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Machine learning algorithms translate big data
into predictive breeding accuracy
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Highlights
The genomic prediction (GP) approach
that uses genotypic and phenotypic
data to predict the genomic estimated
breeding value (GEBV) of individuals
has been widely adopted by both
public and private breeding organiza-
tions. GP models can predict the perfor-
mance of plant germplasm in different
environments by correctly modeling
genotype × environment interactions
(G×E) across multiple traits.

Machine learning (ML) algorithms can
help breeders to determine the most
effective parental selection, mating
Statistical machine learning (ML) extracts patterns from extensive genomic, phe-
notypic, and environmental data. ML algorithms automatically identify relevant
features and use cross-validation to ensure robustmodels and improve prediction
reliability in new lines. Furthermore, ML analyses of genotype-by-environment
(G×E) interactions can offer insights into the genetic factors that affect perfor-
mance in specific environments. By leveraging historical breeding data, ML
streamlines strategies and automates analyses to reveal genomic patterns. In
this review we examine the transformative impact of big data, including multi-
trait genomics, phenomics, and environmental covariables, on genomic-enabled
prediction in plant breeding. We discuss how big data and ML are revolutionizing
the field by enhancing prediction accuracy, deepening our understanding of G×E
interactions, and optimizing breeding strategies through the analysis of extensive
and diverse datasets.
designs, population sizes, and selection
intensities to maximize selection gain at
a given budget while minimizing the loss
of genetic diversity.

Neural networks (NNs) have great po-
tential in improving the accuracy of
GP models in the context of 'big data'.
These algorithms can identify complex
patterns and relationships between
genotypes and phenotypes, leading to
more precise predictions of important
plant traits.
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The impact of data-driven strategies and ML techniques
Valuation and selection processes are crucial in plant breeding for identifying desirable traits such
as disease resistance, drought and heat tolerance, and high grain yield. Testing these selected
cultivars across different environments through multi-environment trials (METs; see Glossary)
assists in understanding their performance and stability.

Accurate and early predictions have a pivotal role in plant breeding [1]. With advances in statistical
modeling and data analysis, breeders can now predict the performance of breeding lines or cul-
tivars with greater precision. This allows more informed and accurate decisions and also reduces
the time and resources required for developing superior cultivars. Early predictions assist
breeders in focusing on the most promising genotypes, thereby accelerating the breeding
cycle and enhancing the efficiency of the breeding process. Nevertheless, data collected from
METs are intrinsically complex owing to structural patterns, nonstructural noise, and relationships
among genotypes, environments, and genotypes and environments considered jointly, namely
genotype × environment (G×E) interactions [1]. Pattern implies that cultivars respond to spe-
cific environments (location, years, location–year combinations) in a systematic and interpretable
manner, whereas noise suggests that the responses are unpredictable and uninterpretable.

Genomic markers have revolutionized plant breeding by enabling precise selection of desirable
traits at the DNA level. This accelerates the breeding process, increases accuracy in predicting
plant performance, reduces costs, and enhances the development of pest/stress-resistant and
high-yield cultivars, thus making plant breeding faster, more efficient, and more effective [2].
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Genomic prediction (GP) estimates the genetic value of an individual for a trait from its genomic
data and has changed practices in plant and animal breeding since the landmark publications of
Bernardo et al. [3] for maize hybrid prediction and Meuwissen et al. [4]. When used for selection
(i.e., genomic selection, GS), it can accelerate the genetic gains of breeding programs by in-
creasing selection precision, by reducing costs of experimental validation of selection candidates,
or by reducing the time needed to make selection decisions. The latter aspect has the highest
potential for accelerating breeding by identifying promising individuals at early stages for further
crossing (in a shorter timeframe), thus increasing genetic gains per unit of time. GS has been
quickly adopted in dairy cattle breeding where the practice of working with estimated breeding
values (EBVs) had already become routine, especially through the work of Henderson [5] and
Quaas [6]. After discussions on how GS could be transferred from animal to plant breeding pro-
grams [7], GS has been tested for many crops such as cassava, chickpea, maize, rice, and wheat
[8–11]. Today it is widely adopted in different ways across public and private sector plant breed-
ing organizations [9,12,13]. The concept of separating 'population improvement' activities from
'product development' [14] can be interpreted as a structural adaptation of plant breeding pro-
grams to make the best use of GS.

Like all statistical learning methods, GP requires training data as a standard that comprise at
least genotypic and phenotypic information of individuals in a training population (TRN) on
which a statistical model is trained. The model being trained means that the values of unspecified
parameters are determined to fit the training data in the best way while respecting potential
secondary conditions. The trained model can then be used for the prediction of genetic values
of (un)observed individuals in a test population (TST). The standard reference method is the
genomic best linear unbiased prediction (GBLUP), which is a linear mixed model (LMM) that
uses genomic marker data to derive a genomic relationship matrix that is plugged into the
mixed model equations [15]. The linear model approach has been expanded to the use of differ-
ent prior distributions in the Bayesian paradigm [16,17], different types of regularization [18], or
different types of relationship matrices that may be motivated by statistical techniques, such as
reproducing kernel Hilbert space (RKHS) [19,20] or by biological mechanisms such as epistasis
[21,22]. Recently, other non-linear methods such as random forests [23,24], support vector
machines [25], and artificial neural network (NN) models have been used for GP [26–28]

Prediction performance is highly influenced by several factors, including the tuning procedure for
optimizing the TRN design, marker data quality, heritability, genetic architecture of the trait, and
the relationship (or mismatch) between the TRN and the TST sets [29–31]. The statistical ML
model attempts to capture the association between patterns in the genomic markers and the
phenotypes of the individuals. Once the model is trained, the prediction of the genetic potential
of an individual is based solely on its genomic data. However, trait-assisted GS could also be
very useful when secondary traits with genomic information are used for improving the prediction
of focal (primary) traits. In addition to exploiting parental relationships (by markers or pedigree) for
improving the prediction of unobserved cultivars, high-throughput phenotyping (HTP) and
phenomics through image analyses, as well as the inclusion of environmental covariables (EVs)
(Figure 1) for studying G×E, are valuable tools for integrating additional information and increasing
prediction accuracy [32]. Provided that the prediction is sufficiently accurate, selection decisions
can bemade earlier in a breeding program, and the time needed for a breeding cycle consisting of
crossing, evaluation, and selection of parents for new crosses can be reduced.

