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Abstract 
Rapid identification of mastitis-causing bacteria is crucial for effective treatment deci-

sions. Several multi-media agar plates have been developed to aid pathogen identification 

on farms or by veterinarians, but these methods require trained operators. Advances in 

AI-based automatic image analysis have shown potential for detecting bacterial growth 

on agar plates in both agriculture and medicine. This study aimed to evaluate the accu-

racy of an AI-based image bacterial classifier compared to a gold-standard laboratory 

assessment. A secondary objective was to examine how sample transportation affects 

diagnoses by comparing results from an on-farm bacterial classifier with those from a 

laboratory-placed classifier. A total of 1,299 milk samples were collected and analysed 

at the Swedish Veterinary Agency’s Mastitis Laboratory using both accredited laboratory 

standards and the bacterial classifier. The image classifier is capable of identifying growth 

of eight different bacteria types on SELMA + multi-agar plates. Out of 1,212 samples that 

met the analysis criteria, the bacterial classifier provided diagnoses for 70%, while 30% 

required further evaluation. The classifier demonstrated high specificity for all diagnoses 

and high sensitivity for common pathogens such as Escherichia coli, Staphylococcus 

aureus, and non-beta-haemolytic streptococci, though sensitivity was lower for less 

common pathogens. In a subset of samples analysed by both on-farm and in-lab classi-

fiers and the Mastitis Laboratory, 62% showed consistent diagnoses. The average trans-

portation time was 4.9 days, which influenced bacterial growth. Interestingly, fewer mixed 

infections were detected post-transport. Automated image classifiers, like Bacticam, hold 

promise for on-farm mastitis diagnosis, supporting targeted antibiotic treatment and reduc-

ing antimicrobial use.

Introduction
Identification of mastitis causing bacteria is in many aspects crucial, if done rapidly it can be 
used as a decision tool for selective treatment of clinical cases and even if it is not done rapidly 
it provides important information about pathogens circulating in the herd. Clinical mastitis 
is, in Sweden and many other countries, the main reason for antibiotic treatment of dairy 
cows [1]. Even though antibiotic treatment often is beneficial for a cow suffering from clinical 

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0318698&domain=pdf&date_stamp=2025-02-20
https://doi.org/10.1371/journal.pone.0318698
https://doi.org/10.1371/journal.pone.0318698
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-8131-6725
mailto:Josef.Dahlberg@slu.se


PLOS ONE | https://doi.org/10.1371/journal.pone.0318698 February 20, 2025 2 / 11

PLOS ONE Validation of AI-based classifier for bacterial identification on 4-agar plate

mastitis it is not always justified. The self-cure rate for mastitis caused by Escherichia coli is so 
high that antibiotic treatment rarely is warranted [2]. Evaluation of on-farm mastitis tests has 
shown that incorporating the results in treatment decision-making for clinical cases, but not 
sub-clinical cases, resulted in more targeted treatments and less antibiotic use [3]. Further, a 
recent meta-analysis showed no adverse effects on production and infection related parame-
ters when using selective mastitis treatment (i.e., identifying the pathogen before treatment) 
over blanket treatment for mild and moderate cases of mastitis [4]. Identification of mastitis 
causing bacteria is as such an important tool to designate correct treatment and reduce the 
antimicrobial use in the dairy industry.

The need for rapid and easy identification of mastitis causing pathogens has led to the 
development of multiple-media agar plates, e.g., Accumast (FERA Animal Health, College 
Station, TX, USA), SSGN and SSGNC (Eurofins, Luxembourg, Luxembourg), Minnesota 
Easy Culture Systems (University of Minnesota, St. Paul, MN, USA), VetoRapid (Vétoquinol, 
Bern, Switzerland), SELMA and SELMA PLUS (SELMA + , Swedish Veterinary Agency (SVA), 
Uppsala, Sweden). SELMA + is a multiple-agar plate with four different agars intended to use 
for identification of clinical mastitis causing pathogens. It is possible to identify 14 different 
species or groups of microorganisms as well as mixed flora and no growth on SELMA + (Fig 
1). Identification of bacteria/ microorganisms is based on the appearance and growth of the 
colonies on the different agar fields and in some cases colour and odour [5].

