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A B S T R A C T

A typical One Health issue, antimicrobial resistance (AMR) development and its spread among people, animals, 
and the environment attracts significant research attention. The animal sector is one of the major contributors to 
the development and dissemination of AMR and accounts for more than 50 % of global antibiotics usage. The use 
of antibiotics exerts a selective pressure for resistant bacteria in the exposed microbiome, but many questions 
about the epidemiology of AMR in farm environments remain unanswered. This is connected to several meth-
odological challenges and limitations, such as inconsistent sampling methods, complexity of farm environment 
samples and the lack of standardized protocols for sample collection, processing and bioinformatical analysis. In 
this project, we combined metagenomics and bioinformatics to optimise the methodology for reproducible 
research on the resistome in complex samples from the indoor farm environment. The work included optimizing 
sample collection, transportation, and storage, as well as DNA extraction, sequencing, and bioinformatic analysis, 
such as metagenome assembly and antibiotic resistance gene (ARG) detection. Our studies suggest that the 
current most optimal and cost-effective pipeline for ARG search should be based on Illumina sequencing of sock 
sample material at high depth (at least 25 M 250 bp PE for AMR gene families and 43 M for gene variants). We 
present a computational analysis utilizing MEGAHIT assembly to balance the identification of bacteria carrying 
ARGs with the potential loss of diversity and abundance of resistance genes. Our findings indicate that searching 
against multiple ARG databases is essential for detecting the highest diversity of ARGs.

1. Introduction

Antimicrobial resistance (AMR) is a typical One Health problem that 
imposes a considerable burden on global health and economy (Murray 
et al., 2022). AMR in pathogenic bacteria poses substantial challenges to 
effective treatment, leading to increased healthcare costs both in human 
and animal medicine. Globally, intensive livestock production is among 
the major consumers of antimicrobials (Van Boeckel et al., 2015). The 
increasing prevalence of resistant bacteria in livestock raises concerns 
for animal health. In addition, livestock may serve as a reservoir for 
resistant zoonotic bacteria and resistance genes that can transfer to 
human pathogens (Tang et al., 2017). Antimicrobial usage (AMU) is 

recognized to be one of the main causes for the emergence of AMR in 
bacteria found in humans, animals, and the environment. Recent studies 
on livestock have shown that there are additional risk factors such as 
different biosecurity measures, and co-selection of antibiotic resistance 
genes (ARGs) in the presence of biocide and metal resistance genes 
within the farm environment (Horie et al., 2021; Li et al., 2022).

Most surveillance of AMR is based on culturing of indicator bacteria. 
This approach provides an insight into the phenotypic resistance but 
may not be representative for the overall occurrence of ARGs in the 
commensal microbiota as it exludes non-culturable bacteria (Andersen 
et al., 2017). Another popular screening method is quantitative real- 
time polymerase chain reaction (qPCR) focused on a limited selection 
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of ARGs (Graesboll et al., 2019; Luiken et al., 2022; Yang et al., 2022). 
However, this method is insufficient to obtain a comprehensive picture 
of the bacterial community and the resistome. Recent technological 
developments in molecular biology have increased our ability to 
investigate and quantify the gene content of microbial communities by 
whole metagenome sequencing. The main advantage of using meta-
genomics is the ability to look at the whole microbiome community 
including bacterial species that cannot be cultured in vitro and the 
resistome, including both known and novel ARGs in samples, improving 
our understanding of microbial communities (Noyes et al., 2016; Pillay 
et al., 2022). Although metagenomics is a very promising technique for 
resistance analysis, there is still only a limited number of studies that use 
this technique, escpecially in the area of non-clinical longitudinal 
research. This can be explained by the complexity of samples as well as a 
lack of standardized protocols for sample collection and further sample 
manipulation, including steps of sequencing and bioinformatic analysis. 
Previous methodology-based studies usually focused on comparison of 
one specific step of the resistome analysis pipeline. Many studies address 
the problem of randomisation and pooling of individual animal samples 
or fresh droppings (Yamamoto et al., 2014; Munk et al., 2017; Andersen 
et al., 2021). Another question for debate is the selection of sequencing 
technique: short reads, long read based sequencing or a combination of 
both methods. Most of the currently published studies on the resistome 
in farm environments are based on shotgun metagenome sequencing 
(Illumina) of individual fecal samples, which is still seen as a golden 
standard in metagenome analysis of resistance due to the possibility to 
obtain big amounts of good quality sequence data at a low cost (Luiken 
et al., 2019; Van Gompel et al., 2019; Mencia-Ares et al., 2020; Stevens 
et al., 2023). However, the length of the short reads is not enough to 
cover the length of most ARGs and, therefore, a search on raw Illumina 
reads results in missing genomic context and can lead to appearance of 
false positives due to spurious mapping (Boolchandani et al., 2019). This 
problem can be solved in two ways: either perform assembly of short 
reads or use a sequencing technique based on long reads. There is a list of 
studies that suggest that long read sequencing (Oxford Nanopore 
Technologies) is the future for resistome research as it helps to avoid the 
computationally heavy step of assembly while providing enough of 
genome context information to not only recover ARGs but also their 
connection to the microbiome (Weinmaier et al., 2023; Sierra et al., 
2024; Slizovskiy et al., 2024). However, long-read sequencing suffers 
from low-accuracy base calling and the excessive costs of high-depth 
sequencing needed for high complexity samples (Brown et al., 2021; 
Zhao et al., 2023; Abramova et al., 2024). Therefore, short-read 
sequencing is often required to improve genome accuracy, which in-
creases costs and turnaround time (Brown et al., 2021; Zhao et al., 2023; 
Abramova et al., 2024). As stated earlier, another way to tackle the 
problem of detection of false positives is to perform assembly, however 
this is hampered by the tendency of metagenomic assemblies to break 
around ARGs (Abramova et al., 2024). Another issue is that each addi-
tional step of analysis, such as assembly or binning, results in some loss 
of data. Furthermore, different assemblers employ varying algorithms 
for constructing contigs, making the choice of assembler a trade-off 
between the quality of the resulting assemblies, computational re-
quirements, the time required for assembly and the sequencing depth 
that the assembler can handle. Previous research also showed that 
sample complexity may affect the choice of the most suitable assembler 
(Abramova et al., 2024). Therefore, constant development of the tech-
nology of long read sequencing as well as new and improved assembly 
tools requires the re-evaluation of existing pipelines for ARG search for 
each specific sample type. Another important question that is often 
addressed in many studies but not thoroughly evaluated is the 
sequencing depth required to obtain an adequate representation of the 
resistome. To our knowledge, only one study has specifically addressed 
this question (Gweon et al., 2019). However, changes in sample material 
and the anticipated baseline levels of resistance may necessitate recal-
culating the appropriate sequencing depth. The last but not least step in 