An important example of a novel approach is 'phenomic (HTP) prediction' [33,34] which uses
low-cost and high-throughput methods for non-target traits to predict relevant characteristics
of selection candidates. GP is based on the genetic information that an organism bears and
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Figure 1. Components of modern plant breeding include not only phenotypic data collected from observed
field cultivar trials but also genomic (molecular markers), phenomic (images from drones, airplanes,
satellites), and enviromic (temperature, sun radiation, precipitation, soil humidity) data.
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Glossary
Arc-cosine kernel (AK): a
mathematical function used in ML,
particularly for measuring the similarity
between datapoints in high-dimensional
spaces.
Bayesian multi-output regressor
stacking (BMORS): combines
predictions from multiple regression
models using a Bayesian approach to
provide a robust and probabilistic
framework for handling uncertainties in
multi-output scenarios.
Coefficient of parentage (CoP):
measures the genetic relationship
between two individuals in a pedigree,
indicating the proportion of genes they
share due to common ancestors.
Convolutional neural networks
(CNNs): designed for processing
structured grid data and images. Utilizes
convolutional layers to learn hierarchical
features automatically and adaptively
from the input, thus being highly effective
for image recognition and computer
vision tasks.
Crop growth models (CGMs):
mathematical representations used to
simulate and predict the growth and
development of crops over time by
incorporating environmental factors and
management practices.
Estimated breeding value (EBV):
predicts the genetic contribution one
individual will pass on to its offspring. It is
calculated based on the performance
both of the individual and of its relatives,
and often considers environmental
factors. The idea is to separate the
genetic component from the
environmental effects.
Fivefold cross validation (5FCV): a
common technique in ML for model
assessment. The dataset is randomly
partitioned into five subsets, and the
model is trained and evaluated five
times, each time using a different subset
as the testing set and the remaining
subset as the training set. 5FCV helps to
assess the performance and
generalization of a model across
different data subsets.
Gaussian kernel (GK): a mathematical
function used in ML for transforming
data and capturing complex
relationships, especially in non-linear
tasks.
Generalized Poisson regression
(GRP): allows overdispersion, thus
accommodating situations where the
variance exceeds the mean. It uses a
broader class of distributions, such as
can pass on to its offspring; in other words, GP is centered on the genetic potential of future
generations whereas phenomic prediction focuses on the observable traits of the organism at
a specific point in time, and thus provides insights into the present phenotypic state.

With 'big data', more complex statistical ML models such as NNs are gaining importance.
Functional annotation of genetic variants uses ML for learning complex patterns from genomic
data and predicting the potential functional consequences of genetic variants [35]. Deep learning
NN architectures such as convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) have been used to analyze genomic sequences, regulatory elements, and
epigenetic features, thereby aiding in the identification of functional variants [36,37]. ML models
have played a significant role in predicting gene expression levels based on genomic features
[38]. We provide here a comprehensive review of the latest developments in ML for GP in plant
breeding, and highlight key approaches, challenges, and future directions.

Bases for modern plant breeding
With the advent of cheaper and more accurate genotyping and phenotyping techniques, as well
as the ability to collect multi-omic data and large-scale environmental information, the integration
Trends in Plant Science, February 2025, Vol. 30, No. 2 169
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the negative binomial distribution, to
better capture variability in count data.
Genomic estimated breeding value
(GEBV): incorporates genomic
information, such as DNA markers or
genetic data, into the estimation of the
breeding value of an individual. Genomic
data provide a more direct assessment
of the genetic makeup of an individual.
Genomic prediction (GP): estimates
the genetic value of a cultivar without
observing its phenotypic performance in
the field.
of cutting-edge technologies has given rise to the concept of 'the modern plant breeding triangle'
[32]. This represents the synergistic combination of genomics, phenomics, and enviromics
(Figure 2) in data analytics and predictive breeding. The power of genomic data, that allow explo-
ration of genetic variation, is seamlessly combined with phenomic data (HTP) to capture complex
trait information on a large scale. In addition, environmental data, encompassing diverse climatic
and agronomic factors, contribute crucial contextual insights.

Applying genomic selection in crop breeding
Machine learning (ML) can be applied at various stages of a breeding program of a self- or
cross-pollinated crop, but its impact is particularly significant in the early generations of breeding
TrendsTrends inin PlantPlant ScienceScience

Figure 2. Summary of modern plant breeding study by interrelating genomics, phenomics, and enviromics
Machine learning (ML) statistical models and methods as well as deep learning models offer scientific solutions for efficien
interrelations of these three components that can increase the prediction accuracy for cultivars that were not observed
Phenomics may include images from drones, airplanes, and satellites. Satellite images can come from optical sensors o
radar sensors. Radar sensors use radio waves to create images that are known as radar or synthetic aperture radar (SAR
images. Radar can penetrate clouds and can be used day or night.
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Genomic selection (GS): selects
individuals that were not observed but
rather predicted.
Genotype × environment (G×E)
interaction: the differential response of
individuals when observing them in
diverse environmental conditions.
High-throughput phenotyping
(HTP): involves rapidly and
systematically measuring and analyzing
phenotypic traits in large-scale, often
automated, ways.
Item-based collaborative filter
(IBCF): a recommendation system
technique based on previous positive
interactions/relationships.
Leave one environment out cross-
validation (LOEO): a technique in
which each datapoint is tested against a
model trained on all other environments,
thereby ensuring robust performance
evaluation across diverse settings.
Linear mixed model (LMM):
combines fixed effects, representing
systematic influences, with random
effects to account for variability in data.
LMM is used in statistics for complex,
correlated data analysis.
Machine learning (ML): statistical
models or methods that are used to
make (genomic) predictions of
unobserved cultivars.
Matrix factorization (MF): an ML
technique that decomposes a matrix
into the product of two ormorematrices,
revealing latent factors and patterns
within the data.
Mega LMM: Bayesian latent factor-
based LMM that integrates latent factors
into a Bayesian framework for improved
data modeling and analysis, particularly
in the context of mixed-effects models.
Multi-environment trials (METs):
field evaluation trials where cultivars are
sown in different environments.
Multi-trait multi-environment
(MTME) data: these involve studying
multiple traits across various
environments, thus providing a
.
t
.
r
)

move_f0010
Image of &INS id=


Trends in Plant Science
OPEN ACCESS

comprehensive analysis of genetic
performance under diverse conditions.
Multi-trait partial least squares
(MT-PLS): extends the PLS method to
simultaneously analyze and model
relationships between multiple sets of
variables or traits. It is used for handling
multivariate data and capturing complex
interdependencies.
Neural networks (NNs):
computational models inspired by the
brain for processing data, enabling ML
and pattern recognition in diverse
applications.
Partial least squares (PLS): a
statistical method for modeling
relationships between independent and
dependent variables, especially in
situations with high dimensionality and
collinearity. PLS finds latent factors that
explain the variance in both the predictor
and response variables.
Recurrent neural network (RNN): a
type of neural network designed for
sequential data, allowing information
persistence for tasks such as language
modeling and time-series analysis.
when crosses are made (F1) and segregating populations (F2, F3, F4) are observed in a self-polli-
nated crop and the best cultivars are selected. A leading example of cutting-edge multi-omic se-
lection in plant breeding, utilizing ML approaches, can be found in the bread wheat breeding
program of the International Maize and Wheat Improvement Center (CIMMYT) (Figure 3).

