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A B S T R A C T

This paper revisits the Environmental Kuznets Curve (EKC) hypothesis through the lens of spatial econometrics
to analyse the relationship between income and emissions of CO, CO2, and CH4 in Swedish municipalities
from 2015 to 2021. The study leverages recent developments in spatial econometric methods to relax the
homogeneity assumption found in earlier EKC models. The analysis identifies an inverted U-shaped relationship
between income and emissions across numerous municipalities: 182 for CO, 128 for CO2, and 158 for CH4
out of 285. The study highlights the importance of spatial econometric models in capturing nuanced income-
emissions relationships and spatial spillover effects, often neglected in non-spatial models. Policy implications
indicate that economic growth alone may not be enough to lower emissions in all municipalities, highlighting
the need for targeted strategies that account for local economic and environmental conditions.
1. Introduction

The relationship between economic growth and environmental qual-
ity remains a central topic in environmental economics. Economic
development is often accompanied by increased environmental degra-
dation due to industrial expansion and increase energy consumption.
However, the Environmental Kuznets Curve (EKC) hypothesis posits
that this relationship follows an inverted U-shape, where environmental
degradation initially rises with income growth but eventually declines
once a certain income threshold is reached (Grossman and Krueger,
1991, 1995; Panayotou, 1993). This hypothesis has far-reaching im-
plications for policymakers seeking to balance economic progress with
environmental sustainability.

Despite its initial plausibility, the EKC remains contentious, par-
ticularly regarding its theoretical underpinnings and empirical robust-
ness (Stern, 2004). Critics argue that the observed decline in envi-
ronmental degradation may not be driven by economic growth alone
but rather by factors such as regulation, technological advancements,
or structural shifts in the economy. Moreover, the EKC framework
may oversimplify complex environmental dynamics, as it assumes
a universal trajectory of environmental improvements with income
growth, a pattern that may not hold consistently across regions or
pollutants (Stern, 2015). Spatial dynamics further complicate this re-
lationship: emissions or pollution in one region may spill over into
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neighbouring areas, creating externalities that standard econometric
models fail to capture.

This paper revisits the EKC hypothesis using municipality-level
data from Sweden and applies advanced spatial econometric models.
Sweden serves as a compelling case study given its leadership in
environmental sustainability and its rich regional data. While previous
EKC studies have predominantly focused on national or cross-country
data, this paper explores the relationship at a disaggregated level to
account for heterogeneity and spatial spillover effects.

The key findings suggest that emissions in a given municipality
are influenced not only by its income levels but also by the emissions
and economic activities in neighbouring municipalities. Furthermore,
evidence of the EKC is observed in some, but not all, municipalities,
raising questions about the general applicability of the hypothesis and
underscoring the importance of localized analysis. By incorporating
spatial dependencies and relaxing the assumption of homogeneity, this
study provides a more nuanced understanding of the income-emissions
relationship.

The contributions of this paper are twofold. First, it extends the
EKC literature by employing a heterogeneous Spatial Durbin Model
(HSDM), which allows for region-specific spillover effects. To the best
of our knowledge, this is the first study in a Nordic country to apply
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Fig. 1. The Environmental Kuznets Curve.
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a heterogeneous spatial panel model to examine the EKC hypothesis.
Second, it moves beyond aggregate-level analysis by using fine-grained

unicipal data.
The remainder of this paper is structured as follows: Section 2

provides a review of the relevant literature, highlighting key debates
and methodological approaches. Section 3 describes the data. Section 4
outlines the spatial econometric methodology. Section 5 presents the
results, and Section 6 concludes with policy implications and avenues
for future research.

2. Theoretical background

2.1. The environmental Kuznets curve hypothesis

The Environmental Kuznets Curve (EKC) hypothesis assumes an in-
verted U-shaped relationship between environmental degradation and
ncome. This implies that environmental degradation initially increases

with rising income until reaching a turning point, after which it begins
o decline as income continues to rise (Stern, 2004). Analogous to

Simon Kuznets’ observation of a bell-shaped curve regarding income
inequality (Kuznets, 1955), the EKC displays a similar pattern for
environmental deterioration (see Fig. 1).

Generally, this hypothesis suggests that economic development,
hile causing short-term environmental harm, ultimately yields long-

erm environmental benefits.
An early explanation for the existence of the EKC was provided

y Panayotou (1993). He suggested that without changes in economic
structure or technology, economic growth would lead to proportional
increases in pollution and other environmental impacts, known as the
scale effect. This traditional view posits that economic development
and environmental quality are conflicting goals. However, EKC propo-
nents argue that at higher development levels, structural shifts towards
information-intensive industries and services, combined with increased
environmental awareness, enforcement of environmental regulations,
technological advancements, and higher environmental expenditures,
lead to a stabilization and gradual decline in environmental degra-
dation (Panayotou, 1993). More recently, environmental regulation
was cited as one of the main drivers of emissions reductions in the
US manufacturing sector (Shapiro and Walker, 2015). Similarly, Hart
(2020) found that future emission predictions depend on government
egulation, as well as on technology costs and societal preferences.
hese studies further support that economic growth affects emissions
hrough different channels.
2 
However, the EKC hypothesis is not without contention. The central
oncept of the turning point raises critical questions about ecologi-
al thresholds and the potential for irreversible environmental dam-
ge (Stern, 2015). Additionally, the EKC may partly reflect the off-
horing of polluting industries to developing countries, complicating
he apparent decline in pollution intensity with income growth (Aldy,

2006). This phenomenon is explored by the Pollution Haven Hypothesis
(PHH), which posits that trade liberalization and foreign direct in-
vestment drive pollution-intensive industries from developed countries
to developing ones with weaker environmental standards (Copeland
and Taylor, 1994). Critics argue that this relocation undermines the
environmental improvements observed in wealthier nations, suggesting
that global pollution is merely redistributed rather than reduced (Cole,
2004).

