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Abstract 
The intensification of agriculture has led to environmental degradation, including the loss of biodiversity. This has prompted interest 
in perennial grain cropping systems to address and mitigate some of these negative impacts. In order to determine if perennial grain 
cultivation promotes a higher microbial diversity, we assessed the endophytic microbiota of a perennial grain crop (intermediate 
wheatgrass, Thinopyrum intermedium L.) in comparison to its annual counterpart, wheat (Triticum aestivum L.). The study covered three 
sampling sites in a pan-European gradient (Sweden, Belgium, and France), two plant genotypes, three plant compartments (roots, 
stems, and leaves), and two sampling time points. We observed that the host genotype effect was mainly evident in the belowground 
compartment, and only to a lesser extent in the aboveground tissues, with a similar pattern at all three sampling sites. Moreover, 
intermediate wheatgrass roots harbored a different bacterial community composition and higher diversity and richness compared 
to their annual counterparts. The root bacterial diversity was influenced by not only several soil chemical parameters, such as the 
carbon:nitrogen ratio, but also soil microbial parameters, such as soil respiration and dehydrogenase activity. Consistent findings 
across time and space suggest stable mechanisms in microbiota assembly associated with perennial grain cropping, underscoring 
their potential role in supporting biodiversity within sustainable agricultural systems. 
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Introduction 
The ongoing intensification of agricultural practices has resulted 
in environmental changes and challenges, including the degra-
dation of soil fertility and depletion of biodiversity [1, 2]. One 
proposed solution to address these negative consequences is the 
implementation of perennial grain cropping systems with deep-
rooted plants, which is inspired by natural ecosystems [3]. One 
of the most promising varieties of perennial grain crops is inter-
mediate wheatgrass [Thinopyrum intermedium (host) Barkworth & 
D.R. Dewey; trademarked as Kernza®] [4]. Perennial grain crop-
ping offers a more sustainable approach for plant production 
and could help to reduce negative impacts of agriculture, as 
plants remain in the same field for multiple years and thereby 

provide a permanent soil cover [5]. However, further research 
is required to determine if perennial plants can retain specific 
ecosystem services under agricultural settings, such as mainte-
nance of enhanced biodiversity [6]. 

Intermediate wheatgrass offers various ecosystem services, 
particularly connected to soil health [7]. Soil microorganisms are 
key for governing soil health and are one of the main sources 
from which plants select their endophytic microbiome [8, 9]. 
Land-use intensity can influence microbial community struc-
tures in soils. Perennial systems were shown to have distinct com-
munities of soil earthworms, nematodes, protists, and bacteria 
[10–13]. Furthermore, perennial plants have been linked to higher 
microbial diversity and biomass in bulk and rhizosphere soil,
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which may be attributed to increased root exudation [14–16]. 
The root-associated microbiome of intermediate wheatgrass is 
not only distinct from surrounding bulk soil [17], but there are 
also observable differences to other deep-rooted plant species. 
Endophytic microorganisms inhabit the inner tissues of plants 
and can support the host plant during germination [18, 19], nutri-
ent acquisition [20, 21], protect against diseases [22], and can 
confer abiotic stress tolerance [19, 23]. The plant microbiome is 
influenced by multiple drivers, including abiotic and biotic fac-
tors [24, 25]. Furthermore, the host plant genotype, compartment 
niche, and developmental stage are significant determinants of 
microbial assembly, processes by which species from a regional 
pool colonize and interact to form stable local communities [26– 
29]. Another critical aspect is the evolutionary history of plants, 
which correlates with the microbial communities associated with 
them [30]. Furthermore, domestication and breeding for high 
yield cultivars shaped the microbiota of our modern crops [31]. 
Recently, the loss of microbial diversity and specificity as well 
as potential beneficial associations in modern crop plants have 
been increasingly recognized, which highlights the significance 
of studying native ecosystems as a source of plant-beneficial 
endophytes [32]. Moreover, wild plants are more adept at forming 
beneficial interactions, while modern crops may be impacted in 
this ability [31]. 

We hypothesized that: (i) intermediate wheatgrass has a 
distinct bacterial composition and greater microbial diversity 
across compartments in comparison to annual wheat; (ii) in the 
case of the root microbiome, this diversity will be influenced 
by soil chemical and biological characteristics; and (iii) the root 
microbiome of intermediate wheatgrass will be less variable 
and more connected across time due to reduced environmental 
disturbances. To test these hypotheses, our objectives were to 
compare the bacterial endophyte communities across different 
plant compartments (roots, stems, leaves) at multiple sites 
(Sweden, Belgium, and France) and time points (2021 and 2022), 
focusing on how plant genotype, life cycle, and soil parameters 
influence microbial diversity and community assembly. 

Materials and methods 
Sample collection and study sites 
Samples of intermediate wheatgrass [T. intermedium (host) Bark-
worth & D.R. Dewey; trademarked Kernza®] and winter wheat 
(Triticum aestivum L.) roots, stems, and leaves were collected in 
June 2021 in Sweden (55◦40′8′′N, 13◦7′0′′E), Belgium (50◦33′36′′N, 
4◦42′0′′E), and France (45◦39′11′′N, 5◦14′38′′E). Analogous sampling 
was conducted in April 2022, except for root samples in Bel-
gium, which were sampled in May 2022. More detailed informa-
tion on the wheat cultivars and sampling sites can be found in 
Supplementary Data Table S1. 