At the beginning of the breeding cycle, the best parents and the best crosses are selected using
different genomic-based approaches. The Bayesian decision theory applied via a multi-trait
approach including the combined use of a GS index, as well as genetic diversity-related informa-
tion, are currently used in the parental selection step [39,40]. The best crosses are then predicted
using a simulation algorithm that incorporates both genome-wide markers and phenotypic
records of the candidate parents [41]. Given that genotyping at the F2 generation is cost-
prohibitive, ML can be effectively applied at early stages in the breeding program. At the F3
generation, initial phenotype screening assists in identifying promising individuals that should
be selected, and a subset of selected individuals can be gathered. At the F4 generation, family
selection using pedigree (coefficient of parentage, matrix A) together with HTP for selecting
lines within a family should assist breeders in achieving a rapid cycle advance. Genotyping is per-
formed at F5, and genomic selection is implemented for predicting the performance of new unob-
served lines. In this generation, genomic estimated breeding values (GEBVs) are used to
discard the worst lines. Note that the rapid cycle GP could include selecting parents from F4
and/or F5 to go directly for crossing. To manage costs, phenotypic screening can be prioritized
in the early generations (F2 and F3), with more extensive genotyping and ML applications
TrendsTrends inin PlantPlant ScienceScience

Figure 3. The sequence of potential events in a rapid-cycle genomic selection breeding program for a self-
pollinated crop (wheat). Superior cultivars selected in the F4 generation can be transferred for crossing and cross-
prediction or advanced to the F5 generation. In the F5 generation, cultivars are genotyped, and the best performers
are either moved directly to crossing or advanced to field trials. Abbreviations: CoP, coefficient of parentage; HTP, high-
throughput phenotyping.
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Target population of environments
(TPE): sets of environments with
particular climatic and environmental
similarities.
Testing population (TST): the
unobserved population to be predicted.
Training population (TRN): the
observed population to be used as
predictor of the individuals in the TST.
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beginning in the F4 or F5 generation. This approach balances the costs and benefits of advanced
data analysis.

Note that Figure 3 shows that shortening the cycle consists of (i) advancing lines quickly from
F1 to F2 (obtained from each F1) and rapidly deriving segregating populations, F3, F4, or F5. (ii)
Early sparse testing is then performed on lines at locations from the target population of en-
vironments (TPE) (Box 1) (sparse-tested lines consist of not planting all lines in all locations of
the TPE and genomically predict those cultivars that were not observed in some locations). (iii)
The selected parents may then be recycled based on GEBVs (genomic selection in wheat
breeding is discussed in Box 2).

Genomic selection (GS) in wheat breeding shows promise for predicting genotypic values, con-
sidering both additive and non-additive effects. Although simulations highlight the efficiency of
rapid-cycling GS for parental selection, its practical application in wheat and other crops is still
limited (Box 2).

Linking genomics and phenomics
Interconnection in modern plant breeding implies the modernization of the statistical and quanti-
tative genetic models for the analysis of plant breeding outcomes in METs. This has become
clearer as the availability of genomics, phenomics, and environments information has increased
[32]. Genetic gain refers to the improvement of desired traits through the selection and breeding
of superior genotypes. Linking massive genomic and phenomic datasets can achieve further
genetic gains but it has complexities that require a type of ML that deals with a very large number
of correlated predictors (images) that might be introduced as covariables in the MLmodel.Multi-
trait multi-environment (MTME) data take advantage of correlations between different traits
evaluated across diverse environments to train accurate GS models. The use of GS in MTME
data is a promising approach to reduce field phenotyping efforts.

Linking genomic and phenomic (e.g., HTP) data involves integrating genetic information with phe-
notypic traits to understand the genotype–phenotype relationship. Genomic data provide infor-
mation about the genetic makeup of an individual, whereas phenomic data encompass
observable traits or characteristics. By linking these two types of data, researchers can identify
genetic markers that are associated with specific phenotypic traits and gain insights into the un-
derlying biology. However, with the use of GS based onwhole-genomemarker data it is no longer
necessary to precisely characterize the underlying genetic architecture of traits, particularly the
Box 1. Genomic sparse-testing approach

Sparse-testing methods have been proposed by researchers to improve the efficiency of GS in breeding programs.
Montesinos et al. [83] evaluated four genomic sparse-testing methods for testing allocation of lines to environments under
multi-environmental trials (METs) for genomic prediction (GP) of unobserved lines. The sparse-testing methods described
in this study build the genomic training and testing sets in a strategy that allows each location or environment to evaluate
only a subset of all genotypes rather than all of them. Several interesting findings were reported by the authors.

(i) The multi-trait model produced better GP accuracy than the single-trait model. Even under a scenario where we used
a training–testing proportion of 15–85%, the prediction accuracy of the four methods barely decreased. This indicates
that genomic sparse-testing methods for datasets under these scenarios can save considerable operational and
financial resources with only a small loss in precision, which can be shown in our cost–benefit analysis.

(ii) Under the cost–benefit analysis, we observed the savings that breeders can obtain by using a genomic sparse-testing
approach. For example, in a sparse-testing design with a training–testing scenario of 85–15%, under a fixed budget,
breeders can increase the number of lines under evaluation by at least 17%. Under a sparse-testing scenario of
50–50% for training versus testing, the same fixed budget increased the lines under evaluation by at least 101%.
Certainly, the larger the percentage of testing regarding the percentage of training, the larger the benefits of the
sparse-testing method.
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Box 2. Response to genomic selection for grain yield (GY) in CIMMYT spring bread wheat

Bonnett et al. [84] investigated increasing genetic gain for improving GY by using early-generation genomic selection. Part
of this experiment compared the predictive ability of the different GEBV calculation methods in the F2 generation by using a
set of single plant-derived F2:4 lines from randomly selected F2 plants. GY results showed a significant positive correlation
between observed yield of F2:4 lines and predicted yield GEBVs of F2 single plants fromGaussian kernel (predictive ability of
0.248, P = <0.001) and GBLUP (0.195, P = <0.01). Results demonstrate the potential for application of genomic selection
in early generations of wheat breeding and the importance of using the appropriate statistical model for GEBV calculation,
which may not be the same as the best model for inbreds.

