methane offsetting the uptake from terrestrial CH4; they 
also transport suspended solids, which impacts water quality (Nieminen 
et al., 2018). Even though the differences between ditches and small 
natural streams are not always clear, factors such as morphology and 
hydrology do stress the distinction between channel types. Some of these 
attributes can also influence the quantity of methane being emitted 
(Peacock et al., 2021a), resulting in an annual flux slightly higher for 
ditches than for streams.

There is wide recognition of the importance of hydrological vari-
ability to the ecology of small streams (Huryn and Wallace, 1987; Lanka 
et al., 1987; Wohl, 2017), after all, the characteristics of meandering, 
pools, and rapids can define habitats (Beschta and Platts, 1986; Wiens, 
2002; Martínez et al., 2013), nutrient cycling (Alexander et al., 2007; 
Claessens et al., 2010), and water quality (Cox et al., 2023). Yet, the 
mapping of small water channels (<6 m wide) on Sweden’s traditional 
digital maps was poor: 55% of the natural streams and 91% of ditches 
were not detected in the Swedish property map (Flyckt et al., 2022). 
Plus, the simplified digitized line from this dataset (Lantmäteriet, 2014) 
has limited usefulness for research in ecology when working across the 
landscape scale with geographic information system methods. Still, the 
number of mapped ditches was increased from 9% to 86% by Lidberg 
et al. (2023) using deep learning (LeCun et al., 2015) and remote 
sensing, turning the once laborious manual task with a substantial in-
vestment of cost and time into an automated process. Many countries 
have already been scanned with airborne laser scanning (ALS), and, 
using the latest return data, digital elevation models (DEMs) can be 
constructed, revealing small-scale channels (Raber et al., 2002).

Deep learning approaches have been used to map stream channels 
based on satellite images and Digital Elevation Models (Mazhar et al., 
2022; Fei et al., 2022; Isikdogan et al., 2017). However, the main focus 
of these studies has been on larger rivers, while deep learning applica-
tions in small streams is limited. Koski et al. (2023) mapped small 
channels but did not separate between ditches and natural streams, 
while others have focused only on ditches based on ALS data (Du et al., 
2024; Lidberg et al., 2023), or aerial photos (Robb et al., 2023). Despite 
these efforts, a research gap remains for small natural streams – the 
headwaters. Headwater streams are like the capillary system in the body 
– just as the health of the whole organism depends on a functioning 
capillary system, the health of larger streams and rivers depend upon an 
intact headwater stream network (Kuglerová et al., 2017), hence there is 
a large societal need for improving the mapping of the headwaters. 
Traditionally, headwaters are mapped from DEMs by calculating flow 
accumulation and applying a threshold to determine where streams 
begin (Ågren et al., 2015). However, the high natural variability in 
stream initiation thresholds makes these networks unreliable (Paul 
et al., 2023). Additionally, channel networks derived from flow accu-
mulation are subject to further uncertainties because flow accumulation 

requires extensive preprocessing to of the DEM which introduces more 
uncertainties especially at stream/road crossings (Lidberg et al., 2017). 
Therefore, the goal of this study was to develop a method for mapping 
channels in the landscape without including upstream areas or consid-
ering the presence of water. Instead, the focus was on detecting the 
physical structure of the channel, specifically the elongated depression 
visible in the DEM.

Building on the successful use of deep learning to map ditches in 
Lidberg et al. (2023), this article extends the methodology by incorpo-
rating the digitization of small natural stream channels into a dataset 
that was previously limited to ditches and adding one more study area. 
Topographic indices derived from ALS data and the manually mapped 
channels were used to train a U-net model to detect small-scale channels 
(both ditches and natural streams). Here, we explore for the first time if 
deep learning can be used to detect small streams from the 
high-resolution DEM considering not only the channels’ location, but 
also their variable width instead of just buffering them. The following 
research questions were answered: 

1) How important is the resolution of the DEM for detecting ditches and 
natural channels? Here we explore two resolutions: 0.5 m and 1 m.

2) When highlighting the channels using digital terrain indices, is there 
a best one? Is the same index best for natural channels and ditches, or 
do they differ?

3) When detecting channels, is it better to work with just one terrain 
index, or to combine the information from many indices?

4) Can a U-net model be used to detect natural channels as well as 
ditches? Is it better to include ditches and natural channels in the 
same model, or to make separate models?

2. Methodology

Digital terrain indices were extracted from the DEM obtained from 
the high-resolution ALS data. These terrain indices were combined to 
form a database of manually mapped water channels, this then being 
used to train a deep neural network to detect and classify small-scale 
channels.

2.1. Study areas

We used remote sensing data and field data from the 12 regions 
described by Lidberg et al. (2023). The original dataset was exclusively 
composed of ditches; smaller (<6 m width) natural streams were added 
later by Paul et al. (2023). This data were revised and updated by 
comparing the location of the channels directly to orthophotos with a 
resolution ranging from 0.17 to 0.5 m (Lantmäteriet, 2021a) and the 
High-Pass Median Filter (HPMF) terrain analysis, increasing the length 
of channels to 2235 km of ditches and 315 km of natural streams.

Following Paul et al. (2023), these sites illustrated the diversity of 
the country’s landscape properties, with land use mainly represented by 
forests covering 86–99% of the area, and agriculture ranging from 0 to 
13.2% coverage among sites. Variability in characteristics such as soil 
type, tree species, runoff, and topography were considered in the site 
selection process. Overall, the Swedish landscape has been heavily 
ditched, tripling the originally unaltered channel length density, with 
the majority of the channels built being forest ditches. Most of the nat-
ural channel heads can be found in the northern areas, but transition 
points (i.e., the connection between a natural channel and an upstream 
ditch network) happened more often in the south. Small natural chan-
nels in Sweden are meandering and blend with the surrounding terrain, 
as boulders in their course minimize stark contrasts (Fig. 2B). Ditches 
are instead straight and smooth-looking, with generally well-defined 
borders resulting from the removal of boulders during the digging pro-
cess. Most of the ditches in the dataset were forest ditches (56%), with 
road ditches in second (25%), and agricultural ditches last (6%, Paul 
et al. (2023)).
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2.2. Training data

2.2.1. Topographic indices
The ALS data (Lantmäteriet, 2021b) were collected by an aircraft 

flying at a height of 2888–3000 m with a compact laser-based system 
onboard (Leica ALS80-HP-8236) generating point clouds with a density 
of 1–2 points per square meter. LiDAR Tin Gridding from Whitebox 
Tools was used to create DEMs with 0.5 m and 1 m resolutions over the 
study areas, totaling 430 km2. We selected seven topographic indices 
that could visually highlight small-scale channels present in the DEMs 
(Fig. 2) as a proxy for the differences in elevation. Many indices could 
have been experimented on, but there is a limitation in the number of 
variables that could be used in the study considering the amount of time 
and effort involved in calculating new indices and preparing them as 
input for training the models. It was also observed that larger moving 
windows provided excessive smoothing, blending small channels in the 
landscape, while small scales introduced a high amount of noise. This is 
why the choice in scale relied on the visual evaluation for the cases 
where the size of the moving window was not arbitrarily defined by the 
tool in use.

