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Abstract Greenhouse gas emission estimates from streams rely, in part, on accurate measurements or
estimates of the gas transfer velocity, which describes the physical efficiency for gas exchange across the water‐
air interface. Numerous methods for measuring or modeling gas transfer velocity exist, yet few studies compare
these different methods. Additionally, current models of gas transfer velocity in streams are predominantly
derived from measurements in low‐gradient, temperate, or boreal streams. Here, we measured gas transfer
velocity using four different methods in a high‐energy, tropical headwater stream under a range of flow
conditions, and compared these measurements to indirect estimates from four empirical models. Our results
show that, when compared to the use of a biologically inert gas tracer (propane), floating chambers produced
lower gas transfer velocity values. Using carbon dioxide (CO2) as a tracer gas was unreliable without
considering other natural sources and sinks of CO2 and yielded gas transfer velocities lower than when using
propane. Existing empirical models tended to underestimate gas transfer velocity, compared to the inert tracer
gas. When using empirical models to upscale the emission flux along an entire stream reach, choice of model
was more influential than the spatial resolution of model implementation. We also highlight the extreme spatial
variability of gas transfer velocity across small spatial scales, which contrasts with its relative stability across
changing hydrological conditions. The discrepancies between methods highlight the need for further research in
measuring and upscaling gas transfer velocity, particularly in very turbulent steep streams.

Plain Language Summary Streams and rivers emit greenhouse gases and the rate at which this
process occurs is determined, in part, by the gas transfer velocity. This parameter can be measured or estimated
in different ways, yet few studies compare these different methods. Most of the studies that examine gas transfer
velocity have occurred in small, flat streams in temperate or boreal ecosystems. Here, we measured the gas
transfer velocity in a steep, tropical stream using eight different methods. We aimed to understand how existing
methods compare to each other and how well these methods work in systems other than flat streams. Our results
show that methods that use a biologically active tracer gas to measure gas transfer velocity require more careful
consideration of other natural processes than methods that use biologically inert tracer gases. Models that
estimate gas transfer velocity tend to overestimate this parameter when it is low and underestimate this
parameter when it is high. We also found that although gas transfer velocity varies substantially in space, it
remains relatively stable over time. The differences we observed between methods highlight the need for further
research on how to best measure or model gas transfer velocity, particularly in steep streams.

1. Introduction
Streams contain biologically active and chemically important dissolved gasses such as oxygen (O2), carbon
dioxide (CO2), and methane (CH4) (Hall & Ulseth, 2020). Both O2 and CO2 are of interest to stream ecologists for
their role in photosynthesis, respiration, or the combined process of metabolism, which is influential in deter-
mining whether a given stream is a sink or source of carbon (Battin et al., 2023; Bernhardt et al., 2018). In addition
to internal cycling of CO2 and O2, streams emit significant amounts of CO2 and CH4 to the atmosphere and have
received increasing attention, especially over the past two decades, for their role in global carbon cycling (Liu
et al., 2022; Raymond et al., 2013; Rocher‐Ros et al., 2023). CO2 produced from soil respiration or internal stream
metabolism, as well as CH4 produced within stream sediments or riparian soils, can diffuse across the water
surface and into the atmosphere, representing a significant source for atmospheric greenhouse gases (GHGs)
globally (Liu et al., 2022; Rocher‐Ros et al., 2023). However, both the concentration and flux to the atmosphere of
these gases can be highly variable across time and space in streams, which makes them difficult to generalize on a
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reach‐scale (Natchimuthu et al., 2017; Wallin et al., 2011). Steep streams in particular have been shown to emit
gases to the atmosphere at higher rates than their lower‐gradient counterparts (Maurice et al., 2017; Ulseth
et al., 2019), with global syntheses highlighting the disproportionate emission contribution from streams draining
steep landscapes (Horgby et al., 2019; Liu et al., 2022). Yet large uncertainties remain in estimating gas transfer
velocities (k) for turbulent streams, where bubble‐mediated emission is often prevalent (Hall Jr. & Mad-
inger, 2018; Ulseth et al., 2019). Additionally, tropical regions have been found to have elevated concentrations of
both CO2 and CH4 when compared to temperate regions (Liu et al., 2022; Regnier et al., 2013; Rocher‐Ros
et al., 2023). Despite their potential contributions to global carbon cycling, tropical streams, especially head-
waters, tend to be underrepresented in global upscaling studies (Lauerwald et al., 2023). This underrepresentation
may be the result of fewer gas concentration observations from tropical streams, as well as coarse resolution of
available digital elevation models which limit the ability to integrate gas measurements in headwater streams with
catchment characteristics typically used for stream emission modeling (Lauerwald et al., 2015; Liu et al., 2022).

Movement of a gas across a water surface is a product of the concentration gradient (the difference between the
concentration of the gas in the surface water and the concentration in the water at saturation with the atmosphere)
and k (Raymond & Cole, 2001). The concentrations of CO2, CH4, and O2 in both the surface water and the
overlying atmosphere are typically easily measured, but k has proven more difficult to quantify. k is largely
dependent on surface turbulence which promotes mixing of water with the overlying air (Hall & Ulseth, 2020;
Jähne & Haußecker, 1997). Characteristics that increase surface turbulence—such as channel slope, channel
depth, energy dissipation rate (εD), flow rate, and flow velocity—have been found to scale with k (Raymond
et al., 2012; Wallin et al., 2011). Spanning multiple orders of magnitude from less than 5 m d− 1 in slow moving,
relatively flat streams to over 4,000 m d− 1 in steep, alpine streams, k has a significant influence in determining
GHG emissions from rivers (Raymond et al., 2012; Ulseth et al., 2019). In addition to k, the gas concentration
gradient also influences flux and lower gas solubility in warm waters, often found in the tropics (van Vliet
et al., 2013), results in a lower gas concentration at saturation, which would change the concentration gradient and
subsequent gas flux.

A particular challenge in quantifying k is its spatial and temporal variability on short/small and long/large scales.
Within a single stream, small scale changes in hydro‐morphological conditions can have significant impacts on k
and thus gas emissions (Botter et al., 2021, 2022; Kokic et al., 2018; Vautier et al., 2020). Because k is influenced
by hydrological regimes, it also experiences temporal variability. Largely due to changes in discharge, k can span
an order of magnitude at a single stream site over an annual timescale (McDowell & Johnson, 2018).

