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ABSTRACT
The hierarchical model-based (HMB) statistical method is currently applied in connection with NASA’s Global Ecosystem Dynam-
ics Investigation (GEDI) mission for assessing forest aboveground biomass (AGB) in areas lacking a sufficiently large number of
GEDI footprints for employing hybrid inference. This study focuses on variance estimation using a bootstrap procedure that sepa-
rates the computations into parts, thus considerably reducing the computational time required and making bootstrapping a viable
option in this context. The procedure we propose uses a theoretical decomposition of the HMB variance into two parts. Through
this decomposition, each variance component can be estimated separately and simultaneously. For demonstrating the proposed
procedure, we applied a square-root-transformed ordinary least squares (OLS) model, and parametric bootstrapping, in the first
modeling step of HMB. In the second step, we applied a random forest model and pairwise bootstrapping. Monte Carlo simulations
showed that the proposed variance estimator is approximately unbiased. The study was performed on an artificial copula-generated
population that mimics forest conditions in Oregon, USA, using a dataset comprising AGB, GEDI, and Landsat variables.

1 | Introduction

Assessment of ecosystem state and change is becoming increas-
ingly important in the context of mitigating climate change and
biodiversity loss. Information from such assessments is crucial
for monitoring trends and selecting relevant mitigation measures.
Advances in remote sensing technology offer new possibilities
for providing this type of essential information. For instance, in
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a recent study, Dubayah et al. (2022) applied space LiDAR data
from NASA’s Global Ecosystem Dynamics Investigation (GEDI)
mission to create a forest aboveground biomass (AGB) map for
tropical and temperate regions with 1-km resolution.

Coupled with the new wealth of possibilities to assess ecosys-
tem state and change, assessing the reliability of information
is becoming increasingly important. For example, wall-to-wall
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maps may convey a false impression of perfect information (e.g.,
Kangas, Myllymäki, and Mehtätalo 2023), hiding large uncertain-
ties in the estimated state for each map unit. Thus, it is imperative
to develop and apply appropriate methods for assessing informa-
tion reliability. To address this, Saarela et al. (2020) demonstrated
a method for assessing the mean square error of AGB predictions
at the level of individual map units; Dubayah et al. (2022) uti-
lized a hybrid inferential methodology to complement the GEDI
map by providing estimates of uncertainty for 1 km map units,
following methods devised by Patterson et al. (2019).

In some cases, the GEDI map units do not contain a sufficient
number of LiDAR footprints to apply hybrid inference. For those
map units, an alternative is to apply hierarchical model-based
(HMB) inference (Saarela et al. 2016, 2018), which uses a com-
bination of GEDI and Landsat data. With HMB, inference pro-
ceeds in two modeling steps. In the first step, the sample of GEDI
data available in the neighborhood of a target grid cell is used for
predicting pseudo-field AGB data. These data are subsequently
applied for training a Landsat AGB model, which is then applied
to all map units within the 1 km grid cell (Saarela et al. 2018).
Thus, the variance of a predictor in HMB inference needs to
account for the effects of two sources of modeling uncertainty.

Originally, HMB inference was developed for generalized lin-
ear and nonlinear parametric models (Saarela et al. 2018,
2020). However, due to the development of flexible and effi-
cient machine-learning prediction methods, such as random for-
est (Breiman 2001), parametric models may not always be the
preferred choice. With nonparametric models, the analytical
methods for uncertainty assessment cannot be applied. Conse-
quently, resampling methods, particularly based on bootstrap-
ping (Efron 1979), are the main alternative.

Rubin (1987) proposed a method for assessing variances within
design-based inference when the observed sample values are
missing and instead imputed through an imputation model,
which may be nonparametric. With this approach, during each
imputation round a new set of imputed values for each sampled
unit with nonresponse is generated and the population param-
eter estimate and the corresponding variance estimate are com-
puted treating the imputed values as if they were observed. The
target population parameter is estimated as the average of the
estimates across all imputation rounds. The corresponding vari-
ance comprises two components: (i) the empirical population
variance of the population parameter estimates across the impu-
tations, plus (ii) the average of the estimated variances of the
population parameter estimator computed across the imputation
rounds. This method was adopted by McRoberts et al. (2016) in
the context of developing bootstrapping-based uncertainty anal-
ysis for hybrid inference.

Some studies have raised concerns over bias in Rubin’s (1987)
variance estimator. Särndal (1992) analytically demonstrated that
Rubin’s estimator is, in fact, biased, and proposed an alternative
variance estimator, which does not require multiple imputations.
Kim et al. (2006) provided a comprehensive overview of the lit-
erature and suggested conditions under which Rubin’s variance
estimator is biased. In the context of hybrid inference, Fortin,
Manso, and Schneider (2018) introduced a variance estimator
that utilizes parametric bootstrapping as the basis for multiple

imputation and also corrects for the bias inherent in Rubin’s
estimator. Recently, Fortin et al. (2024) applied a similar method-
ology for HMB, and parametric bootstrapping to address uncer-
tainty due to the first-step model.

Rubin’s (1987) and Fortin et al.’s (2018 and 2024) variance esti-
mators involve two sources of uncertainty and a combination
of bootstrap and analytical methods. The estimation procedure
is computationally demanding but remains feasible because it
requires only one bootstrap loop. McRoberts et al. (2016) used
Rubin’s (1987) estimator for hybrid inference and bootstrap
methods to assess uncertainty from both the estimated model and
the random sampling of covariates. This required a nested boot-
strapping loop, which significantly increased the computational
demands. With HMB, nested bootstrapping to account for uncer-
tainty from both modeling steps involved is extremely computa-
tionally demanding. Thus, to facilitate the use of bootstrapping
in connection with assessing uncertainties from combinations of
nonparametric models in HMB, alternatives to nested bootstrap-
ping are required. The need for such developments is even larger
if additional modeling steps are introduced, such as when apply-
ing three-phase HMB (Saarela et al. 2023; Varvia et al. 2024).

