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Abstract
As global concerns about climate change intensify, assessing the environmental efficiency of production processes through 
carbon productivity has become increasingly important. This study examines the impact of socio-economic development on 
carbon productivity in the top 18 CO2-emitting countries, which contribute approximately 82% of global CO2 emissions, 
over the period 1990–2019. Using a class of econometric tests to address heterogeneity and cross-sectional dependence, we 
employ the Cross-Sectionally Augmented Autoregressive Distributed Lag (CS-ARDL) model for final estimation, ensuring 
robustness with Common Correlated Effects Mean Group (CCEMG) and Augmented Mean Group (AMG) estimations. The 
empirical findings reveal that GDP per capita, Trade, and FDI increase carbon productivity while energy consumption and 
urbanization curtail carbon productivity. The country-specific effects indicated that 83% of the sample countries exhibit posi-
tive relationships between socio-economic development and carbon productivity, suggesting that these nations can serve as 
models for effective low-carbon policies. Moreover, the results demonstrate bi-directional relationships for GDP per capita, 
FDI, and energy use with carbon productivity and uni-causal relationship for trade and urbanization. The study highlights the 
need for implementing stricter regulations to improve energy efficiency and promote the adoption of renewable energy sources 
such as wind, solar, hydro, and nuclear power. Additionally, countries should incentivize green technology investments 
through tax breaks and subsidies, enhance international trade agreements that support the exchange of clean technologies, 
and develop sustainable urban planning initiatives to mitigate the negative impact of urbanization on carbon productivity.

Keywords Carbon productivity · Socio Economic development · World’s largest carbon emitting countries · Cross-
Sectionally Augmented Autoregressive Distributed Lag (CS-ARDL)

1 Introduction

Since the twentieth century, global warming is a pressing 
global issue that has acquired extensive attention from sci-
entists, policymakers, and the international community [1, 

2]. Greenhouse gases, particularly CO2, have been identi-
fied as the primary drivers of climate change [3, 4]. The 
Annual Greenhouse Gas Index (AGGI) from NOAA indi-
cates that between 1990 and 2022, the radiative forcing 
effect on the climate from long-lived greenhouse gases 
increased by 49%, with CO2 contributing approximately 
78% of this increase [5]. The global trends show that most 
of countries are not able to achieve targeted economic 
growth without an increase in CO2 emissions [6]. Keep-
ing in view the severity of this situation, reducing CO2 
emission is a salient objective in policymaking around the 
globe. To achieve this objective, it is important to under-
stand the relationship between socio-economic develop-
ment and environmental sustainability. Extensive scientific 
research has highlighted that energy consumption is the 
predominant source of CO2 emissions, linking it directly 
to industrial activities and economic growth [7]. This cor-
relation underscores the complexity of addressing climate 
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change, as efforts to reduce carbon emissions must con-
sider the implications for global economic stability and 
development [8]. Consequently, the reduction of carbon 
emissions, especially those related to energy consumption, 
has become a critical focus for international climate poli-
cies, which aim to mitigate the adverse effects of climate 
change while sustaining economic growth [9].

The issue of increasing CO2 emissions is leading to 
tracking the global emissions hotspots, which was not an 
essential concern before the industrial revolution. The CO2 
emissions were 280 ppm, and after the industrial revolu-
tion, they surpassed 410 ppm [10]. Therefore, it is neces-
sary to target the countries which are responsible for this 
situation. In this regard, top 18 largest carbon-emitting 
countries collectively contribute approximately 82% of the 
world’s total CO2 emissions, making them critical play-
ers in the global effort to address issue of climate change. 
These countries, which include major economies such as 
the United States, China, India, Russia, and Japan, face the 
dual challenge of achieving significant energy conserva-
tion and emission reductions while maintaining economic 
growth and development [11]. For instance, China is the 
largest CO2 emitter, contributing 30.9% of global emis-
sions, while the USA contributes 13.5%, India 7.3%, Rus-
sia 4.7%, and Japan 2.9% of world’s total emissions [12]. 
In this way, many of these nations are at various stages of 
industrialization and urbanization, leading to a high cor-
relation between carbon emissions and economic activities. 
This complex relationship presents a dilemma for policy-
makers who must balance the urgent need for carbon reduc-
tion with the imperatives of economic development and 
poverty alleviation [13]. Given their substantial impact on 
global emissions, these countries are pivotal in the transi-
tion to a low-carbon economy, which seeks to harmonize 
economic development with environmental sustainability.