Methods used to compute k in streams range from heavily instrumented in situ measurements (direct turbulence
measurements using acoustic Doppler velocimetry (Kokic et al., 2018)), to indirect but still in situ measurements
(tracer gas additions, floating chambers or eddy covariance in parallel with in‐stream gas concentration to resolve
k), to empirical modeling based on hydrology and/or geomorphological characteristics (Hall & Ulseth, 2020).
Each of these methods have distinct advantages and disadvantages dependent on the type of stream system they
are applied to, and the scale in space and time that the measurements or modeling represent.

Floating chambers provide an in situ measurement of gas flux, which can be used to calculate k if the concen-
tration of the specific gas in the atmosphere and water is known. Although this method provides a direct mea-
surement of gas flux that can easily be used to resolve a k value, these are spot measurements representing local
areas in space and time. This small footprint may pose a weakness when deriving k in streams that have highly
variable morphology across space and hydrology across time. Additionally, chambers floating on the stream
surface (whether tethered to a location or allowed to drift with the current) can influence the surface conditions
and hence alter the gas flux and k value (Lorke et al., 2015; Vachon et al., 2010).

Tracer gas additions also provide an in situ measurement of k (Tsivoglou, 1967). Historically, SF6 and propane
have often been used as tracer gases due to being easy to measure on a gas chromatograph, and for being bio-
logically inert (and in the case of propane, inexpensive) (Mulholland et al., 2001; Wanninkhof et al., 1990);
however, recent years have seen the use of alternative gases such as argon (Hall & Madinger, 2018; Ulseth
et al., 2019). The k measured using a gas tracer is specific to that gas and must be converted to the gas of interest
(e.g., O2 or CO2) using a Schmidt scaling number adjusted for temperature, which can introduce uncertainties
(Hall Jr. & Madinger, 2018). Recently, CO2 has been tested as a tracer gas to avoid the need to scale between
gases (McDowell & Johnson, 2018). CO2 is an attractive tracer gas option since it is relatively easy to measure
using an infrared gas analyzer, or in situ sensor. Unlike SF6, propane, and argon, CO2 is biologically active in
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streams and may require additional consideration of natural sources and sinks. Tracer gas additions cover a larger
spatial footprint than chambers; however, they still have a limited temporal footprint (ca. 1 hour). They work best
where the study reach is well mixed and are thus well adapted to high‐gradient, turbulent streams where chamber
measurements may not be applicable.

Empirical models provide estimates of k based on parameters often obtained from geospatial products or
monitoring stations (slope, flow rate, or flow velocity) (e.g., Raymond et al. (2012)). For this reason, they are
typically used when upscaling atmospheric flux at regional or global scales. Depending on how they are applied
and how the required data inputs are obtained, an empirical model can provide an estimate of k for a stream
without ever having to go to the field. However, this comes at a cost of higher uncertainties, particularly in
morphologically complex headwater streams (Vautier et al., 2020). Not only do these models have high un-
certainties but different models can also yield vastly different results for the same location and time (see Figure S3
in Duvert et al. (2018)). Recent studies using tracer gas injections in steep streams have led to the development of
empirical models adapted to these high‐gradient systems (Hall Jr. &Madinger, 2018; Maurice et al., 2017; Ulseth
et al., 2019), and also suggest that previous models developed in lower gradient streams underestimate k in these
steep systems (Ulseth et al., 2019).

Despite a wide body of work which relies on accurate estimates of k across large spatial scales and significant
effort developing methods suited to different types of streams, there are limited studies which compare these
methods (e.g., Lorke et al. (2015), McDowell and Johnson (2018), and Vautier et al. (2020)). There is a limited
number of studies that measure k (rather than model it) in steep, turbulent streams (Horgby et al., 2019; Ulseth
et al., 2019), and direct measurements in steep, tropical streams are also missing from the literature. These data
gaps leave global upscaling efforts exposed to significant uncertainties in GHG fluxes from such areas and
methodology choices regarding kmay lead to large discrepancies between studies. By simultaneously measuring
k using four field‐based methods (a floating chamber, and three variations of tracer gases) and four empirical
models (Equations 2 and 5 from Raymond et al. (2012) and the models developed in Natchimuthu et al. (2017)
and Ulseth et al. (2019)), we aim to.

1. Apply and compare different field‐based methods of measuring k in a high‐energy tropical stream.
2. Compare existing commonly used empirical models against in situ measurements to estimate k.
3. Demonstrate the impact of model selection and spatial resolution of in situ measurements on upscaled gas flux

calculations.

2. Materials and Methods
2.1. Study System and Design

Shady Creek is a steep, first‐order and low pH (5.2–5.5) stream in Litchfield National Park (Northern Territory,
Australia) that drains an approximately 350 ha sandstone dominated catchment. Located in the wet‐dry tropics of
Australia (Köppen‐Geiger climate classification Aw; (Beck et al., 2018)), it receives over 90% of its average
1,685 mm (median 1,770 mm) of annual precipitation between the months of November and April (Bureau of
Meteorology station number 14021 http://www.bom.gov.au/climate/data). The streambed is composed of a mix
of exposed bedrock, gravel, and sand. Diffuse groundwater inflows through the streambed are probable in small
pockets of sand/gravel and discrete groundwater inflows can be observed throughout the stream, especially on
steep hillslopes. The stream is turbulent with few areas where water is stagnant.

Three reaches located within a 197‐m stretch of Shady Creek comprised our study sites (Figure 1a). These reaches
differed in length, slope, depth, and flow velocity (Table 1). The three sites were loosely classified into a high,
medium, and low energy reach. These energy classifications were not only based on measured parameters such as
flow velocity and slope but also on subjective visual judgments of surface turbulence. Although we refer to these
three different sites as low/medium/high energy, these labels are relative to each other and all these sites would
generally be described as high‐energy if comparing to most global stream networks.

Briefly, the high‐energy reach is 12.7 m long with an average slope of − 0.193 m m− 1, although nearly all of the
change in elevation along the reach occurs at a 3.3 m tall waterfall 4.5 m downstream from the upstream end of the
reach. The medium energy reach is 57.8 m long with an average slope of − 0.032 m m− 1 with numerous distinct
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cascades of approximately 0.5–1.0 m tall. The low energy reach is 21.9 m long with an average slope of
− 0.030 m m− 1 and has a single small (<0.5 m) cascade (Table 1; Figure SI1).