2.2. Literature review

Building on the seminal work of Shafik and Bandyopadhyay (1992),
Grossman and Krueger (1991, 1995), Selden and Song (1994) early
studies primarily focused on cross-country or national-level analy-
ses (Apergis and Ozturk, 2015; Shahbaz et al., 2015). In the context
of Sweden (Shahbaz et al., 2020) confirmed the EKC hypothesis using
multivariate adaptive regression splines, identifying a turning point
coinciding with the environmental legislation of the 1970s. Simi-
larly, Urban and Nordensvärd (2018) observed evidence of the EKC in
Denmark, Iceland, and Sweden, attributing the decline in emissions to
effective environmental policies and governance. However, such cross-
country analyses face limitations. Leal and Marques (2022) argue that
eterogeneity in national economic structures, policies, and develop-

ment stages, institutional quality, energy consumption patterns, and
environmental preferences limits the validity of aggregated findings.
In response to the limitations of cross-country studies, other studies
have turned to panel data analysis within countries to control for het-
erogeneity and isolate the effects of development on emissions (Aldy,
2006).

Stern (2004, 2015) critically examined the empirical foundations
f the EKC, emphasizing key issues such as measurement errors and

the impact of structural changes, including the outsourcing of polluting
industries. A particularly significant concern in this context is omitted
variable bias, which is highly relevant to EKC research. In many earlier
studies, the failure to account for spatial interactions introduces this
bias. To address this issue, some researchers have turned to spatial
econometric models to investigate the Environmental Kuznets Curve

(EKC).
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However, the results of spatial models are mixed (Donfouet et al.,
2013; Huang, 2018; Jiang et al., 2018; Liu et al., 2018; Liu and Lin,
2019; Ma et al., 2016; Pandit and Laband, 2007; Jessie P. H. Poon and

e, 2006; Tevie et al., 2011; Wang et al., 2013; Hao et al., 2016; Hao
and Liu, 2016; Hosseini and Kaneko, 2013; Zhou and Wang, 2018)

Early spatial models, such as the Spatial Autoregressive (SAR)
odel, were developed by building on the fixed effects (FE) and

andom effects (RE) frameworks commonly used in standard panel data
analysis. The SAR model emerged from extending these frameworks
to account for spatial dependency in the dependent variable (Elhorst,
2014). Similarly, incorporating spatial interaction within the error
erm led to the development of the Spatial Error Model (SEM). These

foundational methods, SAR and SEM, were later employed to estimate
more complete models, including the Spatial Durbin Model (SDM)
and the Spatial Durbin Error Model (SDEM). These models typically
operate under the assumption of homogeneous spillovers. One notable
application is the work of Marbuah and Amuakwa-Mensah (2017), who
applied a (homogeneous) Spatial Durbin Model (SDM) to Swedish panel
data from 2005–2013, finding evidence for the EKC for certain pollu-
tants. Kang et al. (2016) used a Spatial Durbin Model (SDM) to analyse
CO2 emissions in China, revealing an inverted-N shaped relationship,
highlighting the role of spatial spillover effects. Similarly, Hao et al.
(2016) applied an SDM model to examine coal consumption in China,
onfirming an inverted-U shaped EKC and demonstrating the impor-

tance of accounting for spatial correlations among provinces. Wang and
e (2019) employed a Spatial Autoregressive (SAR) model to explore
O2 emissions and trans-provincial trade in China, finding an N-shaped
elationship that challenged the traditional EKC hypothesis. Hao et al.

(2018) extended the analysis by constructing an Environmental Quality
Index (EQI) to capture multiple pollutants, finding evidence of an
N-shaped EKC and emphasizing governance’s role in environmental
quality improvement. Balado-Naves et al. (2018) applied SLX and
DEM models to global data, detecting an inverted U-shaped EKC
or most regions but highlighting that neighbouring energy intensity
mplifies national emissions. Fong et al. (2020) analysed EKC trajec-

tories for Southeast Asia using a suite of spatial econometric models
(SDEM, SLX, and SEM) and found support for the EKC while identifying
spatial spillovers for specific pollutants such as SO2 and PM2.5. These

odels account for spatial interactions in both the dependent and
ndependent variables, representing a notable improvement over stan-

dard non-spatial approaches. However, existing spatial EKC analyses
remain biased due to a key simplifying assumption: the homogeneity
of spillover effects across regions. For instance, this implies that two
regions sharing a common neighbour exert an identical influence on
that neighbour. This presents a limitation, as it fails to capture the
diversity among regions—a gap this paper aims to address.

Despite the advantages of spatial models, it is important to ac-
nowledge the criticisms within the spatial econometric literature.
hile spatial econometric models such as SAR, SDM, and SEM provide

aluable tools for capturing spatial dependencies, their reliance on
rbitrary assumptions about the spatial weight matrix W, unresolved
dentification issues, and overemphasis on fit can limit their utility for
ausal inference (Corrado and Fingleton, 2012; Gibbons and Overman,

2012). Naturally, this criticism extends to the heterogeneous version of
the SDM model that we use in this paper. To minimize these concerns,

e have adhered to the guiding principles regarding weight matrix
specification put forward by Lesage (2014).

This paper builds on the spatial EKC literature while addressing
wo key shortcomings. First, it relaxes the homogeneity assumption
f spillover effects by implementing a heterogeneous Spatial Durbin
odel (HSDM), as proposed by Aquaro et al. (2015), which is specif-

ically designed to account for regional differences. By doing so, this
model generates distinct parameter estimates for each observation,
capturing variations in the nature of interactions among individual
economic agents or regions (Chih and LeSage, 2021). Second, it fo-
cuses on municipality-level data for Sweden, enabling a more gran-
lar analysis of income-emissions dynamics. By incorporating spatial
3 
Table 1
Summary statistics.

Name Description Min Max Mean SD N

Dependent variables
COpc pc CO emissions (tonnes) < 0.01 0.18 0.05 0.03 2030
CO2pc pc CO2 emissions (tonnes) 0.33 192.33 5.16 11.52 2030
CH4pc pc CH4 emissions (tonnes) < 0.01 0.29 0.03 0.03 2030

Independent variables
Inc pc median income (K SEK) 230.60 436.76 291.90 30.49 2030
Popdens Population per sq. km 0.20 6171.00 155.45 565.59 2030

Note: The income variables report the median income of individuals above the age of
20 and is expressed in thousands of Swedish Krona (SEK). The abbreviation pc stands
or per capita. The minimum emission of CO and CH4.

econometric methods and localized data, this study provides new in-
ights into the EKC hypothesis and highlights the importance of spatial

interdependencies in shaping environmental outcomes.