The efforts made by countries to address climate change 
can be assessed through carbon productivity [14]. The con-
cept of carbon productivity, introduced by Kaya and Yoko-
bori [15], serves as an important indicator for evaluating the 
efficiency with which economic output is generated relative 
to carbon emissions. It measures the ratio of output produced 
to CO2 emissions, offering valuable insights into a nation’s 
emission performance over time [16]. This concept is cru-
cial in the context of achieving the Intergovernmental Panel 
on Climate Change’s (IPCC) ambitious targets for green-
house gas reductions by 2050, which require a substantial 
increase in carbon productivity globally [17]. The transition 
to a low-carbon economy is crucial, and carbon productiv-
ity integrates the two primary targets of this transition. The 
first target is to maintain economic development, and the 
second is to reduce CO2 emissions [18]. Therefore, increas-
ing carbon productivity paves the way toward achieving a 
low-carbon economy by balancing these two essential goals. 

The top 18 carbon-emitting countries, due to their significant 
share of global emissions, have a profound potential to influ-
ence these targets. By focusing on carbon productivity, these 
nations can develop strategies to decouple economic growth 
from carbon emissions, ensuring sustainable development 
[17]. This approach not only aids in meeting international 
climate goals but also enhances economic resilience and 
technological innovation.

Understanding how various socio-economic develop-
ment factors impact carbon productivity is critical for 
designing effective environmental and economic poli-
cies. Factors such as GDP per capita, trade openness, 
foreign direct investment (FDI), energy consumption, 
and urbanization play significant roles in shaping carbon 
productivity [16]. For instance, it is argued that higher 
GDP per capita often correlates with greater technologi-
cal advancements and efficiency, potentially increasing 
carbon productivity [19, 20]. Trade openness and FDI 
can facilitate the transfer of cleaner technologies and 
sustainable practices across borders, enhancing carbon 
efficiency [21, 22]. Conversely, high energy consump-
tion, particularly from non-renewable sources, and rapid 
urbanization can lead to increased emissions, thereby 
reducing carbon productivity [23, 24]. Studying these 
interactions is essential because it helps to identify lev-
erage points for improving carbon productivity while sus-
taining economic growth. By locating which factors most 
significantly influence carbon productivity, policymakers 
can adapt interventions to maximize positive impacts and 
mitigate negative ones, thus fostering a more sustainable 
and resilient economic development pathway.

Despite the increasing attention to carbon productiv-
ity and its implications for sustainable development, 
there exist limited empirical studies exploring relation-
ship between socio-economic development and carbon 
productivity. Moreover, existing studies have predomi-
nantly been case-specific, often focusing on individual 
countries or regions (e.g., [16, 19, 25]). These studies 
have provided mixed results, with some indicating posi-
tive relationships between socio-economic factors and 
carbon emissions (e.g., [24], while others suggest nega-
tive or inconclusive outcomes (e.g., [26]. Moreover, prior 
research has frequently employed a confined range of 
socio-economic factors, thereby overlooking the need for 
a broader and more integrated assessment [21]. This lack 
of comprehensive analysis is particularly evident when 
considering the world’s largest carbon-emitting coun-
tries, which are responsible for around 82% of global car-
bon emissions. By focusing on these top 18 carbon-emit-
ting nations, this study aims to fill a critical knowledge 
gap by offering a more generalized and globally repre-
sentative understanding of how various socio-economic 
factors influence carbon productivity. Such an approach 
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not only enhances the applicability of the findings across 
different contexts but also provides a global perspective 
that can better inform international policy-making and 
collaborative efforts to oppose climate change.