resistome analysis is the search for ARGs and choice of a suitable data-
base. There is a list of articles that compare advantages and disadvan-
tages of different ARG-databases based on sample and goal for research 
(de Abreu et al., 2020; Papp and Solymosi, 2022). While metagenomic 
sequencing has advanced resistome analysis, most previous studies have 
focused on individual steps of the pipeline, such as sequencing tech-
niques or assembly methods, rather than addressing the pipeline as a 
whole. We propose that a comprehensive approach, tailored to sample 
type, complexity, and research goals, is crucial for accurate and reliable 
ARG detection.

To our knowledge, this study is the first to focus on a comprehensive 
evaluation of different steps in the environmental metagenomics 
research pipeline with the aim of advancing farm resistome analysis. 
This included evaluating various sample transportation temperatures, 
comparing usage of short and long-read sequencing techniques for 
microbiome analysis as well as evaluation of tools for assembly and ARG 
search in the bioinformatical pipeline for investigation of the environ-
mental resistome.

2. Materials and methods

2.1. Sampling and experimental design

The material used in this study originated from environmental sock 
samples (Fig. 1) collected from the Swedish University of Agricultural 
Sciences (SLU) pig farm at the Swedish Livestock Research Centre in 
Lövsta, outside Uppsala, Sweden. Samples were collected in March 2022 
from four pens, each housing 10 to 13 three-month-old pigs from the 
same batch. The pens were located in different parts of the same room. 
All pigs were managed the same way, except that the pigs in pen number 
one had recently been treated with penicillin. Sterile gauze socks were 
put on clean boots covered with clean disposable foot cover. One pair of 
socks was used in each pen and in every pen, 100 steps were taken, 
turning the socks 90◦ after every 25 steps. The study was divided into 
two parts.

2.1.1. Part 1
Technical aliquots of one sample (Sample 0) were used for compar-

ison of three commercial DNA extraction kits in terms of their influence 
on the taxonomic composition of the sample as well as compatibility 
with long-read sequencing (Oxford Nanopore Technologies plc., Oxford, 
UK (ONT)), which relies on high-quality DNA with long, intact frag-
ments for optimal performance. This sample was handled on the day of 
collection and kept at − 80 ◦C for long-term storage.

2.1.2. Part 2
Seven samples were used for investigation of the effect of 

Fig. 1. Sock sampling: 20 cm long elastic tubular retention bandage over single 
use plastic boot coverage.
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temperature during transportation and sequencing technique on the 
taxonomical profile and abundance of ARGs, as well as for the devel-
opment of a bioinformatics pipeline, addressing crucial steps of assem-
bly and ARG search. To simulate different transportation methods, we 
compared three schemes of storage before extraction of sock samples in 
the lab. For simulation of transportation of material in the best condi-
tions (on dry ice), sock samples were handled on the day of sampling. To 
mock sample transportation via ordinary mail, a two-day storage was 
done at two different temperatures: room temperature (RT, +20 ◦C) for 
samples that would be transported without cooling, and + 4 ◦C to mock 
sample transportation on ice pack. For handling of the samples, the 
socks were soaked in buffered peptone water (50 ml per sock) and put in 
a stomacher to extract sample material. The resulting suspension was 
concentrated by centrifuging (3000 g for 10 min) and the pellet was 
resuspended in 15 ml of supernatant. After this, samples were trans-
ferred to 1.8 ml cryotubes for storage at − 80 ◦C. A more detailed 
description of the study procedure can be found in Table 1.

2.2. DNA extraction

DNA was extracted from three technical replicates of sample 0 in 
order to compare three commercially available kits: (1) ZM = ZYMO-
Biomics MagBead DNA/RNA (Zymo Research, Irvine, CA, USA), (2) EZ 
= E.Z.N.A Universal Pathogen Kit (Omega Bio-tek, Norcross, GA, USA) 
and (3) MP = MagPure Stool DNA LQ Kit (Magen Biotechnology, 
Guangzhou, Guangdong, China). All three kits employ a bead beating 
step in order to achieve mechanical lysis which was performed accord-
ing to the protocol settings either using Precellys Evolution homogenizer 
(10,000 RPM, 4 cycles × 60 s with a 60 s pause in between each cycle for 
ZM and MP) or using a Vortex-Genie 2 (Scientific Industries, Inc., 
Bohemia, NY, USA) at the highest speed for 5 min (EZ). Two out of three 
kits are based on magnetic bead purification (ZM and MP), while EZ 
includes a step of DNA purification with a MicroElute Column. The 
extraction protocols were carried out following the manufacturers’ 
guidelines.