1.1 | Objectives

The objective of this study was to develop and demonstrate a boot-
strapping algorithm for HMB inference, which splits the com-
putations into several independent steps, thus facilitating faster
computations. The method is based on a formal separation of the
variance of the HMB predictor into components. Each of these
components can be estimated separately and in parallel, using
bootstrapping algorithms such as pairwise bootstrap (e.g., Este-
ban et al. 2019) or the parametric bootstrap (Ene et al. 2018). The
performance of the method was evaluated through Monte Carlo
simulation.

2 | Material and Methods

2.1 | Simulated Data

For the numerical part of the study, we generated a superpop-
ulation (e.g., Ene et al. 2012) of 3 million independent observa-
tions using copulas (e.g., Nelsen 2006). We applied regular vine
(R-vine) copula models implemented in R by Nagler et al. (2023).
From the superpopulation, random samples of 100,000 units were
repeatedly selected to constitute the target population during
the Monte Carlo analysis (see further down). Each population
unit comprised AGB derived from field measurement, rh50 and
rh98 from GEDI (corresponding to heights at which a certain
percentile of returned energy is reached relative to the ground),
and digital numbers from Landsat’s red, near infrared (NIR) and
shortwave infrared 1 (swir1) bands. Based on empirical data from
Oregon, USA, and copula modeling, joint distributions of the
variables were obtained for each unit in the superpopulation,
mimicking conditions in Oregon. Field forest AGB data were
obtained from plot measurements of the US Forest Inventory and
Analysis (FIA) survey (e.g., Menlove and Healey 2020). The field
data used to parameterize the copula population comprised 2313
FIA plots, measured between 2015 and 2019. We used only those
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plots with a single forested condition (defined on the basis of vari-
ables such as stand age and forest type) because it would not be
possible to spatially differentiate multiple conditions using the
remotely sensed covariates upon which the copula population
is based. We processed Landsat time series through continuous
change detection and classification (CCDC) and synthetic images
(Zhu et al. 2015) corresponding to July 1 of the survey year for
which GEDI L2A Geolocated Elevation Height Metrics Product
were available (GEDI02_A: Dubayah et al. 2021). Table 1 provides
an overview of the variables in the superpopulation.

Figure 1 provides a visualization of the data. On the diagonal, the
histogram of each variable is displayed. The lower corner of the
off-diagonal squares shows the joint density plot of paired vari-
ables, while the upper corner of the off-diagonal squares provides
the Pearson correlation coefficient (PCC) for the corresponding
pairs of variables.

2.2 | HMB Inference

Let𝑈 = {1, . . . , 𝑖, . . . , 𝑁} be a finite population. Each population
unit has a multivariate variable associated with it, that is, the
variables described in the previous section. The joint distribution
of the variable defines the superpopulation model (Cassel et al.
1977). The multivariate variable comprises the target variable 𝑌

𝑖

(the AGB) and the auxiliary variables 𝑿
𝑖

and 𝒁
𝑖

based on GEDI
and Landsat data, respectively. We assume that three datasets 𝑆,
Sa and 𝑈 are independently selected from the superpopulation.
The dataset 𝑆 comprises AGB and GEDI data and is used to train
the first-step model. The dataset Sa comprises GEDI and Landsat
data and is used to train the second-step model. The target popu-
lation𝑈 comprises wall-to-wall Landsat data, only. The objective
pursued within HMB inference was to predict the target popula-
tion mean, 𝑦 = 1

𝑁

∑𝑁
𝑖=1𝑦𝑖 for the given realization of 𝑈 from the

superpopulation, through HMB inference. (Here, the value 𝑦
𝑖

is
a realization of 𝑌

𝑖
for the target population,𝑈.) We assume that

our target population is large enough so that the target popula-
tion mean is approximately equal to the superpopulation mean,
which implies that the variance of the predictor would be approx-
imately the same as the mean square error of the predictor (e.g.,
Ståhl et al. 2016; Saarela et al. 2022). We make this assumption
because we know that the mean square error is the most relevant
uncertainty measure to address. However, estimating the mean
square errors is more demanding than estimating the variance
because it involves assessing not only the variability of the pre-
dictor but also other components, such as the variability of the
true value (e.g., McRoberts et al. 2018).

We begin by introducing two conditional models that follow from
the superpopulation model. The first model is denoted ‘Model I’

and describes the relationship between the target variable 𝑌
𝑖

and
the auxiliary GEDI information 𝑿

𝑖
:

Model I ∶ 𝑌
𝑖
= 𝐸I[𝑌𝑖|𝑿𝑖 = 𝒙𝑖] + 𝜖𝑖, (1)

where 𝜖
𝑖

is the model error term, and 𝐸I[𝑌𝑖|𝑿𝑖 = 𝒙𝑖] is a condi-
tional expectation of 𝑌

𝑖
for a given realization of 𝑿

𝑖
= 𝒙

𝑖
. The

second model is denoted ‘Model II’:

Model II ∶ 𝐸I[𝑌𝑖|𝑿𝑖] = 𝐸II[𝐸I[𝑌𝑖|𝑿𝑖]|𝒁𝑖 = 𝒛𝑖] + 𝜐𝑖, (2)

where 𝐸I[𝑌𝑖|𝑿𝑖] is the conditional expectation of 𝑌
𝑖

given 𝑿
𝑖
,

𝐸II[𝐸I[𝑌𝑖|𝑿𝑖]|𝒁𝑖 = 𝒛𝑖] is the conditional expectation of 𝐸I[𝑌𝑖|𝑿𝑖]
for a given realization of Landsat data𝒁

𝑖
= 𝒛

𝑖
, and 𝜐

𝑖
is the model

error term. Since the expectation 𝐸I[𝑌𝑖|𝑿𝑖] is conditional on a
variable, it is a variable in itself; properties of the response vari-
able 𝐸I[𝑌𝑖|𝑿𝑖] under normality assumptions were presented and
discussed in Saarela et al. (2023).