Rapid-cycle recurrent genomic selection (GS) in CIMMYT spring bread wheat

GS in wheat breeding programs holds significant promise for predicting the genotypic values of individuals, where both
additive and non-additive effects influence the final breeding value of lines. Although several simulations have underscored
the efficiency of a rapid-cycling GS strategy for parental selection or population improvement, their practical application
remains limited in wheat and other crops. In their study, Dreisigacker et al. [85] illustrated the potential of rapid-cycle recur-
rent GS (RCRGS) to enhance genetic gain for improved GY in wheat. Results consistently demonstrated realized genetic
gains for GY after three cycles of recombination (C1, C2, and C3) of biparental F1s, when aggregated across 2 years of
phenotyping. Over the combined evaluation years, genetic gain through RCRGS reached 12% from cycle C0 to C3, with a
realized gain of 0.28metric tons per hectare per cycle, elevating GY fromC0 (6.88metric tons per hectare) to C3 (7.73metric
tons per hectare). RCRGS also correlated with specific changes in essential agronomic traits (days to heading, days to
maturity, and plant height) that were measured but not specifically selected for. To address these changes, we recommend
implementing GS in conjunction with multi-trait prediction models.

Trends in Plant Science
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complex agronomic and physiological characteristics under selection. Using genomic data it is
possible to make predictions based on the additive or total genetic effects of many markers
underlying complex traits. In addition, the integration of image data in the early stages of a breed-
ing process when large segregating populations are already in the field can provide a similar res-
olution and definition of the complexity of the desired related sib phenotypes, such as plant
morphology or disease symptoms, and this can further enhance genomic parental prediction.

Genomics with phenomics refers to the integration of wide-genomicmarkers and HTP data to im-
prove prediction accuracy and gain a comprehensive understanding of the genotype–phenotype
relationship. Instead of viewing them as separate entities, combining genomic and phenomic
data allows a more holistic approach to understanding complex traits. It is not a matter of geno-
mics versus phenomics but rather of leveraging and optimizing the use of both types of data to
obtain a more complete picture and improve the predictive ability of the models. Genomics relies
on HTP in plant breeding for several important reasons that are briefly described. HTP enables the
rapid and accurate measurement of various plant traits on a larger scale than is possible using tra-
ditional manual approaches. This includes traits related to grain yield, disease resistance, drought
tolerance, nutritional content, and other agronomically important characteristics. By quantifying
these traits in a high-throughput manner, researchers can generate comprehensive phenotypic
datasets that provide valuable information for understanding the genetic basis of traits and iden-
tifying desirable traits for breeding purposes. It can also use component or correlated traits for the
purpose of predicting more complex phenotypes.

The goal of genomics in plant breeding is to understand how genetic variations influence pheno-
typic traits that are relevant to achieving breeding objectives (e.g., agronomic performance, yield,
and product quality). HTP allows simultaneous evaluation of many genotypes, thereby enabling
the identification of associations between specific genetic markers or variations and phenotypic
traits. By combining genotyping data with HTP data, researchers can uncover the underlying ge-
netic architecture of traits and identify marker–trait associations, which can inform breeding strat-
egies and facilitate the selection of desirable genotypes. A recent study [42] showed the power of
high-density phenomic information in predicting complex traits (including yield) in elite wheat
breeding material. Because this only predicts phenotypes, it will only be reflected in an increasing
Trends in Plant Science, February 2025, Vol. 30, No. 2 173
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rate of genetic gains if combined with genomic-enabled prediction of genetic values (or additive
genetic values). Furthermore, HTP provides breeders with the necessary tools to evaluate
many plants or individuals efficiently. This allows the identification of individuals with desirable
phenotypic traits such as high yield, disease resistance, or improved quality. By integrating
HTP with genomic data, breeders can select genotypes based on both their genetic profiles
and their phenotypic performance. This integrated approach of genomics and phenomics allows
measurement of more plants, increased selection intensity, improves the efficiency of the breed-
ing program, and thus accelerates the development of improved cultivars.

HTP allows rapid evaluation of large breeding populations or gene bank accessions, thus
significantly reducing the time required for breeding cycles. Most phenotyping methods are
often time-consuming, labor-intensive, and limited in their capacity to handle large numbers
of individuals. HTP technologies such as automated imaging, sensor-based measurements,
and robotics enable the efficient collection of phenotypic data from thousands of plants in a
short time.

In summary, HTP is essential at the early stages of population improvement because (i) it
enhances the identification of different individuals within a family that cannot be identified by the
only use of the A matrix, and (ii) trait quantification facilitates the association between genotypes
and phenotypes, enhances selection and breeding strategies, enables estimation of genetic gain,
and accelerates breeding cycles. By combining genomics with HTP, plant breeders can make
more informed decisions and achieve faster progress in developing improved cultivars with
desired traits.

A novel statistical ML approach that combines functional regression for modeling the HTP images
and genomic information or coefficient of parentage (CoP) (matrix A) to enhance GP in plants
has been developed, and has potential to improve the breeding strategy and enhance crop pro-
ductivity [43,44]. The authors use the conventional GBLUP ML model for GP but include the
interaction between the HTP images and environments. This approach aims to improve the
accuracy of predicting complex traits in plants by incorporating genomics and phenomics. This
integration allows more comprehensive understanding of how genetic and environmental factors
interact to influence plant traits. The proposed model considers both marker-by-marker and
marker-by-environment interactions, and it uses genomic information from multiple markers si-
multaneously. The authors demonstrate the effectiveness of their approach through extensive
real-world plant genomic data. A previous article indicated that using all bands (wavelengths)
from HTP data produced better prediction accuracy than using vegetation indices [45].