The topographic indices were normalized between zero and one 
before being divided into chips of 500 × 500 pixels for input to the deep 
learning algorithm (Fig. 1B and C). Whitebox Tools was used to calculate 

all topographic indices, except for the Sky-view Factor, which was ob-
tained using the Relief Visualization Toolbox v. 2.2.0 (Kokalj et al., 
2016).

2.2.2. High-Pass Median Filter
The HPMF (Lindsay, 2016) emphasizes short-range variability, sub-

tracting the pixel value from the median value of the other pixels inside a 
window. The window size kernel is user-defined; this study used 11 in 
both X and Y directions. The data were normalized by applying the 
Min–Max Normalization. Negative values indicate depressions and can 
be used to highlight channels, i.e. elongated depressions in the soil. This 
index is similar to the topographic position index, which is obtained 
through the subtraction of the mean value of the area covered by a 
moving window, however, HPMF was chosen due to the previously 
successful application in Lidberg et al. (2023), and because the median is 
more resistant to extreme values in the data.

2.2.3. Hillshade
The shaded relief (Wilson and Gallant, 2000) makes it possible to 

visualize a three-dimensional surface considering its slope and aspect, 
with shadows distributed according to the illumination source position 
(altitude and azimuth). This study has used the fixed altitude of 30◦ and 
the azimuths 0◦, 45◦, 90◦, and 135◦. The values were normalized 

Fig. 1. Study areas. (A) 12 regions spread across Sweden where all ditches and streams were manually digitized; (B) Study regions split into 2.5 km× 2.5 km tiles. 
Locations of manually mapped water channels were separated by type, with ditches in orange and natural channels in turquoise, drawn over the hillshaded elevation 
model. Each grid cell represents chips with sides of 500 × 500 pixels. (C) An example of a 0.5 m resolution image chip obtained after splitting the tile. These chips are 
the images that the deep learning models will use as training data. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.)
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afterward through their division by the maximum value. The bottom of a 
channel would be shaded unless it was hit by sunlight along the direc-
tion of the channel. To address this issue, we included hillshades from 
four different angles.

2.2.4. Sky-view factor
This index is defined by the ratio between the radiation received at a 

specific grid cell and the one emitted through the whole hemispheric 
environment around it (Zakšek et al., 2011). Considering a visual 
observation of the channels, the chosen radius was 5 m with 16 
directions.

2.2.5. Slope
This topographic index represents the change in elevation between 

every pixel in the DEM with a moving window sized 5 x 5 for increased 
accuracy and stronger reduction of high-frequency noise (Florinsky, 
2016), with the inclination displayed in degrees. To perform the 
normalization, all values were divided by the theoretical maximum 
value of 90◦.

2.2.6. Labels
When the word “channel” is used in this article, it includes both 

ditches and natural streams. Using Whitebox Tools, we started by 
obtaining the flow accumulation (O’Callaghan and Mark, 1984). First, 
we filled the single cell depressions in the DEM (FillDepressions), then 
burning streams at roads using data from the Swedish Property map 
(Lantmäteriet, 2014) to ensure stream continuity across roads (Burn-
StreamsAtRoads). Remaining larger depressions were breached 
(BreachDepressionsLeastCost) to keep the flow continuity, using this as 
the input to calculate the D8 flow accumulation (D8FlowAccumulation). 
Streams were extracted (ExtractStreams) using the lowest stream initia-
tion threshold from the distribution observed for natural channel heads 
in Paul et al. (2023): 2 ha.

Following this methodology, the channel heads and connections to 
the ditch network were identified, and downstream stream paths 
manually marked and edited. Ditches were visually identified from 
HPMF and ortophotos, being manually mapped as vector lines by a team 
of experts. We have utilized the HPMF values within the channels to give 
these lines a variable width, creating structures that more closely 
resemble the actual shape of the channels. Based on the method 
described in Lidberg et al. (2023), the HPMF analysis had its pixels 
reclassified based on the threshold of − 0.075 (determined through 

visual inspections), receiving the label 0 when they are above it, and 1 
when below. A 3 m buffer surrounding the vector lines was generated, 
later overlapping the relabeled data and extracting the non-null pixels 
within it. Finally, we applied the majority filter to these selected pixels 
to remove strays, preserving the continuity of the channels (Fig. 2A).

Eight different datasets were created (Fig. 3), initially separated by 
how the channels were represented: 

• Channels: all channels, merged to a combined dataset with no sep-
aration of ditches and streams. Two class labels; channel and back-
ground (Fig. 3A and E)

• Ditches: a separate dataset of only ditches. Two class labels; ditch 
and background (Fig. 3B and F).

• Streams: a separate dataset of only streams. Two class labels; streams 
and background (Fig. 3C and G)

• Ditches&Streams: a combined dataset with three class labels; 
ditches, streams, and background (Fig. 3D and H)

Each type of representation was calculated for both 0.5 m and 1 m 
resolution to analyze how this impacted the results; each one is noted as 
an added “0.5” or “1” the dataset names.

The datasets exhibited significant class imbalance. To compensate 
for that, only the chips containing more than 250 pixels with the positive 
label were selected for the analysis, resulting in 4615 chips in total. 
From these, 1.1% of the total pixels were ditches and 0.1% were streams. 
Not all chips contained both types of channels, so datasets with only 
streams or ditches had fewer chips (Busarello et al., 2024).

2.3. Semantic segmentation

The convolutional neural network (CNN) U-net (Ronneberger et al., 
2015) (Fig. 4) was chosen for having successful real-world applications 
in different scientific fields such as medicine (Siddique et al., 2021), 
geology (Gao et al., 2022), and forestry (Korznikov et al., 2021), being 
both robust and versatile. It also has the advantage of concatenating the 
feature maps of the downsampling path to the upsampling path, pre-
venting the loss of information during downsampling. A limitation of the 
study was the amount of chips available in the datasets: CNN models 
usually require thousands of training data examples, and for this reason, 
acquiring training data is the most challenging part of the process. The 
use of data augmentation (Tanner and Wong, 1987) increased the 
number and diversity of training images by adding slightly different 

Fig. 2. Examples of the ground truth and topographic indices. Orange represents ditches and turquoise represents natural streams. Images displayed represent an 
area of 250 m × 250 m. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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copies of them to the dataset, obtained through transformations. The 
geometric transformations used in this work were the random rotation 
and random flips (horizontal and vertical). Random rotation rotated 
images in a random angle within the specified range of 0◦–360◦, helping 
improve the model’s generalization by increasing the pattern recogni-
tion regardless of the object orientation in the image. The horizontal 
random flipping rotated the image along its vertical axis, swapping left 
and right, while the vertical random flipping flipped across the hori-
zontal axis, swapping the top and bottom of the image instead.