Within HMB inference the dataset 𝑆, comprising AGB and GEDI,
data are used to train Model I. Subsequently, the estimated Model
I is applied to the dataset Sa to predict the variable of interest;
these predictions, that is, “pseudo-field” AGB, are denoted �̂�Sa,
using explanatory variables 𝑿Sa from GEDI. Then, the predicted
variable �̂�Sa is used to train Model II, utilizing explanatory vari-
ables 𝒁Sa from Landsat. The estimated Model II is then applied
to the target population 𝑈 to predict the variable of interest, the
AGB, using the Landsat wall-to-wall auxiliary variables 𝒁

𝑈
.

The target population mean predictor under HMB inference is

̂
𝑦
𝑈HMB

=
1
𝑁

𝑁∑

𝑖=1
𝑦
𝑖
, (3)

that is, the average of predicted values using estimated Model
II based on wall-to-wall Landsat auxiliary data across the tar-
get area.

To derive the variance of the predictor ̂𝑦
𝑈HMB
,we decompose its

deviation from its expectation as:

̂
𝑦
𝑈HMB

− 𝐸I𝐸II

[
̂
𝑦
𝑈HMB

]
=
̂
𝑦
𝑈HMB

− 𝐸II

[
̂
𝑦
𝑈HMB

|I
]

+ 𝐸II

[
̂
𝑦
𝑈HMB

|I
]
− 𝐸I𝐸II

[
̂
𝑦
𝑈HMB

]

=

(
𝐸II

[
̂
𝑦
𝑈HMB

|𝐼
]
− 𝐸

𝐼
𝐸II

[
̂
𝑦
𝑈HMB

])
+

(
̂
𝑦
𝑈HMB

− 𝐸II

[
̂
𝑦
𝑈HMB

|𝐼
])

= model error term due to Model I

+model error term due to Model II, conditional on Model I,

(4)

TABLE 1 | Overview of the variables in the superpopulation.

AGB, [Mg⋅ha−1] rh50 rh98 Red Nir Swir1

Min 0.00 −1.87 2.52 0.01 0.10 0.03
Mean 295.55 12.72 28.95 0.03 0.23 0.10
Max 1906.44 44.21 68.72 0.13 0.48 0.28
SD 232.41 8.27 11.49 0.01 0.06 0.04
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FIGURE 1 | A graphical visualization of the correlation matrix for the variables included in the superpopulation. The lower corner of the
off-diagonal squares shows the joint density plot of paired variables, while the upper corner of the off-diagonal squares provides the Pearson correlation
coefficient (PCC) for the corresponding pairs of variables. On the diagonal, the histogram of each variable is displayed.

where,𝐸I𝐸II

[
̂
𝑦
𝑈HMB

]
is the total expectation of the HMB predictor,

and 𝐸II

[
̂
𝑦
𝑈HMB

|I
]

is its expectation due to Model II, conditional on
Model I.

The variance of the HMB predictor is then

𝑉

(
̂
𝑦
𝑈
𝐻MB

)
= 𝐸I𝐸II

[(
̂
𝑦
𝑈HMB

− 𝐸I𝐸II

[
̂
𝑦
𝑈HMB

])2
]

= 𝐸I𝐸II

[((
𝐸II

[
̂
𝑦
𝑈HMB

|I
]
− 𝐸I𝐸II

[
̂
𝑦
𝑈HMB

])

+

(
̂
𝑦
𝑈HMB

− 𝐸II

[
̂
𝑦
𝑈HMB

|I
]))2

]

,

(5)

which can be decomposed into three parts:

𝑉

(
̂
𝑦
𝑈HMB

)
= 𝐸I𝐸II

[(
𝐸II

[
̂
𝑦
𝑈HMB

|I
]
− 𝐸I𝐸II

[
̂
𝑦
𝑈HMB

])2
]

+ 𝐸I𝐸II

[(
̂
𝑦
𝑈HMB

− 𝐸II

[
̂
𝑦
𝑈HMB

|I
])2

]

+ 2𝐸I𝐸II

[(
𝐸II

[
̂
𝑦
𝑈HMB

|𝐼
]
− 𝐸I𝐸II

[
̂
𝑦
𝑈HMB

])

(
̂
𝑦
𝑈HMB

− 𝐸II

[
̂
𝑦
𝑈HMB

|I
])]

(6)

The first component on the right side of (6) is the propagated
uncertainty due to the estimation of Model I through Model II,

that is,
𝑉I

(
𝐸II

[
̂
𝑦
𝑈HMB

|I
])
. (7)

The second component is the expectation of the variance due to
the estimation of Model II conditionally on Model I, that is,

𝐸I

[
𝑉II

(
̂
𝑦
𝑈HMB

|I
)]
. (8)

The third component of the right side of Equation (6), involves
the covariance:

𝐸I𝐸II

[(
𝐸II

[
̂
𝑦
𝑈HMB

|I
]
− 𝐸I𝐸II

[
̂
𝑦
𝑈HMB

])(
̂
𝑦
𝑈HMB
− 𝐸II

[
̂
𝑦
𝑈HMB

|I
])]
=

= 𝐸I𝐸II

[

𝐸II

[
̂
𝑦
𝑈HMB

|I
]
̂
𝑦
𝑈HMB
− 𝐸I𝐸II

[
̂
𝑦
𝑈HMB

]
̂
𝑦
𝑈HMB

−𝐸II

[
̂
𝑦
𝑈HMB

|I
]2
+ 𝐸I𝐸II

[
̂
𝑦
𝑈HMB

]
𝐸II

[
̂
𝑦
𝑈HMB

|I
]]

.

