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Abstract

Challenges in livestock production in developing countries are often linked to a high disease
prevalence and may be related to poor husbandry, feeding, and nutrition practices, as well as to in-
adequate access to preventive veterinary care. Structural barriers including chronic poverty, gender
roles, inadequate supply chains, and limitations in surveillance infrastructure further complicate
progress. Despite many challenges, the livestock sector substantially contributes to agricultural
GDP, and reducing livestock disease prevalence is a goal for many countries. One Health initia-
tives that work across disciplines and sectors to reduce livestock diseases are underway around the
world and use integrated approaches that consider the connections between humans, animals, and
their shared environments. The growing recognition of the role livestock play in sustainability
and livelihoods, as well as their involvement in zoonotic disease transmission and global health
security, has highlighted the need for disease reduction strategies as described in this review.

INTRODUCTION

There are nearly 40 billion livestock (including pigs, sheep, goats, cattle, and poultry) around the
world; more than half live in developing countries (1). By 2050, livestock product demand is ex-
pected to increase dramatically in response to growing populations and increased incomes (2, 3).
To meet this demand, livestock production practices continue toward intensification and commer-
cialization, presenting added environmental and ethical concerns. Livestock serve many roles in
developing countries, contributing to food security, livelihoods, savings, women’s empowerment,
and economic development (4). Livestock-derived products also provide high-quality, bioavail-
able, nutrient-dense animal-source foods, which vastly improve diet quality and positively impact
cognitive development and growth, particularly during a child’s first 1,000 days (from conception
to 2 years old) (5).

Historically, livestock production in developing countries has been challenged by a high disease
prevalence, often coupled with poor husbandry, feeding, and nutrition practices and inadequate
access to preventive veterinary care including vaccines, appropriate pharmaceuticals, and animal
health service providers. Zoonotic diseases are strongly correlated with poverty, with much of the
global burden occurring in poor countries (6). Poor livestock keepers are particularly vulnerable to
the effects of animal diseases, which can have a major impact on their incomes and livelihoods (7).
Despite advancements in diagnostics, data sharing, and disease reporting, there is an incomplete
picture of the burden of livestock disease globally. Recently, the World Organization for Animal
Health (WOAH) launched the Global Burden of Animal Diseases initiative to better understand
the economic burden of animal diseases (8).

Implicit in the success of a livestock sector is that livestock are healthy and reproductively
sound. A thriving agricultural sector can fuel economic growth, create jobs, increase rural incomes,
and reduce malnutrition (9). The estimated global market value of livestock production is simi-
lar to global crop production (~2.57 trillion USD) (10). Though it varies between countries, the
livestock sector contributes substantially to agricultural GDP, with a global average of 40% (11).
Furthermore, the livestock sector and its broad connections with the economic and social fabric
of communities are directly and indirectly connected to more than half of the UN Sustainable
Development Goals (12). For these reasons, livestock sector investment and decreasing livestock
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disease prevalence are a common thread across many developing countries’ strategic plans. Achiev-
ing gains in this domain has also been a priority of bilateral donors, international organizations,
and philanthropies in the last few decades. This has been driven by several factors, including
international attention to livestock disease eradication efforts, such as the rinderpest eradica-
tion campaign, and outbreaks of highly pathogenic avian influenza (HPAI) in the early 2000s.
The growing recognition of the role livestock play in emerging zoonotic diseases with pandemic
potential, the increasing global demand for livestock products and animal-source food, popula-
tion growth, the environmental footprint of livestock, and alarming increases in antimicrobial
resistance have all refocused livestock disease reduction efforts.

Many of these disease reduction efforts have adopted a One Health approach, recognizing
that the health of animals, humans, and the environment are interconnected. Although not a new
concept, this term gained traction in the early 2000s, following visionary work decades earlier
by Calvin Schwabe and early promotion by wildlife conservation and ecology professionals (13,
14). Response to the severe acute respiratory syndrome outbreak (SARS) in 2003 furthered its
recognition as an approach to complex challenges (15). The UN Quadripartite One Health High-
Level Expert Panel (16) defines One Health as

an integrated, unifying approach that aims to sustainably balance and optimize the health of people,
animals, and ecosystems. It recognizes the health of humans, domestic and wild animals, plants, and
the wider environment (including ecosystems) are closely linked and interdependent. The approach
mobilizes multiple sectors, disciplines, and communities at varying levels of society to work together
to foster well-being and tackle threats to health and ecosystems, while addressing the collective need
for healthy food, water, energy, and air, taking action on climate change and contributing to sustainable
development.

The UN Quadripartite includes the WOAH, the Food and Agriculture Organization, the
World Health Organization, and the UN Environmental Program.

The international community has taken steps in operationalizing One Health approaches,
intentionally working across sectors to address complex health challenges including zoonotic dis-
eases and antimicrobial resistance. First published in 2014, the US Centers for Disease Control
and Prevention developed a One Health Zoonotic Disease Prioritization Tool, which has helped
countries and regions collaboratively identify and prioritize zoonotic disease threats of national
concern. Designed to integrate input across the human health, agriculture, environment, and
wildlife sectors, such tools have been used in many countries (17, 18). Conducting activities related
to zoonotic disease prioritization has also helped countries take steps related to public health risk
preparedness and is aligned with global metrics related to International Health Regulations and
the Joint External Evaluation process (19). This is a voluntary, collaborative, multi-sectoral process
that countries can use to identify gaps in their human and animal health systems and to strengthen
their ability to address global health issues including zoonotic diseases. The Quadripartite One
Health Joint Plan of Action (2022-2026) presents a framework and policy recommendations
related to six interdependent action tracks designed to address key health challenges at the human—
animal-plant-environment interface (20). Livestock disease surveillance and/or reduction efforts
are a common thread across all six action tracts (Figure 1). Furthermore, many countries around
the world have developed National One Health Strategic Plans or similar policies. These efforts
illustrate the importance of policy setting and zoonotic disease prioritization as tools to focus
collective energy on specific diseases and of institutionalizing cross-sectoral collaboration.