Considering that the proportion between the classes of pixels showed 
considerable imbalance, median frequency balancing (Eigen and Fergus, 
2015) was used to establish the class weights used for training. Adam 
(Kingma and Ba, 2015) was used as the optimization algorithm, and the 
chosen batch size was 16. In the beginning, the topographical indices 
were used individually as input to train the first models, while the last 
model combines all indices, resulting in 64 different models. Later, all 
possible combinations were used as training data for the dataset 
Ditches&Streams to determine if combining indices is a better option 

than using them individually.
The general architecture of U-net incorporates two paths: encoding 

and decoding. During the encoding phase, hierarchical features are 
extracted by a combination of convolutions and the pooling of feature 
maps, down-sampling the data resulting in a compact representation of 
the input, with an increased number of channels. Subsequently, in the 
decoding phase, transposed convolutions are applied to upscale the 
spatial dimension until the output matches the input original size. After 
each transposed convolution, a skip connection happens between cor-
responding layers in both paths. This allows the network to keep fine- 
grained details in the up-sampling process. The final convolution re-
duces the number of channels, producing the final segmentation map. In 
it, each pixel is assigned a probability of belonging to a class.

The processing time for calculating the topographic indices was 
tracked, as well as the inference time, being further extrapolated for the 
whole area of Sweden to estimate how long it would take to detect the 
location of channels throughout the entire country. Training and infer-
ence were done using an NVIDIA RTX A6000 GPU and AMD Ryzen 

Fig. 3. Training data chip examples of both resolutions. Top row represents 0.5 m, and bottom row shows 1 m resolution. Chip size is 250 m × 250 m for 0.5 m 
resolution and 500 m × 500 m for 1 m resolution. Yellow lines in dataset Channels represent channels, without distinction between stream channels and ditch 
channels. Ditch channels are represented in orange in the datasets Ditches and Ditches&Streams. Turquoise represents stream channels in datasets Streams and 
Ditches&Streams. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 4. U-net architecture. The left side shows the encoding/down-sampling process, where the main features are extracted while the input is compacted. On the 
right side is the decoding/up-sampling path, which upscales the features until it reaches the same size as the input.
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Threadripper 3990X Processor.

2.4. Evaluation

The data were split into two parts, 80% for training and 20% to 
evaluate the performance of all models, comparing the ground truth 
pixels with the detected pixels. Precision, Recall, F-score, and Matthews 
correlation coefficient (MCC; Matthews, 1975) were the key metrics 
used to evaluate the models, along with information retrieval tables. 
Precision is the metric that accounts for the accuracy of positive pre-
dictions from a model, being affected by the number of false positives. It 
assesses how much of the detection and classification made by the model 
was right. Recall, on the other hand, accounts for how much of the 
ground truth was correctly detected. F-score is the harmonic average of 
precision and recall, and MCC is a special case of the phi coefficient. The 
F-score was calculated to easily compare the performance of this study 
with other publications, but MCC reports the overall quality of the 
classification performed by the model, being more reliable for imbal-
anced datasets (Chicco and Jurman, 2020). The Precision-Recall curves 
were plotted to display the tradeoff between recall and precision in the 
highest-ranking models. In addition to these metrics, we also used 
models with the highest MCC values from each dataset to illustrate the 
location of detected channels. For the final evaluation, the inference of 
the best-performing models was compared to the ground truth in order 
to account for how much of each type of channel was detected by them.

2.5. Benchmark

We have used the traditional flow accumulation method of the 0.5m 
resolution as a benchmark to compare with our deep learning approach 
and our manually labeled dataset. The process to obtain the flow accu-
mulation has been described in section 2.2.2, but now we have included 
the other two stream initiation thresholds of 6 ha and 10 ha, also 
observed in Paul et al. (2023). To make the comparison fair, the 
extracted streams went through the same described process to create the 
labels with natural contours: buffering, multiplying the buffer with the 
reclassified HPMF data, majority filtering, and combination with ras-
terlines. Additionally, the Swedish property map (1:12 500) was also 
used for comparison. It was rasterized (VectorLinesToRaster) and un-
derwent the same process described in section 2.2 to create natural 
contours. All of this data was compared pixel by pixel to the labeled 
dataset, counting how many pixels labeled as ditch or natural stream 
were identified as channel by the flow accumulation.

Furthermore, the inference results from the deep learning model 
from Lidberg et al. (2023) was also compared to our ground truth data. 
Despite their model being trained exclusively on ditches, it indirectly 
detected some natural channels, allowing for a relevant comparison. To 
ensure we did not evaluate on data that the previous model might have 
been trained on, we used data from the newly added study site for this 
process, as it was not included in the previous model’s training data.

3. Results and discussion

3.1. Importance of DEM scale for the modeling of channels using deep 
learning

The precision and recall values were higher for datasets with a 0.5 m 
resolution than for the 1 m counterpart. This was the case for all datasets 
and topographic indices (Fig. 5). Despite this, some models displayed 
higher values at either metric individually, and some overlap between 
the resolutions has been observed. This is partially in line with previous 
research on mapping terrain features with deep learning and DEM data, 
where higher resolution had better results (Chowdhuri et al., 2021) but 
also showed that the difference in performance between resolutions was 
not very strong (Robson et al., 2020).

The recall had different values for all datasets at 1 m resolution, with 

small differences between ditches and channels. The precision was 
similar for either resolution, with a variation of around 10%. We can 
assume that the performance of the models with 1 m resolution was 
impacted by the topographic index used in the training process. This 
impact was also observed in the 0.5 m resolution but to a lesser extent, 
which could indicate that models trained on a higher resolution were 
stable. The stability was not present on channels labeled as streams: in 
both scales and with any dataset, as seen in the black crosses in Fig. 5, 
the recall values were different while the precision was similar, not 
going over 25%.

The estimated processing time required to both extract the topo-
graphical indices and apply the model differed substantially between the 
DEM resolutions (Table 1). The Sky-view Factor in particular was 
computationally demanding compared to the other topographical 
indices, regardless of resolution. This happens because the source-code 
for the RVT library was written in python, which is an interpreted lan-
guage. The tools from WBT, on the other hand, were coded in Rust – a 
compiled language. Compiled programs are faster than those that have 
to be interpreted (Kwame et al., 2017), and one way to have similar 
processing times would be to have all the processing steps written in a 
compiled language. Furthermore, parallelizing the codes for execution 
on the GPU could potentially mean a considerable speed improvement. 
The inference time of the deep learning model was about the same for 

Fig. 5. Precision by Recall plot of the trained models, grouped by resolution 
and channel type. Black represents the 0.5 m resolution, while the 1 m reso-
lution is represented by the white color. When referring to dataset Ditches&-
Streams0.5, the channel types were analyzed separately. The “Ditches” 
identified in the legend refers to this class in dataset Ditches and Ditches&-
Streams, while “Streams” addresses this class in dataset Streams and Ditch-
es&Streams. “Channels” describes the models trained with the dataset 
Channels, combining ditch and stream channels in the same class.