3. Data

Emissions data of CO, CO2 and CH4 is provided by SMED (Svenska
iljö Emissions Data) a collaboration between IVL (Swedish Environ-

mental Institute), Statistics Sweden (Statistics Central Agency), SLU
(Swedish Agricultural University) and SMHI (Swedish Meteorological
and Hydrological Institute). The emissions datasets for each pollutant
at the municipality level are taken from the national emission database
SMHI. Population data and income data were retrieved from the Statis-
tics Sweden database. The total population by municipality is used
to calculate the per capita emissions of each pollutant. Income data
describes the per capita median income of individuals above age 20,
expressed in 2021 Swedish Krona (SEK). The datasets are merged into a
balanced panel dataset comprising 2851 Swedish municipalities for the
time frame 2015 to 2021. To test the EKC hypothesis, we specify the
various models as second-degree polynomials and generate a squared
income term.

3.1. Descriptive statistics

Income and emissions are highly heterogeneous at the Swedish
unicipality level. The three pollutants considered in this analysis,
O, CO2 and CH4, are the three most emitted gases by volume in the
tudy period and makeup over 95% of Swedish emissions,2, although

there are vast differences in emissions volumes between the three
pollutants. Table 1 summarizes key indicators for all relevant variables
in our dataset. The mean per capita CO2 emissions are two orders of
magnitude larger than the mean per capita CO and CH4, highlighting
the substantial differences in scale between the three pollutants.

3.2. Spatial characteristics of income and air pollutants

The spatial analysis of median income distribution (see Fig. 2)
by municipality in Sweden reveals distinct high-income clusters pri-
marily in the north of Lappland (Kiruna and Gällivare), Stockholm,
Gothenburg, and Malmö. These regions, indicated by dark red on the

ap, benefit from industries such as mining, natural resource extrac-
tion, finance, technology, manufacturing, and trade. Stockholm and
Gothenburg, being major economic centres, host headquarters of sig-
nificant Swedish and international companies, driving higher incomes.

almö’s economic integration with Copenhagen also contributes to its
igher income levels. Conversely, rural and peripheral areas, marked

1 Five island municipalities are excluded since we use a contiguity based
patial weights matrix in our main specification.

2 The following pollutants are included in this assessment: CO, CO2, CH4,
NO , PM PM , SO , TSP and N O.
𝑋 10 2.5 𝑋 2 2
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Fig. 2. Spatial distribution of median income.
c

by lighter colours, show lower median incomes due to limited access to
high-paying job markets and a reliance on agriculture and small-scale
industries.

Considering pollutants, the spatial analysis of CO, CO2, and CH4
emissions across Sweden exposes noticeable regional patterns (see
Fig. 3). CO emissions are relatively evenly distributed, with moderate
concentrations observed in both the Northern and Southern parts of the
country. The central regions display lower emissions, which is likely
indicative of less industrial activity.

In contrast, CO2 emissions show relatively high concentrations
throughout Sweden, particularly in the Northeast (Norrbotten and

ästerbotten county) and the urban areas of Stockholm, Gothenburg,
nd Malmö. These high-emission areas likely correspond to heavy in-
ustrial activities, energy production, and high transportation densities.
H4 emissions, however, are less evenly distributed, with notable but
arrow hotspots in central and Southern Sweden. These high emis-
ion municipalities likely indicate significant agricultural activities,
ncluding livestock farming, which is a primary source of methane
missions.

3.3. Spatial dependence

To evaluate the presence of spatial dependence, we adopt the
Moran’s I and Geary’s C statistics. Both tests measure the spatial corre-
ation of emissions in municipalities.3 Given a set of features, they test

whether the pattern expressed is clustered, dispersed, or random.

3 Moran’s I uses standardized spatial covariance whereas Geary’s C uses the
um of squared distances.
 f

4 
Table 2
Global and local spatial autocorrelation test.

Variable Moran’s I statistic

10-nearest neighbours Contiguity

lnCOpc 0.62∗∗∗ (0.00) 0.62∗∗∗ (0.00)
lnCO2pc 0.22∗∗∗ (0.00) 0.39∗∗∗ (0.00)
lnCH4pc 0.46∗∗∗ (0.00) 0.55∗∗∗ (0.00)

Geary’s C statistic

10-nearest neighbours Contiguity

lnCOpc 0.38∗∗∗ (0.00) 0.38∗∗∗ (0.00)
lnCO2pc 0.79∗∗∗ (0.00) 0.60∗∗∗ (0.00)
lnCH4pc 0.53∗∗∗ (0.00) 0.46∗∗∗ (0.00)

Significance levels: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1
Notes: Values in parentheses are p-values. Tests are based on municipalities with a
ommon border (contiguity) and 10-nearest neighbours spatial weight matrices. Moran’s

I and Geary’s C is performed on pooled data for each pollutant.

Table 2 reports the Moran’s I and Geary’s C statistic for two spatial
weight matrices. The resulting coefficients for CO, CO2, and CH4 reveal
large positive spatial autocorrelation for all pollutants. This implies
that the emissions are geographically clustered rather than distributed
randomly. The positive spatial correlation suggests that high emissions
municipality tend to have high emissions neighbouring municipalities.