Between October 2022 and November 2023, we sampled the three stream reaches over 16 days resulting in 37
unique sampling “events.” At each event, we measured basic hydrological (discharge and velocity) and

morphological (width and depth) parameters, as well as computed k for our
study reach using eight methods of direct measurements and modeling. These
methods included (a) propane as a tracer gas using a standard first‐order
model to calculate k, (b) CO2 as a tracer gas using a standard first‐order
model to calculate k, (c) CO2 as a tracer gas and mass balance model to
calculate k, (d) floating chambers coupled with in‐stream CO2 concentration,
(e) and (f) models 2 and 5 from Raymond et al. (2012), (g) the empirical
model developed by Natchimuthu et al. (2017), and finally (8) the piecewise
linear regression model by Ulseth et al. (2019). Methods 1 through 4 compute
a k specific to either propane or CO2 at the measured temperature; these
values were converted to k600 (see Sections 2.3 and 2.4), the k value for CO2 at
20°C, to allow comparison between these four methods as well as with the
empirical models which calculated k600. Due to the wide usage of method 1,
here we consider the k estimates obtained from this method as “reference”
values, to which we compare k derived from the other seven methods. It

Figure 1. (a) Site map denoting the 197‐m long section of Shady Creek that was used in the current study. The three study
reaches are shown in tan (mid‐energy), red (high‐energy), and green (low‐energy). (b) Conceptual diagram depicting how the
three different types of fluxes were calculated. In the reference and detailed fluxes, the pCO2 values denote the pCO2
measured at the up and downstream end of each individual reach. In the detailed and simple flux, the modeled k uses velocity/
discharge measurements were taken at the downstream end of each reach, or in the case of the simple flux, the downstream
end of the entire 197‐m reach. Figure 1b is not drawn to scale; see SI1 for a detailed elevation profile.

Table 1
Average Conditions for Each of the Three Sites

Low Medium High

Length (m) 21.9 57.8 12.7

Width (m) 2.1 ± 0.4 2.2 ± 0.2 3.4 ± 1.2

Depth (m) 0.4 ± 0.07 0.4 ± 0.06 0.2 ± 0.1

Avg. Slope (m m− 1) − 0.030 − 0.032 − 0.193

Avg Flow (L s− 1) 220 ± 196 192 ± 167 191 ± 161

Avg flow velocity (m s− 1) 0.25 ± 0.2 0.27 ± 0.2 0.39 ± 0.2

Avg CO2 concentration (ppm) 882 ± 253 1,073 ± 260 1,017 ± 311

Note. Standard deviation is shown when appropriate.
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should be noted that these reference k values should not be considered as “true values,” although we believe that
these values are likely similar to what the true value of k would be. Throughout the manuscript, “overestimate”
and “underestimate” are used in reference to this propane derived k value, not necessarily the true value of k.

2.2. Hydro‐Morphological Measurements

A topography survey using an optical level (NA2; Leica Geosystems; St. Gallen, Switzerland) was conducted to
determine the length and slope (S; m m− 1) of each reach as well as the entire 197‐m stream section (Figure S1 in
Supporting Information S1). Lengths of each reach were checked against manual measurements using a tape
measurer. Depth (z; m) and width were measured at each reach on each sampling day at 3–4 cross‐sections
distributed along the length of the reach. At each cross‐section, depth was measured every 20–50 cm (depend-
ing on total width). Discharge (Q; L s− 1) and flow velocity (v; m s− 1) were measured at each site and each day
with salt dilution gaging (Day, 1977) using conductivity sensors at the up and downstream ends of each study
reach (ProSolo handheld and EXO2 multiparameter sonde, both equipped with conductivity sensor, YSI Inc.;
Yellow Springs, Ohio, USA). Depending on the flow rate, a slug of between 100 and 1,000 g of salt were added
ca. 10 m upstream of the upstream measurement point to allow adequate mixing. Using these measures of slope
and velocity, as well as the gravitational acceleration (9.8 m s− 2), εD (m2 s− 3) was calculated according to
Equation 1 (Moog & Jirka, 1999).

εD = 9.8 × S × ν (1)

2.3. Propane Diffusion

Propane was diffused into the stream at a constant rate of 8–10 L min− 1 for 30–40 min, approximately 10 m
upstream of each study reach. The time of 30–40 min was chosen based on the time it took for the measurements
from a C‐sense CO2 sensor (Turner Designs, United States) placed at the downstream end of the reach to stabilize
after the addition of CO2 (see Section 2.4), indicating that the gas had ample time to diffuse into the water and
travel the length of the study reach. The diffusion points were located immediately upstream of highly turbulent
zones (e.g., a small cascade) to ensure thorough mixing across the channel. After this time, eight 20 mL glass
crimp top vials were filled with water from the upstream and downstream ends of the study reach (four at each
location distributed across the channel) and sealed with an aluminum screw cap with septa. Samples contained no
headspace and were refrigerated until analysis. Shortly before analysis, 10 mL of water was removed from each
vial. Samples were analyzed for propane at Charles Darwin University on a Clarus 680 gas chromatograph
(Perkin Elmer) with a flame ionization detector (FID).

The gas transfer velocity of propane, kC3H8
(m d− 1), was calculated by solving the following equation (Wan-

ninkhof et al., 1990):

Cx = C0e−
(kC3H8 )x

vz (2)

where C0 and Cx are the concentration of propane at the up and downstream measurement points and x is the
length of the study reach (m), Cx and C0 were not adjusted to reflect an increase/decrease of flow at the two
sampling points due to minimal changes in flow rate at the locations of Cx and C0. (see Text S2 in Supporting
Information S1). To compare to other methods, kC3H8

was converted to k600 using the following equation:

k600 = (
600
ScC3H8

)

− 0.5

× kC3H8
(3)

where k600 is the gas transfer velocity standardized to CO2 at 20°C (m d− 1) and ScC3H8
is the Schmidt number for

propane, calculated from (Witherspoon & Saraf, 1965):

Sc(C3H8)
= 2864 − 154.14T + 3.791T2 − 0.0379T3 (4)
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where T is water temperature (°C). In total, 23 of the 37 sampling events generated quality checked data used for
further analysis.