Table 1 
Time spent to calculate each topographic index individually and in combina-
tions, and the time spent to apply a deep learning model on new data (inference): 
both in two resolutions and measured in seconds by square kilometers. It was 
also estimated how long it would take (in days) to calculate the topographic 
index(es) and apply the model to the processed data for the whole surface area of 
Sweden (447 425 km2). Hillshade had the same processing time regardless of the 
angle.

Topographic Index Processing time 
(s/km2)

Inference time 
(s/km2)

Estimated time for 
Sweden (days)

0.5 m 1 m 0.5 m 1 m 0.5 m 1 m

HPMF 0.30 0.09 6.71 1.68 36 9
Hillshade 0.25 0.07 6.69 1.67 36 9
Slope 0.27 0.08 6.69 1.67 36 9
Sky-view Factor 3.01 0.68 6.64 1.67 50 12
Combination (all) 4.58 1.13 6.81 1.70 59 15
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models trained with one index or several combined.
As models trained on the 0.5 m resolution datasets had the highest 

recall, the rest of this work focused on the models trained on topo-
graphical indices with a 0.5 m resolution. The analyses for 1 m resolu-
tion are in Appendices A.1, A.2, A.3, and A.4.

3.2. Impact of different terrain indices for detecting ditch and stream 
channels

We did not find a particular topographical index that consistently 
outperformed the others in this study. Models trained on Hillshades had 
the highest recall, while models trained on HPMF and Hillshade 0◦ had 
the highest precision using the datasets Channels0.5 (Fig. 6A) and 
Ditches0.5 (Fig. 6B). The model trained on the dataset Streams0.5 had 
the highest recall when trained on a combination of all topographical 
indices (Fig. 6C). That model had a recall of 70%, but the precision was 
still low at 20%. The highest recall for ditches with dataset Ditches&-
Streams0.5 was from the combination of all indices with 92% and 7% for 
streams using Hillshade 90◦ (Fig. 6D). The precision for the model 
trained on this dataset was highest with the HPMF for ditches, and Slope 
for streams. We believe that MCC gives the most balanced measure of the 
overall model performance, but there was no clear winner among 
models trained on different digital terrain indices (Table 2).

Indices not used in our work were listed as the most effective ones in 
studies focused on channels and fluvial features using the DEM (Du 
et al., 2019; Koski et al., 2023), or topographic positive openness for 
ditches (Du et al., 2024). Koski et al. (2023) detected channels using 
deep learning and several terrain indices besides the DEM, finding recall 
and precision values ranging 16–77% and 43–86%, respectively, while 
the F-score varied 0.23–0.81. The best terrain indices in our study for 
this type of dataset scored higher recall (83–93%), but lower precision 
(range 42–52%, Fig. 6A) and lower F-score (0.54–0.63, Table 3). The 
reasons for the differences are analyzed in section 3.4. Similarly, Du 
et al. (2024) detected ditches with deep learning, combining topo-
graphic and other features. Recall and precision were in the range of 
73–76% and 63–69%, respectively, and F-score 0.69–0.71. Meanwhile, 
our similar dataset had higher recall (72–92%), lower precision 42–52% 
(Fig. 6B), and lower F-score 0.57–0.66 (Table 3). This difference could 

be because of the U.S. study having a higher resolution (0.3 m against 
our 0.5 m). Lidberg et al. (2023), however, obtained a higher MCC value 
than this study using the HPMF (0.78), which could be due to the 
different deep learning architecture.

The variation in the performance of the hillshade indices could be 
explained by the variation in channel orientation. In Fig. 2C, for 
example, part of the stream and the vertical ditch do not show because 
they were parallel to 0◦, while the channels oriented perpendicularly 
were highlighted. Therefore, no matter the amount of data acquired and 
data augmentation performed, when using an index there is a chance 
that the channels might not be visible at all. This further motivated our 
choice to combining them.

3.3. Combining topographic indices

Combining all of the topographic indices did not result in a higher 
MCC compared to using them individually as input training data for 
most datasets, except Streams0.5 (Table 2). This dataset (Fig. 6C) and 
Ditches&Streams0.5 (Fig. 6D) had higher recall values.

However, when all of the possible combinations between the indices 
with dataset Ditches&Streams0.5 were analyzed (Appendix B) we 
observed that, for ditches, the HPMF was surpassed by the combination 
of Sky-view Factor + Slope in the ditches class (MCC = 0.69 (Table 3) 
against 0.74 (Fig. 7)) and the streams class (MCC = 0.09 against 0.31). 
Furthermore, for streams the Slope was surpassed by the combination of 
Hillshade 45◦ + Hillshade 90◦ + Hillshade 135◦, not in the ditch class 
(MCC = 0.63 against 0.63) but in the stream class (MCC = 0.28 against 
0.36). These results are in line with Kazimi et al. (2020) and Du et al. 
(2019), where a combination outperformed the single index, even 
though both studies used a coarser resolution (50 m) to detect fluvial 
structures (among others). We believe that the resolution did not in-
fluence this difference between combining indices or not, since these 
results also matched the coarser one analyzed by us (Appendix A.4).

Additionally to the observed trend that no single index was better 
than a combination of indices, we noted that the best performing com-
binations are those that combined two or three indices (Fig. 7). This 
appears reasonable since each index extracted different information 
from the DEM and as such may not contain all necessary information. 

Fig. 6. Precision by Recall plots separated by dataset with 0.5 m resolution. Each color represents a topographic index, and each symbol represents a channel type. 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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For example, ditches running from north to south were difficult to see in 
Hillshade 0◦ (Fig. 2C). However, adding indices to the considered 
combination, which introduce only slight variations of the information 
already provided by the considered indices, harmed performance, since 
it made the learning problem more difficult. This issue has been 
observed by others, for example by Yang et al. (2023) and Koski et al. 
(2023), who trained models directly on the DEM. These models per-
formed similar or better than models trained on the DEM combined with 
indices derived from it, since all required information was already 
included in the DEM. Still, we argue that it is reasonable to assume that a 
model trained on topographic indices can generalize better due to the 
more uniform representation of the relevant topographic features.

