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Abstract
Poplars are traditionally cultivated on arable land, but other land types, such as forested land and forested arable land, may 
also provide significant opportunities for poplar plantations without competing with food production. However, these sites 
often have suboptimal soil pH levels that hinder optimal poplar growth, highlighting the need for improved establishment 
methods to enhance both survival and growth. This study investigates the establishment and growth of poplars (Populus 
trichocarpa and their hybrids) at forest land and forested arable land after application of wood ash, lime, and biochar using 
three different application methods: (i) amendment spread on the soil (Surface), (ii) amendment mixed with the soil (Mixed), 
(iii) amendment placed on the planting spot (Spot). Our findings revealed that wood ash and lime application almost double 
growth compared to untreated plants, 3 years after planting, and that growth increased equally independently whether wood 
ash or lime was mixed with the soil or applied on the soil surface while Spot application method resulted in overall lower 
growth than the Mix and Surface method. In contrast, biochar application had a lower effect on tree growth compared to 
wood ash and lime. This study highlights the potential of using wood ash to improve poplar growth on sites with low soil 
pH and that application methods can be adapted for different site conditions, thereby supporting the early establishment of 
these fast-growing plantations in sites with suboptimal soil conditions.
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Introduction

Transitioning to fossil-free and zero-carbon energy systems 
is essential for meeting climate goals and reducing CO₂ 
emissions. The European Commission has recommended 
afforestation of former agricultural lands as a sustainable 
land management practice to simultaneously contribute to 
CO₂ mitigation, biodiversity enhancement, and an increased 
supply of woody biomass [1]. This growing demand for bio-
based resources is driven by the expanding production of 
existing products and the development of new bio-based 
materials, putting pressure on current biomass supplies 
which may fall short of future needs. One effective strategy 
to bridge this gap is to maximize biomass yield per unit 
area by planting fast-growing, early-successional tree spe-
cies, such as Populus, combined with effective management 
practices over large areas.

In Sweden, approximately 500,000 hectares of arable 
land, 2.5 million hectares of forest land, and an additional 
1.2 million hectares of arable land (forested arable land) 
that has transitioned to forested land over the past 70 years 
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could be available for establishing Populus plantations [2, 
3]. Forested arable land, while maintaining characteristics 
of high soil fertility and water-holding capacity both impor-
tant for fast-growing broadleaf species, has often undergone 
soil acidification, especially following one 70–80 years 
long rotation with Norway spruce (Picea abies Karst) [4, 
5]. Given the potential production of Populus plantations at 
these sites that can reach 6 Mg  ha−1  year−1, there is a sig-
nificant incentive to investigate treatments that could enable 
poplar growth on sites with sub-optimal soil pH, especially 
considering that the usage of a fraction (25%) of these areas 
could supply up to 10 TWh of biomass annually without 
competing with food or feed production [2]. Furthermore, 
the increasing frequency of insect pests and storms over the 
past two decades has compelled foresters to consider alterna-
tives to spruce at forest land and forested arable land.

Poplars (Populus trichocarpa Torr. & A.Gray ex Hook., 
Populus maximowiczii A.Henry and their hybrids) are 
known to be nutrient and water demanding and require a 
soil pH > 5 for optimal growth; below this, growth reduc-
tions are common due to nutrient limitations and increased 
susceptibility to aluminum (Al) toxicity [6–9]. Low soil pH 
can impair plant development in several ways, including 
increased mortality from high proton  (H+) levels, inhibited 
water uptake, and deficiencies in essential nutrients such 
as phosphorus (P) and calcium (Ca), as well as toxicities 
from increased availability of metal ions such as aluminum 
(Al), manganese (Mn), and magnesium (Mg) [10–14]. Spe-
cifically, soluble  Al3+ ions are one of the main chemical 
constraints on plant growth in acidic soils by inhibiting root 
elongation [15, 16], altering ion fluxes, disrupting membrane 
channels, and interfering with nutrient uptake [17–21]. For 
poplars,  Al3+ sensitivity has been suggested to be one of the 
factors limiting poplar establishment and growth in acidic 
conditions [9, 22, 23].

Application of lime or wood ash can increase soil pH 
[24–27]. Some studies show positive growth effects after 
liming [28–30] while other studies report neutral growth 
effects [22, 31, 32] and even negative effects [22, 24, 33]. 
Similarly, wood ash’s effect on growth is variable, with stud-
ies reporting increased growth [34–40] but others reporting 
neutral or negative effects [26, 31, 41–43]. Besides increas-
ing soil pH, liming and wood ash application can result in 
an addition of macro- and micronutrients. Liming primar-
ily adds calcium (Ca) and magnesium (Mg) while wood 
ash supplies additional phosphorus (P) and potassium (K) 
[44]. Application of biochar can also affect plant growth 
by improving soil moisture retention, increasing nutrient 
availability, and reducing soil toxicity by adsorbing toxic 
ions like  Al3+ [45–47] but similar to lime and wood ash, 
growth effects are variable with studies reporting positive 
[46, 48], neutral [49, 50], or negative effect [51]. As poplars 
rely on fast growth to establish, early access to soil water and 