2.4. CO2 Diffusion

CO2 was also diffused into the stream at a constant rate of 8–10 L min− 1 at the same locations and times as the
propane injection. From October 2022 until March 2023, CO2 was measured continuously using two Turner
Designs C‐sense pCO2 sensors placed at each end of the stream reach during gas injection. CO2 concentration was
monitored in real time at both points and CO2 values used to compute kwere recorded once the CO2 concentration
at the downstream end of the reach had stabilized. This stable value was typically reached after 30–40 min and
suggests adequate travel time from the point of diffusion and sensor response time. FromApril through November
2023, CO2 was measured using a headspace equilibration method. Briefly, 45 mL of water was equilibrated with
15 mL of atmospheric air by gently shaking a 60 mL syringe containing the two components for 2 minutes. After
equilibration, the gas was transferred to a 20 mL syringe via a 3‐way stopcock valve. Syringes were kept cool until
analysis on a trace gas analyzer (LI‐7810; Li‐Cor Environmental; Lincoln, Nebraska, USA) within 12 hr of
sample collection. Using these CO2 measurements, k for CO2 (kCO2

), was calculated in two different ways
described below.

2.4.1. First Order Power Function

kCO2 was calculated in a way similar to Equation 2, except that C0 and Cx were the concentration of CO2 at the up
and downstream sampling points after ca. 40 minutes of diffusion minus the concentration of CO2 present before
CO2 was diffused into the stream. kCO2 was then converted to k600 using Equation 3, except the Schmidt value of
CO2 (Sc(CO2)

) was used (Wanninkhof, 1992):

Sc(CO2)
= 1911 − 118.11T + 3.453T2 − 0.0413T3 (5)

This method treats CO2 as an unreactive tracer gas, the same way C3H8 is treated in the previous section.
However, this is an assumption and does not consider that CO2 is naturally occurring in streams and can be altered
by groundwater additions, produced or consumed by aquatic metabolism, or be lost due to carbonate equilibria
shifts. However, in this study system, the latter two of these are likely minimal due to the low pHwater that would
limit a strong carbonate shift, and a (likely) low rate of metabolism. A near‐by and similar system exhibited a net
primary production of 0.84–4.06 g C m− 2 d− 1 (Solano et al., 2023), and we expect Shady Creek to be lower due to
its high turbulence and short residence time. Despite not accounting for these pathways, we were able to produce
estimates of k600 during 14 sampling events.

2.4.2. Mass Balance

To incorporate the CO2 added from groundwater, we also used a mass balance approach to calculate k. This
method builds on the methods described in McDowell and Johnson (2018), which uses a mass balance model to
calculate k. We have added a component which considered the CO2 added from groundwater inputs. Briefly,
excess CO2 in the stream (∆CO2) was calculated as follows:

∆CO2 = (
(CUS + CDS)

2
− Cair) (6)

where CUS and CDS are the mass of dissolved CO2 at the up and downstream locations (g CO2‐C L− 1) and Cair is
the mass of carbon at saturation (g CO2‐C L− 1). Flux of carbon to the atmosphere (g CO2‐C m− 2 s− 1) was
calculated as follows:

F = (
(CUS.corr − (CDS.corr − Cgw.gain))

A
) × Q (7)

where CUS.corr and CDS.corr are the up and downstream concentrations of CO2 (g CO2‐C L− 1) corrected for the
background concentration by subtracting the concentrations of CO2 present before CO2 was diffused in the
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stream;Q is flow rate (L s− 1); and A is surface area of the stream reach (m2) calculated as the site length times the
average width of the site. Cgw.gain is the mass of carbon (g CO2‐C L− 1) added to the stream reach from
groundwater. This is calculated as:

Cgw.gain =
Qgw × l × Cgw

Q
(8)

where Qgw is the length‐standardized discharge gain over the stream (L s− 1 m− 1; see Text S1 in Supporting
Information S1), l is the length of the reach (m), and Cgw is the concentration of CO2 in the groundwater (g C‐CO2

L− 1; see Text S1 in Supporting Information S1). kCO2 (m d− 1) was then calculated by dividing the emission flux
by excess CO2:

kCO2
=

F
∆CO2

(9)

kCO2 was converted to k600 as described in the previous section using eq3 and eq5. The mass balance method
considers CO2 added from groundwater, but assumes no consumption or inputs of CO2 related to aquatic
metabolism or shifts in the carbonate equilibrium.

2.5. Floating Chambers

On the last two sampling days (September 29 and 10 November 2023), k was also measured using a floating
chamber. Within each of the three study reaches, a custom‐made, tethered, floating chamber connected to the LI‐
7810 was used to measure gas flux at three locations. The three chamber locations were selected to capture
different features of the reach that influence the rate of emission (e.g., slow riffles, pools, etc.). The chamber was
deployed for three to 5 minutes for each measurement, and three replicate measurements were taken for each
location. The rate of increase of gas in the chamber was used to calculate the flux (μmol m− 2 s− 1) of CO2 as
follows:

F =
P × m × h
T × R

(10)

where P is the atmospheric pressure (Pa), R is the gas constant (8.314; Pa m3 mol− 1 K− 1), T is the air temperature
(K), m is the rate of increase (μmol mol− 1 s− 1), and h is the height of the chamber (m). kCO2 was then calculated
using Equation 9 and converted to k600 as described in the previous section.

The three replicates at each location within each sampling reach were averaged to get a single value for each
location within each reach. A weighted average was then obtained for each reach from the k600 values measured at
the three locations. Weights were based on the proportion of the reach that each chamber measurement repre-
sented. The weights were the product of both objective measurements of slope and subjective field observations.

Table 2
Empirical Models Used to Estimate k600

Empirical model Reference

k600 = 5937 × (1 − 2.54 × ( v
(9.8 z̄)0.5)

2
) × (υS)0.89 × z 0.58 Raymond et al. (2012); Equation 2

k600 = υS × 2841 + 2.02 Raymond et al. (2012); Equation 5

log10k600 = 0.319 + (2.110 × υ) + (1.026 × log10 S) Natchimuthu et al. (2017); model no. 2

ln[k600] = 3.10 + 0.35 × ln[εD] for εD < 0.02 Ulseth et al. (2019)

ln[k600] = 6.43 + 1.18 × ln[εD] for εD > 0.02

Note. For simplicity, the standard deviations of coefficients and constants were removed.
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2.6. Empirical Models

In addition to the above methods of measuring k, four empirical models were used to estimate k based on a
combination of slope, depth, flow velocity, and discharge (Table 2). Although not developed specifically for
streams such as Shady Creek, twomodels from Raymond et al. (2012) (Equations 2 and 5) were used because they
are commonly employed in regional or global upscaling calculations (e.g., Lauerwald et al. (2015), and Rocher‐
Ros et al. (2023)). The two models presented by Natchimuthu et al. (2017) and Ulseth et al. (2019) were also used
to model k because these models were developed for small headwater streams and high‐energy streams,
respectively. Unique to the Ulseth model is a piecewise linear regression function based on energy dissipation.
The piecewise function uses two different linear regressions to calculate k600 for higher energy streams
(εD > 0.2 m2 s− 3) and lower energy streams (εD < 0.02 m2 s− 3). This breakpoint of 0.02 m2 s− 3 is the theoretical
distinction between when the flux of systems is dominated by diffusivity in low energy streams versus bubble‐
mediated gas exchange in high energy streams (Ulseth et al., 2019). All models were calculated at a spatial
resolution which matches the length of the site; for example, a model based on slope and velocity used the velocity
and slope of the high energy reach to calculate k600 for the high energy site. Together, these four models provide
estimates of k that would be similar to k values calculated as part of a large upscaling effort.