Processing time could affect the decision to use multiple topo-
graphical indices, considering that it can increase greatly with a higher 
resolution. It seems that combining multiple topographical indices 
derived from the same LiDAR data could be beneficial, and so, including 
aerial photographs in the topographical data is something that might be 
worth exploring. Robb et al. (2023) obtained a higher F-score than our 
study (0.79 against 0.66) using orthophotos with a 0.25 m resolution to 
detect ditches, but this was not observed by Koski et al. (2023), where 
combining the orthophotos had the worst performance detecting chan-
nels. The aerial imagery data used by the Finnish study had a coarser 
resolution (0.5 m; NLS (2023)) which could be creating this difference. 
Koski et al. (2023) also points out that the extent of tree coverage 

hindered the performance of this input data to some extent, something 
that seems not to have happened in the UK publication, judging by the 
fact that the study area was less forested.

3.4. Evaluating model performance with different datasets

The models with the highest MCC values were selected for further 
evaluation under section 3.4. By “datasets” we mean if the model was 
trained to identify channels, streams, and/or ditches. The models 
trained with dataset Ditches0.5 with the highest MCC had a recall of 
92.1%, while models trained on the dataset Channels0.5 had a recall of 
83.7% (Table 3).). The same observation was made in the Precision- 
Recall curves, with AP = 0.76 for Channels0.5 (Fig. 8A) versus AP =
0.82 for Ditches0.5 (Fig. 8B).A Finnish dataset similar to Channels0.5 
was used by Koski et al. (2023), with lower recall values (77.3%) but 
notably greater precision (85.6% against our 54%, Table 3). Starting in 
the 1950s, the ditching process in peatlands that was conducted in 
Finland altered the shape of most small natural channels (Muotka et al., 
2002), with a low number of unaltered small streams left. This could 
mean that the uncertainty brought in by natural channels was smaller, as 
unaltered streams might be rarer in Finland, resulting in a higher pre-
cision. This could be an indication that when streams and ditches had 
the same label, uncertainty was introduced in the training process, 
blurring the detection and classification of channels. With the streams 
labeled as background, the separation became clearer and more chan-
nels were detected (despite the number of false positives also 
increasing).

The precision-recall curves strengthen the observations from Table 3. 
The average precision values reported were higher than the ones seen in 
the table because this metric is an approximation of the area under the 
precision-recall curve (Aslam et al., 2005), i.e., a summary of the 
precision-recall performance across all thresholds. However, we could 
still see similarities in the overall poor performance of the stream class in 
the Streams0.5 dataset (AP = 0.22, Fig. 8C), Ditches&Streams0.5 
trained with HPMF (AP = 0.06, Fig. 8D), and the improvement brought 
to it by combining Sky-View Factor and Slope (AP = 0.28, Fig. 8E). 
Overall, the ditch label performed better across all datasets, showing 
that whichever high-ranking model was chosen, their detection would 
be similar. The differences, though, could be seen in the inferences 
(Fig. 9), where the interruption in channels happened more often within 
Channels0.5 (Fig. 9B) than Ditches0.5 (Fig. 9C).

For the model where the channels were trained with three labels 
(ditches, streams, and background (Fig. 3D)) we evaluated the ditches 
and streams separately. Ditch channels were correctly classified 

Table 2 
MCC values for all datasets with the 0.5 m resolution. The terrain indices with the highest MCC are highlighted in bold.

Topographic Indices Channels0.5 Ditches0.5 Streams0.5 Ditches&Streams0.5 (ditches) Ditches&Streams0.5 (streams)

Combination 0.65 0.61 0.32 0.64 0.12
Hillshade 0◦ 0.63 0.68 0.31 0.57 0.11
Hillshade 45◦ 0.59 0.60 0.28 0.60 0.27
Hillshade 90◦ 0.64 0.69 0.30 0.65 0.22
Hillshade 135◦ 0.60 0.63 0.26 0.59 0.25
HPMF 0.67 0.67 0.25 0.69 0.09
Slope 0.64 0.68 0.13 0.63 0.28
Sky-view Factor 0.66 0.63 0.19 0.63 0.17

Table 3 
Evaluation metrics for each model, dataset, and its highest-performing topographic index. The recall, precision, F-score, and MCC values are also presented.

Model TP FP TN FN Recall Precision F-score MCC

Channels0.5 High-Pass Median Filter 2395624 2028771 224358343 467262 83.7% 54.1% 0.66 0.67
Ditches0.5 Hillshade 90◦ 2396057 2282997 203616321 204625 92.1% 51.2% 0.66 0.69
Streams0.5 Combination 185753 1040722 54697074 76451 70.8% 15.1% 0.25 0.32
Ditches&Streams0.5 High-Pass Median Filter (ditches) 2170656 1597868 224812682 430026 83.4% 57.6% 0.68 0.69
Ditches&Streams0.5 High-Pass Median Filter (streams) 18318 130158 226965020 243886 6.9% 12.3% 0.12 0.09

Fig. 7. Precision and Recall plots for all of the possible combinations of 
topographic indices. The color indicates the number of combined indices, and 
the shape represents the type of channel.
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frequently, which could mean that these channels had morphological 
attributes that made them more easily recognized by the neural 
network, while streams did not. Comparing this dataset (3-class) to 
dataset Ditches0.5 (binary), the recall was lower (83.4% against 92.1%), 
a result similar to Phinzi et al. (2020) when comparing the performance 
of a binary and a multiclass dataset to detect gullies with machine 
learning.

Models trained with the binary datasets had false positives more 
often, meaning that labeling streams and ditches separately in the 
training process could have helped distinguish both from the back-
ground data. A visual analysis of the detection (Fig. 9E) demonstrates 
that the models were not able to separate ditches and streams, but the 
number of false positives for the stream channels and ditches was low 
(0.06% and 0.7%, respectively; Table 3). For the dataset Ditches0.5 
(Fig. 9C), stream channels were mainly misclassified as ditches despite 
being detected, while in the dataset Streams0.5 (Fig. 9D) the opposite 
happened, with frequent channel interruptions. This discontinuity was 
also observed in dataset Channels0.5 (Fig. 9B).

The channel interruptions were observed in small sections where the 

width was narrower than the average 3 m. In the ground truth data, 
these gaps were absent because the original polyline shapefile was 
converted to raster format and merged with HPMF-extracted values. 
This provided channel continuity, but limited their width to a single 
pixel. Gaps in the channel network are not unusual due to not only 
natural processes like sedimentation, falling trees and logs, but also to 
anthropogenic modifications such as culverts, bridges, road embank-
ments (Lindsay and Dhun, 2015), which would explain why parts of the 
channel would be absent in ground truth. With that, they would not be 
detected in the inference either.