For further comparison of effects of storage temperature and 
sequencing technique, the EZ kit was used for DNA isolation but with 
minor adjustments compared with the manufacturers protocol: 1) After 
bead beating disruption, the entire volume of supernatant in the dis-
ruptor tube was transferred to a centrifuge tube and diluted in RBB 

buffer (in volume equal to double volume of supernatant); 2) the whole 
volume of the obtained sample was transferred and centrifuged in a 
MicroElute column. These protocol modifications markedly increased 
the yield of extracted DNA (2–3 fold) without compromising its quality. 
This is particularly advantageous for nanopore sequencing, which often 
requires a DNA cleanup step that can result in the loss of at least half of 
the initial DNA quantity. We also compared two bead-beating options: 
via vortexing at the maximum speed for 5 min and using Precellys 
Evolution homogenizer (10,000 RPM, 4 cycles × 60 s with a 60 s pause) 
and its compatibility for short and long reads sequencing. A 1 % agarose 
gel electrophoresis was used for estimation of the length of DNA frag-
ments obtained by using these two bead-beating schemes. Based on the 
results, aliquots of samples obtained via Precellys Evolution homoge-
nizer were used for further Illumina sequencing, while vortexing was 
used for DNA extraction for nanopore sequencing. The DNA quality was 
assessed using a NanoDrop spectrophotometer, and Qubit dsDNA HS 
and BR Assay Kits were used for quantification of the concentration of 
extracted DNA.

2.3. DNA sequencing

2.3.1. Nanopore sequencing
Nanopore sequencing was performed on all samples of the study. 

One nanopore library preparation per sample was constructed using the 
ligation sequencing kit SQK-LSK109 (Oxford Nanopore Technologies 
(ONT), Oxford, UK). Sequencing of samples for kit comparison (Part 1) 
was performed on MinION Flow Cells R9.4.1, while Flow Cells with 
chemistry type R10.4.1 were used for experiments on sequencing tech-
nique comparison (Part 2). Sequencing proceeded for 72 h using Min-
KNOW software to collect raw sequencing data. Fast5 files were 
basecalled using Guppy (v.6.1.7) and output DNA sequence reads were 
saved to fastq files.

2.3.2. Illumina sequencing
Illumina sequencing was used on samples from Part 2 of the study. 

Following the manufacturer’s instruction, we constructed one DNA 
paired-end (PE) library with an insert size of 550 base pairs per sample 
with TruSeq DNA PCR-free Library Prep (Illumina Inc., San Diego, CA, 
USA). Shotgun metagenomic sequencing was carried out on an Illumina 
NovaSeq 6000 instrument (Illumina Inc.) using an SP flowcell (250 bp 
PE) with v1.5 sequencing chemistry (Illumina Inc.) at the National 
Genomic Infrastructure (NGI)/ the SNP&SEQ Technology platform, 
Uppsala, Sweden.

2.4. Data analysis

2.4.1. Illumina reads quality filtering
Raw reads were filtered to remove adaptor contamination, low- 

quality reads (<20, base call accuracy ~99 %), reads shorter than 50 
bp and host genomic DNA. Pre-processing of raw reads by sequence 
quality was performed with fastp v0.19.5 (Chen et al., 2018; Danecek 
et al., 2021; Chen, 2023). The clean Illumina sequences were screened 
with bowtie2 v.2.5.2 (Langmead and Salzberg, 2012) and Samtools 
v.1.3.1 (Danecek et al., 2021) against the pig reference genome (Sus 
scrofa 11.1, NCBI) downloaded with pre-built indexes for bowtie2 
alignment (https://genome-idx.s3.amazonaws.com/bt/Sscrofa11.1.zip) 
to remove contamination with host genome sequences.

2.4.2. ONT reads’ quality filtering
ONT raw reads were filtered from low quality reads (<15, base call 

accuracy ~96.8 %). For cleaning of host contamination from long reads 
we performed alignment against the pig reference genome with mini-
map2 v2.1-r311 (Li, 2018; Li, 2021) followed by Samtools v.1.3.1.

2.4.3. Taxonomic annotation
Taxonomic annotation was performed on trimmed reads obtained 

Table 1 
Overview of the procedure comparisons done in the study.

Study 
part

Sample Pig 
pen

Storage prior 
to handling

DNA 
extraction kit

Sequencing 
technique

1
Sample 
0 0 0d EZ ONT

1
Sample 
0 0 0d ZM ONT

1 Sample 
0

0 0d MP ONT

2 Sample 
1

1 0d EZ ONT, Illumina

2
Sample 
2 1 2d at +4 ◦C EZ ONT, Illumina

2
Sample 
3 1 2d at RT EZ ONT, Illumina

2 Sample 
4

2 0d EZ ONT, Illumina

2 Sample 
5

2 2d at RT EZ ONT, Illumina

2
Sample 
6 3 2d at +4 ◦C EZ ONT, Illumina

2
Sample 
7

3 2d at RT EZ ONT, Illumina

RT – room temperature, EZ - E.Z.N.A Universal Pathogen Kit, ZM - ZYMOBiomics 
MagBead DNA/RNA, MP - MagPure Stool DNA LQ Kit, ONT – Oxford Nanopore 
Technology.
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with Illumina and ONT in Kaiju v1.10.1 (Menzel et al., 2016) using Kaiju 
databases Refseq_nr (2023_06_17).

2.4.4. Assembly of bacterial genomes
Three types of assemblies were performed: assembly of short reads 

(Illumina), assembly of long reads (ONT) and hybrid assembly (combi-
nation of short and long reads). For each type of assembly, two tools 
were compared. The names of tools and assembly algorithms can be 
found in Table 2. We also used metaplasmidSPAdes as a tool for plasmid 
search.

2.4.5. Quality assessment of obtained assemblies
To compare the performance of different assemblers, QUAST v5.2.0. 

was used to assess contig statistics (Mikheenko et al., 2018). We enabled 
the MetaQUAST mode to obtain Genome fraction statistics for the 20 
most abundant bacterial species presented in pig farm environment 
(Mikheenko et al., 2016; Chen et al., 2021).

2.4.6. Assembly of metagenome-assembled genomes (MAG)s and quality 
assessment

MAGs assembly was performed on contigs obtained from MEGAHIT. 
MAGs were assembled by back-mapping of trimmed reads to obtained 
contigs using Bowtie2. Binning of contigs was performed using MetaBat 
v2.12.1 on mapped reads with a minimal length of 1500 bp (Kang et al., 
2015). Quality assessment of obtained bins was performed in CheckM 
v1.0.7 and bins with completeness <50 % and contamination level > 10 
% were classified as bad quality bins and excluded from further analysis.