2.7. Impact of Method Choice on Upscaled CO2 Flux Estimates

To assess how the method used to obtain k may impact a flux estimate for a given stream reach, CO2 flux for the
entire 197‐m long study reach (Figure 1a) was calculated in three different ways that combine different models or
measurements for k and different spatial resolutions of CO2 concentration, channel slope, velocity, and discharge.
Detailed methods for calculating the three different flux measurements are provided in Text S2 in Supporting
Information S1. Briefly, (a) a “reference” measured CO2 flux demonstrates a flux value obtained from intensive
field measurements of k using propane and which is likely closest to the “true” flux (Figure 1b). This method also
leverages multiple measurements of CO2 concentration throughout the stream reach. (b) A “detailed” modeled
CO2 flux employs the same approach but uses empirically derived estimates of k rather than measurements made
with propane. Comparing the detailed flux estimate to the reference estimate provides an idea of how empirical
model selection may impact flux estimates. (c) A “simple” modeled CO2 flux reflects perhaps the most common
yet imperfect sampling procedure in the literature, using one CO2 measurement and a modeled k value based on
measurements of slope, discharge, and/or velocity from the outlet to upscale GHG fluxes to an entire catchment.
The comparison of the simple and detailed modeled fluxes provides insight on how the spatial resolution of input
parameters (slope, flow velocity, k, and CO2 concentration) can impact the accuracy of flux estimates. In short,
both the reference and detailed method use measurements collected frommultiple locations throughout the 197‐m
reach, whereas the simple method uses measurements collected at only one location. Additionally, the simple and
detailed methods rely on modeled values of k, whereas the reference flux uses in situ measurements of k.

2.8. Impact of Hydrology on k600

The impact of hydrology on k600 was evaluated using energy dissipation, flow rate, and flow velocity. Simple
linear regressions were used to evaluate each hydrological variable against the k600 values calculated using the
propane tracer gas method. Regressions were calculated at both a site level and at an inter site level.

2.9. Statistical Methods

All calculations, statistical tests, and figures were done using R version 4.2.2 (R Core Team, 2022). Because
chamber measurements were only made on two occasions, any comparisons with chamber derived k values were
only between measurements that occurred on the same 2 days. Due to non‐normal distributed data, the non‐
parametric Kruskal‐Wallis test was used to assess differences in upscaled CO2 flux. Pairwise differences be-
tween upscaled flux measurements were assessed using paired Wilcoxon signed‐rank tests.

3. Results
3.1. k600 Estimates Across Methods

k600 values measure in Shady Creek were generally higher, or on the high end, than reported values globally. This
pattern was true between the different methods we evaluated and across our different sites–even our “low” energy
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site had high k values, compared to globally reported sites (Ulseth et al., 2019). Across our 16 sampling cam-
paigns, the mean k600 values consistently increased from the low‐to high‐energy reaches, with mean values across
all measurement methods of 42, 66, and 413 m d− 1 at the low, medium, and high energy reaches, respectively
(Figure 2). We found substantial variations between methods at individual reaches, with the chamber‐based
estimates being generally lower than other estimates and the propane‐based values being in the higher range.
The two CO2‐based methods yielded results generally higher than the chamber but lower than the propane. The
empirical models fell within the range of these other methods, except for the Ulseth model which yielded k values
that were, on average, 2.5 times higher than the other three empirical models and more similar to the k values
derived from the propane‐based method.

Over the 14‐month sampling period, 23 k600 values were obtained by using propane as a tracer gas. Propane‐based
k600 estimates spanned three orders of magnitude, with the mean values increasing from the low to high energy
reaches (37, 65, and 1,067 m d− 1, respectively).

CO2 was successfully used to calculate k600 on 14 occasions using the first‐order method (Equation 2 adapted to
CO2). k600 values ranged from 8 m d− 1 to 1,656 m d− 1 and averaged 363 m d− 1. As with propane, the mean
increased from the low to high energy site (36, 46, and 681 m d− 1, respectively). Using the mass balance method,
CO2 yielded 29 values of k600 and had an average of 122 m d− 1, less than half of that from the first‐order method.
These k600 values followed the same increasing patterns from the low to high energy reach, but with compara-
tively much lower estimates for the high‐energy reach (mean 64, 118, and 188 m d− 1 in the low, medium, and high
reach, respectively).

The chamber estimates of k600 had an average of 39 m d− 1 across all three reaches (based on two sampling events
only). Like the other in situ methods, the mean k600 values calculated from the chamber increased from low to
high and had means of 21, 31, and 64 m d− 1, respectively. These values were generally lower than those obtained
from the tracer gas methods.

All four empirical models generally followed an increasing pattern from the low to high energy reaches, with a
few minor deviations from this pattern between the low and medium energy reaches. The Raymond Equation 2
model had average k600 values of 43, 41, and 144 m d− 1 for the low, medium and high energy reaches,

Figure 2. k600 values computed using in situ methods and empirical models for the three sites (rows) in Shady Creek.
Individual data points are shown, and colors represent the flow velocity; gray denotes k600 values when velocity was not
measured. Because chambers were only used on two occasions, chamber boxplots are not directly comparable to boxplots for
other methods. Crossed circles denote the two data points that were collected on the same day as chamber measurements and
are directly comparable.
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respectively. The Raymond Equation 5 mean values were 23, 27, and 203 m d− 1. The Natchimuthu model fol-
lowed the same pattern at the low to high energy sites, but with significantly higher estimates for the high‐energy
reach, with mean k600 values of 31, 35, and 414 m d− 1. Finally, the Ulseth model had higher values than the rest of
the models but followed the same increasing pattern with mean values of 153, 170, and 497 m d− 1 at the low,
medium, and high energy reaches, respectively.