In total, 720 destructive samples were collected: 20 biological 
replicates (5 per 4 subplots) × 3 compartments (roots, stems, 
and leaves) × 2 genotypes (intermediate wheatgrass and winter 
wheat) × 3 field sites (Sweden, Belgium, and France) × 2 sampling 
time points (June 2021 and April 2022). Roots were collected with 
a split tube sampler (Royal Eijkelkamp, Giesbeek, Netherlands; 
diameter: 5.3 cm) at a depth of 5–15 cm. Stem and leaf sam-
ples were collected beforehand above the soil core sample. Since 
perennial wheatgrass can spread through rhizomes, sampling of 
individual plants was not possible and several plants were pooled 
into one biological replicate. 

All plant samples were put in sterile bags, stored cooled, and 
sent within 48 h for further sample processing either to the 

Nicolaus Copernicus University (Torun, Poland) or Graz University 
of Technology (Graz, Austria; Table S1). 

Surface sterilization, deoxyribonucleic acid 
extraction, and 16S ribosomal ribonucleic acid 
gene fragment sequencing 
Roots (pre-washed and separated from soil), leaves, and stems 
were weighed and sterilized with 70% EtOH for 1 min, followed 
by washing with sterile H2O for 1 min. Afterwards, the roots and 
aboveground plant samples were sterilized with 7.5% H2O2 for 6 
or 4 min, respectively, and finally washed 5 times with sterile H2O. 
The surface sterilized plant material was stored at −20◦C until  
further use. 

The plant material (approximately 50 mg of roots, 100 mg 
of leaves, and 200 mg of stems) was disrupted using mortar 
and pestle and liquid nitrogen. Subsequently, total genomic 
DNA was extracted following the manufacturer’s instructions 
of the DNeasy PowerSoil Kit (Qiagen, Valencia, CA, USA). The 
samples were stored at −20◦C until further use. For ampli-
fication of the V4 region of the 16S ribosomal ribonucleic 
acid (rRNA) gene fragment, the universal barcoded primers 
515f- 806r (515f: 5′-GTGYCAGCMGCCGCGGTAA-3′; 806r: 5′-
GGACTACNVGGGTWTCTAAT-3′) were used [33]. Peptide nucleic 
acid clamps (PNA) were included in the polymerase chain reaction 
(PCR) mix to interfere with the amplification of host plastid and 
mitochondrial 16S rRNA genes [34]. PCRs were carried out in 25 μl 
volumes and two technical replicates using the 2× KAPA Taq 
Ready Mix (Kapa Biosystems, USA), 1.5 μM PNA mix, 0.2 mM of 
each primer, PCR-grade water, and 1 μl undiluted template DNA. 
The cycling conditions were as follows: 96◦C for 3 min, 30 cycles 
of 95◦C for 30 s, 78◦C for  5 s,  54◦C for 30 s, 72◦C for 20 s, and a 
final extension at 72◦C for 30 s. Out of the 720 samples, 16 could 
not be amplified (Table S1). Technical replicates were pooled and 
combined (Table S1) in equimolar concentrations. The amplicon 
libraries were purified using the Wizard SV Gel and PCR Clean-
Up System (Promega, Madison, WI, USA) before being sent to 
the sequencing provider Novogene (Cambridge, UK) for library 
preparation. Sequencing was done on an Illumina NovaSeq 6000 
platform (2 × 250 bp paired-end reads). 

Characterization of soil chemical and biological 
parameters 
Soil gravimetric water content was measured after drying sieved 
soil at 105◦C for 24 h. Soil pH was determined with a pH Cond 
340i glass electrode (WTW Ltd, Germany) using air-dried soil in a 
0.01 M CaCl2 solution. Total soil organic carbon and total nitrogen 
were quantified using the Elemental Analyser vario EL cube (Ele-
mentar Ltd, Germany). Plant available phosphorus (P) and potas-
sium (K) were extracted in a Ca-acetate-lactate (CAL) solution 
according to Schüller [35]. Quantification of P was based on the 
colorimetric method of Murphey et al. [36] and measured using 
a photometer (UV-1650 PC; Shimadzu Europe GmbH, Duisburg, 
Germany). Determination of K was done using a flame atomic 
absorption spectroscopy (AA240 FS, Varian GmbH, Darmstadt, 
Germany). 

Soil microbial carbon and nitrogen were determined with moist 
soil (adjusted to approx. 50% of maximum water holding capac-
ity) according to the chloroform fumigation extraction method 
[37]. Extracts were analyzed with a TOC-TN Analyzer (Shimadzu 
TOC-V + TNN, Kyoto, Japan). Soil microbial respiration was deter-
mined according to Heinemeyer et al. [38] with moist soil samples. 
Released CO2 was assessed automatically by an infrared gas ana-
lyzer (ADC Model 225-MK3, Hoddesdon, England). Dehydrogenase
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activity (DHA) was determined based on a method presented by 
Thalmann [39]. Moist soil samples were incubated with a triph-
enyl tetrazolium chloride (TTC) solution dissolved in 0.1 molar 
Tris buffer for 24 h at 27◦C. After 2 h of reaction time with shaking 
at regular intervals, the colored sample was filtrated and the 
liquid phase was measured at 546 nm against blank values on 
a spectrometer (Shimadzu UV-1650 PC; Shimadzu Europe GmbH, 
Duisburg, Germany). 