nutrients is critical for newly planted seedlings [52, 53], with 
studies showing that root systems can extend over a meter 
during the first year [54]. As such, soil amendments aimed 
at improving soil proprieties must have a rapid effect to sup-
port the establishment and early growth phases for poplar 
seedlings. However, the amendment effect on plant growth 
is complex and varies based on factors such as soil proprie-
ties, amendment composition, and application method, thus 
resulting in variable growth effects.

Despite studies on individual methods [23, 28, 30], lim-
ited research has directly compared different application 
methods to assess their impact on poplar growth in acidic 
soils on forest land and forested arable land. To address this 
knowledge gap, we conducted an experiment on forest land 
and forested arable land. The objectives of this study were 
to (1) evaluate the early growth response of P. trichocarpa 
and its hybrids to soil treatments with wood ash, lime, and 
biochar in forest and forested arable land and (2) examine the 
influence of different application methods of these amend-
ments on the early growth and establishment of poplars, ulti-
mately supporting high productivity and biomass supply on 
land unsuitable for food production.

Materials and Methods

Site Description and Climate Conditions

The experimental sites are located in southern Sweden 
(Fig. 1) and were established between 2019 and 2020. The 
experiment was placed at two site types: (i) forest land sites 
(For) with a continuation of forest coverage for more than 
100 years and (ii) forested arable land sites (ArFor), i.e., 
former agricultural land planted with one rotation of Norway 
spruce that was grown for 40 to 70 years (Fig. 1). Prior to the 
experiment establishment, a homogeneous newly clear-felled 
area was selected at each site to undergo planting of the 
experiment. Temperature and precipitation were recorded 
at a local weather station within 10 km of the sites Table 1.

Plant Material

Plants were produced by first collecting dormant cuttings in 
February. These were thereafter stored at 4 °C until plant-
ing. In spring, i.e., April, cuttings were planted in contain-
ers 250 ml containing plant nursery soil mixture consist-
ing of 83% peat, 5% clay, 7% gravel, 7% hydrograins, and 
N-P-K 11–5–8 plus micronutrients with a pH of 5.5–6.5 
and grown to approximately a height of 40 cm and diam-
eter of about 5 mm under field conditions. The plants were 
stored at + 2 °C during the following winter before planting 
in spring 2020. At the time of the planting, the poplar seed-
lings were 1 year old.
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At all sites, mechanical soil preparation in rows was per-
formed using an excavator. The planted clones at site For1, 
For3, ArFor1, ArFor3, and ArFor4 were clone Androscoggin 

(P. maximowiczii × P. trichocarpa), clone Rochester (P. 
trichocarpa × P. nigra), clone 14 (P. trichocarpa), and OP42 
(P. maximowiczii × P. trichocarpa), and at site For2 and 
ArFor2, SnowTiger® SLU clones “23.4,” “26.1,” “44.7,” 
and “722.16” (all provenance hybrids within P. trichocarpa; 
[55]) were planted. In this study, the different Populus spe-
cies and hybrids are referred to as poplar.

Experimental Design

At each site, plants were planted in plots treated with either 
ash (3 Mg  ha−1), lime (3 Mg  ha−1), or biochar (20 Mg  ha−1), 
as well as in untreated control plots. Within each plot, five 
subplots were designed, each containing three application 
methods:

 (i) Mixing method (Mixed): where the amendment was 
mixed with the soil in a 1 × 1  m2 to a depth of about 
30 cm

 (ii) Surface method (Surface): where the amendment was 
evenly applied to the soil surface 1 × 1 m

Fig. 1  Map of southern Sweden 
marked with the experimental 
sites and the experimental 
design used at all sites. Sites are 
marked as forested arable land 
(ArFor, i.e., former agricultural 
land planted with one rotation 
of Norway spruce that was 
grown from 40 to 70 years sites) 
and forest sites (For, i.e., used 
as forest land for more than 
100 years). Note that ArFor1-
For1, ArFor2-For2, and ArFor4-
For3 are located less than 1 km 
from each other; thus, only one 
point represents two sites. Each 
site is divided in three plots 
(ash, lime, and biochar). Appli-
cation methods are shown as 
mixed (M), surface (S), spot (P) 
and untreated, i.e., control (C) 
columns. Each planting position 
is shown with a filled circle. 
The spacing between the tree 
rows was 3 m while between 
plants was 1.5 m; the plot size 
was in total 18 × 18 m