Automatic image analysis has in later years become applicable to a wide range of subjects 
and fields. In agriculture, automatic image analysis has been described for different areas 
ranging from growth in broiler chickens to plant recognition, reviewed by Kamilaris et al. [6]. 
In medicine automatic image analysis are used for Gram-staining and smears, as reported by 
Smith et al. [7] in a review on infectious disease. In bacteriology automatic image analysis has 
been used to detect presence or absence of bacterial colonies on agar plates [8,9], and also to 
detect specific bacterial growth on a chromogenic media [10–12]. In mastitis diagnostics, an 
AI-based automatic image analysis has been used to identify clinical mastitis-causing patho-
gens on chromogenic multiple-agar plates [13].

A bacterial classifier, Bacticam, for automatic reading and classification of bacterial growth 
on SELMA + multiple-agar plates has been developed by the company Agricam (Linköping, 
Sweden). The bacterial classifier is based on an artificial neural network doing automatic 
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Fig 1. List of growth possible to identify on SELMA + and included agars. Bacterial growth that according to the 
manufacturer is possible to identify on SELMA + and growth that bacterial classifier (Bacticam) can identify. The 
agars on the SELMA + are 1) bovine blood with esculine, 2) MacConkey, 3) PGUA and 4) mannitol salt.

https://doi.org/10.1371/journal.pone.0318698.g001

https://doi.org/10.1371/journal.pone.0318698.g001


PLOS ONE | https://doi.org/10.1371/journal.pone.0318698 February 20, 2025 3 / 11

PLOS ONE Validation of AI-based classifier for bacterial identification on 4-agar plate

image analysis of the multiple-media agar plates. The bacterial classifier can currently distin-
guish between eight different types of bacterial growth (including mixed flora and no growth, 
Fig 1) and the system is developed to be used on farms by trained farm personnel.

The aims of this study were to; 1) evaluate the accuracy of the automatic bacterial classi-
fier compared to a (gold) standard laboratory culture, 2) explore the variation in results after 
transportation of samples.

Materials and methods

Samples and laboratory procedure
Milk samples from dairy cows with clinical mastitis arriving at the Mastitis Laboratory, at 
the Swedish Veterinary Agency (SVA) in Uppsala, Sweden, were used in this study. SVA is a 
reference laboratory and the Mastitis Laboratory is accredited according to ISO 17025. At the 
Mastitis Laboratory milk samples were handled in parallel and analysed with two different 
methods. The milk samples used in this study came from two different sources, either dairy 
farms with a Bacticam station in use (Agricam clients) or other farms. Approval to use the 
milk samples for research purpose was obtained from the sample owner, either directly (by 
signing a form) or indirectly (by accepting the terms and conditions when sending a sample 
to SVA). Ethical approval for the study was not warranted according to the Swedish animal 
welfare ordinance (2019:66). Milk samples arriving at the Mastitis Laboratory from the 8th of 
July 2021 to the 6th of April 2022 were included in the study. The distribution of milk samples 
over time and sample origin are presented in Supporting information (S1 Fig).

At the Mastitis Laboratory, milk samples were processed according to NMC recommenda-
tions [14]. In brief, 10 µl of milk were cultured aerobically on a blood agar plate at 37° C and 
evaluated after 24 and 48 hours of growth. At evaluation, number of colonies were registered 
and initially characterised based on morphology and haemolysis. For bacteriological identi-
fication, bacterial colonies from agar plates were typed to species level through MALDI-Tof 
analysis. If necessary, an extended bacteriological examination was performed, in which case 
the detection limit was lowered by spreading 100 µl of milk on the agar plate. Bacterial diag-
nosis at the Mastitis Laboratory is based on colony morphology and a sample is considered 
positive if at least two CFU of a major pathogen or at least five CFU of a minor pathogen are 
identified. If growth of two different colony types are detected the sample is classified as hav-
ing a mixed flora and if three or more different colonies are detected, the sample is considered 
contaminated. However, if a highly contagious (major) pathogen is identified among numer-
ous different colonies the sample will be classified as positive for both, i.e., co-infected.

In parallel with the accredited method, personnel from the Mastitis Laboratory spread 4 x 
10 µl of milk from each sample on a SELMA + agar plate and photographed the growth in a 
Bacticam photo studio provided by Agricam. The Bacticam photo studio is a light impervious 
cubical box approximately 20 x 20 x 20 cm large, with a slot for the agar plate, a camera holder 
and internal illumination. Apart from the photo studio, equipment for growing bacteria and a 
smartphone camera with Internet access is required for the Bacticam bacterial analysis. After 
spreading, SELMA + agar plates were incubated aerobically at 37 °C and photos were taken 
after 24 and 48 hours of growth. Images from the photographed SELMA + agar plates were 
temporarily stored in a OneDrive folder before being downloaded to a SLU server to which 
only the authors had access.