Jointly modeling all bands and yields improved genetic value prediction accuracy when using
MegaLMM [46], which is a Bayesian latent factor-based LMM approach for partitioning pheno-
typic correlations into genetic and environment components, thereby fully capturing the shared
genetic information from HTP data and yield. Modeling non-linear genotype–phenotype functions
by using RKHS improved the prediction of grain-yield genetic values from genotype plus HTP
[46]. Breeders traditionally evaluate the performance of different cultivars by measuring traits
related to yield, such as plant height, leaf area, and flowering time. However, this process can
be time-consuming and resource-intensive, especially when large populations need to be
evaluated. Aerial HTP offers a solution by using remote sensing techniques, such as drones or
satellites, to capture high-resolution images of crops from above. These images can provide
valuable information about plant health, growth patterns, and other phenotypic characteristics.
Advanced image analysis algorithms are then applied to extract quantitative data from the
images, thereby enabling the identification of key traits associated with grain yield.
174 Trends in Plant Science, February 2025, Vol. 30, No. 2
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Krause et al. [47] indicated that plant breeders can assess many individual plants or plots quickly
and non-destructively, even when seed availability is limited. This enables them to make early
selections based on predicted grain-yield potential, thereby accelerating the breeding process.
The indirect selection approach reduces the time and resources required for field-based evalua-
tions and enables breeders to prioritize promising genotypes for further development. Interest-
ingly, Montesinos-Lopez et al. [48] evaluated the GP of the item-based collaborative filtering
approach for predicting cultivars using MTME modeling. This approach proved to be the best
strategy for cross-nursery (small plot) predictions.

In plant breeding, phenotypic values are very noisy, and newmodels must be able to integrate not
only genotypic and environmental data but also HTP collected by breeders with advanced image
technology [49]. These can be explored using generalized Poisson regression (GPR) for
genome-enabled prediction of count phenotypes using genomic and HTP data. The GP model
GPR allows the integration of input information frommany sources including environments, geno-
mic data, high-resolution data, and interaction terms between these three sources. The authors
found that the best prediction performance ML was obtained when all information was consid-
ered in the predictor.

Integrating HTP and genomic information into prediction models significantly enhances the pre-
diction performance of genomic plus phenotypic values compared to using only genomic infor-
mation in soft winter wheat [50]. The results of Montesinos et al. [50] support the importance of
incorporating phenotypic information to enhance prediction accuracy in GS and highlight the sig-
nificant potential of phenomic data in improving GS by providing superior predictions compared
to genomic information alone. We envisage substantial opportunities to improve the collection
and processing of HTP as well as to refine the overall modeling process through optimal integra-
tion of genomics, phenomics, and other sources of information.

However, HTP combined with genomic data cannot be compared to genomic data alone in
terms of genetic value prediction accuracy. HTP coupled with genomic data can be difficult to
interpret because they capture non-genetic sources of variation through the phenomic data.
Despite this challenge, integrating HTP with genomic data can provide a more comprehensive
understanding of plant traits and their environmental interactions. Most of the additive genetic
effects, which are crucial for achieving genetic gains, come from genomic data, with a smaller
contribution from HTP. This underscores the importance of genomic markers in an effective
plant breeding strategy while recognizing the complementary role of HTP.

Linking genomics and enviromics
Environmental signals drive gene regulation and transcription, post-translational modifications of
proteins, and the production of hormones and other metabolites that drive plant response and
plasticity in the field together with temperature, light, and water. Hence, it is crucial to consider
those effects to expect accurate GP, especially if the breeder is interested in studying the perfor-
mance of the genotypes under multiple growing conditions. However, for training the models it is
essential to keep in mind that every observed trait phenotype is the result of an intrinsic environ-
mental influence that can only be estimated by measuring the trait variations across multiple
environments, such as a specific growing scenario, a combination of management, soil condition,
weather condition, elevation, and microbiome, or simply for research purposes by combining
planting date with location and agronomic management.

A 'short' way to establish the effect of the environment on the phenotypic variation is to fit any
method that associates environmental features (e.g., weather conditions, soil conditions, abiotic
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stresses) with the actual trait values measured from METs. The metric from this is called the 're-
action-norm', which is a snapshot of the potential 'phenotypic plasticity' of a given genotype – the
main source driving the observable G×E phenomena [51]. The process of collecting, processing,
and using environmental data for this is called 'envirotyping' [52], in which their high-throughput
use across multiple omics and levels (cell > tissue > plant > plot > field trial > location > region
> mega-environment) is called 'enviromics' – or the study of the plant envirome. Consequently,
the "breeder's eye" only sees one of the multiple facets of the envirome that drive a wide number
of biological processes that culminate in a particular trait level and quality in the field.

Since 2014, when the first investigations linking genomics and envirotyping data for prediction
were conceived [53,54], diverse new methods have been introduced. Essentially, they can
form three groups, as described in the following sections.

Group 1. GBLUP environmental expansion was introduced by Jarquin et al. [54] and expanded
on by diverse authors [55–57]. These models are conceived as expansions of the conventional
GBLUP, thus accommodating multiple genetic kernels for pedigree [55], nonadditive effects
[56,58], and even unknown variance–covariance structures [58,59]. From the 'enviromic side',
Costa-Neto et al. [60] expanded this model to accommodate multiple environmental kernels
due to different development stages or features (e.g., temperature-related kernel plus soil
conditions-related kernel). Multiple environmental similarity has been used to predict future envi-
ronments [57,61], thus helping plant breeders to use GP to anticipate near-future climate
changes and their impact based on current breeding strategies. One common concern about
these methods was the lack of additivity among the environmental covariables. Costa-Neto et
al. [62] suggested replacing the quantitative covariables with 'environmental types' that were
built up by breaking the continuous distribution into classes (typologies) and then measuring
the frequency of each across a particular time or developmental stage. The so-called T-matrix
is then used to ensure the additivity (sum of frequencies = 100%) and can be used to feed GP
models (by environmental similarity, group 1) through other approaches such as environmental
characterization (Group 4).

Some researchers [56,63] introduced the use of nonlinear kernels (Gaussian kernel, GK and
Arc-cosine, AK) with a hierarchical Bayesian distribution of joint genetic and environmental
effects, which proved to outperform the conventional linear way in terms of model accuracy
and resolution (accuracy for a specific genotype) in tropical maize. This approach was expanded
and tested for a large wheat dataset [57]. This research demonstrated that the conventional
GBLUP has a poor ability to predict a future season (new genotypes in a new year), and the
inclusion of envirotyping data into a linear model was outperformed using nonlinear kernel (e.g.,
GK) in terms of accuracy, resolution, and stability of the prediction (lower dispersion, more reliable
predictions).