Table 1  Description of experimental sites and their climatic condi-
tions

Site index (SI) corresponds to the dominant height of Norway spruce 
(G) or Scots Pine (Pinus sylvestris L.) (T) at an age of 100  years. 
Mean temperature is the yearly average temperature in °C since 2005. 
Precipitation represents the average yearly precipitation (mm) since 
2005

Site Latitude °N Longitude °E Precip, 
mm/
year

Mean 
temp, 
°C

Site index

For1 58°27′12.8″N 13°38′41.8″E 740 7 G32
For2 57°00′38.4″N 14°22′16.7″E 780 6 T28
For3 56°42′03.6″N 13°05′21.7″E 920 5 G32
ArFor1 58°27′56.9″N 13°34′09.8″E 740 8 G32
ArFor2 57°02′07.5″N 14°20′10.7″E 780 6 G32
ArFor3 55°41′28.3″N 14°05′42.0″E 660 8 G36
ArFor4 56°39′45.6″N 13°03′57.0″E 920 5 G34
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 (iii) Planting spot method (Spot): where the amendment 
was applied in a 0.3-m diameter cylinder hole

 (iv) Untreated (Control): no amendment was applied

The spacing between plants in each subplot was 1.5 × 3 m 
and all subplots were randomly distributed within the plots 
(Fig. 1). The experiment was fenced to prevent browsing 
damage and manually planted using a shovel. Within each 
treatment plot (wood ash, lime and biochar), 25 plants were 
treated using the Mix method, while 10 plants were treated 
with Surface and Spot methods, and 10 plants were desig-
nated as untreated Control.

At sites For1, For3, ArFor1, ArFor3, and ArFor4, the 
Mix-treated plots were planted with the clones (number of 
transplants under brackets): “OP42” (7), clone “Androscog-
gin” (6), clone “Rochester” (6), and clone “14” (6). For the 
Surface, Spot, and Control treatments, the planting configu-
ration included clone “OP42” (3), clone “Androscoggin” 
(3), clone “Rochester” (2), and clone “14” (2). At sites For2 
and ArFor2, the Mix-treated plots included clone “722.16” 
(7), clone “26.1” (6), clone “44.7” (6), and clone “23.4” 
(6). Similarly, for the Surface, Spot, and Control treatments, 
the planting scheme consisted of clone “722.16” (3), clone 
“26.1” (3), clone “44.7” (2), and clone “23.4” (2). More 
information about the clones deployed in the study can be 
found in supplement S3.

Lime, Wood Ash, and Biochar

The pulverized calcitic lime used was Ingaberga 0–0.02 mm, 
Nordkalk AB, Hässleholm Sweden, produced by grinding 
limestone to a particle size of 0–0.02 mm.

Biochar was produced by pyrolysis (750 °C) of barley and 
wheat seed residue pellets 4 × 20 mm in a Pyreg® pyrolysis 
unit. Wood ash was produced by combustion of forest resi-
dues, branches, and tops of Pinus sylvestris L. and Picea 
abies Karst in a commercial biomass boiler. The type of 
wood ash used in this study was 95% bottom and 5% fly ash. 
Samples of wood ash were analyzed at ALS Scandinavia 
AB, Luleå, Sweden, using analysis of metals in solid matri-
ces with ICP-SFMS according to SS-EN ISO 17294–2:2023 
and US EPA Method 200.8:1994 after digestion of samples 
according to S-PS49-FU. The chemical characteristics of 
the biochar used were analyzed by determination of selected 
elements by inductively coupled plasma optical emission 
spectrometry in accordance with DIN EN ISO 11885 (E22): 
2009–09 and DIN 51732:2014–07. Analysis results of the 
wood ash, lime, and biochar are shown in Table 2.

Measurements and Soil Analyses

Survival, stem height, and root collar diameter (10 cm above 
the soil surface) were recorded at planting and after first, 

second, and third years of growth. To determine the effect 
on soil chemistry, 12 soil samples in untreated, ash, lime, 
and biochar (Mixed method) plots were sampled at a depth 
of 30 cm and pooled to generate one sample for each site. 
The samples were collected 3 years after application. Soil 
samples were analyzed at Eurofins Agro Testing Sweden AB 
in Kristianstad, Sweden, using ammonium lactate/acetic acid 
solution (the AL-Method) in accordance with the method SS 
028310:1995–12 and by inductively coupled plasma optical 
emission spectrometry in accordance with the method ISO 
11885:2009–09. The results are presented in Table 3.