2.4.7. ARG search
The search for ARGs was performed both on contigs obtained with 

five assembly tools (hybridSPAdes, metaSPAdes, MEGAHIT, metaFlye, 
metaplasmidSPAdes) and bins obtained from MEGAHIT contigs using 
ABRicate v1.0.1 (Seemann). The analysis included a search against five 
ARG databases: ARG-ANNOT (Gupta et al., 2014), CARD (Jia et al., 
2017), MEGARes (Doster et al., 2020), NCBI AMRFinderPlus 
(Feldgarden et al., 2019) and ResFinder (Zankari et al., 2012). Database 
versions, number of ARGs and date of data retrieval are presented in 
Table 3. Minimum DNA identity and minimum DNA coverage were set 
at 80 %. A dictionary of ARGs that includes standard gene name, 
description of mechanism of work, the resistance pattern (different an-
tibiotics classes, metals and biocides and antibiotic gene family) was 
manually created to unify the output from 5 different databases as well 
as to avoid the appearance of duplicates during ARG search.

2.4.8. Sequencing depth subsampling and rarefaction curves
In order to simulate the effect of sequencing depth, subsampling was 

performed on three samples. For this purpose, the sample function of the 

seqtk (v. 1.3-r106) package was used with random seed equal to 100. 
Subsampling was performed on reads that had already passed quality 
control into the following set of depth intervals: 1 M, 2 M, 4 M, 6 M, 8 M, 
10 M, 20 M, 30 M, 40 M, 50 M, 60 M, 70 M, 80 M and 90 M.

Further analyses were performed in R software v4.3.1 (R Core Team, 
2013), using the packages: dplyr, tidyverse and ggplot2.

3. Results

3.1. Comparison of quality and quantity using different DNA extraction 
kits

The Nanodrop analysis showed that the best performance was by the 
EZ kit, with both higher average DNA concentrations and a better A280/ 
A260 ratio compared with the MP and ZM kits. For the other two kits, 
the absorbance ratio was below 1.7, which is considered as a lower DNA 
quality that may impact further analysis. Therefore, an additional pre-
cleaning step was performed, which reduced the DNA quantity over 
twofold. Agarose gel electrophoresis didn’t show any visible differences 
among the three kits in length of obtained DNA fragments, which was 
approximately 20kbp for each kit. Using Precellys Evolution homoge-
nizer for the bead-beating step of the EZ kit yielded twice as much DNA 
amount compared to vortexing, however, the obtained DNA fragments 
were smaller in size (1500 to 5000 bp) and therefore not suitable for 
sequencing using nanopore technology (ONT).

3.2. Effect of DNA extraction kit on detected diversity and abundance of 
bacteria

The performance of the three kits was further compared by ONT 
sequencing. Using this technique, we obtained 600 k (ZM), 3 M (MP) and 
5 M (EZ) of reads per sample with similar read length distribution be-
tween the three different samples, ranging from 50 to 90,000 bases after 
quality trimming. The mean sequence quality of the reads after trim-
ming remained at 20 (Phred Score/probability of incorrect call 1 in 100 
bases). Taxonomic classification of the sequenced reads showed that the 
ZM kit extraction missed ~37 % of the total diversity on genus level, 
while the EZ kit resulted in the biggest variety of genera taxonomy 
covering ~95 % of the total taxonomic diversity (Fig. 2A). There was no 
clear visible effect of DNA extraction kit on the abundances of the 40 
most prevalent genera in the sample (Fig. 2B).

3.3. Effect of sequencing method on bacterial taxonomy

In comparison with the ONT sequencing, Illumina sequencing yiel-
ded vastly higher numbers of reads, at least 50 M reads per sample, 
which were of high quality (>30 Phred score) and had a length of 250 
bp. ONT yielded at least 0.8 M of reads with an average read quality (20 
Phred score) and a mean length (after quality trimming) of 900-2700 bp. 
In total, 3813 different bacterial genera were identified across the 
samples, Illumina sequencing detected approximately 30 % more bac-
terial genera compared to ONT sequencing. For the majority of the most 
prevalent bacterial genera there was no difference in relative abundance 
obtained between the two sequencing techniques, however Illumina 
sequencing resulted in higher relative abundances of some genera 
(Fig. 3).

Table 2 
Tools and assembly algorithms assessed in the study.

Tool Version Assembly Algorithm Reference

Canu v2.2 Long 
reads

Adaptive k-mer 
weighting and 
repeat 
separation

(Koren et al., 
2017)

metaFlye v2.9.3 Long 
reads

Repeat graphs (Kolmogorov 
et al., 2020)

MEGAHIT v1.2.9 Short 
reads

de Bruijn graph (Li et al., 
2015)

metaSPAdes v3.15.5 Short 
reads

de Bruijn graph (Nurk et al., 
2017)

metaplasmidSPAdes v3.15.5 Short 
reads

de Bruijn graph (Antipov et al., 
2019)

hybridSPAdes v3.15.5 Hybrid de Bruijn graph (Antipov et al., 
2016)

OPERA-MS v0.8.3 Hybrid Scaffold graph (Bertrand 
et al., 2019)

Table 3 
Description ARG databases used in the study.

Database Version Date of download Number of ARGs

ARG-ANNOT V5 (2019 June) 2024-Jun-18 2223
CARD V3.2.9 2023-Jun-18 4805
MEGARes V2.0 2023-Nov-4 6635
NCBI AMRFinderPlus 2024-05-02.2 2024-Jun-18 6863
ResFinder V 2.3.2 2024-Jun-18 3194
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Fig. 2. Comparison of taxonomic profiles from three DNA extraction kits. A. Venn diagram showing the number of shared genera, and % of total genera taxonomy 
covered by sequencing of a sample extracted with each of the kits. EZ - E.Z.N.A Universal Pathogen Kit, ZM - ZYMOBiomics MagBead DNA/RNA, MP - MagPure Stool 
DNA LQ Kit. B. Log10-normalised abundances of the 40 most prevalent bacterial genera: for this analysis the 40 most abundant bacterial genera in the sequencing 
outcome from three DNA kit extraction were chosen.