Reducing livestock disease prevalence in under-resourced settings frequently presents chal-
lenges. Inadequate diagnostic and surveillance infrastructure, weak governance, conflict and
security issues, absent or inadequate biosecurity practices, wildlife-livestock interactions, remote
communities, lack of cold chain, insufficient trained veterinary and paraveterinary personnel,
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Action track 1:
Enhancing One Health capacities
to strengthen health systems

Action track 6:
Integrating the environment
into One Health

Reducing the risks from emerging
and reemerging zoonotic
epidemics and pandemics

Action track 5:
Curbing the silent pandemic
of antimicrobial resistance

Action track 3:
Controlling and eliminating
zoonotic, neglected tropical,

and vector-borne diseases

Action track 4:

Strengthening the assessment,
management, and communication
of food safety risks

Figure 1

The Quadripartite One Health Joint Plan of Action (2022-2026) presents a framework and policy
recommendations related to six interdependent action tracks designed to address key health challenges at the
human-animal-plant-environment interface. Livestock disease surveillance and/or reduction efforts are a
common thread across all six action tracts. Figure reproduced with permission from Reference 20.

transhumance, lack of access to vaccines and other pharmaceuticals, poverty, lack of empower-
ment, and more can all make addressing livestock diseases especially difficult. For these reasons,
and recognizing that in many developing countries livestock husbandry practices are frequently
integrated closely with the household and often are more exposed to environmental and ecologi-
cal factors, the global animal health community is increasingly recognizing that adopting disease
intervention approaches that reflect a One Health approach is important for successful outcomes
(Figure 2).

The following sections summarize considerations and interventions that can improve live-
stock health rooted in a One Health approach. The examples highlight various diseases and
interventions covering a range of geographies and livestock species. Interventions featuring
vaccination approaches, the critical role of social science and community engagement, animal
husbandry practices, and ecological countermeasures will help readers understand the breadth of
different approaches to livestock health improvement. Specific case studies have been chosen to
illustrate the interdependencies of highlighted concepts.

HOST-PATHOGEN-ENVIRONMENT CONSIDERATIONS

Over the past few decades, the wildlife-livestock interface has garnered increasing attention within
the context of infectious disease dynamics and zoonotic disease risk. Interactions between livestock
and wild animals have significant implications for the emergence, amplification, and transmission
of pathogens that affect both animal and human populations. Wild animals are increasingly rec-
ognized for their role in livestock and human diseases as both spillover and maintenance hosts
(21). Livestock frequently serve as amplifying hosts for zoonotic diseases that originate in wildlife
and eventually spill over into people (22).
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Figure 2

A One Health approach to livestock health recognizes that multiple layers of factors interact and influence
animal health outcomes.

The factors driving emergence events are complex. Human-driven land-use change, which of-
ten includes encroachment into wildlife habitat, can influence the dynamics of infectious diseases
in wildlife hosts, drive pathogen shedding in wildlife populations, and lead to novel contact oppor-
tunities between taxa, resulting in greater potential for cross-species transmission and pathogen

spillover from wildlife to livestock and humans as well as spillback from these populations into
wild animals (23-25).

Integrated disease surveillance and modeling play a pivotal role in enhancing our understand-
ing of the underlying drivers of disease emergence and spread. By combining data collection across
taxa groups with disease models, we can uncover patterns of zoonotic spillover and pathogen
transmission that inform our understanding of disease dynamics. An integrated approach not only
provides insights into the ecological and epidemiological factors driving spillover but also enables
the identification of high-risk areas and vulnerable populations to target for surveillance and risk
mitigation strategies. Using brucellosis and HPAI, we highlight how integrated surveillance and
modeling have been used to elucidate the complexities of disease transmission pathways, identify
hosts and their role in maintaining and spreading the pathogen, uncover risk factors for spillover
and cross-species transmission, and inform interventions for disease prevention and control.
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Brucellosis

Brucellosis remains a livestock and public health concern in many lower-income countries, with
biovars of Brucella abortus, Brucella melitensis, Brucella ovis, Brucella canis, and Brucella suis recog-
nized in livestock (26). Clinical signs of brucellosis infection in domestic animals include abortion,
reduced fertility, and decline in milk production, with significant economic consequences (27). Hu-
man brucellosis presents with nonspecific clinical signs such as fever, malaise, fatigue, and arthritis
(26).

Brucella species have been identified in a wide range of terrestrial and aquatic wildlife (28-32).
When planning control measures for brucellosis, the presence of wildlife maintenance hosts must
be considered (30). Spillback from wildlife to livestock is especially measurable in areas where
brucellosis has been eradicated in domestic animals, such as the Greater Yellowstone area of the
United States (21). Research has shown transmission events from cattle into wildlife in this area
and that brucellosis spillovers into cattle now are predominantly from elk and not bison; spatial
separation of bison and cattle has made transmission between cattle and bison uncommon (33, 34).

Disease transmission dynamics between wildlife and livestock are much harder to elucidate in
areas where brucellosis is endemic in livestock. A meta-analysis of brucellosis in African wildlife
showed that exposure to the disease has been documented in African buffalo, as well as various
antelope, carnivore, and miscellaneous wildlife species on the continent, but so far, only the African
buffalo has been proven to be a maintenance host for the disease (30). Livestock contact was found
to be a predictor for brucellosis exposure in antelopes and carnivores (considered spillover species)
but not in African buffalo, a reservoir species that maintains the disease without cattle contact (30).

Control methods for brucellosis in domestic livestock include vaccination, test and removal,
and spatial separation from wildlife carriers (33). In high-income countries with well-funded vet-
erinary services, eradication of brucellosis has been achieved through large-scale disease control
campaigns. In contrast, in lower-income countries, targeted control measures may be more fea-
sible and realistic to implement (27). Across much of the world, brucellosis remains a neglected,
endemic zoonotic disease; more than 500,000 new cases are reported each year, but this is thought
to be a vast underestimate of the true burden of the disease (35). Across sub-Saharan Africa and
Asia, brucellosis has commonly been identified as a prioritized zoonotic pathogen, underscoring
the continued importance of a multi-sectoral, multipronged approach to surveillance and disease
reduction efforts (18, 19, 35).