Sequence data processing 
Raw sequences were demultiplexed using cutadapt, including 
removal of primer sequences and low-quality reads [40]. Fol-
lowing, the data was quality filtered, denoised, and chimeric 
sequences were removed using the DADA2 algorithm and feature 
table and representative sequences [amplicon sequence variants 
(ASVs)] were generated [41] within QIIME2 [42]. The ASVs were 
classified using the SILVA v132 database and the vsearch algo-
rithm [43, 44]. All amplicon libraries were processed separately in 
QIIME2 and all feature and taxonomy tables were combined to a 
single phyloseq object in R for further statistical analyses. 

Statistical analyses 
Bacterial community analysis was conducted using the package 
Phyloseq [45] and statistical analysis was performed with R (ver-
sion 4.3.1) [46] in R studio (version 2023.06.1) [47]. ASVs assigned 
to “eukaryota”, “archaea”, “chloroplast”, and “mitochondria” were 
removed from the dataset with the function subset_taxa. For  beta  
diversity analysis, the dataset was subjected to cumulative sum 
scaling and Bray–Curtis dissimilarity matrices were computed. 
Significant differences were assessed using the function adonis2 
(permutational multivariate analysis of variance—PERMANOVA) 
from the package VEGAN [48]. To evaluate bacterial alpha diver-
sity the dataset was normalized by random subsampling to 500 
reads per sample (Fig. S1A). A total of 15 (out of 704) samples 
were removed due to low read numbers, a trade-off between 
sequencing depth and retaining biological replicates (Table S1). 
The Kruskal–Wallis test was employed to determine significant 
differences in microbial alpha diversity, based on the Shannon H′

index, species richness, and Faith’s phylogenetic diversity index 
(PD). PD was calculated using the respective function from the 
package biomUtilitis [49]. Pairwise comparisons were conducted 
via Wilcoxon test and P-values were corrected with false discovery 
rate. 

General linear models were generated using the glm function, 
followed by a stepwise selection with the function stepAIC from 
the package MASS [50] to identify a minimal fitted model to 
predict Shannon diversity and observed ASV richness in the roots. 
Therefore, the dataset was separated and normalized by random 
subsampling to 4200 reads per sample, whereas three samples 
were excluded due to a low number of reads (Table S1, Fig. S1B). 
For each chemical soil parameter used as a predictor variable, an 
optimal transformation was determined using the boxcox func-
tion. Distanc-based redundancy analysis (db-RDA) was conducted 
using the functions dbrda and ordiR2step implemented in VEGAN 
[48]. The environmental variables were standardized using the 
function decostand with the “clr” method. For each subplot, five 
plant samples were obtained, but only one soil core, so the alpha 
diversity values and the subsampled ASV counts of the five 
plants were averaged for the regression analysis and the db-RDA, 
respectively. The sampling site Sweden in the sampling year 2021 
had to be excluded from the glm and db-RDA analyses because 
no soil chemical parameters were collected there. 

Core taxa were assessed using the core_members function imple-
mented in the package microbiome at various prevalence lev-
els from 0%–100% and a detection level >0.001 on the sub-
sampled dataset [51]. Significant differential abundant genera 
and phyla were assessed using DESeq2 incorporated as function 
DA.ds2 in the package DAtest and low abundant ASVs with less 
than 10 reads were trimmed using the function preDA. Signif-
icant differential abundant genera and phyla were defined by 
a Benjamini–Hochberg (BH) adjusted P-value <.05 and a log2 
fold change >0.58 or < − 0.58 corresponding to a fold change 
of 1.5 [52, 53]. 

Networks assessing community interactions were created 
using the package SpiecEasi (version 1.1.2) [54]. The networks 
were computed for each genotype and field site separately, and to 
overcome the inflation of zeros, ASVs were filtered per network 
by a prevalence of 75%. The adjacency matrices were calculated 
by using Meinshausen–Buhlmann’s neighborhood selection with 
50 repetitions, lambda minimum ratio of 0.001, and nlambda of 
1000.These lambda settings enabled the calculation of networks 
with stabilities close to the target stability threshold of 0.05. The 
network transformation and analysis of network properties were 
conducted with the package igraph (version 1.3.5) [55]. Global 
network properties like positive edge percentage, sparsity, and 
transitivity were calculated along with local network properties 
for each node, including mean degree, betweenness centrality, 
closeness centrality, eigenvector centrality, and transitivity. 
Differences between genotype-specific network parameters were 
assessed using the Kruskal–Wallis test. Keystone taxa were 
identified as nodes with an eigenvector centrality value exceeding 
the empirical 95% quantile [56]. Betweenness centrality is defined 
by the number of shortest paths going through a node and 
provides insights into the importance of a taxa based on their 
role in connecting different parts of the microbial communities. 
Closeness centrality indicates the proximity of a node to all other 
nodes, thereby giving insights into its potential to influence them 
efficiently [57, 58]. Eigenvector centrality takes the connectivity 
of the associated nodes into account, indicating that a taxon 
plays a significant role in the overall community by being part 
of an important subnetwork [59, 60]. Transitivity, also known 
as clustering coefficient, quantifies the clustering of nodes in 
a network by measuring the probability that the neighbors of 
a node are connected and may give indications about niche 
specialization [57]. 