As a contribution to the existing body of literature 
and the ongoing discourse on the environmental con-
sequences of socio-economic development, this study 
employs a panel dataset for the 18 largest carbon-emit-
ting countries covering the period from 1990 to 2019 
to investigate the relationship between socio-economic 
development and carbon productivity. The empirical 
findings offer valuable insights that could guide policy-
makers and stakeholders in the region about the impli-
cations of socio-economic development on carbon pro-
ductivity and environmental sustainability. Moreover, the 
findings of the study contribute to national and global 
efforts aiming at achieving SDG 13 (Climate Action), 
which emphasizes urgent actions to minimize the nega-
tive consequences of climate change and its impacts by 
improving carbon productivity and fostering sustainable 
development practices in the world’s largest carbon-
emitting countries. Furthermore, the results emphasize 
the need for proactive measures and policy interventions 
that prioritize sustainable development and promote low-
carbon development strategies in these countries to miti-
gate the adverse effects of socio-economic development 
on the environment.

2  Review of Existing Literature 
and Contribution Margins

2.1  Theoretical Perspectives

The relationship between socio-economic develop-
ment and carbon productivity is multifaceted and has 
been approached from various theoretical and empiri-
cal perspectives. From a theoretical standpoint, one 
prominent theory is the Environmental Kuznets Curve 
(EKC), which suggests that environmental degradation 
follows an inverted U-shape as a country’s income level 
increases which means that environmental degradation 
initially increases with economic growth but decreases 
after reaching a certain income level [27, 28]. This theory 
has been extensively discussed and tested in relation to 
carbon emissions as a specific form of environmental 
impact [29–31]. The EKC points out that as economies 
develop, they transition from manufacturing-based to ser-
vice-oriented structures, which are less carbon-intensive 
[32, 33]. Another critical theory is the Theory of Eco-
logical Modernization, which argues that technological 
advancement and institutional changes can lead to envi-
ronmental improvements alongside economic growth [34]. 

This theory supports the idea that investments in green 
technologies and innovation are important in improving 
carbon productivity, implying a decoupling of economic 
growth from carbon emissions [35]. Conversely, the stud-
ies conducted by Liu et al. [36] and Marcotullio & Lee 
[37] support the perspective of the urban environmental 
transition theory, which posits that the environmental 
impact intensifies as nations evolve into manufacturing-
based economies accompanied by urban expansion.

Moreover, the concept of sustainable development high-
lights much of the discussion on carbon productivity. It 
emphasizes the need to balance socio-economic advance-
ment with environmental preservation to ensure long-term 
ecological and human well-being [38, 39]. The Brundtland 
Report [40] provided the foundational framework for this, 
defining sustainable development as development that 
meets the needs of the present without compromising the 
ability of future generations to meet their own needs [40, 
41]. Recent studies have built on these theories to explore 
the nonlinear impacts of socio-economic development on 
carbon productivity. For example, Wang et al. [20] ana-
lyzed the effects of economic development on carbon pro-
ductivity using advanced econometric models. They found 
that economic growth has a significant, though nonlinear, 
positive impact on carbon productivity in Hubei, China, 
indicating different stages of economic development influ-
ence carbon productivity in varying ways. Furthermore, 
the comprehensive review by Mardani et al. [19] under-
scores the critical relationship between CO2 emissions and 
economic growth, illustrating how this relationship shapes 
policymaking in energy management and sustainability. 
Their findings emphasize that both economic growth and 
CO2 emissions are interlinked, where increases in one tend 
to stimulate changes in the other, suggesting that policy 
interventions aimed at reducing emissions could also 
impact economic performance.