H5N1 Highly Pathogenic Avian Influenza

Recent changes in the ecology of H5N1 HPAI highlight the importance of an integrated ap-
proach to disease surveillance for understanding and mitigating risk factors for emergence and
spread of these complex zoonotic diseases circulating at the wildlife-livestock—-human interface.
Since detection of a new H5N1 HPAI virus lineage (goose/Guangdong lineage) in Asia in the
1990s, new genotypes and clades of these HSN1 viruses have emerged through multiple muta-
tions and reassortments with other influenza A viruses during a series of spillover and spillback
events between poultry and wild bird populations (36, 37). Ultimately, endemic circulation with
repeated spillover from poultry to wild bird populations (38) led to widespread dissemination of
the most predominant clade across Asia, Europe, Africa, and, more recently, North and South
America and Antarctica (36, 39-43). Since 2021, this virus has caused unprecedented mortality
events in wild birds and has also affected terrestrial and marine mammals (44-47). There have
been human infections with this H5N1 HPAI virus; however, to date, these infections have been
isolated and typically associated with domestic livestock contact (48).

Cross-species transmission of influenza A viruses is key in the evolution and ecological dynam-
ics of these viruses. Wild aquatic birds are the primary reservoir hosts of influenza A viruses (49).
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Low pathogenic avian influenza viruses of the subtypes H5 and H7 that circulate naturally in wild
birds can acquire mutations in the H protein that lead to systemic infections with high mortality
in poultry (HPAI). As a result, control efforts have focused primarily on prevention and eradica-
tion through strict biosecurity in poultry operations, isolation of exposed poultry, and culling of
infected flocks (46, 50). However, recent integrated surveillance and molecular epidemiological
studies have demonstrated a shift in the ecology of this virus (i.e., frequent infections and broad
dissemination in wild avian hosts as well as recurrent spillover and spillback events between wild
and domestic bird populations, and changes in the virus with cross-species transmission) (42, 44,
51). This has illuminated the complex interactions at the wild-domestic animal interface and the
consequent challenges associated with control of this disease.

Epidemiological findings can inform recommendations for disease prevention and control
measures (42, 44, 52). For example, many HPAI distribution models have illustrated how land
cover, particularly the presence of wetlands, and environmental variables, which are often used
as a proxy for the presence of wild birds, predict outbreak risk (53-55). In addition, Schreuder
et al. (56) showed how spatial variation in HPAI outbreak risk in the Netherlands was predicted
based on wild bird densities in addition to land cover variables. In addition, in 2023, Lambert
and colleagues (52) conducted a systematic review of mechanistic models that have been applied
to field outbreaks of avian influenza to better understand the characteristics of transmission and
efficacy of control measures. According to the review, optimal control strategies varied by virus
subtype, the local context, and the goal of the intervention. Overall, vaccination in poultry was
optimal when the goal was to minimize the number of culled flocks. On the other hand, testing
and culling was ideal for limiting the magnitude of the outbreak, and not surprisingly, early de-
tection and response improved the efficacy of control measures, reinforcing the importance for
surveillance and outbreak preparedness (52).

Given the changing dynamics of HSN1 HPAI clade 2.3.4.4b identified through models,
uncertainties around host range and potential environmental persistence, and the complex multi-
sectoral and multi-jurisdictional approach needed for disease control, Harvey et al. (57) have
proposed decision analysis to aid in allocation of resources and prioritization of research to in-
form management and conservation actions. They offer structured decision-making as a means
to provide a transparent and systematic framework for reducing uncertainty and informing the

prioritization of resources and activities for HSN1 HPAI research and management actions.!

THE ROLE OF SOCIAL SCIENCE AND COMMUNITY ENGAGEMENT
AND EDUCATION

The influence of societal factors on disease dynamics is increasingly recognized (58-61). Exam-
ples can be found in the COVID-19 pandemic, the 2014-2015 Ebola epidemic in West Africa,
and the African swine fever (ASF) epidemic in Eastern Europe (62, 63). The understanding of
how human behavior drove transmission of the Ebola virus, achieved through multidisciplinary,
community-centered approaches drawing on social science, was critical to bringing that epidemic
under control (64). Poor stakeholders face many specific challenges related to animal disease
spread (65-67). In chronic poverty situations, which are the reality for many smallholder farmers
across the world, low investments in farming lead to low levels of biosecurity, which in turn lead to
high risk of spreading and attaining diseases, resulting in low and insecure income and livelihood

! At the time of writing this manuscript (April 2024), HSN1 infection in dairy cows in multiple states across the
United States and the first reported incident of dairy farm worker infected with H5N1 in Texas were actively
being reported. The authors acknowledge that this field is rapidly changing, and new information is available
daily (58).
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shocks (68, 69). Poverty is thus both an important consequence of animal disease and a specific,
unique factor influencing smallholders’ possibilities to prevent and control diseases (70-72).

Understanding and representing different stakeholders’ perspectives is central for limiting the
spread, occurrence, and negative consequences of animal diseases (72, 73). Community education
and outreach campaigns grounded in strong social sciences approaches are critical to reaching and
maintaining positive relationships with communities often left out of mainstream policy decisions
and social safety net programs. Methods such as participatory rural appraisal and other traditional
anthropological research approaches have proven effective in reaching livestock producers and
generating community-driven solutions that can reduce livestock disease, especially those that
encourage interactive participation, local ownership, and self-mobilization (74, 75). Researchers
in Rwanda demonstrated how a One Health framework that integrated education, research, and
outreach facilitated a scalable approach through Extension Agents that improved hygienic milking
practices and reduced mastitis indicators (76).

It is also crucial to recognize gender and the specific challenges women may face as livestock
keepers or caretakers. A growing body of literature recognizes important gender differences re-
lated to livestock production and that women often face additional barriers to accessing services
for the livestock they care for (77, 78). For example, Babo and colleagues (79) documented distinct
knowledge differences about brucellosis between men and women in pastoralist communities in
northwest Cote d’Ivoire. Other researchers have described how rigid gender norms can affect live-
stock value chains, vaccine administration, and vaccine distribution systems for Newcastle disease
and peste des petits ruminants in Senegal (80).