Results 
In the frame of the NAPERDIV project, 720 plant samples were col-
lected from two plant genotypes (T. intermedium L. and T. aestivum 
L.), three endosphere compartments (roots, stems, and leaves), 
two growth stages (f lowering and tillering stage) and three coun-
tries (Sweden, Belgium, and France). Previous work showed that 
the three sites represent different climatic as well as soil con-
ditions (Table S2) [12]. After quality filtering and removal of 
plant-originating sequences and singletons the final dataset was 
comprised of 44 704 596 reads, which were classified into 51 832 
ASVs and assigned to 48 bacterial phyla. Reads in individual 
samples ranged from 164 to 2 264 523 with an average number 
of 6 350.85 ± 148 792.8 reads. The samples were mainly domi-
nated by Pseudomonadota (aboveground: 70.9% and roots: 38.5%), 
followed by Actinomycetota (aboveground: 14.8% and roots: 21.2%), 
and Bacteroidota (aboveground: 3.5% and roots: 15.8%; Figs 1A 
and S2).
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Figure 1. (A) Bacterial taxonomic composition of root, stem, and leaf endophytes from intermediate wheatgrass and annual wheat at phylum level. 
Samples from three different field sites and two time points (n = 114–120 per plant and compartment) were merged. The category “other” was merged 
from ASVs with a relative abundance below 0.01. (B) Bacterial community composition of intermediate wheatgrass and annual wheat visualized as 
NMDS plots divided by the main influencing factors field site and plant compartment. The plant genotype is a major source of bacterial community 
variation in the roots, but to a lesser extent in the aboveground materials (detailed statistics in Table 1). (C) Bacterial alpha diversity in different plant 
genotypes and compartments depicted as Shannon H′, species richness, and Faith’s phylogenetic diversity. Three sampling sites and two sampling 
time points were merged (n = 114–120). The Kruskal–Wallis test, followed by pairwise comparisons with Wilcoxon testing and “fdr” adjustments, was 
used to assess significant differences, indicated by asterisks (∗∗P < .01 and ∗∗∗P < .001). 

Plant genotype effects on the bacterial 
composition and diversity 
Based on a PERMANOVA analysis, all tested factors, i.e., plant 
genotype (R2 = 0.5%, P = .001), compartment (R2 = 17%, P = .001), 
field site (R2 = 7.5%, P = .001), and sampling time point (R2 = 6.8%, 
P = .001), influenced the bacterial community composition. 
Nonmetric multidimensional scaling (NMDS) plots supported 
these results as indicated by a clustering mainly in compartment 
and field site (Fig. S3A–D, Table S6). The root microbiome was 
mainly influenced by the field site, while the variation in 

community composition in the aboveground material was mainly 
explained by the sampling time point (Fig. S4A–C, Table S7). 

To further assess the influence of the genotype on the bac-
terial community structure and how the bacterial composition 
changed over time, the dataset was split based on the two main 
influencing factors “compartment” and “field site”. We found that 
the bacterial community compositions of stems and leaves were 
mainly influenced by the sampling time point, which resulted in 
a clear grouping in the NMDS plots at all three sampling sites 
(Fig. 1B). The genotype explained no (e.g. stems from Sweden), or
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Table 1. Effects of plant genotype and sampling time on bacterial community composition of different compartments and sites 
assessed with PERMANOVA. 

Plant genotype Sampling time Plant genotype × sampling time 

R2 (%) Pr (>F) R2 (%) Pr (>F) R2 (%) Pr (>F) 

France—roots 12.8 0.001 12.9 0.001 4.3 0.001 
Belgium—roots 7.3 0.001 4.9 0.001 8.1 0.001 
Sweden—roots 8.1 0.001 11.7 0.001 3.1 0.001 
France—stems 4.3 0.001 21.5 0.001 7.2 0.001 
Belgium—stems 1.8 0.051 31.1 0.001 1.6 0.067 
Sweden—stems 1.3 0.245 13.2 0.001 1.6 0.102 
France—leaves 2.9 0.004 19.4 0.001 2.8 0.004 
Belgium—leaves 2.5 0.004 22.1 0.001 2.3 0.009 
Sweden—leaves 1.7 0.052 27.2 0.001 1.8 0.045 