Fig. 3. Effect of sequencing method on bacterial abundance. Log10-normalised relative abundances of the 40 most prevalent bacterial genera in two different 
samples from pig environment.
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3.4. Comparison of different assemblers

The results of assembly quality assessment are shown in Fig. 4. 
Comparison of assemblies was based on reference-based statistics that 
included genome fraction, largest alignment and total aligned length, 
and statistics without reference including largest contig, total length and 
N50. Overall, assemblers that use Illumina reads performed markedly 
better than assemblers based only on ONT reads, giving higher values for 
genome fraction and total aligned length. MEGAHIT showed the best 
results in genome fraction and total length of assembly.

As the main focus of the method optimisation was analysis of AMR, 
the assemblers were compared by ARG search. For this analysis, as-
semblies obtained with hybridSPAdes, metaSPAdes, MEGAHIT, meta-
Flye and metaplasmidSPAdes were used. There was a very limited 
number of ARGs (max 6 per sample) found in assemblies with meta-
plasmidSPAdes. Search of ARGs in metaFlye assemblies resulted in 
smaller numbers of ARGs within antibiotic classes as well as less varity 
in antibiotic classes in comparison with metaSPAdes, hybridSPAdes and 
MEGAHIT (Fig. 5). MetaSPAdes, MEGAHIT and hybridSPAdes resulted 
in a similar picture of ARGs.

3.5. Comparison of databases used for ARG search

Performing ARG search with ABRicate against 5 databases (Table 3) 
resulted in a total number of 188 of unique gene names, belonging to 54 
families of resistance genes and conveying resistance to 15 antibiotic 
classes. The largest number of unique ARGs and their sequences were 
found with MEGARes (Table 4), followed by CARD. Databases such as 
MEGARes, NCBI AMRFinderPlus and ResFinder contain several 
sequence variants per ARG. During manual quality control of the ARG- 
search, it was found that the ResFinder database contains 52 instances 
where the same accession number is associated with at least two 
different ARGs, which could potentially lead to errors or misinterpre-
tation of the data. CARD and MEGARes contain ARGs that are involved 
in resistance against aminocoumarins, fluoroquinolone, mupirocin and 
peptide antibiotics (Fig. 5). Both these databases also provide informa-
tion on resistance to biocides, MEGARes additionally gives information 
on metal resistance genes. The list of these genes can be found in 

Supplementary Table 1.

3.6. Effect of assembler on ARG identification

The choice of assembler had a visible effect on ARGs detected, which 
was similar in all tested samples (Fig. 6). MetaplasmidSPAdes gave the 
worst result with a very small number of ARGs: from 0 to 6 per sample. 
MetaFlye produced better results than metaplasmidSPAdes (from 5 to 83 
ARGs found per sample), however in comparison with search on contigs 
obtained with hybridSPAdes, metaSPAdes and MEGAHIT, the detected 
ARGs belonged to a smaller variety of different antibiotic classes as well 
as a lower number of genes per class. Search of ARGs in hybridSPAdes, 
MEGAHIT and metaSPAdes assemblies resulted in a similar picture of 
resistance among the samples: both in the variety of ARG classes and the 
number of ARGs per antibiotic class. Among the assemblers based on 
short Illumina reads, ARG searches in metaSPAdes yielded a smaller 
number of recovered genes (864 in total across 7 samples), whereas 
hybridSPAdes and MEGAHIT produced nearly identical results, with 
883 and 882 recovered genes, respectively.

3.7. Effect of storage temperature on the diversity and abundance of 
ARGs in the samples

To examine whether different sample storage temperature affects the 
ARG patterns, we mapped MEGAHIT assemblies against five databases. 
The analysis did not reveal an observable effect of temperature on the 
diversity of detected ARGs. Fig. 7 displays the relative abundances 
(normalised against total length of obtained assembly) of ARGs across 
seven samples that were collected from three pig pens. In all samples, 
the largest group of ARGs was associated with the broad-spectrum 
antibiotic efflux pump class. Other antibiotic classes with a high pro-
portion of associated ARGs included aminoglycosides, beta-lactams, 
nitroimidazoles, and tetracyclines. Overall, the use of different sample 
storage temperatures did not have a noticeable effect on the abundance 
of ARGs within any antibiotic class, with the exception of tetracycline- 
related genes. For these genes, a slight increase in the number of 
detected ARGs as the storage temperature increased was observed.

Fig. 4. QUAST comparison of assembly quality performed by 6 different tools. Long reads assemblers: Canu, metaFlye. Short read assemblers: MEGAHIT and 
metaSPAdes. Hybrid-based assemblers hybridSPAdes and OPERA-MS. Colour gradient represents the quality of obtained assemblies, where dark red indicates poorer 
outcome and dark blue better outcome.*indels = insertions and deletions. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.)
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3.8. Comparison of ARG search results in assemblies and after binning

Fig. 8 shows the results of ARG search after assembly and after 
binning. It demonstrates that binning prior to ARG search decreases the 
variety of ARGs in comparison with search without this additional step. 
On average, binning reduced the total variety of ARGs by 56 %.

3.9. Sequencing depth for ARG search

The results of the simulation of sequencing with different depth 
followed by ARG search with ABRicate in five ARG databases are pre-
sented in Fig. 9. To achieve identification of at least 85 % of all ARG 
families in the samples, a sequencing depth of 25 M reads was needed 
(Fig. 9A). To recover 85 % of all gene variants present in the samples, the 

Fig. 5. Comparison of performance of search using five ARG databases. The number of identified ARGs was calculated based on the quantity of unique ARG se-
quences obtained from in all samples in the study.

Table 4 
Identified ARGs in the study samples, based on different databases.