Images of the photographed SELMA + agar plates were analysed in an off-line image 
classifier system that was provided by Agricam to the authors. The image classifier system is a 
two-step process where images first are quality controlled and then classified by a pre-trained 
image classifier algorithm. The demands for the off-line image classifier algorithm were that 



PLOS ONE | https://doi.org/10.1371/journal.pone.0318698 February 20, 2025 4 / 11

PLOS ONE Validation of AI-based classifier for bacterial identification on 4-agar plate

4 images were available, these 4 images needed to be taken with illumination of the agar plate 
from above and below with a minimum of 18 hours apart. Samples with less than 4 images 
available were excluded. Samples with more than 4 images available were manually curated so 
that surplus images were excluded from the analysis. The bacterial classifier can only identify 
one bacterial diagnosis per sample. For the commercial on-line Bacticam system, the company 
have routines for correcting surplus or missing images, the option of a preliminary bacte-
riological diagnosis after 8–24 hours as well as a backup system with manual inspection or 
laboratory analysis for un-diagnosed samples.

Results from the (gold) standard laboratory culture and the off-line image classifier are the 
primary source of data for this study. A third source of data was provided by the company 
Agricam and consisted of image classifier results from on-farm Bacticam stations from milk 
samples that were also sent to the Mastitis Laboratory during the period 8th of July to 29th of 
December 2021.

Data handling and statistical analysis
Raw data was compiled using Microsoft Excel and data analysis was performed in the statistics 
program R [15]. Analysis was performed on three levels.

First, an overview of how the classifier performs in practice was performed (general per-
formance). This includes descriptive presentation (e.g., to which extent bacterial diagnoses 
are provided), exploration of patterns for when a diagnosis was not provided and how the 
classifier performed for samples with co-infection. Identified bacterial species were grouped to 
the lowest comparable taxonomic level. Bacteriological species (/genera) for which the classi-
fier had no pre-training were categorized as “Other” and the classifier was expected to classify 
them as “Additional evaluation required”. These patterns were explored descriptively.

In the second level, diagnoses provided by the classifier were compared to diagnoses from 
the reference (gold standard) laboratory to calculate sensitivity, specificity and predictive val-
ues (specific performance). In this comparison only samples for which the bacterial classifier 
returned a diagnosis and where the reference laboratory specified one bacterial diagnosis per 
sample were included (i.e., samples with co-infection and samples with a specified species in 
mixed flora were excluded). Identified bacterial species were grouped to the lowest compara-
ble taxonomic level. For calculation of sensitivity, specificity and predictive values the package 
DTCompair was used [16] and for visualization the package ggplot2 was used [17].

The third level of the analysis includes comparisons of results from the on-line classifier 
from on-farm Bacticam stations (third source of data) in relation to the results of the off-line 
classifier at the reference laboratory and the reference laboratory results. Descriptively explor-
ing overall accordance, the effect of sample transportation and sample handling.

Results

General performance
During the study period, 1299 milk samples were analysed by the Mastitis Laboratory, the 
majority of the samples arrived between September and December, 52% (672/1299) of the 
milk samples came from farms with a Bacticam station in use and 48% of the samples came 
from other farms (Supl. S1 Fig ). All samples were cultured and photographed in the photo 
studio. Images from 87 samples could not be analysed by the classifier due to poor image qual-
ity or fewer than 4 images per sample and were excluded from the study. Of the remaining 
1212 samples, 1077 samples had one specific bacterial diagnose identified per sample and 135 
samples had multiple pathogens identified per sample. Extended bacteriological examination 
was performed by the Mastitis Laboratory on 110 samples. The classifier returned bacterial 
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diagnoses for 845 samples (70%) while 367 (30%) required additional evaluation. A summary 
of the classifiers’ response in relation to the Mastitis Laboratory diagnosis is presented in Table 
1 and as a more detailed list in Supporting information (S1 Table).

Of the 367 samples that according to the classifier required additional evaluation, 261 sam-
ples had bacterial growth that the image classifier theoretically could identify. 57 samples had 
growth of multiple bacterial species in the same sample and 49 samples had growth of a single 
bacterial species for which the classifier had not been trained, i.e., for 106 samples the correct 
Bacticam diagnosis would be “additional evaluation required” (Table 1). Further, 32 out of the 
367 samples had been subjected to extended bacteriological examination, the majority (27/32) 
of these samples were classified as “no growth” by the Mastitis Laboratory, in the remaining 
five samples, either E. coli or Staphylococci in mixed flora were identified.