Group 2. Integrating crop modeling includes researchers specialized in fields such as crop sim-
ulation models (also known as crop growthmodels, CGMs) which bridge diverse fields such as
agronomy, irrigation and nutrient management, and policy making [64]. One advantage of this
method is the ability to explore the cultivar-specific CGM parameters as 'meta phenotypes',
which are trained from the phenotype and envirotyping data and then used as a response variable
(trait) in GP. Technow et al. [65] developed the so-called CGP-WGP (crop growth model – whole
GP) method, later expanded by Cooper et al. [66] and Messina et al. [67]).

Group 3. Environmental indices have their roots in the classical works on quantitative genetics
and ecology in the 1960swhere linear regressionswere used to empirically associate phenotypes
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and an index of the environmental gradient as a proxy to measure phenotypic plasticity. In the
modern era of GP [53], and to some degree the authors of Group 2 as well, the environmental
index used for its models was obtained from CGM outcomes. An advantage of using CGM is
the ability to extract an environmental index that has a higher ecophysiological significance (e.
g., drought or heat stress index derived from process-based mechanistic CGMs). Ly et al. [68]
used a supervised approach to learn an empirical association between environmental gradient,
genotype sensibility, and its impact on G×E. Millet et al. [69] applied a genomic version of the fac-
torial regression not only to predict grain yield in maize but also to learn the environmental driver of
G×E. For this reason, this approach is useful when the interest of the research is to learn the G×E
patterns and use them to select the most adapted cultivars [57].

The methods from groups 2 and 3 have a better resolution in detailing genotype-specific sensi-
tivities to environmental conditions, which could be used as traits to perform other approaches
such as association mapping. This latter is useful in exploring the genetic architecture of the
phenotypic plasticity, consequently expanding the "breeder's eye" to a level not investigated
before. However, methods from group 1 also open the breeder's eye to the importance of
the environmental diversity and not the number of environments to be tested, and interprets
G×E as a mix of multiple similarities that can be explored and used to optimize the predictive
breeding protocols.

An overall view of the process for linking genomics and environmental covariables is shown in
Figure 4. This figure displays how to associate enviromics, DNA sequencing, HTP images
from satellites, airplanes, and/or drones, and phenotypic data in R codes. All information in
Figure 4A,B is combined to conduct supervised and unsupervised learning tools to predict phe-
notypes across single or multiple environments or multiple traits.

Linking genomics, phenomics, and enviromics
Integrating genomics, phenomics, and enviromics offers a holistic approach that should
improve the accuracy and reliability of GP compared to using only one or two of these compo-
nents. Genomics provides genetic information, phenomics offers insights into observable traits,
and enviromics accounts for environmental influences. Together, they create a comprehensive
dataset that captures the complex interactions between genes, traits, and the environment, leading
to more precise and robust predictions. Montesinos et al. [70] predicted partially tested lines and
untested environments to assess the benefits of adding environmental covariates to genomic
and phenomic information. The authors evaluated the accuracy of predictions by randomly ex-
cluding one environment and using it as the training set while utilizing the remaining environ-
ment as the testing set. The authors found that including environmental data increased
prediction accuracy by 60% on average, and including all five datasets showed improvement.
The smallest gain was ~6%, and the largest was ~101%. These results suggest therefore that
incorporating additional inputs can significantly enhance prediction accuracy, but caution is
necessary. We recommend using feature-selection techniques, such as Pearson's correlation
and Boruta, to ensure effective integration of environmental covariates into the overall
ML method.

G×E interactions
In plant breeding, environmental influences and the interaction of genotypes with the environment
are crucial factors. On the one hand, breeders aim at breeding for 'stability', namely to achieve
stable high-yield cultivars under any conditions; however, on the other hand, such a breeding
approach may hamper selection gain for specific environmental conditions. A crucial point in
breeding is therefore to define the target population of environments or target region(s).
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Figure 4. Open-source packages containing machine learning (ML) methods for an accurate genomic prediction (GP) pipeline. (A) Genomic data curation
and imputation for calling SNPs and computing environmental relationship matrices to feed prediction models. (B) Enviromic data curation based on in field metadata
(geographic coordinates, management, and in situ sensors) using (C) global-scale predictions of environmental features to be used either as predictors for multi-
environment GP or to design training sets for (D) supervised or unsupervised learning. Abbreviations: E, environment; G, genotype; nE, number of environments; nG,
number of genotypes; SNP, single-nucleotide polymorphism.
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To account for G×E interactions, standard linear mixed effects models have been extended to in-
corporate multi-environment predictions. These models aim to predict the genetic value of a line
or a hybrid across all environments as well as in specific environments, thereby allowing the
breeder to select according to specific strength of the respective selection candidates. These
models use marker and environmental classifications or detailed environmental covariates to de-
fine covariance structures of random effects [54,71]. The covariance structures are given by ge-
nomic markers, environmental covariates, and Kronecker (or Hadamard) products of both
covariance matrices to model the covariance of the interactions [54]

Following Crossa et al. [9], we start from the baseline model for phenotypes evaluated in different
environments (yij ) given by:

yij ¼ μþ Ei þ Lj þ ELij þ ε ij ½1�
where μ is the overall mean, Ei (i = 1,…,I) is the random effect of the ith environment, Lj is the
random effect of the jth line ( j = 1,…,J), ELij is the interaction between the ith environment
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and the jth line, and eij is the random error term. The assumptions are as follows:

Ei �iid N 0,σ2
E

� �
, Lj �iid N 0,σ2

L

� �
, ELij �iid N 0,σ2

EL

� �
, and ε ij �iid N 0,σ2

ε

� �
, where N(.,.) denotes a

normal distribution, and iid indicates independent and identically distributed.

In this setup, environments are generally treated as random effects, indicated by the
assumption of following a normal distribution, but they can also be modeled as a fixed effect.
So far, the baseline model does not use information about genomic markers or environmental
covariates.

Genomic markers can now be introduced in model (Equation 1) by introducing a covariance
structure deviating from iid in the underlying assumptions. To indicate the difference, line Lj is re-
placed by gj that represents the additive genetic value of the jth line (often lines Lj and gj are both

used such that Lj can account for the remaining non-additive genetic covariance). The vector

containing the genomic values is g � N 0,Gσ2
g

� �
, where σ2

g is the genomic variance component,

and G is the genomic relationship matrix. This model change enables the genomic data to be in-
cluded in a mixed model approach. Likewise, as an alternative, if a pedigree relationship matrix is
available but genomic markers are not, the effect of line Lj can be replaced by aj, where

a � N 0,Aσ2
a

� �
, in which A is the numerical additive relationship matrix derived from pedigree

and σ2
a is the additive variance. Analogously, we can replace the Ei �iid N 0,σ2

E

� �
by an environ-

mental effect vector e � N 0,σ2
e E

� �
which incorporates environmental covariates in the covari-

ance structure.