(9a)
The first term on the right side of Equation (9a) can be elabo-
rated as

𝐸I𝐸II

[
𝐸II

[
̂
𝑦
𝑈HMB

|I
]
̂
𝑦
𝑈HMB

]
= 𝐸I

[
𝐸II

[
̂
𝑦
𝑈HMB

|I
]
𝐸II

[
̂
𝑦
𝑈HMB

|I
]]

= 𝐸I

[

𝐸II

[
̂
𝑦
𝑈HMB

|I
]2
]

.
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The second and fourth terms in Equation (9a) are simplified to

𝐸I𝐸II

[
̂
𝑦
𝑈HMB

]2
, and the third term is 𝐸I

[

𝐸II

[
̂
𝑦
𝑈HMB

|I
]2
]

. Thus, the

covariance Equation (9a) equals zero, since the first and third
terms, and the second and the fourth terms cancel each other,
that is,

𝐸I

[

𝐸II

[
̂
𝑦
𝑈HMB

|I
]2
]

− 𝐸I𝐸II

[
̂
𝑦
𝑈HMB

]2
− 𝐸I

[

𝐸II

[
̂
𝑦
𝑈HMB

|I
]2
]

+ 𝐸I𝐸II

[
̂
𝑦
𝑈HMB

]2
= 0. (9b)

Thus, the variance of the HMB predictor can be presented as
a decomposition based on the law of total variance (Saarela
et al. 2022, 2023) as

𝑉

(
̂
𝑦
𝑈HMB

)
= 𝑉I

(
𝐸II

[
̂
𝑦
𝑈HMB

|I
])
+ 𝐸I

[
𝑉II

(
̂
𝑦
𝑈HMB

|I
)]
. (10)

This decomposition is the basis for the separable bootstrap
algorithm, presented further down.

2.3 | HMB With Parametric Models

If Model I and Model II are estimated using ordinary least squares
(OLS) regression analysis with a linear model, the HMB predic-
tor is

̂
𝑦
𝑈HMBOLS

= 𝒛
𝑈
𝜶OLS, (11)

and then the variance has the form

𝑉OLS

(
̂
𝑦
𝑈HMBOLS

)
= 𝒛

𝑈

(
𝒁
𝑇

Sa𝒁Sa
)−1
𝒁
𝑇

Sa𝑿SaCov
(
𝜷OLS

)

𝑿
𝑇

Sa𝒁Sa
(
𝒁
𝑇

Sa𝒁Sa
)−1
𝒛
𝑇

𝑈
+ 𝒛

𝑈
Cov

(
𝜶OLS|𝜷OLS

)
𝒛
𝑇

𝑈
, (12)

where 𝒛
𝑈

is a vector of the means of the Landsat variable
values over the target population 𝑈 (with unit terms for
the intercept), 𝒁Sa is the matrix of Landsat variables (with
unit terms for the intercept) for the dataset Sa, and 𝑿Sa is
the corresponding matrix of GEDI explanatory variables; 𝜷OLS
and 𝜶OLS are estimated model parameters for Model I and
Model II respectively (Saarela et al. 2016). The first component
on the right-hand side of (12) is the propagated uncertainty due
to the estimated Model I. The second component is the vari-
ance due to the estimated Model II, conditionally on Model I.
An estimator of the variance is obtained by replacing the
covariances of the estimated model parameters with their cor-
responding estimators. HMB inference with generalized least
squares and generalized nonlinear least squares models was pre-
sented in Saarela et al. (2018), (2020), respectively.

2.4 | HMB With Nonparametric Models

In case nonparametric models are applied in either or both
modeling steps, the variance formula presented above can-
not be applied. Fortin et al. (2024) presented a variance esti-
mator involving bootstrapping for cases where nonparametric
(or complicated parametric) modeling was applied in the first

modeling step. (However, with nonparametric models in both
steps, the approach by Fortin et al. (ibid.) cannot be applied.)
The multiple imputation framework proposed by Rubin (1987)
was used as the basis for Fortin’s variance estimator. The uncer-
tainty due to Model I was assessed through parametric boot-
strapping. Following Fortin et al. (2024), the population mean
predictor is

̂
𝑦
𝑈HMB𝐹

=
1
𝐵

𝐵∑

𝑖=1

̂
𝑦
𝑈HMB𝑖

=
1
𝐵

𝐵∑

𝑖=1
𝒛
𝑈
𝜶
𝑖
, (13)

where 𝐵 is the number of bootstrap iterations, and 𝜶
𝑖

is a
vector of estimated model parameters for the 𝑖th bootstrap
iteration. The total variance of the predictor ̂𝑦

𝑈HMB𝐹
com-

prises two components: (i) the empirical population variance
of the target population estimates across the bootstrap rounds(

𝒛
𝑈

∑𝐵
𝑖=1(𝜶𝑖−

1
𝐵

∑𝐵
𝑖=1𝜶𝑖)

2

𝐵
𝒛
𝑇

𝑈

)

, and (ii) a component related to the

analytically-based variance estimator for the second-step model,
that is,

(
2𝒛
𝑈

Ĉov(𝜶bts)𝒛
𝑇

𝑈
− 𝒛

𝑈

∑𝐵
𝑖=1Ĉov

𝑖 (𝜶𝑖 )

𝐵
𝒛
𝑇

𝑈

)
. Thus, the variance

is estimated as

𝑉
𝐹

(
̂
𝑦
𝑈HMB𝐹

)
= 𝒛

𝑈

∑𝐵
𝑖=1

(

𝜶
𝑖
−

1
𝐵

𝐵∑

𝑖=1
𝜶
𝑖

)2

𝐵
𝒛
𝑇

𝑈

+ 2𝒛
𝑈

Ĉov(𝜶bts)𝒛
𝑇

𝑈
− 𝒛

𝑈

∑𝐵
𝑖=1Ĉov

𝑖(𝜶𝑖)

𝐵
𝒛
𝑇

𝑈
(14)

In (14), 𝜶bts is estimated using the average of 𝑦Sa pre-
dictions across the bootstrap iterations. The first and the
third components of the variance estimator Equation (14)
(Fortin et al. 2024, Equation 9) coincide with Rubin’s vari-
ance estimator, if added. By introducing the difference term(

2𝒛
𝑈

Ĉov(𝜶bts)𝒛
𝑇

𝑈
− 𝒛

𝑈

∑𝐵
𝑖=1Ĉov

𝑖 (𝜶𝑖 )

𝐵
𝒛
𝑇

𝑈

)
, the bias of Rubin’s (1987)

variance estimator is removed (Fortin et al. 2024).