African Swine Fever

ASF is a lethal hemorrhagic viral fever of pigs with no current cure or commercially available
vaccine (81). Its introduction to the Caucasus region in 2007 started an unprecedented, global
epidemic (82). Smallholder pig farming is part of the traditional way of life and an important
component of agricultural livelihoods across the globe (83, 84). Globally and historically, it is in
smallholder settings that ASF has proven most difficult to control, with activities such as trade in
pigs and pork undertaken by poor people to earn their livelihood driving the infection (85, 86).
At the same time, it has been known for more than 100 years that ASF spread can be prevented
by applying basic biosecurity practices (87). Despite this, ASF continues to cause severe negative
impacts for pig producers all over the world (88). The increasing global interest in ASF during
the current epidemic has, however, created more understanding of the human dimensions of ASF
epidemiology (89-91).

The response to this frequently has been to investigate smallholders’ knowledge, attitudes, and
practices (92-95). These studies generally report poor implementation of prevention and control
measures but come to different conclusions about what is hindering implementation, and they
are often based on the assumption that improved knowledge will lead to improved practice, a
direct correlation that is seldom observed (96-98). As an example, a study from Uganda found
that smallholder biosecurity knowledge changed after trainings, whereas their practices were not
changed to the same degree (99). Societal and structural factors, such as peer pressure, poverty, and
lack of access to animal health and veterinary services, have been reported to influence prevention
and responses to disease outbreaks more than knowledge (59, 100).

Better understanding of the local social, economic, and cultural dimensions of pig keeping and
disease transmission is thus essential for improving prevention and control of ASF (and hence for
sustainably reducing disease and controlling impacts) (60). For this, local disease drivers need to be
identified and understood, and livelihood contexts and stakeholder knowledge must be considered
(69, 73, 101). Contemporary research further shows that to be effective, control measures need
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to be adapted so that they are scientifically relevant, possible to act on, and considered a priority
among all other necessary tasks to perform in the complex day-to-day realities of subsistence pig
farming (6, 102). Participatory and cocreational approaches engaging multiple stakeholders at the
community level have proven effective in this regard (103, 104). Success factors mentioned are the
cocreational process and broad community engagements as such, as well as the methods’ ability
to embed social, economic, and cultural factors of local ASF epidemiology into biosecurity advice
adapted to the smallholder context.

Parasite Control

An example of an impactful, low-input, low-cost method of disease detection and treatment effi-
cacy monitoring is the FAMACHA® system, which is a surveillance method for detecting livestock
suffering the clinical effects of a gastrointestinal parasite, Haemonchus contortus. H. contortus is a
parasite of small ruminants (sheep, goats) found worldwide, which causes anemia, weight loss, and
ill-thrift, with loss of production if infections are severe. In addition to being a leading cause of
production loss in small ruminants, in temperate and tropical regions, the resistance of H. contortus
to all classes of anthelmintics is high and widespread across the globe (105-108). Sheep and goats
are among the most important sources of animal protein globally and are critical for food security
and livelihoods (109, 110).

The detection and quantification of H. contortus infections in livestock generally rely on indi-
vidual or pooled fecal sampling and are unfeasible for most small producers. The FAMACHA®
system was created by South African researchers to combat anthelmintic resistance in the detec-
tion and treatment of H. contortus (111, 112). The scoring system involves the evaluation of ocular
mucous membrane color as an indicator of clinical anemia. Animals are examined using a refer-
ence chart on a laminated card and are assigned a score, and treatment decisions can be made
based on their degree of clinical anemia indicated by their score. In this way, only animals un-
able to cope with the parasite burden are selectively treated with an anthelmintic, thus preserving
a larger refugia of susceptible parasite genetics, decreasing treatment costs, and allowing culling
decisions to be made without expensive diagnostics.

Since the FAMACHA® system’s introduction in the mid-1990s, its use as an effective tool
for selective deworming has been studied extensively in several different species (sheep, goats,
camelids), production systems, and climates globally (111-117). With sufficient training, clini-
cal evaluation of anemia was found to be reliable for practical use in most trainees, including
trainees with low literacy rates (111, 112). Community outreach efforts to train nonveterinary
livestock personnel have resulted in a widely adopted method of gastrointestinal parasite selective
deworming in global communities and has even been used as part of community-based breeding
programs as part of the African Goat Improvement Network to select and preserve phenotypic
characteristics in goats that make them more resistant to disease (109, 118). The ability to easily
train and get community buy-in with low-cost diagnostic decision-making tools has been highly
impactful for the health and productivity of small ruminants, while simultaneously reducing the
use of anthelmintics and slowing the rate of resistance development.

ANIMAL HUSBANDRY AND FARM BIOSECURITY PRACTICES

Successful livestock producers, regardless of region or species, will attest to the importance and
value of good animal husbandry, including food, water, shelter, cleanliness, and low-stress han-
dling. Additionally, following basic biosecurity practices appropriate to the species and production
system, such as maintaining a closed herd; limiting visitor access to the herd; recording movements
of people, vehicles, and animals on the farm; quarantining new animals; isolating sick animals;
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maintaining records; separating pregnant and young stock from the rest of the herd; following
cleaning and disinfection protocols; appropriately disposing of dead animals; and preventing inter-
action with wildlife or neighboring herds are all important to reducing livestock disease. However,
in many low-resource settings, structural factors and barriers, including poverty, gender norms,
competing time demands, inadequate feed and water resources, lack of effective and reliable sup-
ply chains, inadequate physical infrastructure, and weak institutions and policies, result in less than
ideal husbandry and biosecurity practices (69). Often in these settings, disease and poor nutrition
disproportionately affect the young and pregnant stock. The following example provides insights
from Ethiopia.