3.2. Chamber Versus Propane and Empirical Models

Excluding the Ulseth model, which had consistently higher outputs than the chamber measurements of k600,
chambers were consistently higher than empirical models by a factor of 1.7 and 2.0 in the low and medium energy
reaches, respectively. In the high energy reach, chambers produced lower k600 values by a factor of 2.0 when
compared to the average of the two Raymond models and Natchimuthu model. The Ulseth model's k600 estimates
were higher than the chamber estimates by a factor of 6.5, 5.2, and 3.6 in the low, medium, and high energy
reaches, respectively. There was only one day when both chambers and propane were used to measure k600 and on
this day, the propane measurements were higher than the chamber measurements by a factor or 1.1, 1.4, and 10.8
in the low, medium, and high energy reaches, respectively.

3.3. Propane Versus Empirical Models

When compared to measured k600 values computed from propane, all of the tested empirical models tended to
yield lower values of k600 in the medium and high energy reaches, while estimates of k600 were both higher and
lower in the low energy reach (Figure 3). k600 values from the Raymond Equation 2 and Equation 5, the
Natchimuthu and the Ulseth models were higher than the propane derived k600 by factors of 1.1, 0.9, 0.3, and 6.2
respectively, in the low energy reach. However, although these average residuals suggest overestimation, the first
three models had lower k600 values more than or nearly half of the time. In the medium energy reach, the two
Raymond models and the Natchimuthu model had lower k600 values by factors of 0.3, 0.6, and 0.6, respectively,
whereas the Ulseth model had higher k600 values by a factor of 1.7, compared to the propane derived k600 values.
In the high energy reach, the Raymond models yielded lower values k600 by factors of 0.9 and 0.7 whereas es-
timates of k600 from the Natchimuthu and Ulseth models were lower by an average factor of 0.3.

Figure 3. (a) k600 values from empirical models are compared to k600 values computed from propane injections. The solid
black diagonal line represents the 1:1 line. (b) Residuals between the k600 values measured by propane diffusion and
empirical models. A positive value represents an overestimation by the empirical model and a negative value represents and
underestimation by the empirical model. Individual models are shown in separate facets and sites are denoted by color.
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3.4. Comparing Scaling Approaches

Shady Creek was consistently supersaturated in CO2. Average concentrations were 882, 1,073, and 1,017 ppm in
the low, medium, and high energy reaches, respectively (Table 1). However, out of the 16 sampling days, on only
three occasions were all three sites sampled during the same day, providing the data needed to compute flux
estimates for the entire stream reach. Two of these days were in the peak wet season of 2023 and had reference
CO2 fluxes of 1,280 mol d− 1 and 639 mol d− 1 (Figure 4). The third day was in the late dry season of 2023 and had
a reference CO2 flux of 329 mol d− 1. The mean reference flux across all three days was 749 mol d− 1.

Both implementation approaches tended to underestimate total flux compared to the reference flux when using the
Raymond and Natchimuthu models (average 219 and 344 mol d− 1 across all three models for the simple and
detailed approaches, respectively) and to overestimate compared to the reference flux when using the Ulseth
model (average 1,070 and 1,252 mol d− 1 for the simple and detailed approaches, respectively). These higher
estimates from the Ulseth model, regardless of implementation method, were the only significantly different flux
estimates (Wilcoxon Signed‐Rank; p values < 0.05). Although differences between the other models and
implementation methods were not significant, the choice of empirical model proved highly influential in the
scaling results.

3.5. Changes in k Across Flow Conditions

We found that at a given site, k600 was only marginally affected by changes in flow conditions (Figure 5). Energy
dissipation rate (εD) was significantly positively correlated with propane‐based k600when considering data across
all three sites (p < 0.001, R2 = 0.63; Figure 5a). However, when looking at sites individually, where the stream
slope was constant but flow velocity fluctuated, changes in εD had a limited effect on k600, with nonsignificant
regressions (p > 0.20) and R2 values < 0.2.

Discharge had no significant impact on k600. Across all sites, the linear regression between discharge and k600was
insignificant (p = 0.7, R2 = 0.005; Figure 5b). Site specific linear regressions between Q and k600 were also
insignificant (p‐values > 0.2, R2‐values < 0.2). Flow velocity, across all three sites, was significantly related with
increasing k600 (p= 0.009, R2= 0.28; Figure 5c), but large changes in flow velocity resulted in limited changes in
k600. Individual site regressions between velocity and k600 and εD and k600 were identical due to εD being a
function of velocity and slope, the latter of which does not change within each site.

Figure 4. Difference between reference (spatially explicit, k600 measured using propane diffusion) and modeled fluxes (k600
modeled using an empirical model). A perfectly modeled flux would appear at zero (dotted gray line), whereas
underestimated fluxes are negative and overestimated fluxes are positive.
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4. Discussion
Regardless of method used, our estimated k values in Shady Creek are much higher than the reported global mean
of 5.7 m d− 1 (Raymond et al., 2013). This discrepancy is unsurprising given the steep and turbulent nature of our
study system. Despite significant loss of CO2 to the atmosphere facilitated by the high k values, Shady Creek
supported supersaturated levels of CO2 along its entire length. These data demonstrate the ability of turbulent
headwater streams to support large gas fluxes in the absence of source limitations. Combined, these elevated
values of k and CO2 concentrations position steep, tropical headwater streams as global hotspots for GHG
emissions (Lauerwald et al., 2015; Rocher‐Ros et al., 2023).

Additionally, our data showcase differences in methods commonly used to measure or estimate k and the potential
implication the choice of method may have on upscaled estimations of gas flux to the atmosphere. In general,
there is an inability of empirical models to accurately estimate k in the steepest sections of Shady Creek. These
results make clear that, in order to improve estimates of GHG fluxes to the atmosphere from steep mountain
streams, we must first improve our understanding of what measurable stream features drive k, as well as our
ability to measure and predict these with greater certainty. Our study also highlights the heterogenous nature of k
across small spatial scales as a result of morphological heterogeneities, and the relative stability of k across
changing hydrological conditions, particularly in more turbulent reaches.