Statistical Analysis

All data analyses were implemented in R version 4.4.1 [56]. To 
test the effect of soil amendments and their application method 
on tree growth (i.e., tree height and root collar diameter), we 
used linear mixed-effects models implemented in the “lme4” 
package [57]. Survival as a Boolean variable was tested using 
generalized linear mixed models implemented in the “glm-
mTMB” package [58]. The response variables tested were tree 
height, root collar diameter, and survival. Site type (For and 
ArFor), amendment (wood ash, lime, and biochar), applica-
tion method (Mixed, Surface, Spot, and Untreated), and their 
interactions were set as fixed effects while site was treated 
as a random effect. To evaluate statistical differences among 
treatments, Tukey’s HSD post hoc test, implemented in the 
“emmeans” R package [59] was used. A p ≤ 0.05 was used as 

Table 2  Elemental analysis of wood ash, lime, and biochar used in 
this study

% is shown as percentage of dry weight (DW)

Element/compound Lime Wood ash Biochar

Bulk density (kg/m3) 881 412 291
P (%) 0 3.6 16.5
Ca (%) 50.1 34.1 12.8
Mg (%) 0.5 8.6 6.9
Na (%) 0 0.5 0.8
K (%) 0 10.4 26.4
Zn (mg/kg) 0 1950 144
Fe (%) 0 1.4 0.9
Mn (%) 0 4.0 0.02
Si (%) 0 8.3 30.4
Cd (mg/kg) 0 22.2  < 0.02
Pb (mg/kg) 0 23.1  < 2
Cr (mg/kg) 0 542 5.0
Ni (mg/kg) 0 58.2 4.0
C (%) 0 48.2 78.3
N (%) 0 0.3 2.9
C/N 0 160.7 27.0
pH 12.3 12.1 10.1
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the cutoff for statistical significance. Residuals showed normal 
distributions with no high-leverage outliers using “DHARMa” 
package [60].

To analyze the effect of wood ash, lime, and biochar on 
tree height after three growing seasons in Mixed application 
method in relation to soil characteristics (pH, N, P, K, Al, Ca, 
and Mg), linear regression was used.

Results

Plant Survival

Three years after planting, plant survival was affected by wood 
ash, lime, or biochar and their application method (Table 4). 
On forest land (For), survival of plants treated with wood ash, 
lime, or biochar was found to be higher compared to untreated 
plants, varying between 68 and 97% depending on the appli-
cation method. On forested arable land (ArFor), lime-treated 
plants displayed higher survival rates among all application 
methods compared to untreated plants while only wood ash 
and biochar with Mixed method resulted in increased plant 
survival compared to untreated plants. There were though no 
differences found for survival when wood ash and biochar 
were applied with Surface method (Table 4). These differences 
were not observed in the first 2 years after planting (Table 4).

Lime and Wood Ash Increased Tree Growth at Forest 
and Forested Arable Land

Across application methods, wood ash and lime increased 
tree growth at For and ArFor (Table 5). At For, tree heights 
on the ash-treated soil were 206%, 238%, and 227% of the 
heights of the untreated trees in the first, second, and third 
year after planting, respectively. At ArFor, the corresponding 
heights were 123%, 140%, and 148% of the untreated trees 
in years 1, 2, and 3, respectively.

Similar to tree heights, root collar diameters on ash-
treated soil were 228%, 243%, and 267% of the diameters 
of the untreated trees after the first, second, and third year, 
respectively. At ArFor, the corresponding diameters in the 
first, second, and third year after planting were 131%, 148%, 
and 162%, respectively. There were differences between the 
treatments with wood ash being the most effective and bio-
char the least effective in increasing tree growth (i.e., height 
and diameters) the third year after planting at both For and 
ArFor (Table 5).

Mixing Wood Ash or Lime with the Soil or Applying 
the Amendment on the Soil Surface Increased 
Growth of Poplars Similarly

At the ArFor sites, ash-treated plants with the Mixed 
method resulted in plants reaching a mean height of Ta
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225 cm, followed by Surface (200 cm), Spot (160 cm), 
and untreated plants (140 cm) (Fig. 2A) with no differ-
ences between Mixed and Surface application methods 
(Fig. 2A). This was also found for diameter growth at For 
and ArFor sites, with the Surface method resulting in simi-
lar diameters as Mixed (Fig. 3A and D). At the For sites, 
ash application resulted in similar height growth incre-
ment between Mixed and Surface application methods 
with plants reaching mean heights of 200 cm and 180 cm, 
respectively (Fig. 2D).

For lime-treated plants, the effect of different applica-
tion methods followed a similar pattern, with Mixed method 
reaching an average height of 170 cm followed by Surface 
(165 cm), Spot (160 cm), and untreated (130 cm) (Fig. 2B) 
with no significant differences between Mixed and Surface 
(Fig. 2B). At For sites, application of lime resulted in no 
differences between the application methods, all reaching a 
height of 145–148 cm (Fig. 2E) but compared to untreated 
plants, height growth was increased (Fig. 2E). Diameter 
growth with Mixed and Surface resulted in similar incre-
ments (Fig. 3B and E).

In conclusion, amendments using Mixed and Surface 
application methods were similarly effective in increasing 
tree growth at For and ArFor.