A comparison of Mastitis Laboratory and classifier results for samples with one bacterial 
diagnosis per sample is presented in Fig 2. The most frequently occurring bacterial diagnoses 
were E. coli, Streptococcus spp., mixed flora and S. aureus. The fifth most common bacterial 
diagnosis was “other species”, i.e., species for which the classifier had not been trained.

In total, 110 samples had, according to the Mastitis Laboratory, growth of species for which 
the classifier had not been trained. Forty-nine of these 110 samples received a correct “addi-
tional evaluation required” diagnosis by the classifier while an incorrect bacterial diagnosis 
was returned for 61 samples. The most commonly returned diagnosis in these cases was Strep. 
spp. (n = 18), mixed flora (n = 14) and negative growth (n = 14) (Fig 2).

Table 1. Summary of bacterial classifiers response in relation to Mastitis Laboratory bacterial diagnosis.

Single bacterial diagnose Multiple bacterial diagnoses
(not trained for)

Total Specific pathogen
(trained for)

Mixed flora
(trained for)

No growth 
(trained for)

Other species
(Not trained for)

Specific growth 
+  mixed flora

Co-infection 
+ mixed flora

Additional evaluation 367
(30%)

188
(16%)

43
(4%)

30
(2%)

49
(4%)

20
(2%)

37
(3%)

Bacterial diagnosis provided 845
(70%)

541
(45%)

99
(8%)

66
(5%)

61
(5%)

36
(3%)

42
(3%)

https://doi.org/10.1371/journal.pone.0318698.t001

Fig 2. Comparison of bacteriological diagnoses reported by the reference laboratory and the bacterial classifier. 
1077 samples collected from dairy cows with clinical mastitis, analysed with both methods and with a single bacterial 
diagnose per sample.

https://doi.org/10.1371/journal.pone.0318698.g002

https://doi.org/10.1371/journal.pone.0318698.t001
https://doi.org/10.1371/journal.pone.0318698.g002
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Specific performance
For calculation of sensitivity, specificity and predictive values, 767 samples for which the Mas-
titis Laboratory had provided one single bacterial diagnosis per sample and the bacterial clas-
sifier had provided a bacterial diagnosis were used (Table 2). The most frequently occurring 
pathogens according to the Mastitis Laboratory were E. coli (n = 169), S. aureus (n = 112) and 
non-beta-haemolytic streptococci (n = 176). Samples with no growth and samples with mixed 
flora were also relatively common (n = 66 and n = 99) while NAS, Klebsiella and beta haemo-
lytic streptococci were less common (n < 35). The sensitivity and specificity of the bacterial 
classifier varied between bacterial species, with the best performance for the more frequently 
occurring pathogens (Fig 3). The specificity of the bacterial classifier was high for all bacterial 
diagnoses with a range from 91.9% to 99.1%. For the sensitivity there was a larger variation 
and the confidence intervals were broader. The most frequently occurring pathogens (E. coli, 
S. aureus and non-beta haemolytic streptococci) had relatively high sensitivity (> 85%) while 

Table 2. 2 x 2 comparison of bacterial diagnoses. Bacterial diagnoses were identified by Mastitis Laboratory (ML) 
and the bacterial classifier (classifier) in 767 milk samples.

E. coli ML + ML− Klebsiella spp. ML + ML−
Classifier + 152 22 Classifier + 18 7
Classifier− 17 576 Classifier− 10 732
S. aureus ML + ML− Staph. spp (NAS) ML + ML−
Classifier + 101 6 Classifier + 17 16
Classifier− 11 649 Classifier− 16 718
beta-hemolytic strep ML + ML− Strep. spp (other) ML + ML−
Classifier + 10 8 Classifier + 150 34
Classifier− 13 736 Classifier− 26 557
No growth ML + ML− Mixed flora ML + ML−
Classifier + 57 44 Classifier + 71 54
Classifier− 9 657 Classifier− 28 614

https://doi.org/10.1371/journal.pone.0318698.t002

Fig 3. Sensitivity and specificity of bacterial diagnosis provided by the bacterial classifier. Results from a reference 
laboratory were used as a gold standard. Mean values estimations are presented as centroid with 95% confidence 
intervals presented as bars.

https://doi.org/10.1371/journal.pone.0318698.g003

https://doi.org/10.1371/journal.pone.0318698.t002
https://doi.org/10.1371/journal.pone.0318698.g003
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the sensitivity for the less common pathogens (Klebsiella spp., NAS and β-haemolytic strep-
tococci was lower (43.5%–64.3%) (Fig 3). A table with estimated mean values for sensitivity, 
specificity, PPV and NPV together with standard error and confidence interval is presented in 
Supporting information (S2 Table).