only little variation in the bacterial community structure ( Table 1). 
The community composition of the roots, on the other hand, 
showed a clear clustering for the genotype and sampling time 
point for all three sites. The effect of “genotype” accounted for 
7.3% to 12.8% (P = .001) of the variation in the root compartment, 
while the sampling time point explained 4.9% to 12.9% (Table 1). 
When comparing the three sampling locations, we observed that 
the samples from Sweden exhibited the lowest “genotype” effect, 
showing no influence in the aboveground tissues, and a less 
pronounced effect (R2 = 8.1%, P = .001), compared to sampling time 
point (R2 = 11.7%, P = .001), on the root endophytic communities. 
Similar to the bacterial community composition, a significant 
difference in alpha diversity between the annual and perennial 
genotypes was only observed in the root compartments. The diver-
sity and richness in stems (Shannon: P < .0005; Faith PD: P < .0005; 
observed: P < .0005) and leaves (Shannon: P < .0005; Faith PD: 
P < .0005; observed: P < .0005) were notably lower than those in 
the roots, but with similar levels across both genotypes (Fig. 1C, 
Fig. S7). However, the perennial roots exhibited higher diversity 
(Shannon: P < .0005; Faith PD: P < .0005) and richness (P < .0005) 
compared to their annual counterparts. 

Effect of soil parameters on the root-endophytic 
microbiome 
To determine the influence of genotype and chemical soil prop-
erties on differences in bacterial diversity observed in the roots, 
generalized linear models were applied. This was followed by step-
wise selection from both directions to identify a minimal set of 
predictor variables included in the best fitted models (Fig. S8–S10). 
From the eight variables tested, four significant ones remained in 
the final models (Table 2, Fig. S5). The adjusted McFadden’s R2 was 
computed for the final models to assess their adequacy, resulting 
in a value of 0.506 for the Shannon diversity and 0.501 for ASV 
richness. It was shown that the ratio of carbon:nitrogen (C:N) was 
the strongest predictor for Shannon diversity and ASV richness. In 
addition, “respiration” and “water content” exhibited a significant 
influence on both indices. Furthermore, an increase in “micro-
bial C:N” and “dehydrogenase activity” resulted in an increase 
in Shannon diversity and richness, respectively. Interestingly, the 
factor “plant genotype” was not included in either of the final 
models. Furthermore, plant available potassium and phosphorus 
were excluded from the most adequate models. 

To assess the influence of plant genotype and environmental 
variables on the root bacterial communities a distance-based 
redundancy analysis was applied. A stepwise selection from both 
directions was applied and the final model had an adjusted R2 

of 41.9% (P = .0001). It was shown that microbial C:N, DHA, plant 
genotype, C:N, and respiration could significantly explain the 
variance in the bacterial community composition, while water 
content, phosphorus and potassium were excluded from the best 
fitted model (Table 2, Fig. S6). 

Network analysis of the root microbiome 
Networks were calculated to investigate the taxonomic relation-
ships of bacterial communities for the different plant genotypes 
and field sites. In order to assess the stability of the root micro-
biomes, the sampling time points were merged and only ASVs 
with a prevalence of 75% were kept for network analyses. All net-
works exhibited a similar density (0.0221–0.0255), but the topol-
ogy differed distinctively between the plant genotypes, but also 
the field sites (Table 3, Fig. 2, Fig. S11). The network structures 
resembled the sampling gradient from North to South, with net-
works from Sweden exhibiting the lowest number of nodes and 
edges, while those from France had the highest values. A higher 
number of edges per node was found in the networks of inter-
mediate wheatgrass in France and Sweden, while the networks of 
annual wheat exhibited a higher percentage of positive edges in 
France and Belgium. All three networks of intermediate wheat-
grass depicted significantly higher values for the local network 
parameter closeness centrality and the ones from Sweden and 
France had a significantly higher average number of neighbors 
and a greater number of keystone taxa. A substantial number 
(18 out of 42) of the keystone taxa in the perennial networks 
belong to the family of Chitinophagales and Rhizobiales, while  the  
keystone taxa in the annual networks were dominated (10 out of 
30) by Chitinophagales and Burkholderiales (Table S3). Betweenness 
centrality was higher in the annual wheat networks from Sweden 
and France, however this was not statistically significant. The 
annual networks of Sweden and Belgium showed significantly 
higher eigenvector centralities. Transitivity was only significantly 
higher in the network of annual wheat from France, while no 
difference was observed at the other field sites. 

To further test the hypothesis, that perennial wheatgrass root 
communities changed less over the two sampling time points 
than the annual wheat communities, core microbiome analyses 
were conducted. Thereby we assumed that a higher number of 
ASVs was shared between the two sampling time points. The 
dataset was again split according to field site and genotype. 
Neither intermediate wheatgrass nor annual wheat had a core 
at a prevalence of 100%, indicating that no ASV was found in 
every sample of either plant genotype. This observation was 
consistent even when the samples were analysed per field site
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Table 2. Effects of environmental variables on root Shannon H′ index and observed richness explained by generalized linear models 
and on the root bacterial community composition based on db-RDA ANOVA. 

Parameter Shannon diversity ASV richness Beta diversity 

F value Pr (>F) F value Pr (>F) F value Pr (>F) R2 adj. 