4.1. Propane as a More Practical Option Than CO2 to Measure k

Although a variety of tracer gases (e.g., SF6, argon, and propane) are frequently used to measure k (e.g., Hall Jr. &
Madinger (2018), Ulseth et al. (2018), and Vautier et al. (2020)), the use of propane and CO2 as tracer gases in
Shady Creek yielded mixed results. Propane‐derived estimates of kwere consistent with our understanding of k—
high energy reaches had higher values of k than low energy reaches, and k generally increased with flow velocity
and discharge rate, although the influence of both parameters was only marginal. Because of the ease of use, tracer

Figure 5. (a) Relationship between energy dissipation and k600 obtained from propane injections. The dashed vertical black
line represents εD= 0.02 m2 s− 3, the breakpoint identified in the Ulseth et al. (2019) model for k600where gas exchange shifts
from predominantly diffusion driven to predominantly bubble‐mediated. (b) Relationship between stream discharge and k600
obtained from propane injections. (c) Relationship between flow velocity and k600 obtained from propane injections. In each
panel, a linear regression, 95% confidence interval, and r2‐value is shown in gray, when a significant linear regression exists.
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gases such as propane remain a popular method for measuring gas exchange in streams (e.g., Knapp et al., 2019;
Schelker et al., 2016; Ulseth et al., 2018).

Using CO2 to measure k proved to be more difficult than propane, despite similar underlying theories. Because
CO2 is not inert, changes in CO2 concentration from pathways other than flux to the atmosphere made this method
unreliable without significant additional data. The first‐order method, which does not account for any sources or
sinks of CO2 other than flux to the atmosphere, sometimes yielded negative concentration gradient (suggesting an
influx of CO2 from the atmosphere into the stream), something practically impossible given the supersaturated
state of the stream and surface turbulence. When considering added CO2 due to groundwater inputs (our “mass
balance model”), the model yielded much more realistic, positive values, and in the case of the low and medium
energy streams, values similar to the propane‐derived values. In the high‐energy reach, this method failed to
capture the higher (>300 m d− 1) k values. These data do not provide evidence of why this method does not capture
these higher values, but it is likely the result of poorly quantified groundwater inputs. In general, poor perfor-
mance by CO2 as a tracer is likely the result of poorly quantified natural pathways of CO2 rather than a theoretical
shortcoming of CO2 as a tracer. These results alone should not be used as justification that mass balance methods
may not work in high energy systems, but rather as a motivation to more rigorously consider natural pathways of
CO2 (groundwater inputs, in‐stream metabolism, carbonate buffering) if using CO2 as a tracer gas for measuring
k. Without these considerations, and another method to validate results, this method may be unreliable. However,
the benefits of using CO2 as a tracer may be realized if used repeatedly in a single stream over a longer period time
using a more permanent setup (e.g., in the case of McDowell and Johnson (2018)), where these additional
pathways are better accounted for.

4.2. Chambers Failed to Capture Extreme k Values

There is no clear consensus on the ability of chambers to accurately measure gas exchange in streams and our data
offer limited clarification. Some studies have reported overestimates caused by artificial turbulence (Lorke
et al., 2015), others found underestimation compared to eddy covariance methods (Huotari et al., 2013), whereas
some suggest that chambers can be a suitable method in headwater streams (Crawford et al., 2013). In addition to
an unclear tendency to over/under estimate, chambers have been found to have a high level of uncertainty in high‐
energy streams (Vingiani et al., 2021). Our data show a general, though not consistent in magnitude, underes-
timation of chamber‐derived k across sites and, to a lesser extent, across comparisons to other methods.

Different conclusions on the accuracy of chambers may be due to their small spatial and temporal footprints when
compared to other methods. Because chambers measure the flux over a small surface of the stream, entire reach‐
scale estimates of k also have significant uncertainty when upscaling the flux from the chamber to the reach. For
example, the low energy reach of Shady Creek has an average surface area of 47 m2, yet the combined surface area
of the three chamber measurements used to calculate the flux and subsequent k is only 0.06 m2, just 0.1% of the
total. The locations of these three chamber measurements, and their inability to capture any turbulent hotspots
(e.g., small cascades, rapids) where k may be orders of magnitude higher than in surrounding areas with more
laminar flow (Botter et al., 2022; Peruzzo et al., 2023; Vautier et al., 2020), can have drastic implications for a k
value computed for the entire reach. Generally, it is likely that uncertainties from upscaling chamber measure-
ments to entire stream reaches will increase in streams that are highly heterogeneous in morphology and surface
turbulence. Within a single reach on the same sampling day, our measurements of k using a chamber could span
two orders of magnitude and measurements from the same sampling location could vary by as much as a factor of
six between the two sampling days, despite the flow rate and velocity only varying by a factor of ca. two. In
addition to their small spatial footprint, chambers are limited in how long they can be deployed by the time needed
for the chamber headspace to equilibrate with the stream. In streams with low CO2 concentration and a high k, this
could be as short as a few minutes.

Ultimately, chambers, whether tethered or drifting, may not offer a consistently appropriate method for measuring
k in high energy systems. There is not a clear black and white set of conditions when chambers will and will not
work, but perhaps a gray area where this transitions happens, as evidenced by the fact that chamber‐based
measurements did capture k well in the low energy reach, but not in the medium or high. It is also worth
pointing out that all of these chamber measurements were made when flow was low (relative to flow conditions
observed in the year‐long study) and our conclusions might be different if chambers were used at higher flows.
Given their spatial and temporal limitations, as well as the lack of consensus in the existing literature, chambers
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may not offer a solution in measuring k in high energy and heterogenous streams, at least without more work that
clarifies how they may influence flux measurements (Kremer et al., 2003; Lorke et al., 2015; Rawitch et al., 2021;
Vachon et al., 2010). A better understanding of what types of systems chambers can accurately perform in is
imperative to their continued use in studying gas exchange in streams.

4.3. Empirical Models: High Uncertainties and Need for Greater Discretion in Their Use

Computationally the easiest of the different methods evaluated in this study, empirical models offer valuable
estimates of k, at least at larger spatial scales. Depending on the required input data, these models can be used with
high frequency data to compute temporally explicit values of k and they can also be easily implemented over a
large spatial range. However, our data suggests the benefits of these models are lost when trying to apply them at
the reach scale and at very high values of k. Each model is capable of estimating an average k or a range of
probable k values, but head to head comparisons with a measured reference k almost never yielded a perfect match
due to their uncertainties.