Database N of unique 
sequences

N of unique gene 
names

% of total genes 
covered

ARG-ANNOT 85 85 45
CARD 147 147 78
MEGARes 177 157 84
NCBI 

AMRFinderPlus
131 104 55

ResFinder 95 77 41

Fig. 6. Effect of assembler on the diversity and abundance of ARGs detected in the sample. The figure shows results from sample 3.
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Fig. 7. Effect of sample storage temperature on the diversity of ARGs in different antibiotic classes. Samples were collected from three pig pens and stored at three 
different temperatures. RT -room temperature.

Fig. 8. Detection of ARGs after MEGAHIT based assembly and after MetaBat binning of obtained assemblies. Results presented are based on samples 1 and 4 
collected from pen 1 and 2 respectively and stored at − 80 ◦C. The number of genes identified after the assembly step and the binning step is shown on the x-axis.
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sequencing depth had to be increased to 43 M reads (Fig. 9B).

4. Discussion

There are several critical steps that must be optimised when inves-
tigating the farm resistome: sample collection, transportation and stor-
age, DNA extraction and sequencing as well as bioinformatic analysis 
including metagenome assembly and search for ARGs. Previous studies 
that evaluated methodology have mainly focused on the comparison of 
different aspects of one step at a time from the overall pipeline for 
environmental resistome search. This study aimed to comprehensively 
evaluate methodologies across several critical steps in the environ-
mental metagenomics research pipeline to advance farm resistome 
analysis. Specifically, it addressed sample transportation conditions 
(temperature and duration), comparing short- and long-read sequencing 
techniques for microbiome analysis, and assessing tools for metagenome 
assembly and ARG detection within the bioinformatics pipeline to 
ensure reproducible ARG detection from farm environments.

4.1. Sample collection and storage

We employed and evaluated the performance of sock sampling as a 
novel method for detecting AMR in the pig farming environment for the 
first time. Previously this method was concluded to be sufficient to 
determine the herd status regarding prevalence of bacterial pathogens 
(Buhr et al., 2007; Pedersen et al., 2015; Lillie-Jaschniski et al., 2023), 
however it has never been evaluated for suitability for ARG search. Sock 
sampling is an easy non-invasive method and, based on our results, it 
yields the needed amount of good quality bacterial material for whole- 
metagenome sequencing. In comparison with other sampling methods, 
sock sampling is a cost-effective and not very time-consuming method 
that helps to avoid the problem of selecting individuals to sample and 
provides a picture of the entire group of pigs in the pens included in the 
sample. There is a risk that the sock sampling method might miss low 
prevalent resistance genes or bacterial genera, however previous studies 
that compared different sampling strategies showed that a similar 

strategy based on scraping manure from the floor resulted in only minor 
differences in resistance in comparison with sampling fresh droppings or 
individual pig sampling (Munk et al., 2017).

The effect of sample storage temperature on the abundance and di-
versity of ARGs is a critical area of research, particularly for the purposes 
of longitudinal studies, where it is important to minimize the role of any 
factor that might interfere with the stability of the resistome. Previous 
studies reported that storage of fecal samples at ambient temperatures 
may exhibit notable changes in their microbiota and resistome profiles 
over time. For instance, (Martin de Bustamante et al., 2021) reported 
that fecal samples from equines stored at room temperature for extended 
periods showed alterations in microbial diversity, contrasting with 
findings in human and feline samples where no significant changes were 
observed within 24 h at room temperature. This suggests that the sta-
bility of the resistome may vary across species and storage conditions. 
However, there is a limited number of studies that focus directly on the 
effect of temperature on the change in resistome. In our study we 
focused on the effect of short-term storage (48 h) of sock samples at 
+4 ◦C and at room temperature (~ + 25 ◦C) on the resistome. An in-
crease of temperature did not result in major changes in diversity and 
abundance of the resistome. Only genes exhibiting resistance against 
tetracycline showed some slight increase with longer storage at higher 
temperatures. A similar effect of sample storage temperature increase on 
tetracycline resistance was shown in the work of Poulsen et al. (2021) in 
pig fecal samples. However, in his work the total observed abundance of 
ARGs appeared to be dependent on the storage conditions: cold tem-
peratures (− 80 ◦C and − 20 ◦C) resulted in a decreased abundance 
compared to immediate sample processing, while longer storage at RT 
increased the overall AMR abundance. The difference between our re-
sults, and the changes in patterns of resistance in Poulsen’s work 
(Poulsen et al., 2021) could be explained by two factors. Firstly, there is 
the difference in sample material used: in our study we applied sock 
sampling, whereas Poulsen’s study used pig feces. Secondly, in our study 
the samples were stored at − 80 ◦C for long-term preservation before 
DNA extraction and sequencing. This extended storage at low temper-
atures could reduce any impact that short-term storage at varying 

Fig. 9. Rarefaction curves for A. ARG gene families, and B. unique ARGs. The three samples with lowest concentration of ARGs were chosen for this analysis.

V. Ladyhina et al.                                                                                                                                                                                                                               



Journal of Microbiological Methods 230-231 (2025) 107103

10

temperatures might have on the results. Another possible explanation is 
that our samples contained lower overall numbers of resistant bacteria 
with only tetracycline-resistant fast-growing bacteria in sufficient 
numbers to affect the results. Tetracycline resistance is commonly 
observed in indicator as well as clinical isolates of E. coli from pigs, 
although the levels in Sweden are much lower than in most countries 
(SVA, 2024). Regardless, our results support the strategy to transport 
samples at low temperature.