4. Methodology

4.1. Spatial econometric fundamentals

A spatial econometric model expands upon a linear regression
ramework by including spatial interaction effects, showing how the
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Fig. 3. Spatial pattern of CO, CO2, and CH4.
s
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behaviour or characteristics of one geographic unit influence those
f neighbouring units in a regression model. Three distinct spatial

interaction effects can be identified (Elhorst, 2017). Firstly, the en-
dogenous interaction effect evaluates whether the dependent variable
of unit 𝑖 is influenced by the dependent variables of other units 𝑗
(where 𝑗 ≠ 𝑖) and vice versa. This effect is represented by 𝑊 𝑦𝑡, where
he spatial weights matrix 𝑊 is a positive 𝑁 × 𝑁 matrix defining
he interdependence structure among the sample units. The choice
nd design of this matrix are meaningful and will be discussed later.
econdly, there are exogenous interaction effects, where the dependent
ariable of unit 𝑖 is affected by the explanatory variables of other units
(where 𝑗 ≠ 𝑖). This is denoted by 𝑊 𝑋𝑡. Lastly, an interaction effect

mong the error terms might arise, represented by 𝑊 𝑢𝑡, indicating
hat units may exhibit similar behaviours due to shared unobserved
haracteristics or similar unobserved environments. Including all the
patial interaction effects results in the general spatial static panel
odel (and adding time subscripts 𝑡 = 1,… , 𝑇 ):

𝑦𝑡 = 𝜓 𝑊 𝑦𝑡 +𝑋𝑡𝛽 +𝑊 𝑋𝑡𝜃 + 𝑢𝑡, (1)

𝑢𝑡 = 𝜆𝑊 𝑢𝑡 + 𝜖𝑡

In this model, the three coefficients of the spatial interaction terms
 𝑦𝑡, 𝑊 𝑋𝑡 and 𝑊 𝑢𝑡, are denoted by 𝜓 , 𝜃 and 𝜆 respectively. It is

presumed that 𝜖𝑡 is an independently and identically distributed error
erm across all 𝑡, with zero mean and variance 𝜎2. The coefficients

and 𝜆 are also called spatial autoregressive and autocorrelation
oefficients, respectively.
 r

5 
Model specification (1), however, suffers from identification prob-
lems (Elhorst, 2010). By imposing a restriction on the coefficient vari-
ables 𝜓 , 𝜆 and 𝜃 we are left with several identifiable models4 (see Fig. 4
for a model overview).

The Bayesian uncertainty argument put forward by Parent and
LeSage (2007) and LeSage (2014) suggests that we can simplify model
election by focusing on only two specifications: The Spatial Durbin
odel (SDM), a global spillover specification where 𝜆 = 0, i.e. spatial

autocorrelation coefficient is zero, and the Spatial Durbin Error Model
(SDEM), a local spillover specification with 𝜓 = 0, i.e. the spatial
autoregressive coefficient or endogenous effect of neighbouring 𝑦 is
ero.

4.2. Choice of model

Following the strategy described in LeSage (2009) and Elhorst
(2010) we start with the SDM model and later assess whether it is the
best model for our data. Since the SEM and SAR model are nested in the
SDM model, we test for these two alternative models. The SDM spec-
ification simplifies to a SAR model if the parameter 𝜃 (corresponding
to the effect of the exogenous spatial lag) is zero. On the other hand,
the specification simplifies to a SEM model when 𝜃 is equal to −𝛽 × 𝜌.
An overview of spatial models is provided in Fig. 4 (Halleck Vega and
Elhorst, 2015).

Table 3 reports the Wald test coefficients for the two alternative
models. All coefficients are highly significant, therefore we reject the

4 Restricting all three parameters simultaneously, i.e. setting 𝜓 = 𝜆 = 𝜃 = 0,
esults in a simple linear regression model (OLS)
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Fig. 4. Spatial panel data models (Halleck Vega and Elhorst, 2015).
Table 3
Model Section - Wald test.

𝐻0 ∶ SAR 𝐻0 ∶ SEM

𝜃1 = 𝜃2 = 𝜃3 = 0 𝜃1 = −𝛽1𝜌, 𝜃2 = −𝛽2𝜌, 𝜃3 = −𝛽3𝜌
W = Contiguity based
lnCOpc 34.72∗∗∗ (0.000) 63.15∗∗∗ (0.000)
lnCO2pc 34.82∗∗∗ (0.000) 34.43∗∗∗ (0.000)
lnCH4pc 52.86∗∗∗ (0.000) 51.80∗∗∗ (0.000)

W = 10-nearest NB
lnCOpc 28.67∗∗∗ (0.000) 55.54∗∗∗ (0.000)
lnCO2pc 14.24∗∗∗ (0.003) 11.39∗∗∗ (0.009)
lnCH4pc 64.80∗∗∗ (0.000) 58.14∗∗∗ (0.000)

Notes: Significance levels: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. This table contains the
chi-squared values for a given null-hypothesis and pollutant. The values in parentheses
represent p-values. Significant chi-square coefficients imply a rejection of the model
given under the null hypothesis.

null hypothesis in favour of the SAR model and that in favour of the
SEM model. This suggests that the SDM model is best suited for this
analysis.

The SDM model can be estimated via maximum-likelihood (ML)
(Anselin, 1988), quasi-ML (QML) (Lee, 2004), instrumental variable
and generalized method of moments (IV/GMM) and Bayesian Markov
Chain Monte Carlo (MCMC) methods (LeSage and Chih, 2018). In this
paper, we estimate the SDM model by QML.

4.3. Spatial weights matrix

The spatial weights matrix is an essential element of spatial models.
They capture which municipalities are neighboured by assigning a
number to each pairing of municipalities. Below is a reduced version
of a spatial weights matrix 𝑊 of dimension 𝑁 ×𝑁 where 𝑁 = 285, the
number of Swedish municipalities. Therefore, the rows and columns
represent municipalities, and the matrix is symmetric around its di-
agonal. Here, the six municipalities are Upplands Väsby, Vallentuna,
Österåker, Värmdö and Järfälla and Kiruna (in this order).

𝑊𝑁×𝑁 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0.1 0 0 0.1 … 0
0.1 0 0.1 0 0 … 0
0.1 0.1 0 0.1 0 … 0
0 0 0.1 0 0 … 0
0.1 0 0 0 0 … 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ 0
0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

A non-zero entry means that the municipalities corresponding to the
row and column index of the non-zero element are considered neigh-
bours. For example, the first row has a non-zero element for the fifth
6 
column, implying that Upplands Väsby and Järfälla are neighboured. In
this matrix, we defined as neighbours the 10 nearest municipalities to
a given municipality. All numbers are equal to 0.1 because the rows
are normalized (LeSage and Pace, 2014), such that the sum of the
elements in each row is 1. However, we can also define municipalities
as neighbours based on contiguity, i.e. municipalities with a common
border.