C:N 16.7162 0.0003 15.8215 0.0004 3.35 0.001 4.83 
Respiration 8.9843 0.0054 6.4275 0.0169 2.38 0.007 2.79 
Water content 5.1286 0.0309 6.7556 0.0145 - - -
Microbial C:N 8.0094 0.0082 - - 6.27 0.001 13.43 
DHA - - 9.3124 0.0048 5.74 0.001 10.87 
Phosphorus - - 0.6588 0.4236 - - -
Plant genotype - - - - 4.35 0.001 7.21 
Potassium - - - - - -

Table 3. Topological parameters of root microbiome networks of different plant genotypes and field sites. Two sampling time points 
were merged and only ASVs with a prevalence >0.75 were included in the network construction. 

Prevalence filter: 0.75% 

Field site Sweden Belgium France 

Genotype Perennial Annual P-value Perennial Annual P-value Perennial Annual P-value 

Stability 0.0499 0.0497 0.0495 0.0495 0.05 0.0495 
Nodes 194 97 218 222 395 248 
Edges 457 120 524 548 1781 679 
Positive edges 294 75 322 360 1080 428 
Positive edges in % 64.332604 62.5 61.45038168 65.693431 60.6400898 63.03387 
Negative edges 163 45 202 188 701 251 
Edges/Nodes 2.3556701 1.237113 2.403669725 2.4684685 4.50886076 2.737903 
Pos/Neg edges 1.803681 1.666667 1.594059406 1.9148936 1.54065621 1.705179 
Sparsity 0.0243 0.0255 0.0221 0.0222 0.0228 0.0221 
Max degree 16 9 13 16 18 15 
Mean degree 4.73 2.47 2.56E-13 4.81 4.94 0.6267 9.02 5.48 < 2.2e-16 
Betweenness centrality 0.028 0.044 0.9982 0.027 0.025 0.9531 0.0132 0.0204 0.1347 
Closeness centrality 11.17 5.51 < 2.2e-16 13.94 11.68 1.18E-09 28.93 15.13 < 2.2e-16 
Eigenvector centrality 0.052 0.07 0.0006 0.036 0.122 < 2.2e-16 0.094 0.119 0.1296 
Number of keystone taxa 10 5 11 12 20 13 
Transitivity 0.094 0.12 0.121 0.086 0.08 0.3365 0.0742 0.0802 0.03521 

Significant results are highlighted in bold. 

( Table S4). The shared core between the two sampling time points 
was comprised of a higher number of ASVs in the intermediate 
wheatgrass than the core of annual wheat at most prevalence 
levels in Sweden and Belgium. At the field site in France, the 
annual wheat had slightly higher numbers of shared ASVs at 
prevalence levels of 0.375–0.625. Similarly, the percentage of ASVs 
in the shared core compared to the respective unique cores was, 
at most prevalence levels and field sites, higher in the inter-
mediate wheatgrass (mean: 50%) than in annual wheat (mean: 
42%). The most pronounced decrease in the number of ASVs in 
the shared core was for all sample types from the prevalence 
level 0–0.125, suggesting a variable fraction of rare bacteria only 
present in a few samples. Interestingly, while both genotypes from 
the site Sweden exhibited high numbers of ASVs at low preva-
lence levels, they had the smallest core at the higher prevalence 
levels. 

To assess which bacterial phyla were most affected between 
the two sampling time points, differential abundance analyses 
were conducted at phyla and genera level. Phyla and genera 
were considered significantly differential abundant if they 
exhibited an adjusted P-value <.05 and a log2 fold change >0.58 
or <−0.58. At all three sites, the intermediate wheatgrass root 
microbiome showed a lower number of significantly different 

abundant phyla, compared to annual wheat (Table S5). The 
difference was most pronounced in Belgium (perennial: 25.8%; 
annual: 39.3%) and the least dominant in Sweden (perennial: 
24.3%; annual: 28.9%; Table S5, Fig. 3A). This pattern was further 
observed in the abundance of the changed phyla. The relative 
abundance of the largely unchanged phyla was consistently 
higher in intermediate wheatgrass (Sweden: 77.1%; Belgium: 
92.4%; France: 77.5%) compared to the annual counterpart 
(Sweden: 68.6%; Belgium: 34.2%; France: 34.8%; Fig. 3A). The 
observed differences in the relative abundance in annual wheat 
were due to the abundance change in the most dominant 
phyla (e.g. Pseudomonadota and Actinomycetota), which were not 
significantly different in intermediate wheatgrass. On genus level 
the differences between intermediate wheatgrass and annual 
wheat were less pronounced (Fig. 3B). The number of significantly 
changed genera was lower for intermediate wheatgrass compared 
to annual wheat at the field site Belgium (perennial: 9%; annual: 
23.3%). For the field sites Sweden (perennial: 16.6%; annual: 
15.3%) and France (perennial: 19.6%; annual: 19.9%) the number 
of significantly differential abundant genera was similar. A similar 
pattern was observed for the abundance of the largely unchanged 
genera, with major differences between the plant genotypes 
at the field site Belgium (perennial: 85.6%; annual: 60.8%), but
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Figure 2. Co-occurrence networks showing the structure of the root microbiome from different plant genotypes and field sites inferred by SPIEC-EASI. 
The two sampling time points were merged and only ASVs with a prevalence >0.75 were included (n = 34–40). Node color and size correspond to the 
taxonomy on phylum level and clr-transformed abundance, respectively. Edge colors represent positive (green) and negative (red) associations between 
ASVs. Keynote taxa are represented as triangles. 

only minor differences at the field sites France (perennial: 55.5%; 
annual: 59.6%) and Sweden (perennial: 52.1%; annual: 49.5%). 