The highest-ranking models (Table 3) detected channels but were not 
as effective when classifying them, so we have calculated how much of 
each channel type was detected by each model regardless of the model’s 
classification (Table 4). For the binary datasets, “detection” was the 
same as recall (TP/TP + FN), while “classification” was the same as 
precision (TP/TP + FP). However, we also used the multilabel ground 
truth (with pixels labeled 0, 1, or 2) to evaluate the performance of the 
models on channels, calculating how much of each channel type was 
detected. For the multilabel dataset (Ditches&Streams0.5), “detection” 

Fig. 8. Precision-Recall curves of the highest-ranking trained models and their average precision (AP).
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meant not being predicted as background (label 0). At the same time, 
“classification” verified how many of the channel type predictions were 
correct, i.e., ditch pixels predicted to be ditches and stream pixels pre-
dicted to be streams. This was done because, despite a pixel being 
classified incorrectly as either ditch or stream, as long as it was not 
classified as “background” (label 0), it was still counted as a channel per 
the definition we use in this work: the combination of ditches and 
streams.

When both channel types had the same label (Channels0.5), the 
detection was higher than when they were labeled separately in the 
same dataset (Ditches&Streams0.5). Models with only one channel type 
(Ditches0.5 and Streams0.5) detected the other class, and in the case of 
Streams0.5 more ditches were detected than stream channels. Streams 
can be characterized by relative depth, continuity, and high sinuosity. 
Ditches are also characterized by relative depth and continuity, and low 
sinuosity (more straight). However, not all streams are meandering and 
not all ditches are straight. These similarities make it challenging to 
distinguish between both channel types, while the straight aspect tends 
to simplify the recognition of ditches. Furthermore, we employed me-
dian frequency balancing (Eigen and Fergus, 2015), which assigns larger 
class weights to less frequent classes, leading to larger errors when pixels 
of these classes are mislabeled. With this in mind, we observed how 
different labeling strategies affect the tradeoff different models made 
between precision and recall (Fig. 8).

In the three binary classification datasets (Channels0.5, Ditches05, 
and Streams0.5), misclassifying background as the respective positive 
class is comparatively inexpensive, due to the small class weight for the 

background class. Thus, the models favored higher recall despite an 
increase in false positives. In the 3-class dataset (Ditches&Streams0.5), 
labeling uncertain pixels as a minority class was costly due to the large 
class weights assigned to the ditch and the stream class. Mislabeling 
stream pixels as ditches incurred a significant penalty, while correctly 
identifying a small number of additional ditch pixels had limited bene-
fits given their rarity. Conversely, background pixels offered the lowest 
relative cost, as they outnumbered the other two classes significantly. 
This led to higher precision but lower recall for ditches and streams. 
Additionally, the different recall values for ditches and streams in the 
three binary classification datasets were presumably due to the difficulty 
of identifying streams compared to ditches. When only streams were 
labeled (Stream0.5), the model needed to account for the meandering, 
sometimes nearly interrupted pattern of streams (Fig. 9A), which 
appeared to push the model toward recognizing other features in the 
landscape which have a similar pattern (Fig. 9D). This did not happen 
when only ditches were labeled (Fig. 9C), presumably because the model 
exploits the linear aspect of ditches, which allowed it to ignore other 
landscape features. When ditches and streams were labeled as channels 
(Channels0.5), the model needed to find a tradeoff between only 
focusing on the linear aspect, to allow it to find more streams than the 
ditch model, and recognizing too many landscape features, to achieve a 
better precision than the stream model. It appears to find this tradeoff by 
detecting more meandering interrupted features of the landscape as 
channels, while labeling more uncertain pixels as background, leading 
to more interrupted ditches (Fig. 9B).

Furthermore, because Ditches&Streams0.5 was a multilabel dataset 
we could verify how much of one label is classified as the other. In this 
case, from the number of ditches detected (83.8%), 99.5% were ground 
truth ditches. Meanwhile, only 12.7% of the streams detected by the 
model (54.9%) were correctly classified as streams. The difference in 
performance between stream and ditch channels in this dataset could be 
partially explained by the imbalance in the datasets. While the number 
of pixels with ditch labels was around 1.11% of the data, the stream 
pixels were underrepresented, with 0.01%. Contrasting class prior 
probabilities is a common occurrence in real-world data, and some 
techniques could be used to overcome it (Kotsiantis et al., 2006). In this 
work, the use of median frequency balancing (Eigen and Fergus, 2015) 
was motivated by its successful application in other studies such as Xu 
et al. (2022) and Kampffmeyer et al. (2016). However, despite the 
positive impact it had on the ditch class, an increase in performance of 
the stream class was not observed to the same extent. This represents a 
model limitation because the incorrect classification of streams as 
ditches is a regular occurrence. Adding more training data containing 
small natural streams would be an option to try to reduce the data 
imbalance, while an alternative would have been to perform a 
chip-based sampling, choosing chips that have more stream than ditch 
pixels in it. This would require further manual labor, though, where 
choices to reduce the costs of data acquisition could be explored, such as 
the use of semi-automated methods for labeling (Desmond et al., 2021) 
and crowdsourcing, despite the limitations that may arise regarding 
those who are not domain-specific experts (Clough et al., 2013).

3.5. Comparison to the benchmark

Our model (Streams0.5) had a recall of 70.8% of stream pixels, while 
the flow accumulation had the highest recall rate of stream pixels for 2 
ha and 6 ha of initiation threshold (Table 5). 76.0% of the natural stream 
network was detected by the flow accumulation of 2 ha of the catchment 
area, 71.3% by 6 ha, and 70.2% by 10 ha. The Swedish Property map 
had a recall of 27.5% of pixels from the same channel type, which could 
be explained by the fact that the stream headwaters have been digitized 
from grainy black-and-white orthophotos in this data, being often 
obscured by canopy cover, which impacted its performance. Meanwhile, 
Lidberg et al. (2023) had an indirect recall (i.e., how much of the label 
“stream” was detected despite the model being trained with only 

Fig. 9. Detected channels by the highest performing model from every dataset 
using the 0.5 m resolution, plotted over the hillshade. The colors represent 
channel type: ditch channels are orange, stream channels are turquoise, and 
combined channels are yellow. (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.)

Table 4 
Amount of channel pixels detected by each model, separated by channel type. 
The last two columns are only relevant to the multilabel dataset and describe the 
quantity of detected channels that were correctly classified by the model as their 
ground truth channel type.

Dataset used to train 
the model

Detected 
ditches

Detected 
streams

Classified as 
ditches

Classified as 
streams

Channels0.5 85.9% 61.4% – –
Ditches0.5 92.1% 55.9% – –
Streams0.5 81.5% 70.8% – –
Ditches&Streams0.5 83.8% 54.9% 99.5% 12.7%
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ditches) of 16.9%.
For ditches, our model Ditches0.5 had the highest recall: 92.1% 

against the reported 86.0% of ditch pixels from Lidberg et al. (2023); 
33.8% (2 ha), 21.5% (6 ha), and 17.3% (10 ha) from the flow accu-
mulation; and 27.5% from the Swedish property map. We believe that 
the differences between our deep learning model and the one from 
Lidberg et al. (2023), for either channel type, comes from the resolution: 
their model used 1 m, whereas our data was at a finer 0.5 m one. The 
lower recall rates of ditch pixels from the flow accumulation and 
Swedish property map could be explained by the absence of the ditch 
network, reported to be 91% missing from Swedish maps (Flyckt et al., 
2022) before the use of deep learning.