In this paper, we chose to use spatial weights matrices based on
(a.) contiguity for our main results and (b.) the 10-nearest neighbours
for the sensitivity analysis5 for the sensitivity analysis. A contiguity-
based spatial weights matrix is a widely employed specification in
spatial econometrics (Elhorst, 2017). Fig. 5 visualizes the municipality
connectivity based on the those two approaches.

The matrix based on contiguity will be used in our main results
while the matrix based on the 10 nearest neighbours is used for robust-
ness checks. Following Lesage’s principles (2014), both matrix designs
employ sparse connectivity structures.6 The choice of weight matrix
is important because spillover effects occur, by design, only between
spatial units that are considered neighbours. By setting a relatively
strict definition of neighbours, as we did here, we limit the sources
of potential spillovers to fewer municipalities, which is appropriate
when spillovers are local. Allowing more distant municipalities to be
neighboured the model could, for example, allow municipalities in
Lapland (North) to affect emissions in Skåne (South). With respect
to the income-emissions relationship, such global diffusion would be
unlikely. Lesage (2014) argues that spatial spillovers largely occur at a
local level. We assume that this is the case here as is we find difficult
to imagine a pathway for (global) spatial effects across all of Sweden.

In this study, the contiguity-based weight matrix constitutes the
more restrictive of the two matrices that we generate, since the av-
erage municipality has only about 5 neighbours. The matrix based
on the 10-nearest neighbours has exactly ten neighbours for each
municipality.

4.4. Heterogeneous EKC model specifications

To address the shortcomings of the homogeneity assumption in
the standard SDM model, the heterogeneous SDM (HSDM) approach
was adopted. This model includes both spatial lags of the independent
variable (or exogenous spatial lag) and of the dependent variable

5 Marbuah and Amuakwa-Mensah (2017) used this spatial weights matrix
to examine the EKC.

6 A sparse matrix is a matrix where most elements are zero. Non-zero
elements indicate that the corresponding municipalities are neighboured.
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Fig. 5. Spatial weights matrices.
(endogenous spatial lag) and allows spatial spillovers to vary across
municipalities and time. In matrix notation, this model can be written
as follows:

𝑦𝑖𝑡 = 𝛼𝑖 + 𝜓𝑖
𝑁
∑

𝑗=1
𝑤𝑖𝑗𝑦𝑗 𝑡 +

𝐾
∑

𝑘=1
𝛽𝑘𝑖 𝑥

𝑘
𝑖𝑡 +

𝐾
∑

𝑘=1
𝜙𝑘𝑖

𝑁
∑

𝑗=1
𝑤𝑖𝑗𝑥

𝑘
𝑖𝑡 + 𝜖𝑖𝑡 (2)

where 𝑤𝑖𝑗 denotes the spatial weight matrix, 𝑁 the number of mu-
nicipalities, 𝑡 = 1, 2,… , 𝑇 years and 𝑘 = 1, 2 … , 𝐾 the number of
explanatory variables. Substituting in our variables of interest gives the
specification that we estimate:

ln(𝑦𝑖𝑡) = 𝛼𝑖 + 𝜓𝑖
𝑁
∑

𝑗=1
𝑤𝑖𝑗 ln(𝑦𝑗 𝑡) + 𝛽1 ln(inc𝑗 𝑡) + 𝛽2 ln(inc𝑗 𝑡)2 + 𝛽3 ln(popdens𝑗 𝑡)

+ 𝜙1

𝑁
∑

𝑗=1
𝑤𝑖𝑗 ln(inc𝑗 𝑡) + 𝜙2

𝑁
∑

𝑗=1
𝑤𝑖𝑗 ln(inc𝑗 𝑡)2 + 𝜙3

𝑁
∑

𝑗=1
𝑤𝑖𝑗 ln(popdens𝑗 𝑡)

+ 𝜖𝑖𝑡 (3)

The variables 𝑦, 𝑖𝑛𝑐 and 𝑝𝑜𝑝𝑑 𝑒𝑛𝑠 denote emissions per capita (CO, CO2
or CH4), income per capita and population density respectively. The
coefficients 𝛽1, 𝛽2, 𝛽3 are the non-spatial coefficients and measure the
effect of income per capita, income per capita squared and population
density for municipality 𝑖 on the emissions of that same municipal-
ity. The coefficients 𝜙 and 𝜓 are spatial coefficients measuring the
exogenous and endogenous interaction effect between neighbouring
municipalities respectively. To account for the effect of neighbouring
income, for example, we take the product of a spatial weights matrix
element 𝑤𝑖𝑗 and 𝑖𝑛𝑐, where 𝑤𝑖𝑗 is the element at row 𝑖 and column 𝑗 of
the weights matrix. Since the matrix is sparse, non-neighbouring mu-
nicipalities 𝑖 and 𝑗 imply 𝑤 = 0 whereas neighbouring units will have
𝑖𝑗

7 
non-zero matrix elements. As a result ∑𝑁
𝑗=1𝑤𝑖𝑗 𝑙 𝑛(𝑦𝑗 𝑡) and ∑𝑁

𝑗=1𝑤𝑖𝑗 𝑙 𝑛(𝑥𝑗 𝑡)
reflect the spatial lag of the dependent variable and the independent
variables (𝑖𝑛𝑐, 𝑖𝑛𝑐2 and 𝑝𝑜𝑝𝑑 𝑒𝑛𝑠) respectively, of municipality 𝑗 on 𝑖.