Discussion 
The results obtained in this study provide fundamental insights 
into the dynamics of bacterial communities associated with 
perennial wheatgrass and its annual counterpart wheat. Higher 
diversity of the bacterial community and differences to annual 
wheat in terms of composition were mainly shown for the below-
ground compartment of intermediate wheatgrass. Furthermore, 
the root microbiome of intermediate wheatgrass collected from 
the three different sampling sites showed signatures of a more 
stable and connected microbial network structure. 

Chemical and biological soil parameters 
influence the bacterial community structure 
of root endophytes 
Perennial crops are important for different ecosystem services, 
partially due to their commonly extensive root systems [61]. 
Ecosystem services provided by them include positive effects on 
soil health [7, 62, 63]. Soil serves as an important reservoir of 
diverse microbial communities, from which plants can specifi-
cally select bacteria that can inhabit the plant endosphere [64, 
65]. We identified several soil chemical and biological parameters 
influencing the root bacterial diversity and community compo-
sition. Interestingly, the plant genotype partially explained the 
variance in the community composition but was not included in 
the best fitted models for alpha diversity. This means that the 
plant genotype does not provide additional information to the 
models explaining diversity beyond what is already accounted 
for by the soil chemical (e.g. soil water content) and biological 

(e.g. soil microbial C:N, DHA) parameters. However, other vari-
ables, such as the C:N or the water content were included in 
the models and showed negative correlations with diversity and 
richness. It was previously shown that the C:N ratio and soil 
water content are, among others, influencing not only the soil 
microorganisms but also the structure of plant endophytic micro-
biome [66]. Furthermore, Bak et al. [67] observed that intermediate 
wheatgrass exhibits, unlike other deep-rooting plant species, high 
abundances of the N-cycling genes nirK and nifH in the root 
environments which indicates that N fixation contributes to plant 
N supply. The fixed N can subsequently be utilized by root-
associated bacteria through N-rich plant exudates [67]. Therefore, 
it was speculated that the high relative abundance of N fixers has 
the potential to increase microbial biomass (microbial C) by the 
decrease in the C:N ratio of plant exudates [67]. In line with this, 
we were able to show that an increase in the soil microbial C:N 
ratio was correlated with an increase in diversity in roots. 

In particular, soil biological parameters related to microorgan-
isms, such as respiration, microbial C:N ratio, and DHA explained 
part of the alpha diversity. Interestingly, respiration showed a 
negative effect on both alpha diversity indices that were assessed. 
It was previously discussed that biodiversity and community 
functioning are closely interconnected [68]. It was shown in con-
trolled experiments that once diversity reaches a certain satura-
tion level of community functioning, further increases in diversity 
do not have a significant impact on community functioning [69]. 
This is especially relevant for common functions like respiration. 
Last, DHA can serve as an indicator of microbial activity and 
is frequently employed for microbial redox systems [70]. Most 
studies focused on the assessment of DHA in association with soil 
contamination and it was shown that there is a limited correlation 
with soil microbial diversity [71, 72]. In our study, an increase in 
DHA and the microbial C:N ratio in the soil was correlated with
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Figure 3. (A) Differentially abundant phyla between the two sampling time points (left: 2021, right: 2022). Phyla that are significantly different 
abundant (BH adjusted P < .05) and a log2 fold change >0.58 or < 0.58 are represented by colored points, while phyla below the threshold are gray and 
labeled as “Not_Significant”. The group “others” represent phyla with a relative abundance below “1%”. The point size corresponds to the mean relative 
abundance. (B) Differential abundant genera between the two sampling time points (left: 2021, right: 2022). Genera that are significantly different 
abundant (BH adjusted P < .05) and a log2 fold change >0.58 or < 0.58 are represented by orange points, while genera below the threshold are gray. The 
point size corresponds to the mean relative abundance. 

higher alpha diversity in the roots. In previous studies comparing 
the rhizosphere or soil of annual wheat and perennial wheatgrass, 
the latter was shown to accumulate higher microbial biomass and 
support higher bacterial activity [ 16, 73]. Hence, we suggest that 
the higher bacterial diversity and richness observed in interme-
diate wheatgrass roots are influenced by factors beyond plant 
genotype, such as soil quality. Intermediate wheatgrass promotes 
a more active soil microbial community with higher microbial 
biomass [73], therefore we speculate that the perennial lifecycle 
of the dense rooted intermediate wheatgrass and/or differences 
in the management create an environment that facilitates higher 
bacterial diversity. This, in turn, could result in a larger reservoir 
of microorganisms from which the plant can select, creating a 
beneficial feedback loop. 