Young Livestock Mortality

Ethiopia’s livestock population, the largest in Africa, contributes 45 % of its agricultural production
(123). Cattle, the most economically significant subsector, were estimated at 70 million head in
2020 (124). Livestock development is fundamental to Ethiopia’s sustainable growth, and a shift
toward improved productivity, rather than increasing animal numbers, is necessary for sustainable
growth (125). However, livestock development is constrained by high morbidity and mortality
rates among young stock (123, 125, 126). Diarrhea and respiratory diseases are commonly found
in sick young animals, and zoonotic pathogens such as Cryptosporidium parvum and Escherichia
coli K99 are also frequently identified (126). These pathogens are associated with environmental
enteropathy, malnutrition, and stunting in young children in settings with poor water, sanitation,
and hygiene (127, 128). Similarly, in young livestock, these are associated with poor colostrum
consumption, nutrition, hygiene management, and husbandry practices (129-132).

Several initiatives to reduce young stock morbidity and mortality have been implemented in
Ethiopia. Among those, the Young Stock Mortality Reduction Consortium (YSMRC) was formed
in 2016 to (#) identify the main causes of morbidity and mortality among young stock and (¥) pilot
a group of interventions for applicability and affordability (133). The YSMRC found one of the
most striking issues in young calves was suboptimal feeding. Appropriate feeding is crucial for calf
growth and health (129, 130) and includes intake of high-quality colostrum within the first 24 h
of life, consumption of 2 L of milk or quality milk replacer twice a day, appropriate supplemental
feeding, and provision of unlimited clean water. However, the YSMRC found that 21-29% of
calves had inadequate colostrum intake, and 44% of calves received less than the recommended
amount of milk per feeding (0.5 L). The situation was particularly severe in pastoral herds, where
15% of calves were fed less than 0.5 L of milk and received virtually no supplemental feed, and only
18% of pastoral herders reported providing water to their calves. Suboptimal levels of nutrition
in cattle are supported by other papers that also found poor animal feeding practices, indicating a
need for enormous improvement (134).

The YSMRC?s interventions aimed at improving farmer knowledge and behaviors related to
fundamental feeding and neonatal care practices significantly reduced the risk for calf diarrhea and
mortality (133). These findings are supported by published literature on livestock development
interventions, which have shown increased knowledge, improved animal health outcomes, and
increased income from animal products following the implementation of packaged interventions
among rural users of working equids and other livestock species in Ethiopia (135, 136). Similar
findings have been reported among cattle farmers in Tanzania and Mali, fish farmers in Vietnam,
and chicken farmers in Myanmar (137-140).

A complex web of factors influences the success of livestock-based interventions in low-income
countries. The availability of resources, farmer education and training, access to information and
support, cultural and social norms, and the economic and political environment all play a role.
But these factors do not affect all production systems equally, and understanding these differences
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INTERNATIONAL DEVELOPMENT INITIATIVES

The international development and humanitarian sectors provide various examples of food security, human nu-
trition, and water/sanitation/hygiene (frequently referred to as nutrition-sensitive agriculture) interventions that
have included livestock husbandry and/or health type interventions in multiple geographies (142). Popularized
by international nonprofit organizations, livestock transfer activities, often complemented by animal husbandry
or Community-Based Animal Health Worker training programs, have also been conducted with varying degrees
and types of impact (143). In Tanzania, the Health Animals and Livelihoods Improvement Program (HALI, from
the Swahili word for state of health) was initiated in 2006 as a One Health program working with pastoralist
communities living within the Ruaha ecosystem (144). A transdisciplinary, grassroots effort focused initially on
zoonotic diseases and water quality, the HALI project has demonstrated the importance of community engagement
throughout a project’s life cycle (145).

is key to avoiding a one-size-fits-all approach to scaling up interventions (125, 141). Adopting
new behaviors and/or technologies requires a holistic understanding of the many factors that af-
fect adoption and highlights the need to incorporate social scientists (141). See the sidebar titled
International Development Initiatives for more examples.

VACCINATION

Vaccination of susceptible populations historically has been a relatively safe and effective way of
preventing disease (146). The origins of modern-day vaccination have One Health roots going
back to the late 1700s. Different from the ancient practice of variolation, a method of inoculation
against smallpox using ground-up lesions from infected patients or recently variolated individu-
als, the first smallpox vaccines used infective material from the less virulent cowpox virus. In 1796,
Edward Jenner conducted the first successful vaccination of a child with cowpox virus, followed
two months later by challenging the boy with smallpox exposure; he documented the procedure
in 1798. Reports across the literature credit several other contemporaries of Jenner, including
Benjamin Jesty and John Fewster, who were practicing vaccination with cowpox virus material
several decades earlier than Jenner (147). The procedure was later termed vaccination, derived
from vacca, a Latin word for cow. It was not until almost 100 years later that the first veterinary
vaccines for fowl cholera and anthrax came into existence (146). Veterinary vaccine science has
often helped accelerate human vaccinology, due to faster development and approval processes
(148). The availability of thermotolerant rinderpest vaccine, paired with deep community en-
gagement and epidemiologically informed vaccination strategies, was essential for the eradication
of rinderpest (see the sidebar titled Rinderpest Case Example). In the twenty-first century, the
veterinary profession has a diverse array of livestock vaccines available; modern technologies, in-
cluding next-generation sequencing, mRNA vaccines, and machine learning (ML), will inevitably
only accelerate the development of vaccines in the future. Effective vaccination programs also
have tremendous potential to contribute to the global efforts to combat antibiotic resistance, as
veterinary vaccines help prevent and control infectious diseases, reducing the need for antibiotics
to treat susceptible infections (148).