The first component of (14) is the propagated uncertainty due to
the estimation of Model I, since the bootstrapping procedure is
conducted for Model I, and Model II is re-estimated within each
bootstrap iteration. No bootstrapping procedure is employed for
Model II at this stage.

The component
(

2𝒛
𝑈

Ĉov(𝜶bts)𝒛
𝑇

𝑈
− 𝒛

𝑈

∑𝐵
𝑖=1Ĉov

𝑖 (𝜶𝑖 )

𝐵
𝒛
𝑇

𝑈

)
is the esti-

mated uncertainty due to Model II. The estimation is based on
an analytical expression of the model-based variance. However,
if the second model is nonparametric a bootstrapping approach
could be applied instead. If so, a nested bootstrap procedure
would be necessary. In other words, during each outer bootstrap
loop for Model I, an inner bootstrap loop should be executed for
Model II. Such an approach would significantly increase the com-
putational load (see Section 2.7).

In the following, we propose a separable bootstrapping solution
for situations where resampling is applied to assess the uncer-
tainty in both modeling steps. This solution does not require
nested resampling.
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2.5 | A Separable Bootstrap HMB Variance
Estimation Algorithm (HMB.Bts)

In the following, we propose a bootstrapping variance estimation
framework for HMB inference that utilizes nonparametric mod-
els in both modeling steps. The proposed framework does not
require nested bootstrapping; instead, the computation process
can be performed in single, and potentially parallel, bootstrap
loops. In this framework, the population mean predictor is

̂
𝑦
𝑈HMB.bts

=

∑𝐵
𝑖=1
̂
𝑦
𝑈HMB.btsI 𝑖

+
∑𝐵
𝑖=1
̂
𝑦
𝑈HMB.btsII 𝑖

2𝐵
(15)

and its variance is

𝑉HMB.bts

(
̂
𝑦
𝑈HMB.bts

)
=

∑𝐵
𝑖=1

(

̂
𝑦
𝑈HMB.btsI 𝑖

−
1
𝐵

𝐵∑

𝑖=1

̂
𝑦
𝑈HMB.btsI 𝑖

)2

𝐵 − 1

+

∑𝐵
𝑖=1

(

̂
𝑦
𝑈HMB.btsII𝑖

−
1
𝐵

𝐵∑

𝑖=1

̂
𝑦
𝑈HMB.btsII 𝑖

)2

𝐵 − 1
(16)

In (15), ̂𝑦
𝑈HMB.btsI 𝑖

represents the predicted population mean from
the 𝑖th bootstrap iteration when Model I is bootstrapped. As a con-
sequence of bootstrapping the first model, the second model is
re-fitted and then reapplied to the target population 𝑈, result-
ing in a new predicted value for the target population mean. It
should be noted that when the first model is bootstrapped, the
second one changes as a consequence, but not because it is being

bootstrapped. At each bootstrap iteration, another population
mean prediction, ̂𝑦

𝑈HMB.btsII 𝑖
, is obtained by bootstrapping the sec-

ond model in parallel to the first bootstrapping procedure. As
a result of the proposed bootstrap procedures, two second-step
models are trained simultaneously and independently during
each (parallel) bootstrap iteration. One propagates the errors due
to bootstrapping the first model, and the other is due to bootstrap-
ping the second model. Figure 2 provides a graphical overview of
the HMB.bts bootstrap procedure.

Table 2 describes the bootstrapping procedure proposed by Fortin
et al. (2024) and the HMB.bts bootstrapping proposed in this
study.

2.6 | Motivating the HMB.Bts Procedure

From Equation (10) we know that a generic breakdown
of the total variance due to uncertainty from two model-
ing steps can be expressed as 𝑉

(
̂
𝑦
𝑈HMB

)
= 𝑉I

(
𝐸II

[
̂
𝑦
𝑈HMB

|I
])
+

𝐸I

[
𝑉II

(
̂
𝑦
𝑈HMB

|I
)]
.To motivate HMB.bts, we will now show how

the proposed bootstrap procedure estimates each of the two com-
ponents.

The first component is the variance due to the first modeling
step when applying expected values from the second model to
predict the population means, conditional on the outcome of
Model I, that is, the estimated parameter values in Model I for
a given bootstrap iteration. The estimated random forest model
(Model II) approximately provides the expected values for a given

FIGURE 2 | Graphical overview of the HMB.bts estimation procedure is provided. Estimation steps color-coded in green are part of the bootstrap-
ping procedure, while estimation steps color-coded in blue are estimated only once. Dataset 𝑆 is used to train Model I, the dataset Sa is used to train
Model II and the dataset 𝑈 is the target population (see Section 2.2).
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TABLE 2 | Comparison of Fortin’s (2024) bootstrap procedure with the procedure proposed in this study.

Steps Fortin et al. (2024) HMB.bts

Step (i) Model I is fitted using the information on AGB (𝑦
𝑆
) and

GEDI data (𝑿
𝑆
) from the dataset 𝑆.

Same as in Fortin et al.

Step (ii) A set of model parameters is generated from a multivariate
normal distribution using estimated model parameters in

Model I, these model parameters are applied for predicting
AGB (𝑦Sa) over the dataset Sa.

Same as in Fortin et al.

Step (iii) The AGB predictions 𝑦Sa are used for training Model II
using Landsat data (𝒁Sa). Model II is parametric.