At ArFor sites, all application methods with biochar did 
not alter height and diameter (Figs. 2C and 3C). In For sites, 
untreated plants reached a mean height of 65 cm and 6 mm 
diameters while treated plants had heights of roughly 95 cm 
to 100 cm and 11 mm to 15 mm in diameter. However, no 
significant differences (p > 0.05) were detected (Figs. 2F and 
3F) for all the application methods.

Impact of Treatment on Plant Height at Different 
Soil Characteristics Levels

The ash-treated plants consistently outperformed the 
untreated plants across all pH, aluminum (Al), and potas-
sium (K) levels, achieving heights exceeding 200 cm, 
whereas the untreated plants only reached 100–110 cm 
(Fig. 4A, J, and M). Phosphorus (P) content in the soil had 
a stronger positive impact on untreated plants (R = 0.41, 
p = 0.004) than on treated plants (R = 0.18, p = 0.023), 

Table 4  Plant survival rates (%) in forest land (For) and forested arable land (ArFor) after application of wood ash, lime, or biochar using the 
application methods Mixed, Surface, and Spot

Data shown represent survival rates in % across experimental sites. Letters represent statistical differences (p ≤ 0.05) between application meth-
ods within the same type of amendment and site type

Treatment Method Year one SE Year two SE Year three SE

For Ash Untreated 90.7  ± 4.4 a 83.6  ± 5.5 a 62.2  ± 7.5 a
Mixed 97.6  ± 1.8 a 97.4  ± 1.9 a 95.0  ± 3.8 b
Surface 100.0  ± 0.0 a 96.0  ± 3.3 a 96.9  ± 7.6 b
Spot 87.5  ± 6.7 a 90.2  ± 5.7 a 90.6  ± 8.0 b

Lime Untreated 83.9  ± 6.0 a 70.3  ± 7.3 a 30.7  ± 7.8 a
Mixed 94.9  ± 2.8 a 88.2  ± 4.3 a 86.4  ± 4.8 b
Surface 96.7  ± 3.2 a 96.8  ± 3.3 a 87.7  ± 6.4 b
Spot 96.7  ± 3.2 a 96.8  ± 3.3 a 90.8  ± 5.5 b

Biochar Untreated 88.8  ± 4.9 a 83.6  ± 5.5 a 31.0  ± 7.8 a
Mixed 87.2  ± 4.9 a 85.6  ± 4.8 a 68.7  ± 7.4 b
Surface 80.6  ± 8.4 a 83.6  ± 7.3 a 77.5  ± 8.7 b
Spot 93.7  ± 4.7 a 90.2  ± 5.7 a 80.8  ± 8.0 b

ArFor Ash Untreated 90.3  ± 3.9 a 74.8  ± 6.0 a 56.5  ± 7.5 a
Mixed 93.6  ± 2.7 a 89.2  ± 3.4 b 87.3  ± 3.8 b
Surface 89.7  ± 4.7 a 81.8  ± 6.0 ab 71.8  ± 7.6 ab
Spot 91.3  ± 4.2 a 72.0  ± 7.4 a 67.8  ± 8.0 a

Lime Untreated 89.6  ± 4.1 a 80.8  ± 5.2 a 61.5  ± 7.3 a
Mixed 97.6  ± 1.5 a 90.7  ± 3.1 a 84.1  ± 5.7 b
Surface 94.9  ± 3.1 a 94.6  ± 3.2 a 86.6  ± 4.0 b
Spot 89.7  ± 4.8 a 87.3  ± 5.0 a 94.1  ± 3.5 b

Biochar Untreated 94.3  ± 2.8 a 80.6  ± 5.2 a 64.1  ± 7.1 a
Mixed 96.1  ± 2.0 a 88.0  ± 3.6 a 82.9  ± 4.6 b
Surface 96.7  ± 2.5 a 90.8  ± 4.2 a 79.5  ± 6.7 ab
Spot 98.4  ± 1.7 a 96.4  ± 2.6 a 85.7  ± 5.6 ab
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with ash-treated plants reaching 200 cm height at low P 
concentrations while untreated plants reached 100 cm at 
the same P level (Fig. 4G). Additionally, ash-treated plants 
performed better at low calcium (Ca) and magnesium (Mg) 
levels but similarly to untreated at higher concentrations 
(Fig. 4P and S).