Rewriting Eq. (2) by stacking municipalities (this allows to remove
the municipality index 𝑖) give the expression:

𝑦𝑡 = 𝛼 + 𝛹 𝑊 𝑦𝑡 +
𝐾
∑

𝑘=1
𝐵𝑘𝑥𝑘𝑡 +

𝐾
∑

𝑘=1
𝑃 𝑘𝑊 𝑥𝑘𝑡 + 𝜖𝑡 (4)

where 𝛼 = (𝛼1, 𝛼2,… , 𝛼𝑁 )′, 𝛹 = 𝑑 𝑖𝑎𝑔(𝜓), 𝜓 = (𝜓1, 𝜓2,…𝜓𝑁 )′, 𝑊 = 𝑤𝑖𝑗 ,
𝑖, 𝑗 = 1,… , 𝑁 , 𝐵𝑘 = 𝑑 𝑖𝑎𝑔(𝛽𝑘1 , 𝛽𝑘2 ,… 𝛽𝑘𝑁 , )

′, 𝑥𝑘𝑡 = (𝑥𝑘1𝑡, 𝑥𝑘2𝑡,… , 𝑥𝑘𝑁 𝑡)′, 𝑃 𝑘 =
𝑑 𝑖𝑎𝑔(𝜙1, 𝜙2,… , 𝜙𝑁 )′,

𝜖𝑡 = (𝜖1𝑡, 𝜖2𝑡,… , 𝜖𝑁 𝑡)′, 𝜎2 = (𝜎21 , 𝜎22 ,… , 𝜎2𝑁 )′.
Isolating, then factoring out and solving for 𝑦𝑡 gives the data gener-

ating process equation of our estimated HSDM model:

𝑌 = (𝐼𝑁 − 𝛹 𝑊 )−1(𝛼 +
𝐾
∑

𝑘=1
𝐵𝑘𝑥𝑘𝑡 +

𝐾
∑

𝑘=1
𝑃 𝑘𝑊 𝑥𝑘𝑡 + 𝜖𝑡) (5)

We opted not to run a homogeneous SDM model as baseline specifi-
cation for comparison. Even though this model is widely applied in
other studies (Feng et al., 2020; Hao et al., 2018; Kang et al., 2016;
Marbuah and Amuakwa-Mensah, 2017) its underlying homogeneity
assumption constitutes a simplification that does capture the income-
emissions relationship accurately. The HSDM estimates, i.e. our main
results, will be presented and interpreted in the results section.

4.5. Partial effects

To understand how the HSDM model accounts for spatial interac-
tion between municipalities, we consider the partial derivatives of the
reduced form (Eq. (5)). LeSage (2009) propose to call the effect within
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Fig. 6. HSDM model: Spatial autoregressive coefficient.
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a spatial unit, direct effect. In our case the direct effect is the effect
f income of municipality 𝑖 on its own emissions. The indirect effect,
.e. the effect between spatial units, can be divided into two categories.
irst, the spill-out effect is the effect of income of municipality 𝑖 on
missions on neighbouring municipality 𝑗. Second, the spill-in effect is
he effect of income of municipality 𝑗 on emissions of neighbouring mu-
icipality 𝑖. The total effect is the sum of the indirect effect (i.e. spill-in
nd spill-out effect) and the direct effect.

The direct and indirect effects can be computed by calculating the
partial derivatives using the reduced form model (Eq. (5)):
𝜕 𝑦
𝜕 𝑋𝑘′

= (𝐼𝑁 − 𝛹 𝑊 )−1(𝐵𝑘 +𝑊 𝑃 𝑘) (6)

=

⎛

⎜

⎜

⎜

⎜

⎝

𝐼𝑁 −

⎛

⎜

⎜

⎜

⎜

⎝

𝜓1 0 ⋯ 0
0 𝜓2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜓𝑁

⎞

⎟

⎟

⎟

⎟

⎠

𝑊

⎞

⎟

⎟

⎟

⎟

⎠

−1
⎛

⎜

⎜

⎜

⎜

⎝

𝛽𝑘1 0 ⋯ 0
0 𝛽𝑘2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝛽𝑘𝑁

⎞

⎟

⎟

⎟

⎟

⎠

×

⎛

⎜

⎜

⎜

⎜

⎝

𝜙𝑘1 0 ⋯ 0
0 𝜙𝑘2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜙𝑘𝑁

⎞

⎟

⎟

⎟

⎟

⎠

Eq. (6) is a 𝑁 ×𝑁 matrix of partial effects and implies that a change
in the characteristic 𝑘 of a municipality can impact its own emissions,
and possibly the emissions of neighbouring municipalities (LeSage and

hih, 2018). The main diagonals of the matrix denote the own-partial
derivatives (𝜕 𝑦𝑖∕𝜕 𝑋𝑘′

𝑖 ) where each element reflects the income effect
of municipality 𝑖 on its own emissions (direct effect). The off-diagonal
elements are cross-partial derivatives (𝜕 𝑦𝑖∕𝜕 𝑋𝑘′

𝑗 and 𝜕 𝑦𝑗∕𝜕 𝑋𝑘′
𝑖 ) and

represent the spatial lag impact of municipality 𝑗 on municipality 𝑖 (in-
direct, spill-in effect) and vice versa (indirect, spill-out effect) (LeSage
nd Chih, 2018).
8 
5. Results and discussion

5.1. Heterogeneous SDM estimates

This section presents the results of the HSDM model. Table 4
reports the average estimates across all Swedish municipalities. The
ignificance of the endogenous interaction term 𝑊 × 𝑦 corresponding
o the autoregressive effect (𝜓) of pollutants convey valuable informa-
ion. The meaningful autoregressive effect across all three pollutants
ndicates that these pollutants are positively spatially dependent at the
unicipality level. In addition, this finding confirms assessment made

y Fong et al. (2020) and Marbuah and Amuakwa-Mensah (2017), that
non-spatial models are misspecified because they do not account for
spatial interaction. The estimates of the HSDM model differ from the
homogeneous SDM model in that they are municipality-specific instead
of mean group averages. This gain in information allows for a more
nuanced view of the income-emissions dynamics in Sweden.