4.2. Extraction of DNA from complex environmental samples

In our work we didn’t reveal any visible difference in bacterial tax-
onomy of the most abundant bacteria genera in samples processed with 
different extraction kits. The EZ kit resulted in a larger number of 
detected bacterial genera, however it still missed ~5 % of the genera 
that were recovered by ZM and/or MP. Among the tested DNA isolation 
kits, the EZ kit was the optimal choice because of its easy usage. In 
contrast with the two other kits, the quality and quantity of DNA ob-
tained with the EZ kit was good enough to avoid the need for further 
precleaning of samples, which often leads to loss of at least half of total 
DNA and is especially needed to avoid pore clogging during ONT 
sequencing. For additional increase in the quantity of obtained DNA 
some changes can be made in the EZ protocol: 1) usage of the whole 
available volume of sample after the bead-beating step (as described in 
materials and methods); 2) exchange the homogenisation step using 
vortex to Precellys Evolution homogenizer with bead-beating, however 
this type of lysis leads to a shorter lengths of the obtained DNA frag-
ments and is therefore not recommended for ONT sequencing.

4.3. Illumina vs ONT sequencing

The comparison between Illumina sequencing and ONT sequencing 
for taxonomy studies and investigations of the resistome revealed 
distinct advantages and limitations inherent to each platform. Illumina 
sequencing, known for its high throughput and accuracy, is particularly 
effective in generating large volumes of data with low error rates, 
making it suitable for detailed taxonomic studies and microbial di-
versity, while long reads produced by the ONT platform allows to 
resolve repetitive regions and complex genomic structures 
(Boolchandani et al., 2019; Pillay et al., 2022). In this study, the 
application of both sequencing methods did not reveal any substantial or 
consistent effect on bacterial taxonomy. However, Illumina sequencing 
detected 30 % more bacterial genera compared to ONT sequencing, 
which might be connected to the significantly larger depth of sequencing 
obtained with short reads. Therefore, deep sequencing with both the 
NovaSeq 6000 and MinION sequencing platforms appears adequate for 
assessment of the major part of the microbial community composition, 
however deep sequencing with the Illumina approach allows for re-
covery of more rare bacterial genera. Previous research suggests that 
Illumina is still the current standard for characterizing complex micro-
bial communities (Stevens et al., 2023), however significant improve-
ment in the quality of long read sequencing with ONT has lead to 
increase in the accuracy of classification and relative estimates and 
might be preferred for taxonomy studies (Pearman et al., 2020). How-
ever, if the focus is on the resistome, the read length obtained with 
Illumina sequencing can be regarded as sufficient, as shown in our study.

Moreover, regarding ARG abundance, Illumina sequencing showed 
better results in comparison with the long reads obtained from ONT. 
More ARGs and antibiotic classes were found in data from Illumina 
sequencing, which might be connected to the bigger depth of 
sequencing. Simulation of sequencing with different depth showed that 
adequate (>80 %) analysis of the resistome based on ARG families 
needed at least 25 M of 250 bp PE reads, while to reveal the majority of 
gene variants the sequencing depth has to be increased to 45 M. This 
corresponds to previous studies where it was shown that to obtain a 
stabilised number of ARG families in pig caeca, a sequencing depth of 

~60 M 150 bp PE reads per sample is needed (Gweon et al., 2019). 
Achieving similar sequencing depths with ONT sequencing is not cost- 
effective. Hence, if the focus is on the resistome and the annotation of 
the ARGs to their bacterial hosts is less important, Illumina would be the 
method of choice.

4.4. Bioinformatic analysis

There are several crucial steps in bioinformatic analysis to charac-
terise the resistome: choice of assembler, binning and choice of ARG 
database. Although some authors have described the pro’s and con’s of 
different choices (Boolchandani et al., 2019; Pillay et al., 2022; Lee 
et al., 2023), these must be optimised for the specific purpose of each 
study, scientific question and complexity of investigated samples. To 
rely on previously published studies in the choice of methods may seem 
a robust strategy but, as our study shows, there are many context- 
specific aspects that must be understood and addressed. The typical 
pipeline for ARG identification from metagenome data is based either on 
read-mapping or assembly, which can be further used for binning or an 
annotation step (Pillay et al., 2022). Every additional step in the pipeline 
for ARG search brings the risk of additional loss in diversity and abun-
dance of identified ARGs. Therefore, depending on the research ques-
tion, the assembly and binning step may or may not be performed. A 
search of ARGs on the basis of raw reads may be recommended if the 
focus of the research is quantity and variety of different ARGs, but it 
increases the risk of false-positive detections (Abramova et al., 2024). 
However, if the focus of the research is the fluctuation of ARGs in regard 
to specific bacteria, the step of assembly becomes crucial (Abramova 
et al., 2024). Recent studies suggest that the use of ONT-based long 
reads, either alone or in combination with Illumina sequencing, can 
enhance ARG detection and characterization by overcoming the chal-
lenge of plasmid reconstruction and the tendency of assemblies to break 
around ARGs due to surrounding repetitive regions (Berbers et al., 2020; 
Zhang et al., 2023; Abramova et al., 2024). Taking into account the 
factors discussed above, we evaluated the performance of three distinct 
assembly techniques: hybrid, short-read, and long-read assemblies, 
focusing on their impact on assembly quality. The implications of the 
resulting assemblies for biological interpretation were assessed by 
examining the contextualization of ARGs which was the primary focus of 
this study. We compared seven different assemblers that were seen as 
most promising for complex environmental metagenome analysis in 
each type of assembly technique, including two short reads assemblers 
(metaSPAdes and MEGAHIT) (Brown et al., 2021; Zhang et al., 2023; 
Abramova et al., 2024), two long reads assemblers (CN and metaFlye) 
(Latorre-Perez et al., 2020; Brown et al., 2021; Zhang et al., 2023), two 
tools based on hybrid assembly (hybridSPAdes and OPERA-MS) (Brown 
et al., 2021; Zhang et al., 2023) and metaplasmidSPAdes to focus on 
plasmid-located ARGs. In our work, among long-read assemblers met-
aFlye performed markedly better, while Canu collapsed our data. 
Similar results with larger size of both total assembly and largest contig 
were shown in the work of Brown et al. (2021). Previous research 
showed contradicting results in comparison of MEGAHIT and meta-
SPAdes. In the work of Abramova et al. (2024) metaSPAdes was sug-
gested as a better option for complex sample scenario, while other 
studies showed that MEGAHIT outperforms metaSPAdes in generating 
assemblies from deeply sequenced datasets, which is probably con-
nected to its optimised algorithms to analyze large datasets (Zhang et al., 
2023). Similar to the latter, in our work MEGAHIT performed better and 
preserved the biggest total aligned length among all assemblers. Addi-
tion of long reads to short reads increased the length of obtained contigs 
in hybridSPAdes, however they were still smaller than the ones obtained 
with metaFlye assemblies, which is expected as short-reads were mainly 
used to reduce misassemblies rather than fill gaps between contigs 
(Zhang et al., 2023). Contradictory to previous research (Brown et al., 
2021; Zhang et al., 2023), OPERA-MS assembler did not perform well on 
our data and was excluded from further analysis together with Canu. 
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Comparison of assemblies based on ARG identification resulted in higher 
diversity and abundance of ARGs in short and hybrid read assemblies, 
which is similar to the results of Brown et al. (2021) Overall, among all 
tested assemblers MEGAHIT showed the best performance in regard of 
both assembly quality and effectiveness of ARG search.