Lime application was most effective under low pH 
and phosphorus (P) concentrations, with treated plants 
reaching 160 cm compared to 90 cm for untreated plants 
(Fig. 4B and H). However, at higher pH and P levels, both 
lime-treated and untreated plants showed similar heights 
(Fig. 4B and H). Potassium (K) had a similar impact on 
both lime-treated and untreated plants (R = 0.35, p < 0.001 
and R = 0.28, p = 0.092, respectively), but treated plants 
consistently grew taller across all K levels (Fig. 4K). Alu-
minum (Al) negatively affected treated plants (R =  − 0.21, 
p = 0.012), resulting in 180 cm heights at lower Al levels 
and 140 cm at higher levels, similar to untreated plants 
(Fig. 4N). Lime-treated plants performed better under low 
calcium (Ca) and magnesium (Mg) levels but similarly to 
untreated plants at higher levels (Fig. 4Q and T). Nitro-
gen (N) positively influenced growth in both lime-treated 
and untreated plants (R = 0.32, p < 0.001 and R = 0.39, 
p = 0.018, respectively) (Fig. 4E).

In contrast to wood ash and lime, biochar application did 
not influence growth performance of poplars for any soil 
parameters analyzed (Fig. 4C, F, I, L, O, R, and U).

Discussion

Poplar plantations have traditionally been established on ara-
ble or agricultural land [61]. However, forested and forested 
arable lands present a significant, largely untapped potential 
for poplar cultivation, with several million hectares available 
in Sweden [2, 3]. Despite this, these areas have not been 
planted as they often have acidic soil conditions that can 
negatively impact poplar growth [5, 28, 62]. Our findings 
reveal that soil amendments such as wood ash and lime—
and to a lesser extent, biochar—effectively enhance growth 
on both forest and forested arable sites (Table 5, Figs. 2 and 
3), where soils tend to be acidic (Table 3).

These results are consistent with previous research 
showing growth benefits from wood ash, lime, and bio-
char treatments on tree species, including poplars, in 
acidic conditions [28, 30, 34, 63–66]. Specifically, wood 
ash and lime application almost doubled the growth of 
poplars compared to untreated, suggesting that when soil 

Table 5  Plant height (cm) and root collar diameter (mm) after the application of wood ash, lime, and biochar in forest land (For) and forested 
arable land (ArFor)

Data shown represent mean height and diameter of trees in each of the three years after planting. Letters represent statistical differences 
(p ≤ 0.05) between treatments within the same site type

Year one Year two

Treatment Height SE Diam SE Height SE

For Untreated 35.8  ± 7.0 a 2.8  ± 0.3 a 56.6  ± 5.2 a
Biochar 40.9  ± 6.8 a 3.7  ± 0.4 b 73.1  ± 4.6 b
Lime 53.8  ± 6.8 b 4.5  ± 0.5 c 94.6  ± 4.6 c
Ash 73.9  ± 6.8 c 6.4  ± 0.7 d 134.5  ± 4.5 d

ArFor Untreated 61.6  ± 6.1 a 4.9  ± 0.5 a 99.2  ± 4.8 a
Biochar 67.2  ± 5.9 a 5.7  ± 0.5 b 112.2  ± 4.0 ab
Lime 69.1  ± 5.9 ab 5.7  ± 0.5 b 113.8  ± 4.0 b
Ash 75.7  ± 5.9 b 6.4  ± 0.6 c 139.2  ± 4.1 c

Year two Year three

Treatment Diam SE Height SE Diam SE

For Untreated 6.0  ± 0.5 a 85.8  ± 11.5 a 8.1  ± 0.7 a
Biochar 8.3  ± 0.6 b 105.2  ± 9.8 b 11.1  ± 0.8 b
Lime 10.3  ± 0.7 c 140.8  ± 9.5 c 14.8  ± 1.1 c
Ash 14.6  ± 1.0 d 194.5  ± 9.3 a 21.6  ± 1.6 d

ArFo Untreated 8.6  ± 0.6 a 145.8  ± 9.5 a 12.1  ± 0.9 a
Biochar 10.2  ± 0.6 ab 173.4  ± 8.4 b 15.3  ± 1.0 b
Lime 9.9  ± 0.6 b 181.3  ± 8.2 b 15.5  ± 1.0 b
Ash 12.7  ± 0.8 c 215.9  ± 8.2 c 19.6  ± 1.3 c
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pH is sub-optimal for poplars, applying wood ash or lime 
may foster rapid growth and improve establishment.

Previous studies have found positive growth effects 
from biochar application on conifers, such as Norway 
spruce (Picea abies L.) and Scots pine (Pinus sylvestris 
L.), as well as on broadleaf species, including poplars, 
aspens (Populus tremula and Populus tremuloides), and 
silver birch (Betula pendula) [48, 67–70]. On the other 
hand, in other studies, biochar has shown limited growth 
effects on species such as poplar, alder, and willow [71, 
72]. Ultimately, the growth impact of biochar varies heav-
ily depending on application dosage, soil proprieties, and 
the biomass origin used for biochar production, highlight-
ing the complex interactions between biochar type, soil 
properties, and plant growth [73, 74]. In this study, biochar 
derived from straw residues was applied, which may have 
been less effective in promoting poplar growth. Addition-
ally, previous studies suggest that biochar’s impact is 
enhanced when nutrient supplements are included [75–78], 
a factor not addressed in our experiment. These factors 

combined likely reduced the biochar’s growth-promoting 
effects (Figs. 2C and F and 3C and F).