Despite having a high recall rate for stream pixels, the MCC values 
had a low performance in both the baseline data and deep learning 
models, showing that there could be a bias towards finding positives at 
the expense of accuracy. In conclusion, our deep learning-based method 
for detecting channels outperformed traditional methods regarding 
ditches, where the recall reached 92.1%, but did not outperform the 
detection of natural streams. However, while one might argue that 
missing 29.2% of headwaters still requires further improvement, these 
results demonstrate that deep learning holds significant promise for 
improving automatic headwater mapping.

3.6. Limitations and future research

We believe that more studies are needed to improve the performance 
of class separation. Extracting additional features to the channels and 
training a separate model with them might improve the classification, 
especially with attributes related to drainage. The use of hydrological 
features in the future might answer whether the channel contains water 
or not and improve the network connectivity, avoiding the interruption 
of channels in the inference (Fig. 9). However, defining the banks of low 
relief channels can be particularly challenging if there are wetlands 
along the river course (Wohl, 2017), something that was observed in the 
study areas, causing the interruption of visible channels in the HPMF. 
Adding future information about culverts (Lidberg, 2025) and bridges 
might impact the inference connectivity as well. To deal with these 
occurrences, traditional topographic modeling could be applied, and 
with techniques such as burning and breaching, it might be possible to 
create the missing connectivity in the ground truth.

The dense canopy cover could have impacted the classification of 
small streams, potentially affecting the comparison of resolution per-
formance too. The number of laser points is directly related to the res-
olution of the calculated DEM, however, as the canopy coverage 
becomes more dense in forested areas, the number of laser points that 
are able to penetrate it decreases (Chasmer et al., 2004). This could 
result in wrong terrain elevation estimates for densely covered areas, 
lowering the performance of the classification of small natural streams. 
With a higher amount of training data, it would be possible to separate 
the forested areas from the open ones to train the models, evaluating 
how much the tree tops were impacting the resolution performance. 
However, doing so with these datasets would result in a lower perfor-
mance overall.

At the same time, while adding more data for this type of channel 
might seem like a solution, Yang et al. (2022) showed that this might not 
necessarily improve the models. Not only that, but the most 
time-consuming and expensive part of training a model with machine 
learning is acquiring the ground truth data, which in this study is due to 
the manual labeling and classification of channels relying on the terrain 
data and ortophotos. However, in dense vegetation covered sites, the 
ortophotos were not helpful, requiring an expert to visit the location and 
evaluate the channel type, which in turn increased the costs and time of 
the process. Despite these difficulties, the inclusion of aerial photo-
graphs and other data sources combined with ALS might be beneficial to 
the models, adding new characteristics to the channels.

Forwarding ruts were not observed in our dataset, but we acknowl-
edge that this could be a cause for false positives. Some publications 
have focused on their identification using image data from drones 
(Bhatnagar et al., 2022) or conventional cameras (Pierzchała et al., 
2016) unlike our study, which was based on the DEM. Another issue is 
that the vegetation can hinder the visual identification of these struc-
tures, making it hard to remove them from the data.

3.7. Water channel management and policies

Knowing the ambitious scope of the suggested actions by Agenda 
(2030) regarding water ecosystems, the management of both types of 
channels needs to be addressed. The measures allowed depend on the 
type of channel: riparian buffers are prescribed around streams, while 
ditch channels can be cleaned without permits (Swedish PEFC, 2023). 
Most ditches were detected in this study; however, streams were often 
misclassified as ditches. This is a cause for concern as streams have 
stronger protection policies than ditches during forest management. For 
example, crossing streams with heavy forest machinery should be 
avoided according to best management practices (Skogsstyrelsen, 2016) 
to avoid disturbing soils near and in the stream; such disturbance causes 
downstream sedimentation (Bishop et al., 2009). Meanwhile, ditches are 
not protected, and the full length of the ditch can be dug out and 
cleaned, also causing downstream sedimentation (Bishop et al., 2009); 
management procedures applied on natural channels would negatively 
change their characteristics, such as flow patterns and retention po-
tential of detritus input (Muotka et al., 2002). Therefore, streams mis-
classified as ditches on maps could lead to the deterioration of both local 
and downstream environments if these maps were unquestioningly 
trusted by practitioners.

We suggest caution then when implementing models trained on just 
ditches: our model trained on this dataset misclassified 50% of the 
stream channels as ditch channels. This advice also concerns the ditch 
map developed by Lidberg et al. (2023). We are confident that further 
studies on how to separate ditches and streams on maps are needed.

A restoration process is currently underway to turn some of the 
Finnish channelized streams back to their natural status, thus improving 
sport fisheries (Erkinaro et al., 2011), while demonstration restorations 
have also been done in a number of Swedish rivers (Gardeström et al., 
2013). However, studies focused on the restoration of small stream 
channels (<6 m) of the sort that we investigated are still missing. A 

Table 5 
Comparison between the recall performance of different methods of channel 
detection separated by type of channel pixels. “Recall of ditch pixels” refers to 
how many ditch pixels could be detected when compared to the ground truth. 
“Recall of stream pixels” refers to how many stream pixels were detected. All 
methods were evaluated on the same study areas, except Lidberg et al. (2023), 
which was evaluated on the study area that was not included in its training data. 
The MCC values listed were calculated with only the streams as the positive class 
to make a fair comparison between the methods.

Method Recall of 
ditch pixels

Recall of 
stream 
pixels

MCC of 
ditches

MCC of 
natural 
streams

Swedish property 
map

8.1% 27.5% 0.16 0.28

Flow accumulation 
(2 ha)

33.8% 76.0% 0.32 0.21

Flow accumulation 
(6 ha)

21.5% 71.3% 0.26 0.26

Flow accumulation 
(10 ha)

17.3% 70.2% 0.24 0.29

Deep learning (
Lidberg et al., 
2023)

82.1% 25.7% 0.63 0.09

Deep learning 
(Ditches0.5)

92.1% 55.9% 0.68 0.29

Deep learning 
(Streams0.5)

81.5% 70.8% 0.59 0.32
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better classification of natural streams can benefit these studies and 
practices, further helping us to reach the water goals set by the Agenda 
2030.

4. Conclusion

With this work, we have identified several key findings: 

1) Resolution impact: The 0.5 m resolution significantly improved the 
detection of both ditches and natural stream channels, leading to 
higher overall performance. However, the finer resolution also 
required more computing power for processing the training data, 
training and testing the model, and running inference. highlighting 
the need for parallelizing the code and executing it on the GPU.