The plant genotype mainly influenced the root 
microbiome composition and diversity and to a 
lesser extent the aboveground compartments 
We found that primarily the plant compartment, the sampling 
location and the time influenced the bacterial community com-
position more than the genotype of the cereal. A similar pattern 
was previously observed for sugarcane [74]. While we observed 
that the root microbiome was mainly influenced by the sam-
pling site, the aboveground structures were mostly affected by 
the sampling time point. Furthermore, the host genotype effect 
was more prominent in the belowground compartment. Similar 

results were observed for lucerne [75] and maize [76] where  
belowground tissues, but not the leaves, of different plant geno-
types were shown to harbor distinct bacterial communities. To 
disentangle the host genotype effect, the dataset was separated 
based on the two primary influencing factors, plant compart-
ment, and sampling site. A clear trend was observed for the 
bacterial composition of root and aboveground compartments at 
all three sampling sites. While the root microbiomes clustered by 
genotype and sampling time point, the aboveground microbiome 
was mainly influenced by the sampling time point. In addition, 
we observed a higher bacterial diversity and richness in the roots 
of intermediate wheatgrass compared to annual wheat, whereas 
no significant differences were noted in the stems and leaves 
between the two plant species. Given the management practices 
used for intermediate wheatgrass cultivation, it is important to 
note that wheatgrass is typically cut a few centimeters above 
the ground during harvesting [77, 78]. Therefore, the aboveground 
material has to regrow each year at the onset of the vegetation 
period, resulting in a comparable growth process to annual plants. 
However, the extensive root system of intermediate wheatgrass 
is less affected by the harvesting process and can continue to 
develop over the years. In contrast, in annual wheat, the root sys-
tem (and aboveground material) must develop from a single seed 
and completely re-establish itself every growing season. While the 
intermediate wheatgrass root microbiome can continuously be 
shaped by the host, plants in annual management are more prone
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to environmental disturbances due to soil operations, including 
priority effects. Therefore, we suggest that the root systems of 
intermediate wheatgrass are the key compartment that differen-
tiates perennial plants from annual ones, while the aboveground 
structures share characteristics of annual plants. 

It was previously shown by Bertola et al. [16] that one-year 
old perennial wheat had a comparable rhizosphere microbial 
structure to annual wheat. However, upon analyzing four-year 
old perennial wheat stands, the authors found that they resem-
bled the 11-year old plants of intermediate wheatgrass and were 
distinct from the one-year old wheat (perennial and annual) 
stands. This pattern highlights the conserved ecological niche of 
perennial roots, enabling the development of a distinct root micro-
biome. The authors further hypothesize that the root microbiome 
development becomes saturated, probably due to a rather stable 
surrounding [16]. We compared bacterial structures of interme-
diate wheatgrass and annual wheat over two time points and 
found more connected networks in intermediate wheatgrass with 
lower values for betweenness. Higher connectivity, characterized 
by higher mean degree and closeness centrality values, has been 
linked with higher system stability due to redundancy. However, it 
has also been suggested that a high level of connectivity may ren-
der systems more susceptible to cascade effects [79]. Nodes with 
high betweenness centrality are often termed as “gatekeepers” 
and networks with low betweenness centrality values may indi-
cate higher stability [79–81]. Intermediate wheatgrass networks 
showed more competition, indicated by a low ratio of positive 
to negative edges, which is generally associated with ecological 
stability [82, 83]. Moreover, we observed a higher number of core 
ASVs and less significant changes in the relative abundance on 
the phylum level in intermediate wheatgrass. These patterns were 
detected at all three field sites. This was expected, as annual 
wheat cultivation is subjected to different environmental dis-
turbances, such as soil tillage. Previous work showed that soil 
bacterial networks, as well as cross-domain networks, including 
fungi and protists, follow a gradient of land-use intensity. The 
networks of the permanent grasslands exhibited higher levels of 
connectivity and complexity than those under continuous crop-
ping and temporary grasslands, resembling intermediate wheat-
grass cultivation, fell within a gradient between the two [10]. 
It is important to note that comparisons between endophytic 
communities in intermediate wheatgrass and annual wheat must 
go beyond discussions of differences between plant genotypes. 
The management varies between the two plant types (e.g. tillage) 
and it is hardly possible to distinguish between these two factors. 
Targeted sampling strategies, e.g. by comparing several perennial 
and annual plant types or investigation of land-use gradients, will 
be necessary in the future to disentangle the differences between 
effects from plant genotypes and the cropping system. Yet, the 
management is an integral part of the cultivation of perennial 
grain crops and should be considered beside the factor plant 
genotype. 

In conclusion, we observed consistent findings across the 
three sampling sites showing compartment-specific bacterial 
communities resembling the host plant lifestyle (perennial 
vs. annual). Importantly, the root-endophytic microbiome of 
intermediate wheatgrass showed higher diversity and more 
connected communities. At the same study sites, intermediate 
wheatgrass cultivation was found to improve the diversity, 
abundance, and biomass of earthworms and to favor a nematode 
community structure that is characteristic for an undisturbed 
system with a more diverse food web [12, 84]. Similar patterns 
across macro- and microorganism scales emphasize the potential 

of intermediate wheatgrass cultivation for fostering sustainability 
in agriculture by increasing biodiversity. 
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