In developing countries, livestock vaccines are essential tools for improving productivity and
managing endemic diseases, such as Newcastle disease in poultry; peste des petits ruminants in
sheep and goats; and brucellosis, anthrax, clostridial diseases, foot-and-mouth disease, and lumpy
skin disease in cattle. However, vaccination strategies must be paired with solid epidemiological
knowledge of the specific disease and effective community engagement approaches. Furthermore,
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RINDERPEST CASE EXAMPLE

Perhaps no other livestock disease better exemplifies how a One Health approach can be used to eradicate a disease
than rinderpest. In 2011, the Food and Agriculture Organization (FAO) declared rinderpest, a highly contagious
Morbillivirus (Paramyxoviridise, includes measles, distemper, and peste des petits ruminants virus, among others),
eradicated following a decades-long effort that incorporated many of the examples featured throughout this ar-
ticle. With up to a 100% mortality rate, and responsible for the deaths of hundreds of millions of livestock and
wildlife, such as buffalos, zebus, antelopes, and giraffes, rinderpest caused the fall of empires, triggered famines,
catalyzed the founding of formal veterinary schools, and inspired the establishment of the Office International des
Epizooties, now known as WOAH (119). Dedicated community engagement efforts; nuanced awareness of the
local social, political, and economic contexts; thermostable vaccines; strong epidemiological understanding of the
disease; effective surveillance and diagnostic capacity; transparent reporting; and international commitment were
paramount to eradicating rinderpest (120, 121). Youde’s (120) article, “Cattle Scourge No More: The Eradication
of Rinderpest and Its Lessons for Global Health Campaigns,” chronicles a 3,000-year history of rinderpest through
a One Health lens. After decades of rinderpest eradication efforts across much of Africa and Asia, the jointly led
FAO and WOAH Global Rinderpest Eradication Program leveraged the trust and detailed knowledge of local
customs and herding practices of Community-Based Animal Health Workers (CAHWS) to gain access to and vac-
cinate cattle in hard-to-reach communities, in tandem with a massive epidemiological survey (122). Ultimately, only
through participatory disease surveillance and deep community engagement with Sudanese CAHWS, accompanied
by best practices in outreach materials including songs, poems, picture books, and cloth flip charts, was rinderpest
successfully eradicated in Africa (119).

commercial availability, vaccine quality and safety, licensing for use in the country, cold-chain

maintenance, and cost-benefit analyses are all relevant considerations prior to recommended use.

Combined child and livestock vaccine campaigns have been piloted in some rural pastoral com-
munities. In the early 2000s, researchers in Chad worked with the Ministries of Health and of
Livestock Production to vaccinate more than 149,255 livestock against anthrax, pasteurellosis,
blackleg, and contagious bovine pleuropneumonia; 4,653 children <5 years of age against diphthe-

ria, whooping cough (pertussis), tetanus, and polio; and 7,703 women against tetanus. Challenges

with follow-up most commonly were due to nomadic movement rather than vaccine hesitancy

(149). Similar joint programs have successfully delivered services to nomadic Fulani communities

in Nigeria (150). However, much potential remains in scaling up integrated service delivery op-

tions, and researchers in Kenya have developed a community-informed One Health framework

that could be applied to similar contexts (151).

Rift Valley Fever Vaccine Development

Rift Valley fever (RVF) is a classic example of a One Health pathogen that severely impacts
both human and animal health. Rift Valley fever phlebovirus (RVFV; family Phenuivirdae, genus
Phlebovirus) is a mosquito-borne human and veterinary pathogen associated with large outbreaks

of severe disease across continental Africa, Madagascar, and occasionally the Arabian Peninsula
(152, 153). RVF disease outbreaks are driven by complex ecological and climatic dynamics that
influence the emergence of transovarially infected Aedes spp. floodwater mosquito vectors that

then precipitate widespread amplification of the virus among livestock and other mosquito vec-
tors, leading to widespread fetal loss and lethality among livestock animals. Human cases can

result from contact with virus-contaminated livestock tissues, fluids, aborted fetal materials, or

milk and directly from infected mosquito bites (154-156). A reportable disease, recent notable
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RVF events include a 2018 outbreak in Kenya, with 24 confirmed human cases, 6 deaths, and a
large number of livestock affected, and a widespread 2010-2011 outbreak in South Africa, with
more than 8,000 animal deaths, at least 11,000 animal cases, and more than 250 human cases
with 25 confirmed deaths (157, 158). The 2006-2007 RVF outbreak in Kenya resulted in more
than 1,000 human cases reported across Kenya, Somalia, and Tanzania, with millions of livestock
affected (159).

The health impacts of RVF can be dramatic, with a rapid and sudden development of thousands
to tens of thousands of acutely ill human cases and widespread and devastating agricultural impact
on potentially millions of livestock. RVFV is also the only significant known hemorrhagic fever
virus of humans that also causes high-level mortality and morbidity in livestock animals; this adds
an enhanced layer of complexity to control strategies to ensure the biosafety and biosecurity of
the food supply. RVF control programs must balance the needs of multiple stakeholders ranging
from individually affected human patients, local livestock herdsmen, and medical and veterinary
practitioners to national-level authorities working in public health, agriculture, food safety, and,
importantly, animal welfare issues (160, 161).

RVFV is uniquely suited for a One Health approach to prevent both livestock and human dis-
ease through integrated vaccination programs (160, 162) (Figure 3). Vaccination strategies using
rapid-acting one-dose vaccines for animals could prevent the RVFV amplification among live-
stock and could provide a window of opportunity to interrupt emergent RVFV outbreaks by both
reducing further infection of anthropophilic mosquito vectors and eliminating the threat posed
by infected livestock tissues. Widespread use of animal vaccines could have major health and eco-
nomic impacts by simultaneously reducing human morbidity and mortality and providing major
positive monetary benefits to farmers and herdsmen, especially in resource-poor areas, where the
death of even small numbers of livestock can result in significant declines in overall family health
and wealth. Similarly, vaccines approved for use in the human population could target high-risk
occupational and special risk groups, such as veterinarians, farm workers, pastoralists and their
families, and other animal health personnel. Multiple research groups are currently pursuing vac-
cine candidate designs that could be used in both animals and humans if regulatory approvals are
granted for true One Health utilization in endemic areas (160, 162). If successful, these approaches
may revolutionize the tools available to reduce the impacts of this and other high-consequence,
but neglected, diseases of livestock and people around the world.