Same as in Fortin et al., but Model II is
nonparametric (which means that Fortin’s method

cannot be applied).
Step (iv) Model II is applied across the target area 𝑈, utilizing

available wall-to-wall Landsat data (𝒁
𝑈

) to predict the
population mean value. The predicted mean values over the

bootstrap iterations are used to estimate the first variance
component of the variance estimator Equation (14):

𝒛
𝑈

∑𝐵
𝑖=1(𝜶𝑖−

1
𝐵

∑𝐵
𝑖=1𝜶𝑖)

2

𝐵
𝒛
𝑇

𝑈

Model II is applied across the target area 𝑈, utilizing
available wall-to-wall Landsat data (𝒁

𝑈
) to predict

the population mean value. The predicted mean
values over the bootstrap iterations are used to

estimate the first variance component of the variance
estimator Equation (16):

∑𝐵
𝑖=1

(
̂
𝑦
𝑈HMB.btsI 𝑖

−
1
𝐵

∑𝐵
𝑖=1
̂
𝑦
𝑈HMB.btsI 𝑖

)2

𝐵−1

Step (v) An analytical expression based on Model II is employed to
estimate the variance associated with predicting the

population mean, that is, 𝒛
𝑈

Ĉov
𝑖(𝜶𝑖)𝒛

𝑇

𝑈
for all bootstrap

iterations. Throughout this process, the AGB pseudo-field
data (𝑦Sa) are treated as observed data, that is, the variance

is conditional on the predictions based on Model I. The
average of the estimated variances across the bootstrap

iterations is then estimated as

𝒛
𝑈

∑𝐵
𝑖=1Ĉov

𝑖 (𝜶𝑖 )

𝐵
𝒛
𝑇

𝑈

The pseudo-field AGB field data predictions (𝑦Sa)
obtained by applying Model I across the dataset Sa,

are used to train Model II using random forest. Model
II is then bootstrapped using pairwise bootstrapping.

Step (vi) After the bootstrap procedure is completed, the average of
the 𝑦Sa predictions across the bootstrap iterations is used to

estimate another set of model parameters corresponding
Model II, that is, the 𝜶bts values. The model parameters are
then used to estimate the variance of prediction following

the analytical variance expression: 𝒛
𝑈

Ĉov(𝜶bts)𝒛
𝑇

𝑈

Model II is applied across the target population 𝑈 to
predict the population mean. The predicted

population mean values over the bootstrap iterations
are used to estimate the second component of the

variance estimator, Equation (16), that is, the
uncertainty due to the estimation of Model II as:

∑𝐵
𝑖=1

(
̂
𝑦
𝑈HMB.btsII𝑖

−
1
𝐵

∑𝐵
𝑖=1
̂
𝑦
𝑈HMB.btsII 𝑖

)2

𝐵−1

To obtain the second component on the right side of the
Equation (14). Thus, the uncertainty due to the estimated

Model II is
(

2𝒛
𝑈

Ĉov(𝜶bts)𝒛
𝑇

𝑈
− 𝒛

𝑈

∑𝐵
𝑖=1Ĉov

𝑖 (𝜶𝑖 )

𝐵
𝒛
𝑇

𝑈

)

set of explanatory Landsat variables, conditional on the outcome
of Model I at each bootstrap iteration. Thus, by applying the
proposed algorithm, where Model I is estimated differently in
each iteration, and the consequential uncertainty is propagated
through Model II, the first variance component of (10) is esti-
mated. The estimation procedure is at least approximately unbi-
ased, and it coincides with the first term of the estimation proce-
dure proposed by Fortin et al. (2024).

The second variance component is the expectation of the vari-
ance among population mean predictions, for different outcomes
of Model II, conditional on the outcome of Model I. That is,
for a given estimate of Model I, bootstrap iterations are run for
Model II, to assess the variability due to estimating the second
model conditional on the first model. Then, the expectation of

these variances is computed across different realizations of Model
I. In our standard procedure for HMB.bts, however, we argue
that the main variability in this case is due to variability follow-
ing different realizations of Model II, in which case we avoid
nested bootstrapping by selecting only a single outcome of Model
I rather than computing the mean value from several outcomes
of Model I (which would require nested bootstrapping). A moti-
vation for this is that, in normal applications of HMB, the first
model should be accurate enough to provide pseudo-field vari-
able values, in which case variability due to the outcome of Model
I should be relatively small. Further, although only a single out-
come of Model I is used, the proposed procedure remains approx-
imately unbiased. The unbiasedness was tested using a Monte
Carlo sampling-based simulation, described in Section 2.8. In
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this simulation, the HMB.bts framework was applied to different
samples, independently selected from the same superpopulation
in each iteration. This approach ensures that the second variance
component, estimated through bootstrapping Model II based on
a single outcome of Model I, is assessed on different outcomes of
Model I in each Monte Carlo iteration.

2.7 | Time Complexity Comparison of Nested
Bootstrap With Parallel Separable Bootstrap
Procedures

In this section, we perform an analytical comparison of nested
bootstrap with the proposed separable bootstrap procedure,
which is based on two bootstrap loops running in parallel, by
means of time complexity, also called “growth rate” in some lit-
erature (e.g., Cormen 2009, p. 23–29). In the analysis, we assume
that the average time required to train Model I (𝑡1) and the average
time for training Model II (𝑡2) are the same for both approaches
over a large number of experiments. Assuming an average case
with an average number of threads and an average level of paral-
lelization, we obtain the following expression for the overall time
required to perform the nested bootstrap procedure:

𝑡nested =

(
𝐵

𝐶1

)

𝑡1 +

(
𝐵

𝐶1

)(
𝐵

𝐶2

)

𝑡2 =

(
𝐵

𝐶1

)

𝑡1 +

(
𝐵

2

𝐶1𝐶2

)

𝑡2

where,𝐶1 and𝐶2 are numbers of parallel threads used for training
Models I and II respectively, and 𝐵 is the number of bootstrap
iterations.