Handling and transport
To evaluate the effect of handling and transportation, bacterial classifier results from the on-line 
on-farm Bacticam stations provided by Agricam were used. 130 milk samples had comparable 
results from the Mastitis Laboratory, the off-line bacterial classifier and the on-line bacterial clas-
sifier. For these 130 samples, 144 bacterial diagnoses were provided by the Mastitis Laboratory, 
117 milk samples that had one bacterial diagnosis per sample were further explored. 72 (62%) of 
the 117 samples had the same bacteriological diagnosis given by the on-line classifier, the off-line 
classifier and the reference laboratory, and 69% of the samples (81/117) had the same bacteriolog-
ical diagnosis given by the on-line classifier and the off-line bacterial classifier. There was a higher 
concordance of results between the Mastitis Laboratory and the off-line bacterial classifier (Bac-
ticam at laboratory, 89 shared diagnoses) than between the Mastitis Laboratory and the on-line 
classifier (Bacticam on farm, 78 shared diagnoses). A presentation of the 117 samples that had 
one bacterial diagnosis per sample and comparable results from the on-line classifier, the off-line 
bacterial classifier and the Mastitis Laboratory is presented in Fig 4. An interesting observation is 
that 26% of the samples that were cultured on farm and evaluated by the on-line image classifier 
had growth of mixed flora, when the same samples were cultured at the reference laboratory and 
evaluated by the off-line bacterial classifier, 11% of the samples had growth of mixed flora. As 
the sample results provided by Agricam contained detailed information on when samples were 
collected, the time from sampling to arrival at the reference laboratory was calculated. The mean 
transportation time for the milk sample was 4.9 days with a range from 1 – 26 days.

Discussion
Different methods have been developed for rapid on-farm identification of mastitis causing 
bacteria with variations in number of bacterial species possible to identify and time to result. 

Fig 4. Comparison of results from Mastitis Laboratory and bacterial classifier. The bacterial classifier (Bacticam) were placed 
either on farm or at Mastitis Laboratory. Only samples with one bacterial diagnosis per sample included. A) Venn diagram showing 
overlap between analysing method and shared bacterial diagnoses. B) Detailed table with bacterial diagnosis per analysing method.

https://doi.org/10.1371/journal.pone.0318698.g004

https://doi.org/10.1371/journal.pone.0318698.g004
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When evaluated, the on-farm systems generally perform well regardless if they are compared 
to farm antibiotic use [3] or compared to a mastitis laboratory result [18,19]. However, it has 
been shown that trained specialists perform better than untrained observers [20]. Conse-
quently, a problem with on-farm mastitis identification systems is that accurate interpretation 
of the bacterial growth requires trained and experienced personnel.

Correctly identifying mastitis causing pathogens can be challenging and inter-laboratory 
variation has been shown to be substantial. A Finish study of inter-laboratory accordance of 
diagnosis of lyophilized common mastitis pathogens showed an overall agreement of 63-93%, 
depending on testing round, but also a variation between pathogens where some pathogens (E. 
coli, S. aureus) were always correctly identified while others not [21]. Later studies have shown 
similar results, of the 381 mastitic milk samples that were sent to two different mastitis labora-
tories in the study by Ferreira et al. [19], 212 (55%) received the same bacterial diagnosis.

The possibility of using an automated image classifier for bacterial diagnosis will limit the 
inter-laboratory and inter-personnel variation of interpreting results. In this study, the bacte-
rial classifier performed well for commonly occurring species.

The bacterial distribution in the present study differs from the distribution of clinical 
mastitis causing bacteria in Sweden. According to a study from Duse et al. [22], the five most 
common clinical mastitis causing bacteria in Sweden are S. aureus (27.8%), Str. dysgalactiae 
(15.8%), E. coli (15.1%), Str. uberis (11.4%), T. pyogenes (7.7%), contaminated samples (i.e., 
mixed flora) was together with no growth the sixth most common diagnosis (4.9% each). In 
the present study streptococci were separated based on their haemolytic properties, rather than 
species level for comparison of results and non-haemolytic streptococci was the most abundant 
bacteria, followed by E. coli, mixed flora, S. aureus and other. The group “other” consisted of a 
wide range of bacteria that the bacterial classifier is not trained to recognise, including T. pyo-
genes. Even though the distribution differ, the subset of samples used in this study is, at large, 
representative for the mastitis pathogens common in Sweden, the differences that occur can be 
attributed to selection bias as samples in this study came from a limited number of farms and 
was collected over a limited time. A list of all the bacterial diagnoses provided by the Masti-
tis Laboratory and the bacterial classifiers as well as sample origin is provided in Supporting 
information (S1 Table). The level of co-infected samples in the present study was 11% and is 
in a similar range as previously reported (9%) from the same laboratory [22,23]. The bacterial 
classifier has only been trained to identify growth of one pathogen per plate, if several colonies 
of different types are present, the sample will be classified as having a mixed infection.