Previous studies have generally focused on either surface 
applications [28, 34, 79] or mixing the amendments into the 
soil during soil preparation [23, 30]. Interestingly, our results 
show only minor differences in growth and survival between 
the Mixed and Surface application methods (Tables 4 and 5, 
Figs. 2 and 3). Given prior research suggesting that surface 
applications might act more gradually on soil pH [26, 34] 
whereas mixing can yield immediate changes, one might 
anticipate greater effectiveness from the Mixed method. 
However, our findings indicate that both application methods 
can support poplar establishment at sites with sub-optimal 
conditions.

There are advantages and disadvantages associated with 
each of these methods. The Mixed method is more labor-
intensive and requires application during soil preparation 
using specialized machinery to ensure cost efficiency. For 
this reason, technical development that integrates soil 
preparation with lime or wood ash application needs to be 

Fig. 2  Height growth at forested arable land (ArFor) A to C and for-
est land (For) D to F. Application of ash are shown in A and D, lime 
B and E, and biochar C and F. Letters indicate significant differences 

(p ≤ 0.05) between the treatments within each year. Note that if a bar 
is missing, the corresponding yearly growth is too low to be shown
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implemented. However, this method would require only one 
visit to the site. Conversely, the Surface method can utilize 
existing technology for application but currently requires 
two types of machinery: one for soil preparation and another 
for wood ash or lime application. An additional advantage 
of the Surface method is its ability to treat the entire plant-
ing area even at later stages of the rotation period, while 
the Mixed method can be applied only before planting. 
Moreover, the Surface method may be more versatile in 
treating sites with stones, potentially expanding areas suit-
able for poplar plantations compared to the Mixed method, 
which may be limited by its inefficiency in mixing wood 
ash or lime into soils containing large stones. Furthermore, 
advancements in drone applications within the agriculture 
and forestry fields might provide a low-effort and cost-effec-
tive way to apply wood ash or lime on the surface of the 
stands [80, 81].

Changes in soil pH are closely connected to the availabil-
ity of macro- and micronutrients [82–84] but wood ash and 
lime can also influence soil fertility by addition of nutrients. 

There are though differences between the two compounds. 
Lime primarily adds calcium (Ca) and magnesium (Mg), 
whereas wood ash also provides phosphorus (P) and potas-
sium (K), and micronutrients manganese (Mn), copper (Cu), 
molybdenum (Mo), and nickel (Ni) (Table 2). Indeed, at both 
our experimental site types (forest and forested arable sites), 
wood ash application increased P, K, Ca, Mg, Mn, and Zn 
levels and soil pH (Table 3), a result consistent with other 
studies [27, 39, 44, 85–87]. In fact, we do observe a higher 
growth with wood ash and that its effect spanned a broader 
pH and soil chemistry ranges (Fig. 4) indicating that these 
changes could be the reasons for wood ash increasing tree 
growth of poplars. It is important to note, however, that the 
growth effects of wood ash can vary considerably due to its 
variable composition [27, 88].

Low soil pH can impede plant growth by increasing the 
concentration of toxic metal ions, leading to stunted growth 
and plant mortality. Therefore, increasing soil pH through 
lime or wood ash application decreases the solubility of alu-
minum  (Al3+) and manganese  (Mn3+) ions, which are known 

Fig. 3  Diameter growth at forested arable land (ArFor) A to C and 
forest land (For) D to F. Application of ash are shown in A and D, 
lime B and E, and biochar C and F. Letters indicate significant dif-

ferences (p ≤ 0.05) between the treatments within each year. Note that 
if a bar is missing, the corresponding yearly growth is too low to be 
shown
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Fig. 4  Linear regression of 
tree height after three growing 
seasons vs. soil proprieties. 
A–C Soil pH with plants treated 
with A wood ash, B lime, and C 
biochar. D–F Total nitrogen (N) 
with plants treated with D wood 
ash, E lime, and F biochar. 
G–I Phosphorus (P) with plants 
treated with G wood ash, H 
lime, and I biochar. J–L potas-
sium (K) with plants treated 
with J wood ash, K lime, and 
L biochar. M–O Aluminum 
(Al) with plants treated with 
M wood ash, N lime, and O 
biochar. P–R Calcium (Ca) with 
plants treated with P wood ash, 
Q lime, and R biochar. S–U 
Magnesium (Mg) with plants 
treated with S wood ash, T 
lime, and U biochar. The solid 
line represents plants treated 
with the respective soil amend-
ment by the Mixed method, 
while the dashed line represents 
untreated plants. The R-value 
displayed at the top corresponds 
to the treated poplars (solid 
line), whereas the lower R-value 
represents the untreated poplars 
(dashed line). Confidence bands 
represent a 95% confidence 
interval
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to inhibit root and shoot growth and increase mortality, par-
ticularly in  Al3+ sensitive species like poplars [9, 89–92]. 
This toxicity reduction likely contributed to the improved 
growth we observed following lime and wood ash applica-
tions (Table 5, Figs. 2, 3, and 4).