Thus, the amount of computer time needed to perform the nested
bootstrap procedure is order of 𝐵 squared, that is,

𝑡nested(𝐵) = 𝑂
(
𝐵

2)
. (17)

In the case of the parallel bootstrapping procedure, the time
required for running the algorithm can be expressed as:

𝑡parallel =

(
𝐵

𝐶1

)

𝑡1 +

(
2𝐵
𝐶1𝐶2

)

𝑡2

and thus
𝑡parallel(𝐵) = 𝑂(𝐵). (18)

Equations (17) and (18) show that with nested bootstrap, the
amount of computer time increases quadratically with the num-
ber of bootstrap iterations. However, with the proposed separa-
ble algorithm based on parallel bootstrap loops, the amount of
computer time increases linearly with the number of bootstrap
iterations.

In the section below, we describe how we validated the HMB.bts
estimation framework through Monte Carlo simulation, using an
example related to NASA’s GEDI mission.

2.8 | Monte Carlo Simulation

We applied Monte Carlo simulation to evaluate the performance
of the separable bootstrap variance estimation algorithm. In each

Monte Carlo iteration, the datasets 𝑈, Sa, and 𝑆 were selected
from the superpopulation described in section 2.2 using simple
random sampling without replacement. These datasets were cho-
sen independently and simultaneously, representing one real-
ization of each dataset from the same superpopulation. The
design-independent selection of datasets from the superpopula-
tion mimics the data structure of the GEDI mission, where the
dataset 𝑆 used to train Model I is an independently selected set of
data that may not be a subsample of neither the target population
𝑈 nor the GEDI sample Sa. The same principle is applied regard-
ing the design-independence of the dataset Sa, that is, the set of
GEDI footprints may not be a subsample of the target population
𝑈, since the HMB framework is applied in areas where there are
no GEDI footprints or the subsample is sparse, and thus GEDI
footprints from outside of the target population are used to train
Model II (Saarela et al. 2018).

A square-root-transformed OLS (SQRT) model was employed as
Model I to mimic GEDI’s L4A models (Duncanson et al. 2022).
Then, the model was applied to the GEDI sample of footprints,
that is, the dataset Sa to predict AGB using GEDI data; the
obtained predictions were then used to train Model II by apply-
ing the random forest nonparametric model (Breiman 2001),
based on Landsat data. Model II was then applied across the
target population 𝑈. The target population mean and the corre-
sponding variance were estimated as follows Equations (15) and
(16) according to the procedure described in Table 2 employing
the parametric bootstrap to assess uncertainty due to estimating
Model I, and the pairwise bootstrap to assess the uncertainty due
to estimating Model II. After completing the Monte Carlo itera-
tions, we computed the average of the population mean predic-
tions as follows:

̂
𝑦
𝑈MC =

∑MC
𝑖=1
̂
𝑦
𝑈HMB.bts𝑖

MC
, (19)

where MC is the number of Monte Carlo iterations and ̂𝑦
𝑈HMB.bts𝑖

is
obtain by applying Equation (15) at 𝑖th Monte Carlo iteration. The
empirical variance was computed as

𝑉MC

(
̂
𝑦
𝑈HMB.bts

)
=

∑MC
𝑖=1

(
̂
𝑦
𝑈HMB.bts 𝑖

−
̂
𝑦
𝑈MC

)2

MC − 1
. (20)

The variance 𝑉MC

(
̂
𝑦
𝑈HMB.bts

)
was used to validate the HMB.bts

variance estimator by taking the averages of the variance esti-
mates over the Monte Carlo simulations

𝑉MC

(
̂
𝑦
𝑈HMB.bts

)
=

∑MC
𝑖=1𝑉HMB.bts

𝑖

(
̂
𝑦
𝑈HMB.bts𝑖

)

MC
(21)

and comparing the average with the Monte Carlo-based empirical
variance.

The empirical coverage of estimated confidence intervals across
Monte Carlo iterations is calculated as follows

CIemp = 100 ×
∑MC
𝑖=1ĈIcover

∑MC
𝑖=1ĈItotal

, (22)

8 of 12 Environmetrics, 2025

 1099095x, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2883 by Sw

edish U
niversity O

f A
gricultural Sciences, W

iley O
nline L

ibrary on [13/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



where,
∑MC
𝑖=1ĈIcover is the number of estimated 95% confidence

intervals that cover the superpopulation mean value of AGB
(295.55 Mg⋅ha−1: Table 1), and

∑MC
𝑖=1ĈIcover is the total number of

estimated 95% confidence intervals.

The empirical mean squared error (MSE) of the HMB.bts
predictor is estimated using the Monte Carlo simulation
outcome as

MSEMC

(
̂
𝑦
𝑈HMB.bts

)
=

∑MC
𝑖=1

(
̂
𝑦
𝑈HMB.bts 𝑖

− 𝑦
𝑖

)2

MC
, (23)

where, 𝑦
𝑖

is the true population mean of the target population 𝑈
for the given 𝑖th realization through the Monte Carlo simulation.

3 | Results

The following results are based on 6′000 Monte Carlo itera-
tions, each consisting of 750 bootstrap iterations to estimate
the variance through the proposed bootstrapping algorithm.
Within each bootstrap iteration, two random forest models were
trained with 750 trees (the two random forest models are a con-
sequence of the two bootstrap loops running in parallel, see
Figure 2). Table 2 presents the results for the average of the

predicted target population mean following the HMB.bts proce-
dure, the empirical variance of the predicted population mean,
the average of HMB.bts estimated variances, and the averages of
the two estimated variance components over the Monte Carlo
iterations.

From Table 3, it is evident that the propagated uncertainty result-
ing from estimating Model I accounts for approximately 90% of
the overall estimated variance in our demonstration example.
The uncertainty attributed to the second model is about 14%.
Table 2 also demonstrates that the average of the estimated vari-
ances is nearly identical to the empirical variance of the HMB.bts
predictor. This finding is further demonstrated in Figure 3.