Specific performance
Sensitivity and specificity were evaluated on samples where the Mastitis Laboratory and 
the bacterial classifier had provided a single bacterial diagnosis per sample. The specificity 
was overall high for all bacterial diagnoses provided by the classifier, implying that samples 
without a specified diagnosis really are free from it. A high specificity is important to assure 
that animals don’t receive unnecessary treatments. For the sensitivity there was a larger vari-
ation in results. For the most common bacterial diagnoses in this data set (E. coli, S. aureus, 
non-haemolytic streptococci and no growth) the sensitivity was high, indicating that if the 
classifier give this response it is most likely correct. For less common bacterial diagnoses 
(Klebsiella spp., NAS, beta-haemolytic streptococci and mixed flora) the sensitivity was lower 
and the results less trustworthy. The distribution of bacterial diagnoses in the data set that was 
provided as training data for the neural network is unknown to us authors, it is not unlikely 
that the training data had a similar distribution of diagnoses as presented here and that the 
classifier therefore is better trained on certain diagnoses. For example, E. coli and Klebsiella 
spp. have similar but distinct growth patterns on a SELMA + agar plate, with a colour change 
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in the PGUA agar as differentiating factor, this colour change is visually apparent and we do 
find it probable that the colour change would be possible to identify for an automated image 
classifier, consequently we find it likely that the sensitivity for Klebsiella spp. will increase with 
more training. The specificity values reported for the Bacticam bacterial classifier in this study 
(91.9-99.1%) are in line with specificity values reported for a similar application, “Rumi” (96-
99%), by Garcia et al. [13]. A variation in sensitivity across different bacterial diagnoses that is 
noted here was likewise noted by Garcia et al.

Handling and transport
It is well known that storage can affect the hygienic properties and bacterial content of raw 
milk. According to literature, total bacterial count will increase with prolonged storage, 
especially if milk is stored over 4 °C [24]. For microorganisms typically found in milk, it has 
been shown that there is a large variability in growth rate, both within and between different 
organisms [25]. This difference in growth rate would affect the original composition of bacteria 
in a milk sample, and the difference would increase with time. This has been shown in a master 
degree thesis that concluded that mixed bacterial flora increased with increased number of 
days of transportation [26]. In the present study, the average transportation time was 4.9 days, 
the conditions during transport are unknown but milk samples sent to the Mastitis Laboratory 
are most often transported at ambient temperature (personal message). Considering the wide 
range in transportation time (1 - 26 days), we cannot exclude that some samples were stored 
before transportation. Regardless of transportation temperature, the time spent for transporta-
tion to the laboratory prevent the analysis from being used as a decision tool for selective treat-
ment. Considering the transportation time, we did expect that there would be more samples 
with mixed bacterial growth after transportation compared to before, surprisingly the results 
were opposite (26% mixed infection before transport vs. 11% after). We can only speculate on 
why this difference occurred, on the farm either the farmer or a trained employee would be 
responsible for spreading the milk on the agar while in the lab a professional lab-assistant did 
it. It is possible that the difference in “professionalism” contributed to the difference in results 
regarding mixed infection and concordance between analysing methods. However, it cannot be 
ruled out that handling and storage of agar plates or other factors contributed.

Conclusion
We conclude that the AI-based image analysis bacterial classifier, Bacticam, is showing prom-
ise in accurately diagnosing common mastitis pathogens. The classifier performs well with 
high specificity for all diagnosed pathogens, assuring avoidance of unnecessary treatment. For 
bacterial diagnoses of E.coli, S. aureus and non-haemolytic streptococci the sensitivity of the 
bacterial classifier is high. An apparent benefit of the bacterial classifier is the reduced time 
from sampling to results, although operators must take appropriate measures before plating 
the milk to minimize growth of mixed infection.
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