As stated above, one of the possible steps in ARG search is binning. 
On one hand, binning may allow to reconstruct genomes of unknown or 
uncultured bacteria (Pillay et al., 2022), while on the other hand it re-
sults in loss of some information. Binning of MEGAHIT contigs reduced 
the variety of recovered ARGs by 56 %, which is markedly bigger than in 
the work of Maguire which was performed on a simulated metagenome 
from 30 chosen genomes and resulted in up to 15 % loss in ARG recovery 
(Maguire et al., 2020).

Another crucial step in resistome investigation is the choice of ARG 
database. There are a range of different databases and tools for ARG 
search that have been described and compared in multiple reviews 
(Boolchandani et al., 2019; de Abreu et al., 2020; Papp and Solymosi, 
2022; Pillay et al., 2022). The databases can be specialised (focused on 
species specific information) or general, with focus on ARGs from all 
bacterial hosts, and the tools can be divided into those that work on 
reads or contigs. In our study we used ABRicate as it allows to stan-
dardize and compare outcome of search with several ARG databases. As 
the focus of the study was the overall resistome of the farm environment, 
we compared the performance of five general databases: ARG-ANNOT, 
CARD, MEGARes, NCBI AMRFinderPlus and ResFinder. The choice of 
databases was based on availability of them in ABRicate and how 
actively they are curated. Previous research suggested that CARD should 
be the number one data resource (Papp and Solymosi, 2022), while a lot 
of environmental and veterinary-based resistome studies are conducted 
based on the highly cited database ResFinder (Macedo et al., 2021; 
Ekhlas et al., 2023), however it contains only acquired ARGs (Zankari 
et al., 2012). In our study, most of the resistance was identified by 
MEGARes which is based on data from all other databases and had a big 
number of gene variants (Macedo et al., 2021; Papp and Solymosi, 
2022), but it recovered only 84 % of all ARGs found in the study. The 
ARG-ANNOT database is based on the Lahey Clinic β-lactamase database 
(Gupta et al., 2014) and therefore had the second best result in detection 
of ARGs against beta-lactams. Only CARD and MEGARes revealed ARGs 
conveying resistance to aminocoumarins, mupirocin, fluoroquinolone 
and peptide antibiotics. The other plus of these two databases is that it is 
possible to identify biocide and/or metal resistant genes. NCBI AMR-
Finder Plus recovered the greatest number of ARGs against amino-
glygosides, folic acid synthesis inhibitors, glycopeptides, MLS and 
tetracyclines. One of the minuses of ResFinder identified in this work 
was that the database has 52 pairs of different ARGs with the same 
accession number which might lead to misinterpretation of the outcome. 
Overall, our findings indicate that achieving higher diversity in anti-
microbial resistance gene (ARG) detection requires simultaneous 
searches across multiple databases.

5. Limitations of the study

In this study, we addressed several key factors that impact the 
reproducibility of ARG identification in complex farm-derived samples. 
Nonetheless, some limitations remain that future research should 
address. Firstly, we did not compare the effectiveness of sock sampling 
to individual fecal samples, leaving unresolved whether the sock sam-
pling method may miss microbial diversity or low-abundance ARGs. 
Secondly, sequencing data from fresh samples would be valuable to 
assess potential effects of long-term storage at − 80 ◦C on bacterial and 
ARG diversity and abundance. Additionaly, this study did not compare 
ARG detection between assembled and non-assembled data, as quanti-
fying ARGs in non-assembled Illumina short reads presents challenges. 
Such analysis could clarify the magnitude of potential losses in ARG 
abundance or diversity connected to the assembly step. The use of 
samples from several different pens, including the only one where the 

pigs had been treated with antibiotics, was to obtain some variation and 
a sufficient number of samples for our purposes. However, as the pigs in 
Swedish farms are managed batchwise all pigs in the same batch should 
be regarded as one epidemiological unit.

6. Conclusion

We have developed an approach for reproducible ARG detection in 
complex samples from the pig farm environment with low levels of 
antibiotic usage, based on sock sampling as a novel method for detecting 
AMR. E.Z.N.A Universal Pathogen (Omega Bio-tek, USA) was the 
optimal choice among the tested kits for metagenome analysis. Choice of 
sequencing technique didn’t drastically affect taxonomy identification; 
however deep Illumina sequencing allows to recover approximately 30 
% more of low-abundance bacterial genera. The optimal sequence depth 
for ARG detection from farm environment with low levels of antibiotic 
usage is within 25 to 45 M of 250 bp reads. Storage of sock samples at 
room temperature up to two days did not affect diversity or abundance 
of ARGs, however choices made during bioinformatical analysis can 
markedly change the outcome. In this work, we propose computational 
analysis based on MEGAHIT assembly as a compromise between need to 
identify bacteria which carry ARGs and possible loss in diversity and/or 
abundance of resistance genes. Our research suggested that search 
against multiple ARG databases is needed for the detection of the highest 
diversity of ARGs.
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