The G×E interaction covariance matrix is then the Kronecker product of the two covariance
structures, the first describing relationships between lines based on genetic information
(pedigree or genomic) and the other matrix relating environments by means of environmental
covariates. When environmental covariables are used, the name 'reaction norm' is justified
because the genotypic effect is a reaction to those environmental covariables.

As a comment on the use of the Kronecker or the Hadamard product: there is an equivalence
between the required mathematical formulation including a Hadamard product as used
by Jarquín et al. [54] and an alternative formulation using the Kronecker product [72,73].
Both can be used, but – as a conceptual remark – Kronecker products describe the interac-
tion between two different groups of variables, whereas Hadamard products describe inter-
actions within a group. Kronecker products increase the dimension from a J × J covariance
matrix for the genotypes and an I x I covariance matrix for the environments to a (J × I) × (J × I)
covariance matrix of G×E. An example of the use of the Hadamard products is epistasis,
namely G×G interactions, in which we model the interaction within the genome of a genotype.
Each individual genotype has therefore one interaction term. The dimension of the corre-
sponding covariance matrix therefore remains J × J. A mathematical description of how
Hadamard and Kronecker products can be used for modeling G×E is given in Martini et al.
[73].

An additional fine-tuning of the original reaction norm model uses a non-linear Gaussian kernel in
marker × environment interactions [63,64]. Assessing G×E with a non-linear Gaussian kernel
often outperforms linear kernel GBLUP for modeling G×E [63]. In summary, incorporating G×E
commonly improves the prediction accuracy of unobserved cultivars in years or location–year
combinations even when some cultivars were not included in all the environments. Further non-
linear kernels often increase the contribution of G×E to GP accuracy.
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Genomic prediction of multiple traits and environments
In GP, improving the accuracy of the prediction of cultivars in environments is difficult because the
available information is generally sparse and usually has low correlations between traits across
environments. Thus, it is necessary to improve the accuracy of the prediction models used in
GP. Montesinos et al. [48] investigated two recommended systems techniques, item-based
collaborative filter (IBCF) and matrix factorization (MF), which are popular in the context
of online marketing to recommend products or items. The IBCF works based on the similarity be-
tween items and it is calculated using people's ratings of those items and uses the items most
similar to a user's already rated items to generate a list of predictions (or recommendations).
The prediction of the IBCF is a weighted sum or linear regression. The authors obtained empirical
evidence that both methods, IBCF and MF, work well for predicting phenotypes that are missing
in some traits and environments, but the IBCF was the best if, and only if, the correlation between
traits and between environments was moderately high.

The Bayesian multi-output regressor stacking (BMORS) model consists of two stages. In
the first stage, a univariate genomic best linear unbiased prediction (GBLUP) model, including
G×E, is implemented for each of the traits under study. Then, in the second stage, the predictions
of all traits are included as covariates by implementing a ridge regressionmodel. Montesinos et al.
[74] compared the existing Bayesian MTME (BMTME) model versus the BMORS in terms of
(i) genomic-enabled prediction accuracy, and (ii) potential advantages in computing resources
and implementation. The authors compared the predictions of the BMORS model to those of
the univariate GBLUP model, and their findings indicate that the proposed BMORS model
produced similar predictions to the univariate GBLUP model and the BMTME model in terms of
prediction accuracy. The proposed BMORS model serves as an alternative for predicting
MTME data which are commonly encountered in genomic-enabled prediction in plant and
animal breeding.

Recent research extended the study of GP to tetrasomic polyploid potato with the main objective
of investigating the GP of single-trait (ST), multi-trait (MT), and multi-environment (ME) models
using field trial data [75,76]. Furthermore, Cuevas et al. [76] investigated GP of four genome-
based prediction models with GE: (i) ST reaction norm model (M1), (ii) ST model considering
covariances between environments (M2), (iii) ST M2 extended. to include a random vector that
utilizes the environmental covariances (M3), and (iv) MT model with G×E (M4). The best model
method for predicting many of the traits was MT because it allows the exchange of information
between traits and environments followed by M3 and M2, which efficiently used information
between environments.

What and how to predict?
In the prediction of new environments (years or location–year combinations), ML struggles to pro-
duce reasonable predictions. In multi-environmental plant breeding trials information on environ-
ments (year) enhances the information contained in the G×E. The principal component regression
relates environments with the principal components scores of the G×Ematrix and it was the orig-
inal idea that gave rise to the partial least squares (PLS)method. The PLS regression method
has been proposed to describe G×E by considering the differential sensitivity of cultivars to envi-
ronmental variables [77]. The single unit-trait (ST) PLS has shown empirical evidence of its effec-
tiveness in predicting future seasons or new environments compared to ST-GBLUP [57,78]. In
addition, an improved BMTME model has been proposed to capture correlations between
lines, traits, and environments [79]. The GP ability of the MT PSL was explored by Montesinos
et al. [80] who found that the MT PLS outperformed the BMTME. They concluded that the MT
PLS methodology should be tried for the prediction of future seasons or new environments.
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The use of MT models is not as common as ST models owing to the higher computational de-
mands and complex G×E associated with MT models. MT models face challenges with conver-
gence and the implementation of GP because of the large and intricate datasets involved [74,81].
However, a recent study [76] compared ST and MT models in predicting potato traits across dif-
ferent environments, and the MT model outperformed the ST model. One effective method for
modeling complex biological events is multi-trait partial least squares (MT-PLS) regression.
Research indicates that MT-PLS is a valuable approach for modeling high-dimensional biological
data because it can handlemultiple responses and addressmulticollinearity efficiently. Compared
to ST-PLS, MT-PLS utilizes the correlation structure among traits, leading to greater statistical
power and improved prediction accuracy. A recent study [80] demonstrated that MT-PLS
achieved higher prediction accuracy than MT-GBLUP.