We follow the approach of LeSage and Chih (2018) for the in-
erpretation of heterogeneous spatial panel data models and present
he model estimates using maps, where the colour of a spatial unit

indicates the strength of a given effect. Fig. 6 shows the heterogeneous
erspective on the autoregressive effect 𝑊 × 𝑦 corresponding to the
arameter 𝜓 (Eq. (3)). Municipalities coloured in blue indicate a posi-

tive coefficient, while red municipalities indicate a negative coefficient.
The figure reveals that effects vary meaningfully across municipalities
and pollutants. The tendency is a moderate to high autoregressive
coefficient, implying that the emissions of a municipality positively
affect neighbouring municipalities’ emissions. More specifically, we
observe that this is the case for CO and in particular for CO2 emis-
sions, where widespread, high-coefficient clusters are visible in the
centre and South of Sweden. Regarding CH4, we see that the emissions
of municipalities are relatively weakly positively influenced by their
neighbours’ emissions. The sign of these coefficients, although derived
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Table 4
HSDM estimation results (W = contiguity based)

Variable Dependent variable

lnCOpc lnCO2pc lnCH4pc

lnIncomepc 0.014∗∗∗ (0.001) 0.048∗∗∗ (0.002) 0.002∗∗ (0.001)
(lnIncomepc)2 −0.013∗∗∗ (0.003) 0.002 (0.007) −0.009 (0.011)
lnPopdens −0.000 (0.001) 0.002 (0.002) −0.001 (0.001)
W×y 0.038∗∗∗ (0.002) 0.128∗∗∗ (0.008) 0.004∗∗∗ (0.001)
W×lnIncomepc 0.014∗∗∗ (0.001) 0.048∗∗∗ (0.002) 0.002∗∗ (0.001)
W×(lnIncomepc)2 −0.012∗∗∗ (0.003) −0.003 (0.007) −0.010 (0.011)
W×lnPopdens 0.000 (0.000) 0.003∗∗ (0.001) −0.000 (0.000)

𝑁 1,995 1,995 1,995
Municipalities 285 285 285

Notes: Significance levels: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. Each specification was
un using a spatial weight matrix based on contiguity (common municipality borders).
alues in parentheses represent standard errors.

from a heterogeneous model, fall in line with homogeneous model
estimations of this effect (Wang and He, 2019; Marbuah and Amuakwa-
Mensah, 2017), where positive coefficients were reported for CO and

O2. However, the lack of heterogeneous panel data studies makes it
mpossible to draw comparisons.

Figs. 7, 8 and 9 describe the partial effects (i.e. the direct and indi-
rect effect) for each municipality and confirm that spatial interaction
ffects vary strongly between municipalities. Following Aquaro et al.

(2021), we report the direct effect and indirect effect and split the latter
into spill-in and spill-out effects.

The figures reveal two things. First, the sensitivity to changes in
haracteristics of neighbouring municipalities varies strongly for one

given pollutant. Second, considering different pollutants affects mean-
ngfully the sign and magnitude of spatial interaction effects between

municipalities. For each individual pollutant, several effect ‘‘islands’’
(e.g. red municipalities surrounded by blue municipalities, Fig. 7) exist.
When considering a different pollutant, most municipalities that stood
out previously now blend in with their neighbours. In general, we
observe that the direct effect dominates both indirect effects for all pol-
lutants, as shown by the difference in magnitude. This result suggests
that the majority of the effect on CO, CO2 and CH4 emissions comes
from within municipalities and only to a relatively small extent from
neighbouring municipalities. However, we highlight the significance
of the effect of neighbouring income on emissions of all pollutants
(see Table A.2). This spatial dependence between municipalities and
ncome can have different sources. Shared economic activities, such as
lusters of manufacturing or agriculture, lead to similar emission pat-
erns. Natural attributes like wind direction and precipitation can also
nfluence the spread of pollutants (Marbuah and Amuakwa-Mensah,

2017). Additionally, extensive transportation networks and strategic
interactions regarding environmental policies likely contribute to syn-
hronized economic activities (Xu and Xu, 2021) and pollution levels.
e view the fact that both exogenous and endogenous spatial interac-

ion effects are statistically significant and meaningful (see Table A.2)
s a confirmation that the HSDM model is well suited for this analysis.

5.2. EKC support

The EKC hypothesis suggests that emissions per capita rise until a
ertain income level is reached and declines from there. This inverted
-shaped curve would result from a positive total effect of income
ariable.7 and a negative total effect of squared income variable8

Fig. 10 visualizes which municipalities match this description. In the
case of CO emissions, several municipalities match this description,

7 This condition ensures that the turning point income level is positive.
8 As explained in Section 4.5, the total effect is the sum of the direct effect

nd the indirect effect.
9 
pointing towards the existence of an inverted-U relationship between
income and emissions. This finding supports the idea that there is an
EKC for a large fraction of Swedish municipalities.

Additionally, we observe considerable overlap between the sets of
municipalities that support the EKC. Fig. 11 shows that 229 munici-
palities support the EKC for at least one pollutant. Of that subset, 159
municipalities support it for two or more pollutants, and 80 municipal-
ities support the EKC for CO, CO2 and CH4. However, unlike previous
findings, a number of municipalities do not confirm the EKC. This gain
in unit specific information demonstrates the benefit of heterogeneous
spillover perspective.

5.3. Sensitivity analysis

To verify the robustness of the HSDM model estimates, we test the
ensitivity of both models to a different specification of the spatial

weights matrix. Following the analysis of Marbuah and Amuakwa-
ensah (2017), we use a spatial weights matrix based on the 10-nearest

neighbours in this sensitivity analysis.
In the previously used spatial weights matrix based on contiguity,

he average municipality was neighboured to 1.79% of all municipali-
ties, while for the weights matrix based on the 10-nearest neighbours,
this number is 3.45%. Effectively, this relaxes the neighbouring criteria
used in our main results and implies that we account for spatial
diffusion in a wider area (see Fig. 5).

Table A.1 displays a significant autoregressive effect (parameter 𝜓)
across all three pollutants indicating that these pollutants are positively
spatially dependent at the municipality level. Furthermore, we observe
that the estimates reported in Figs. A.1, A.2, A.3 and A.4 (see appendix)
are qualitatively akin to the main results. The spatial autoregressive
parameter 𝜓 , which indicates the effect of neighbouring emission, is
still largely positive throughout Sweden for all three pollutants. The
partial effects show similar clusters, although the (indirect) spill-in
nd in particular the (indirect) spill-out effect are marginally lower.

This could be the result of the decreased number of neighbours (as
specified by the spatial weights matrix), which decreases the potential
for spillovers. These findings strengthen the previous assessment that
patial dependence between municipalities is present and meaningful,

further confirming that the income-emissions nexus should be exam-
ined through a spatial econometric lens. Additionally, the heterogeneity
in the spillover effects (made evident thanks to the HSDM model) high-
lights the gain in information that the HSDM model brings compared
to homogeneous spatial panel data models.