Thus, the observed growth differences between wood ash 
and lime in our study likely originate from the combined 
effects of improved nutrient availability, nutrient supplemen-
tation, and the reduction of toxic metal ions, particularly 
crucial for early root development that has been shown to 
be of most importance for seedling establishment [52, 93]. 
While our study demonstrated elevated soil cation levels and 
base saturation (BS) after wood ash application (Table 3), 
the design did not allow us to determine the dominant factor 
driving growth improvements in poplar plantations on forest 
and forested arable land.

In our study, biochar showed a neutral (Figs. 2, 3, and 4) 
or positive (Table 5) effect on growth, though its increase 
was less pronounced than that observed with wood ash and 
lime. Biochar enhances plant growth by improving soil 
moisture retention and nutrient availability through reduced 
soil bulk density, increased fungal and microbial activity, 
and nutrient mineralization, while also mitigating toxic 
metal ion availability [45–47, 66, 94]. However, biochar 
has a longer residence time in soil compared to wood ash 
or lime, suggesting that while it has a slower direct impact 
on soil properties, its soil-improving effects may persist for 
decades or even centuries [95–97]. Given the rapid establish-
ment needs of poplars, immediate soil condition changes are 
essential for optimal growth, especially in the early stages. 
The limited growth observed in our study suggests that bio-
char might not alter soil conditions quickly enough to benefit 
poplar seedlings within the timeframe of the study.

It should be noted that our soil analysis was designed to 
address spatial variability in soil properties within site [98, 
99]. To account for this, our experiment incorporated multi-
ple sampling points within each plot, thereby improving the 
reliability of the soil analyses. However, as the sampling was 
conducted 3 years after planting, potential temporal fluctua-
tions in soil properties before and after treatments could not 
be assessed. Nevertheless, Simard et al. [100] found only 
minor changes in soil pH 2 years after clear-cutting, sug-
gesting that temporal variations in soil pH may be relatively 
limited over comparable time periods.

In Sweden, poplar plantations on forested arable land 
are estimated to yield 4.5–6 Mg DW  ha−1  year−1 [2, 101] 
roughly 20% lower than those on arable land, where produc-
tion averages around 8.4 Mg DW  ha−1  year−1. Our findings 
indicate that wood ash application can improve establish-
ment and thus potentially increase biomass yields narrowing 
this production gap. Reduced mortality rates and improved 
growth in the early rotation phase are likely to contribute 
to higher biomass production at later stages, especially 

considering poplar need for rapid early growth to effectively 
establish, avoid competition, and withstand browsing pres-
sure as a nutrient and water-demanding, pioneer species [61, 
102]. However, our study covers only the first 3 years of the 
rotation period, leaving uncertainties regarding the long-
term impact on total biomass production.

The establishment of large-scale poplar plantations on 
forested arable or forest land may face some regulatory con-
straints. For instance, Forest Stewardship Council (FSC) 
regulations limit the establishment of non-native species, 
like poplars, to 5% of forest land in Sweden. However, FSC 
guidelines permit non-native species to replace forest planta-
tions, possibly classifying forested arable land as plantation 
forestry and thus allowing for poplar cultivation. Addition-
ally, recent governmental recommendations in Sweden sup-
port planting broad-leaved species on such lands [103]. By 
contrast, poplar plantations on arable land are classified as 
energy crops and are not subject to FSC land-use restric-
tions, as these apply solely to forest lands.

This study’s findings underscore the potential of wood 
ash as an amendment to increase biomass production from 
poplars on forested arable land, albeit with some regulatory 
and application considerations for maximizing its benefits.

Conclusions

Our investigation on the effects of wood ash, lime, and bio-
char applications on poplar growth at forested and forested 
arable sites offers valuable insights into how to enhance 
the establishment and the early growth of hybrid poplars 
in acidic soils in the temperate climate of northern Europe.

The results underscore wood ash’s potential to improve 
poplar growth comparably to lime, suggesting a sustainable 
alternative for promoting poplar plantations on suboptimal 
sites. Furthermore, our findings indicate that applying wood 
ash or lime to the soil surface is as effective in promoting 
tree growth as mixing them into the soil. Such insights are 
critical for developing sustainable management practices for 
poplar plantations, contributing to biomass production and 
maximizing land utilization in areas unsuitable for food or 
feed production. Additionally, these results provide founda-
tion for further research aimed at understanding the mecha-
nisms underlying the impact of wood ash on poplar growth 
in suboptimal soil conditions.
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