Newcastle Disease Virus

Often found in rural, resource-poor areas, village poultry production remains an important eco-
nomic activity and contributes to food security, livelihoods, and women’s empowerment in many
developing countries (163). Newcastle disease (ND) virus (NDV) is one of the biggest constraints
to village poultry development, and although it can infect up to 236 different avian species, the
primary reservoirs of the highly pathogenic (velogenic) version of the virus are poultry popula-
tions (164). Velogenic NDV endemicity in Central America, Asia, and Africa makes it a priority
issue to overcome (165-167). ND can cause mortality rates as high as 90% among village chicken
flocks (168). Several factors must be considered to make village poultry vaccination approaches
fully effective. One of the biggest challenges is the existence of a cold chain from vaccine produc-
tion to vaccine application. Although thermotolerant or inactivated vaccines (such as I-2 vaccine
and some oil-adjuvanted products) are available in certain regions, most available products are the
conventional live attenuated la Sota strain vaccines, which require refrigeration.

Deep community engagement that empowers community vaccinators with the knowledge
and tools to independently carry out vaccination is crucial. Community members and other
stakeholders must understand the benefits and basic science behind regular vaccine campaigns,

www.annualreviews.org o One Health Approach to Reduce Livestock Disease Prevalence

289



290

a Historical RVF outbreak dynamics and response timeline
T T T T

Infected
Virus activity
Human cases

Virus activity

. Human cases
First

human
cases

A
\ First Increasing

livestock livestock
cases cases

s~ <
E SN »

Heavy rains and flooding, Amplification of virus activity Contain and
emergence of infected mosquitoes for 6-8 weeks before detection control programs
of first human case initiated
Time

b Proactive One Health control strategy for RVF with vaccination and vector control

e

/\/\ - Enhanced Reduced Reduction
\‘\\\\ W Vi L herd transmission in human
W \\\\\ AN RN i\\\\ RS S8 immunity to humans cases
A\ NN
AT \

Precipitation

Climate models Integrated Routine or emergency use Reduced contact with infected
predict increased vector vaccination programs animal tissue and blood
RVF outbreak risk control

Time
Figure 3

Rift Valley fever (RVF) virus outbreak dynamics. () A typical detection and response scenario with no
effective disease surveillance and control strategies. (6) A One Health approach to enhanced outbreak
prediction, vector control, and routine or emergency response vaccination of animals and humans to
mitigate health impacts. Figure adapted from Reference 160.

because vaccine delivery should be targeted 3 weeks to a month before historical outbreak
times and repeated throughout the year for the entire village. Furthermore, as discussed earlier,
adhering to basic biosecurity principles and good animal husbandry practices including nutrition,
management, and hygiene is essential for birds to generate a proper immune response. The
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concept of biosecurity units is also important and generally represents the unit that can be
protected, impeding the introduction of birds and/or pathogens. In a rural village setting, this
unit is usually the entire village, which may be 20-50 households. The goal of the program is
to vaccinate the village effectively and uniformly at a given time. Social aspects such as gender,
cultural beliefs, and personal motivation also play a role in how and why farmers elect to vaccinate
their birds. If the community is not motivated and willing to contribute, developing rapport and
community uptake can be impossible (169).

Successful NDV vaccination programs can have a huge impact on poultry production, human
nutrition, and family economic well-being. Birds that do not die of NDV can grow and produce
meat and eggs, sometimes in excess, allowing the household to consume good quality protein
and sell some of the products in local markets. These revenues usually are used to cover food,
hygiene, clothing, medical, or education costs (170). Examples of livestock and human nutrition
development programs that combined various poultry value chain activities (including NDV vac-
cine campaigns) with food security and nutritional interventions are in the literature, with various
outcomes (142, 171). A randomized control trial studying the effect of NDV adoption on the
livelihoods of Tanzanian poultry farmers is also being conducted currently, with funding from the
Global Alliance for Livestock Veterinary Medicines (172).

Because biosecurity and sustainable ND vaccination programs can be difficult to implement
in rural poultry production system settings, researchers are also working on other approaches
to addressing ND. With the advancement of genomic technologies, genetic improvement has
provided a promising complementary approach in enhancing disease resilience to NDV infec-
tion by selective breeding (173). The Feed the Future Innovation Lab for Genomics to Improve
Poultry (https://gip.ucdavis.edu) led such an effort. In summary, local Ghanaian and Tanzanian
chicken ecotypes were challenged with low- and high-pathogenic NDV strains to evaluate disease
resistance parameters including viral load, anti-NDV antibody response, and survival time (173,
174). The moderately high heritabilities of these parameters suggest that genetic improvement on
these traits is feasible (173, 175). Genome-wide association analysis was conducted to identify ge-
nomic regions affecting these disease resilience parameters in African local ecotype chickens, then
an economically affordable low-density single-nucleotide polymorphism panel was developed to
genotype breeding individuals by selecting more resilient birds, focusing primarily on survival
time (173). Although the first generation of genomic selection has been conducted, it is expected
that multiple generations of selection are needed to breed marketable ND-resilient local ecotypes
176).

ECOLOGICAL INTERVENTIONS

Ecological interventions for pathogen spillover prevention (also called ecological countermea-
sures) are a subject of growing interest (177-180). According to Sokolow et al. (177), interventions
directed at the ecological processes involved in spillover are potentially underused approaches for
developing sustainable solutions to minimize spillover. These approaches typically have little to no
adverse effects on the environment and can complement traditional disease prevention and control
strategies, such as vaccination and treatment (177, 181). Ecological countermeasures are defined
as highly targeted, landscape-based interventions aimed at mitigating one or more components
of spillover triggered by land use change, a primary driver of pathogen spillover from wildlife to
humans (25). The focus is on addressing perturbations that lead to increased infections in wildlife
populations; greater pathogen shedding in wild animal hosts and spillover into other hosts, in-
cluding humans; and subsequent spread in human populations (25, 180). These countermeasures,
which consider the interactions among hosts or between hosts and their shared environments that
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may be driving spillover, can lead to innovative nature-based solutions (e.g., habitat restoration)
for mitigating cross-species transmission.