2) Topographic Index Performance: The highest-scoring topographic 
index varied depending on the dataset. The High-Pass Median Filter 
performed best for Channels0.5 and Ditches&Streams0.5 (ditch 
label), while the Hillshade 90◦ was the top-ranking for Ditches0.5. 
For Streams0.5, Hillshade 0◦ ranked higher.

3) Combining indices: Using a combination of indices resulted in higher 
values of MCC than single indices, with the combination of Sky-view 
Factor and Slope having the highest value for the stream label.

4) U-net performance: Our deep learning model Ditches0.5 was able to 
detect ditches better than any previous method (Table 5). In com-
parison with traditional mapping methods, the detection for ditches 
increased from less than 40% to over 92%, while Streams0.5 could 
map 70.8% of stream pixels.

Hence, our study shows great potential for using deep learning for 
mapping small headwaters, whether natural or man-made. However, 
the detection of natural streams still needs improving as close to 30% of 
them are still missing on the resulting maps. Future research should 
focus on identifying shared morphological features between ditch and 
stream channels, exploring methods to reduce class imbalance, and 
incorporating additional data such as information on soils, catchment 
area, and channel morphology. Improving automatic channel detection 
and classification of natural and man-made channels can provide valu-
able support for future improved management decisions for surface 
waters and optimize resource allocation for landscape planning.
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Erkinaro, J., Laine, A., Mäki-Petäys, A., Karjalainen, T.P., Laajala, E., Hirvonen, A., 
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Visualization Toolbox, Ver. 2.2.1 Manual.

Korznikov, K.A., Kislov, D.E., Altman, J., Doležal, J., Vozmishcheva, A.S., Krestov, P.V., 
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p. 12.
Swedish PEFC, 2023. Forest use standard. Technical Report PEFC SWE 002:5. Swedish 

PEFC.
Tanner, M.A., Wong, W.H., 1987. The calculation of posterior distributions by data 

augmentation. J. Am. Stat. Assoc. 82 (398), 528–540.
United Nations General Assembly, 2015. Transforming Our World: the 2030 Agenda for 

Sustainable Development.
Wiens, J.A., 2002. Riverine landscapes: taking landscape ecology into the water. Freshw. 

Biol. 47 (4), 501–515.

M.D.S.T. Busarello et al.                                                                                                                                                                                                                      Computers and Geosciences 196 (2025) 105875 

13 

https://doi.org/10.1016/j.isprsjprs.2019.09.018
https://doi.org/10.1016/j.jhydrol.2023.130591
https://doi.org/10.1109/ICCV.2015.304
https://doi.org/10.1111/j.1439-0426.2011.01851.x
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref21
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref21
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref21
https://doi.org/10.1016/B978-0-12-804632-6.00001-8
https://doi.org/10.1016/j.eswa.2022.116961
https://doi.org/10.1109/TGRS.2021.3073840
https://doi.org/10.1109/TGRS.2021.3073840
https://doi.org/10.5751/ES-05609-180308
https://doi.org/10.5751/ES-05609-180308
https://doi.org/10.1007/s13280-019-01274-y
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref28
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref28
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref29
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref29
https://doi.org/10.1109/CVPRW.2016.90
https://doi.org/10.5194/isprs-annals-V-2-2020-493-2020
https://doi.org/10.5194/isprs-annals-V-2-2020-493-2020
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref32
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref32
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref33
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref33
https://doi.org/10.3390/f12010066
https://doi.org/10.3390/rs15112776
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref36
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref36
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref36
https://doi.org/10.1002/hyp.11281
https://doi.org/10.1029/2019WR026381
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref39
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref39
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref39
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref40
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref40
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref40
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref41
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref42
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref43
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.ejrh.2024.102148
https://doi.org/10.1002/hyp.11385
https://doi.org/10.1061/JIDEDH.IRENG-9796
https://doi.org/10.1016/j.cageo.2016.07.003
https://doi.org/10.1080/13658816.2014.975715
https://doi.org/10.1080/13658816.2014.975715
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref52
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref52
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref52
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1016/0005-2795(75)90109-9
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref54
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref54
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref54
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref54
https://doi.org/10.1016/S0006-3207(01)00202-6
https://doi.org/10.1016/S0006-3207(01)00202-6
https://doi.org/10.1007/s13280-018-1047-6
https://www.maanmittauslaitos.fi/en/maps-and-spatial-data/datasets-and-interfaces/product-descriptions/orthophotos
https://www.maanmittauslaitos.fi/en/maps-and-spatial-data/datasets-and-interfaces/product-descriptions/orthophotos
https://www.maanmittauslaitos.fi/en/maps-and-spatial-data/datasets-and-interfaces/product-descriptions/orthophotos
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref58
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref58
https://doi.org/10.1007/s13280-022-01770-8
https://doi.org/10.1007/s13280-022-01770-8
https://doi.org/10.1088/1748-9326/abeb36
https://doi.org/10.1029/2021JG006478
https://doi.org/10.1029/2021JG006478
https://doi.org/10.3390/ijgi9040252
https://doi.org/10.3390/ijgi9040252
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref63
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref63
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref64
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref64
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref64
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref66
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref66
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref66
https://doi.org/10.3390/rs15020499
https://doi.org/10.1016/j.rse.2020.112033
https://doi.org/10.1016/j.rse.2020.112033
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref69
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref69
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref69
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref69
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref69
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref70
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref70
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref70
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref71
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref72
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref72
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref73
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref73
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref74
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref74
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref75
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref75
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref76
http://refhub.elsevier.com/S0098-3004(25)00025-1/sref76


Wilson, J.P., Gallant, J.C. (Eds.), 2000. Terrain Analysis: Principles and Applications. 
Wiley, New York. 

Wohl, E., 2017. The significance of small streams. Front. Earth Sci. 11, 447–456.
Xu, S., Song, Y., Hao, X., 2022. A comparative study of shallow machine learning models 

and deep learning models for landslide susceptibility assessment based on 
imbalanced data. Forests 13, 1908. https://doi.org/10.3390/f13111908.

Yang, J., Zhang, Z., Gong, Y., Ma, S., Guo, X., Yang, Y., Xiao, S., Wen, J., Li, Y., Gao, X., 
Lu, W., Meng, Q., 2022. Do deep neural networks always perform better when eating 
more data? arXiv 2022. arXiv preprint arXiv:2205.15187.

Yang, J., Xu, J., Lv, Y., Zhou, C., Zhu, Y., Cheng, W., 2023. Deep learning-based 
automated terrain classification using high-resolution DEM data. Int. J. Appl. Earth 
Obs. Geoinf. 118, 103249. https://doi.org/10.1016/j.jag.2023.103249.
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