The existing models we evaluated, particularly the Raymond models and Natchimuthu model, were developed
with data derived from streams with predominantly lower slopes and flow velocity, and thus these models are not
designed for use in short, high energy reaches like those in our study system. This is especially evident in the k
estimates by Raymond Equation 2 in the high energy reach, which are much lower than the propane derived k
values (Figure 3). The Natchimuthu model had similar average residuals but both over and underestimated at
times; for this reason, it may perform better in scenarios when it is applied to many sites over a broad range of
conditions and these over and underestimations may average out to a near‐true value. The Ulseth model, which
was developed using systems more similar to ours, had higher residuals in the low and medium energy reaches
than the other three models, but lower residuals for our high energy reach. Unique to the Ulseth model, and
potentially the cause of the discrepancy between it and the other three empirical models, is that is uses a piece wise
function to estimate k600 differently under conditions when bubble mediated flux may be significant (when
εD > 0.02 m2 s− 3). In every instance we used this model, flux was calculated under this scenario. The high energy
site, which has low residuals, is dominated by a single cascade over rough rock substrate that generates high
turbulence and bubble entrainment. In contrast, the low and medium energy sites contain small cascades similar to
the one in the high energy reach, but also long pools with lower surface turbulence and minimal bubble
entrainment. The Ulseth model may have larger residuals in these two sites because bubble mediated flux does not
play as large a role as the model assumes.

These comments are not criticisms of any of these models, but rather observations on potential limitations when
applying them in environments other than those they were trained in. Empirical models are built on the foundation
that k increases with flow rate or velocity, yet k values in Shady Creek were only weakly positively correlated with
flow velocity (Figure 5). This limited influence of hydrology on k can be thought of as a lack of transfer limitation
in these systems, where high slope and streambed heterogeneity together generate high turbulence even under
relatively low flow conditions, and where an increase in flow rate may only marginally increase gas exchange.
This situation contrasts with low‐gradient streams that are mostly transfer‐limited, particularly at low flow (e.g.,
Solano et al. (2023) and Taillardat et al. (2022)). It is possible that this minor role of flow conditions for driving
changes in k is common in steep, turbulent streams, where gas emission predominantly occurs via bubble
entrapment (Ulseth et al., 2019), but additional data are needed to confirm this hypothesis.

Gas exchange can be caused by a complex interaction of stream characteristics that are difficult to encapsulate in a
simple model based on hydrology and morphology alone. Turbulent streams with multiple flow paths and
confluence points may experience different patterns of surface turbulence (Yuan et al., 2024). Cascades of any
size lead to heterogeneous and irregular bubble entrainment and subsequent gas exchange (Peruzzo et al., 2023).
Additionally, and in the case of Shady Creek, shallow streams can have additional induced surface turbulence
caused by rough streambed surfaces that are not accounted using only velocity, slope, or discharge, as is the case
with these models (Moog & Jirka, 1999). Ulseth et al. (2019) did find k600 increased with higher streambed
roughness, but this metric had weak predictive power on k600. Small, irregular uniformities in the stream bed may
cause micro hotspots of gas emission (Botter et al., 2021) that are too irregular and random for empirical models to
account for.

Models must improve their accuracy at high k values while maintaining their proven effectiveness at lower k
values. A key to this is better understanding and being able to capture inter‐stream variability as well as intra‐
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stream variability. For example, energy dissipation was able to capture differences between sites, but its pre-
dictive power significantly decreased for predicting k at a single site during different flow conditions (Figure 5).
In addition to the need to improve models in a general sense, more discretion on when a specific model is
appropriate is needed. This latter point is critical in constraining global gas flux estimates from streams around the
world due to the large variation in stream characteristics. Global emission estimates that take the advantage of
multiple empirical models for different size streams may reduce biases introduced from a single model that tends
to underestimate high k600 values and overestimate low k600 values (e.g., Liu et al. (2022)). Underestimations by
commonly used models for k in high‐energy headwater streams that are rich in CO2 and CH4 can translate into
high underestimations of GHG emission globally.

4.4. Implications for Upscaling Flux

Our flux estimate results demonstrate how the choice and implementation of an empirical model can significantly
influence conclusions on stream GHG flux to the atmosphere. The largest discrepancies tended to be not between
the simple and detailed implementation of a specific model, but instead related to the choice of empirical model in
the same implementation. These discrepancies between models are likely the results of different training sets and
objectives during model development.

Interestingly, and perhaps surprisingly, implementing these models at a higher spatial resolution (i.e., our detailed
flux estimates) did not significantly improve the flux estimates. This is despite variable slope, velocity and
discharge throughout the study reaches (Table 1, Figure 1 and Figure S1 in Supporting Information S1). Although
this suggests that large upscaling studies which rely on coarse or highly uncertain estimates of water velocity,
discharge, or slope (as is the case in Liu et al. (2022) and Rocher‐Ros et al. (2023)) may in fact be estimating k as
best as they can and improving the resolution of this data may not improve estimates of k significantly, this
observation should be taken with caution given our results are based on a single site.

Although Shady Creek has a heterogeneous morphology at small spatial scale, CO2, slope, and flow rate varied
consistently across a small range of values. In contrast, a stream that is irregularly heterogeneous may see larger
differences in upscaled fluxes calculated using coarse and fine scale data. Although our simple versus detailed
flux estimates were not significantly different, this conclusion may not hold for other stream morphologies (e.g.,
Botter et al. (2021)). Depending on the hydrological and morphological characteristics of a system and the scale at
which a study is focused (e.g., a single reach, regional, or global), the added benefit of implementing an empirical
model at a higher spatial resolution may outweigh the computational costs of doing so.

5. Conclusions
These data showcase inconsistencies between different in situ measurements of k and a general inability of
existing empirical models to capture representative k values with high confidence in high energy stream envi-
ronments. These inconsistencies can lead to significant differences in upscaled gas flux estimates, even over
relatively short distances (<1 km). Steep, high energy systems are either outside the scope of existing methods to
measure or estimate k or have complex drivers that results in large uncertainties in modeled estimates of k. Given
that high values of k can result in high rates of GHG emissions to the atmosphere, future work should aim to
reduce uncertainties in models for k in turbulent streams.

High measured values of k and CO2 in Shady Creek also demonstrate the ability of tropical streams to have large
exports of GHG to the atmosphere. Steep or high energy streams are underrepresented in literature regarding k,
and tropical streams are underrepresented in global GHG data collection efforts. Future work should aim to
constrain k estimates in high energy, headwater streams to better capture high GHG fluxes in tropical headwaters.
A critical component of constraining these estimates is exploring how k can be predicted with high certainty for
the same stream over different flow conditions to better capture temporal variability of GHG fluxes.

Data Availability Statement
Data presented in this study are available on Figshare (Rexroade et al., 2024). Code used to create figures in the
manuscript can be found in Supporting Information S2. All data analysis and visualization was carried out using
RStudio Version 2022.12.0 + 353 (2022.12.0 + 353) using version R version 4.2.2 (2022‐10‐31) (R Core
Team, 2022).
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