Several case studies highlight the benefits of using ecological interventions/countermeasures
as an approach to zoonotic disease prevention. For example, policies requiring fruit trees to be
planted at a minimum distance from pig sties, to reduce spillover of Nipah virus from bats to pigs,
have prevented Nipah virus outbreaks in Malaysia since 1998 (182). This intervention provided
a more sustainable solution as compared to initial culling of pigs, which resulted in devastating
economic losses for farmers. Similarly, a current intervention involving winter foraging habitat
restoration for Pteropus spp. bats in Australia could allow bats to return to their native habitats
and winter foraging behaviors away from the human-dominated agricultural landscapes, where
bats have taken up roost near horse pastures due to winter food shortages that have occurred due
to forest loss and climatic events (183). In Senegal, reintroduction of native river prawns, a nat-
ural enemy for snail intermediate hosts, to a river system where dam construction had restricted
their movements has been implemented as a successful complementary approach to schistosomi-
asis control (184). When used in combination with ongoing conventional medical treatments in
the communities, the prawns controlled the snail population and decreased or locally eliminated
the parasite in the system. Protection or restoration of wetland habitats can mitigate the risk of
zoonotic pathogen spillover. Wu et al. (185) assessed how waterfowl] habitat protection was related
to HPAT H5NT outbreaks in China. They found that proximity between unprotected waterfowl
habitats and rice paddy fields, which are used by free-ranging domestic fowl, generally increased
HPAT outbreak risk, whereas proximity to the most highly protected wetland habitats had the op-
posite effect, illustrating the potential for wetlands to serve as a buffer between wild and domestic
birds and mitigate risk of spillover.

THE ROAD AHEAD

Public health and veterinary medicine have come far in recent decades. Advances in computa-
tional power paired with improved algorithms for ML and other artificial intelligence modalities
will revolutionize disease surveillance and management strategies. Already, automated commer-
cially available diagnostic technologies using ML models are being used to identify and diagnose
gastrointestinal parasitic infections and interpret cytologies (186). In Tanzania, researchers have
developed a ML model that diagnoses three common poultry diseases (coccidiosis, Salmonella,
and ND) by fecal image analysis (187). Researchers in China have used a similar image analysis
ML model to detect and predict sick broiler chickens through noninvasive motion image analy-
sis (188). Other technologies will continue to accelerate the development of affordable and rapid
point-of-care diagnostics that will improve surveillance and rapid response capabilities that have
plagued under-resourced areas. Remote disease surveillance capacities will likely be paired with
ecological countermeasure efforts. Furthermore, joint infrastructure that provides integrated di-
agnostic, research, and surveillance activities, such as the Canadian Science Centre for Human
and Animal Health, demonstrates that joint surveillance is possible and cost effective (189).

ML technologies also offer enormous promise for future applications in exploring host—
pathogen interactions and discovering drug and vaccine candidates (190). Solutions to antimi-
crobial resistance may well be identified through Al technologies. Many of these platforms are
agnostic to species, and once established they can be applied to a variety of pathogens. As the NDV
example illustrates, continued advances in genomics and genetic engineering will likely continue
to offer solutions for identifying genetic variations related to specific disease or stressor tolerances
and may also help position the livestock industry to be more resilient toward future climate change
(191).
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Precision livestock farming, driven largely by sensor technology and big data, will also continue
to grow in its use, accessibility, and adoption across farming systems. Already, sensors are used
to detect a range of biological, chemical, or physical properties including motion, temperature,
weight, sounds, facial recognition, water usage, feed consumption, and more across many types of
production systems and livestock species (192). Similar to how cell phone technology leapfrogged
much of the developing world past landline phones, the accessibility and innovation of some sensor
technologies have vast potential to revolutionize livestock production in developing countries.

CONCLUSION

As the world reckons with the convergent challenges of climate change, land use changes, biodi-
versity loss, and the continued threat of endemic and emerging infectious diseases, coupled with
feeding a growing population, livestock production and medicine must adapt and evolve to meet
those challenges. Ecological countermeasures will need to be scalable and used to complement the
more traditional epidemiological and husbandry-based approaches to improving livestock health.
Often, these more affordable strategies can be used in low-resource settings while simultaneously
contributing to food security and climate adaptation goals.

Throughout this article, recurrent themes emerge related to the importance of social science
to inform risk assessments and epidemiological research, design appropriate interventions, and
cocreate community engagementstrategies. Furthermore, there is no substitute for following basic
biosecurity and good animal husbandry practices. No vaccination strategy will compensate for
inadequate nutrition, insufficient colostrum, lack of water, poor hygiene, or loose biosecurity. It
is also apparent that whereas tremendous global progress has been made in the development of
One Health National Action Plans, One Health Frameworks, and similar high-level policies in the
last decade, adoption and reporting of actual One Health interventions that holistically address
livestock disease challenges and systematically evaluate their impact have been slower.

Livestock development initiatives focused on animal health improvement, along with routine
veterinary services provision and surveillance efforts, could increase inclusion of impact evaluation
within their programs. In a 2020 scoping review of livestock interventions in low-income coun-
tries, only 15 of 78 eligible publications used a randomized control design, which is considered the
gold standard for impact evaluation (193). Furthermore, most of these papers were from studies
conducted in Africa, followed by those in Asia and only one from Latin America. Livestock systems
face disease challenges worldwide; sharing best-practice, low-cost, scalable, and accessible solu-
tions to reducing livestock disease prevalence should be a priority of researchers and producers.

As the world accelerates into new solutions based on fast-paced and rapidly evolving plat-
forms that rely on Al technologies, researchers and the private sector in high-income countries
should remain cognizant of the importance and need to democratize these technologies. Sky-
rocketing youth populations in developing countries often mirror growing livestock populations
in the same geographies; as those youth seek educational and career opportunities, the precision
livestock sector and advanced diagnostic technologies may be particularly lucrative for qualified,
highly trained individuals. As commercialized livestock production continues to increase in de-
veloping countries, so should opportunities for employment and improved practices adoption, as
humanity reckons with simultaneously meeting demands for livestock products while balancing
environmental concerns and adapting to a changing climate along with emerging disease threats.
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