The resemblance between partial effects in this specification and
in our main results implies general support of the EKC for nearly the
same municipalities (see Fig. A.5). As before, numerous municipalities
supporting the EKC for CO2 and CH4 emissions also support the EKC
or CO emissions. Fig. A.6 presents this substantial overlap in a Venn-
iagram. In light of qualitatively similar results in all regards, we
eaffirm previous results.

6. Conclusion

This paper investigates the Environmental Kuznets Curve (EKC) hy-
othesis using a spatial econometric approach to analyse the relation-

ship between income and emissions of CO, CO2, and CH4 in Swedish
municipalities. Previous studies estimating environmental Kuznets
curves (EKCs) assume that a country’s per capita emissions are not in-
fluenced by events in neighbouring countries. Furthermore, researchers
who adopted spatial models to account for spatial interaction assumed
homogeneous spatial dependence across units. This paper aims to
address these criticisms by incorporating spatial dependencies and
allowing for heterogeneities across municipalities. The study considers
data spanning from 2015 to 2021, utilizing recent advancements in
spatial econometric techniques (Aquaro et al., 2021).
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Fig. 7. Partial effects - CO (W = Contiguity).
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Fig. 8. Partial effects - CO2 (W = Contiguity).

Energy Economics 143 (2025) 108237 

11 



P. Schneiter and S. Mellon-Bedi

Fig. 9. Partial effects - CH4 (W = Contiguity).
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Fig. 10. EKC presence by municipality.
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Fig. 11. Overlap of EKC supporting municipalities (W = Contiguity).

The analysis yields two key findings regarding the income-emissions
dynamics across Swedish municipalities. First, the emissions of one
municipalities are significantly affected by the emissions of neighbour-
ing municipalities, underscoring the importance of including spatial
dependencies in the model. Second, the EKC hypothesis does not hold
across all multiplicities in Sweden, although we observe the inverted

-shape relationship across the majority of multiplicities. Specifically,
e observed an inverted U-shaped relationship between income and
missions in 182 municipalities for CO emissions, 128 municipalities
or CO2 emissions, and 158 municipalities for CH4 emissions out of
85. Notably, 80 municipalities display the EKC pattern for all three

pollutants, suggesting a notable overlap and providing some support
for the presence of the EKC in certain regions of Sweden.

Moreover, these findings highlight the added nuance brought by
mploying a heterogeneous spatial panel, offering deeper insights into
he income-emissions relationship.
13 
From a policy perspective, our findings carry potential implications.
rimarily, the presence of the EKC in some Swedish municipalities
ndicates that economic growth does not necessarily result in emissions
eductions across all areas. Additionally, the variability in the EKC’s
pplicability across pollutants and regions suggests that a uniform
olicy approach may be less effective. Policies that consider local
conomic conditions, industrial activities, and spatial dynamics could
e important for supporting better environmental outcomes.

Future research should explore the role of other factors, such as
technological innovation, regulatory frameworks, social behaviours
in shaping the income-emissions nexus. The omission of structural
changes in our model raises the possibility that economic growth
displaces polluting activities to countries with lower per capita GDP
nd weaker environmental regulations, rather than improving environ-
ental quality (Copeland and Taylor, 1994).
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Fig. A.1. HSDM model: Spatial autoregressive coefficient.
Table A.1
HSDM estimation results (W = 10-nearest NB)

Variable Dependent variable

lnCOpc lnCO2pc lnCH4pc

lnIncomepc 0.013∗∗∗ (0.001) 0.054∗∗∗ (0.003) 0.009∗∗∗ (0.001)
(lnIncomepc)2 −0.008∗∗∗ (0.003) −0.000 (0.009) −0.009* (0.005)
lnPopdens −0.000 (0.001) 0.002 (0.002) −0.002** (0.001)
W×y 0.042∗∗∗ (.002) 0.161∗∗∗ (0.008) 0.015∗∗∗ (0.003)
W×lnIncomepc 0.013∗∗∗ (0.001) 0.054∗∗∗ (0.003) 0.009∗∗∗ (0.001)
W×(lnIncomepc)2 −0.017∗∗∗ (0.003) −0.002 (0.008) −0.019∗∗∗ (0.005)
W×lnPopdens 0.001∗∗∗ (0.000) 0.005∗∗∗ (0.001) 0.000 (0.000)

𝑁 1,995 1,995 1,995
Municipalities 285 285 285

Significance levels: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. Each specification was run
using a spatial weight matrix based on the 10-nearest neighbours. Values in parentheses
represent standard errors.
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Table A.2
HSDM Estimation Results (W = Inverse distance based)

Variable Dependent Variable

lnCOpc lnCO2pc lnCH4pc

lnIncomepc 0.016∗∗∗ (0.001) 0.065∗∗∗ (0.003) 0.009∗∗∗ (0.001)
(lnIncomepc)2 −0.008∗∗ (0.004) −0.005 (0.010) −0.010∗∗ (0.004)
lnPopdens −0.001 (0.001) 0.001 (0.003) −0.003∗∗ (0.001)
W×y 0.060∗∗∗ (0.003) 0.197∗∗∗ (0.009) 0.018∗∗∗ (0.002)
W×lnIncomepc 0.016∗∗∗ (0.001) 0.065∗∗∗ (0.003) 0.008∗∗∗ (0.001)
W×(lnIncomepc)2 −0.018∗∗∗ (0.003) 0.000 (0.010) −0.018∗∗∗ (0.004)
W×lnPopdens 0.001∗∗∗ (0.000) 0.005∗∗∗ (0.000) 0.000 (0.000)

𝑁 2,030 2,030 2,030
Number of groups 290 290 290

Notes: Significance levels: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. Each specification was
run using a spatial weight matrix based on inverse distance between municipalities.
Values in parentheses represent standard errors.
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Fig. A.2. Partial effects - CO (W = 10-nearest NB).
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Fig. A.3. Partial effects - CO2 (W = 10-nearest NB).
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Fig. A.4. Partial effects - CH4 (W = 10-nearest NB).
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Fig. A.5. EKC presence by municipality.
Fig. A.6. Overlap of EKC supporting municipalities (W = 10-nearest NB).
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