In plant breeding it is important to have methods that can handle large numbers of predictor var-
iables and a limited number of sample observations, as well as efficient methods for dealing with
high correlations among predictors and measured traits. Ortiz et al. [82] recently investigated the
prediction performance of the PLS methods using ST and MT modeling of potato traits. The first
prediction was conducted for tested lines in tested environments using a fivefold cross-
validation (5FCV) plan, and the second prediction was for tested lines in untested environments
(referred to as leave one environment out cross-validation, LOEO). The results show good
prediction performance and the accuracy mostly exceeded a correlation of 0.5. The accuracy of
different models was tested using 5FCV and LOEO. 5FCV was found to be better than LOEO.
Empirical results show evidence that ST and the MTP-PLS framework is a valuable tool for
predicting the context of potato breeding data. Another important use of PLS is to discover en-
vironmental signatures and recycle G×E information from historical datasets [57]. This approach
would increase the ability to use past envirotyping data to predict a yet-to-be-seen year (i.e., a
year without phenotypic and environmental data).

Why do ML models not work equally well for different datasets?
ML models often exhibit varying performance depending on the characteristics of the datasets
they are applied to. There are several factors that influence howwell a model works on a particular
dataset. Some models, such as deep learning networks, perform better with large datasets,
whereas simpler models such as linear regression work well with smaller datasets. Complex
datasets with non-linear relationships may require advanced models such as NNs or ensemble
methods (e.g., random forests, gradient boosting) to capture the underlying patterns. Simpler
datasets may be adequately modeled with linear or polynomial models. Different models have dif-
ferent biases and variances, and these influence their ability to generalize from training data. A
model with high biasmight oversimplify the data, whereas amodel with high variancemight overfit
the training data but fail to perform well on new data. Understanding the balance between bias
and variance for each model and dataset is complex and not always straightforward.

Datasets with high-dimensional features or mixed data types (numerical, categorical) might ben-
efit from models that can handle such complexity, such as support vector machines (SVMs) and
tree-based models. High-dimensional datasets may also require dimensionality reduction tech-
niques before applying an ML model. Some models are more robust to noise and outliers (e.g.,
decision trees, random forests), whereas others (e.g., linear regression) may be more sensitive
and perform poorly in their presence. Imbalance data has an imbalanced class distribution, and
models such as logistic regression might struggle without proper adjustments. Complex models
such as deep NNs are prone to overfitting, especially on small or noisy datasets. Simpler models,
although less powerful, may generalize better in such cases. Overfitting occurs when a model
captures noise or random fluctuations in the training data, whereas underfitting happens when
Trends in Plant Science, February 2025, Vol. 30, No. 2 181
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Outstanding questions
One of the key innovations in modern
plant breeding compared to
conventional crossbreeding is the
reduction of the cycle time. This
consists of advancing lines quickly to
obtain F3 or F4 germplasm,
conducting sparse testing across
multiple sites within a defined target
population of environments (TPE), and
recycling the lines based on their
breeding values. How can rapid cycle
genomic-assisted breeding be effec-
tively implemented for different cultivar
species, particularly when incorporat-
ing large MTME datasets?

In recent years science has undergone
a data revolution that enables the
collection of large volumes of data
from different sources. In breeding,
this shift is reflected in the transition
from relying on a small number of
gene-basedmarkers to utilizing a com-
bination of high-dimensional genotypic
data. These data can be obtained from
next-generation sequencing, epige-
netic information, large numbers of cul-
tivars in evaluation trials, multiple
replicates, multiple locations, multi-
year datasets, environmental data,
and phenomic information on different
traits, as well as environmental
covariables collected across location–
year combinations. In addition, HTP
technologies, including multispectral
images from remote sensing, contrib-
ute to the generation of 'big data' that
can be used for predictive breeding.
Because these collected data require
appropriate statistical ML approaches
to extract meaningful insights, fields
such as enviromics and phenomics
have gained importance in statistical
agriculture. Given this complexity,
how can big data be efficiently used
to drive big discoveries?

The results for partially tested cultivars
within specific environments cannot
be considered to accurately predict
genetic values. Therefore, HTP com-
bined with genomic data cannot be
compared to genomic data alone re-
garding genetic value prediction accu-
racy, instead, they can only be
compared in terms of phenotypic pre-
a model is too simple to capture the underlying structure of the data. Both issues can lead to poor
performance on new datasets, and understanding when and why they occur is not always easy.
Decision trees or linear models are more interpretable, making them preferable for datasets
where understanding the decision-making process of the model is important. Large models
such as deep learning networks require significant computational power and memory. Simpler
models might be preferred when resources are limited or when real-time predictions are needed.

MLmodels often require careful tuning of hyperparameters. The optimal hyperparameters can vary
significantly between datasets, and finding the right configuration is often a trial-and-error process.
Without proper tuning, amodel that works well on one datasetmay perform poorly on another. The
quality of the data and the preprocessing steps applied can significantly affect model performance.
Variations in data cleaning, normalization, or feature engineering across datasets can lead to incon-
sistent results. Poor data quality, such as missing values or noisy data, can also undermine the
effectiveness of a model. Finally, the 'no free lunch' theorem in ML states that no single model
is universally the best for all possible problems. This means that some models will naturally work
better on some types of datasets, and there is no one-size-fits-all solution.

Concluding remarks and future perspectives
In agriculture and biological systems, GP using G×E as a bilinear (product operator) relationship
between G and E is usually more appropriate in terms of prediction accuracy than a linear relation-
ship. Multiplicative operators for studying GP including G×E have shown an increase in accuracy
as compared with a linear term. The use of MTME information for GP is challenging because traits
might have different degrees of correlations between themselves and the environment. In breed-
ing, the main task is the GP of unobserved individuals in future years and/or environments or the
combination of both. In METs, the principal component regression scores of G×E might improve
the information of the environment to be genomically predicted. This method for enhancing the
genomic-enabled selection of cultivars that were never tested in particular environments has
some interpretation problems that can be improved by using the PLS regression for predicting
the performance of the cultivars across environments.

Environmental information plays a crucial role as a central bottleneck in the application of modern
genomic-assisted prediction tools, particularly when dealing with multiple environments. The fun-
damental inclusion of environmental data in the modeling process contributes significantly to the
accurate prediction of cultivars across diverse growing conditions.

The synergy between genomics, enviromics, and phenomics is essential for advancing modern
plant breeding. Harnessing extensive datasets, encompassing both genomic and HTP informa-
tion as well as environmental data, holds the key to unlocking further genetic gains. MTME
data, coupled with the seamless integration of genomic, environmental, and HTP data, presents
exciting avenues for precise GP, thus effectively streamlining field phenotyping efforts and ulti-
mately improving breeding efficiency (see Outstanding questions).
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