In Figure 3, the Monte Carlo simulation-based empirical variance
(cumulative variance) of the HMB.bts predictor for the target
population mean predictor converges to the average of the esti-
mated variances, that is, the cumulative mean of the estimated
variance across the Monte Carlo iterations. Figure 4 presents his-
togram plots and boxplots of the estimated variance distribution
and predicted population mean over the Monte Carlo iterations.

To obtain results for the cumulative variance in Figure 3 and
for the predicted population mean in Figure 4, we performed an
additional Monte Carlo simulation with 100,000 iterations that

TABLE 3 | Monte Carlo simulation results.

Average of predicted population means per Equation (19), [Mg⋅ha−1] 296.90
Monte Carlo-based mean squared error (MSE) per Equation (23) 34.18
Monte Carlo-based empirical variance per Equation (20) 32.17
Average of estimated variances per Equation (21) 32.17
Average of estimated first variance components, that is, the propagated uncertainty due to the Model I estimation 27.81
Average of estimated second variance components, that is, the uncertainty due to the Model II estimation 4.36
Empirical coverage of formal 95% confidence intervals per Equation (22), [%] 94.67

FIGURE 3 | Cumulative variance of the predicted population mean (red line) and cumulative mean of the estimated variance (blue line) following
HMB.bts estimation algorithm across Monte Carlo iterations.
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FIGURE 4 | Histogram and boxplot of estimated variances and predicted population mean values obtained through the HMB.bts estimation frame-
work across Monte Carlo iterations. In the left histogram and boxplot, the vertical red dashed line represents the Monte Carlo-based empirical variance,
while the vertical blue dashed line represents the average of the estimated variances. Since the empirical and average variances are numerically equal
to 32.17 (see Table 3), the red dashed line is hidden beneath the blue dashed line. In the right histogram and boxplot, the vertical red dashed line repre-
sents the AGB superpopulation mean, which is 295.55 Mg⋅ha−1 (see Table 2), and the vertical blue dashed line represents the average of the predicted
population means, which is 296.90 Mg⋅ha−1 (see Table 3).

did not include variance estimation but only contained a predic-
tion of the target population mean. Thus, the right panel results
in Figures 3 and 4 are based on 106,000 iterations, while the left
panel results are based on 6000 iterations. This was done to save
computational time, as running the full-scale Monte Carlo simu-
lation, including variance estimation was very computationally
demanding (several months of computations were required to
obtain results for 6000 iterations). To obtain reliable endpoint
estimates of the cumulative mean of the estimated variance and
the cumulative variance, we used a very large number of itera-
tions (cf. McRoberts et al. 2023).

4 | Discussion

Combining different data sources for efficient large-scale forest
surveys is becoming increasingly important for providing infor-
mation for policies and decision-making, at national, regional,
and global scales. The wealth of remotely sensed data offers
many possibilities in this regard, but also substantial challenges
related to specifying estimators/predictors and assessing uncer-
tainties. In this study, we address challenges involved in assess-
ing uncertainties in HMB inference (e.g., Saarela et al. 2016),
and suggest a new bootstrapping procedure for this purpose. The
novelty of the proposed method is that it separates the com-
putations into independent steps, thereby making it possible
to run the bootstrapping in parallel and substantially reducing
the computational time required. The method has similarities
to previous procedures for variance estimation following mul-
tiple imputation described by Rubin (1987) and for HMB by

Fortin et al. (2024). However, the procedures described by Fortin
et al. require a hierarchically nested procedure, whereas the
method proposed in this study makes use of the law of total vari-
ance (e.g., Feller 1977) to decompose the variance into separate
terms.

The Monte Carlo simulation analysis demonstrated that the pro-
posed bootstrapping estimation algorithm provides variance esti-
mates, which are at least approximately unbiased. This outcome
aligns with our expectations, as the bootstrap procedure theoret-
ically should provide approximately unbiased estimates of each
of the terms emanating from decomposing the total variance into
components. However, in practice, it is likely that the proposed
procedure is not fully unbiased, for example, because it is based
on an assumption that model predictions of expected values, for
all levels of the explanatory variables involved, can be used as a
basis for estimating the expectation of the population mean, and
subsequently the variance among those expectations. However,
similar approximations are made in other bootstrapping proce-
dures as well (e.g., Fortin et al. 2024).

To avoid the need for nested bootstrapping, we recommend esti-
mating the variance attributable to the second model, condi-
tional on the outcome of the first model, from a single outcome
of the first model. However, such an estimator might slightly
underestimate the variance. Särndal (1992) proposed an addi-
tional term to address this underestimation, which would neces-
sitate the use of nested bootstrapping. Nevertheless, as our simu-
lation analysis demonstrated, the underestimation appears to be
negligible.
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The separable bootstrap estimation algorithm reduces the
computational burden by running two bootstrap procedures
in parallel. As shown through the analytical expressions in
Section 2.7, with the increase in bootstrap iterations, the amount
of computer time increases quadratically in the case of a nested
bootstrap procedure, whereas our proposed algorithm requires
an amount of time that is linearly proportional to the number of
bootstrap iterations.

The proposed procedure can be applied in any survey where
proxy values are used in place of observed data, and these proxy
values are obtained through imputation modeling methods uti-
lizing auxiliary information. Furthermore, the framework per-
mits an increase in the number of modeling steps, such as the
three-phase HMB estimation, without a significant increase in
the computational burden.

5 | Conclusions

We have demonstrated a separable bootstrap estimation
algorithm for predicting population parameters and estimat-
ing their corresponding variances within the HMB inferential
framework. This estimation algorithm provides approximately
unbiased predictors for population parameters and their corre-
sponding variances. We validated the method through Monte
Carlo simulations, using data that simulate forest conditions
in the state of Oregon, USA. The simulation results showed a
close correspondence between the empirical Monte Carlo vari-
ance, and the average variance estimated through the proposed
bootstrapping algorithm.
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