2.2  Empirical Evidence

Empirically, recent studies have adopted diverse method-
ologies to analyze the impacts of socio-economic develop-
ment on carbon emissions. For instance, Li et al. [42] inves-
tigated the effects of socio-economic productive capacity 
on renewable energy development across the BRICS 
nations. Utilizing panel ARDL and QARDL models, they 
found that variables such as national income, financial 
development, and productive capacity positively influence 
renewable energy development in the long run, highlight-
ing the role of socio-economic development in fostering an 
environment conducive to renewable energy usage, which 
in turn can enhance carbon productivity [20, 43]. Another 
study from Marbuah et al. [44] examined the relationship 
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between social capital and carbon emissions in Swedish 
counties. Their findings reveal that high levels of social 
capital are associated with reduced emissions, indicating 
that strong communal ties and trust can foster behaviors 
and policies that result in lower carbon emissions.

In a broader scope, Alotaibi & Alajlan 26 analyzed the 
association between socio-economic indicators like the 
human development index (HDI) and carbon dioxide emis-
sions in G20 countries under the EKC framework. Using 
quantile regression, they presented that socio-economic 
development, as captured by HDI, tends to reduce CO2 
emissions across various quantiles, thereby supporting 
the EKC hypothesis. In a similar way, study by Jahanger 
et al. [45] explores the N-shaped EKC in leading nuclear 
energy-producing nations, revealing that nuclear energy, 
while supporting economic growth, offers mixed envi-
ronmental impacts. Their findings suggest the importance 
of integrating nuclear with renewable energy sources to 
balance economic development with environmental sus-
tainability [46]. Moreover, study by Raihan & Tuspekova 
[24] on the nexus between economic growth, energy use, 
agricultural productivity, and carbon emissions in Nepal 
found that while economic growth and traditional energy 
use increase emissions, renewable energy use and improved 
agricultural productivity contribute to emission reductions.

2.3  Literature Gap and Contribution of the Study

The previous literature explored the impact of socio-economic 
development on various environmental degradation metrics, 
such as CO2 emissions and carbon intensity (e.g., [22, 23, 
47], and delves into the connections between urbanization, 
foreign direct investment (FDI), renewable energy, net trade, 
economic growth, carbon emissions, and environmental sus-
tainability (e.g., [24, 43, 48]. However, the findings regard-
ing socio-economic development’s effect on CO2 emissions 
are inconclusive and mixed. While certain studies show a 
positive link between socio-economic development and CO2 
emissions (e.g., [24, 49], others demonstrate negative or 
inconclusive relationship (e.g., [26]. Moreover, there is lim-
ited literature available on carbon productivity in relation to 
socio-economic development. The existing research on car-
bon productivity is generally narrowed to specific national 
contexts or a confined range of socio-economic factors. For 
instance, Hu & Liu [25] focused exclusively on Australia, 
assessing the impact of technological innovation on carbon 
productivity between 1990 and 2012. Similarly, Zhang & Xu 
[50] explored how environmental regulations affect carbon 
productivity, while Li & Wang [16] considered a variety of 
socio-economic factors in China, utilizing spatial analysis to 
reveal how elements like growth, technology, and FDI con-
tribute to increasing carbon productivity, whereas factors like 
population and urbanization may hinder it. These studies, 

while insightful, illustrate the limitations of current research 
which predominantly revolves around case-specific analyses, 
inconclusive and mixed results, and overlooks a broader, more 
integrated assessment of carbon productivity’s role in foster-
ing a low-carbon economy amidst sustainable growth.

Both theoretical propositions and empirical evidence 
suggest that socio-economic development has diverse envi-
ronmental effects, encompassing both detrimental and ben-
eficial features, depending on a suite of sociodemographic, 
economic, environmental, and institutional factors [19, 47]. 
This implies the necessity for targeted and more disaggre-
gated analyses that account for the unique characteristics and 
contexts of specific socio-economically and environmental 
regions. However, until now, there remains a critical need 
for targeted empirical studies that focus specifically on the 
world’s largest carbon emitters. That is, the policy discus-
sion on socio-economic development in leading carbon emit-
ters has been without solid evidence despite the presence of 
both obstacles and opportunities associated with socio-eco-
nomic development [51]. The lack of reliable evidence and 
empirical studies on the association between socio-economic 
development and carbon productivity in world’s largest car-
bon emitters creates critical knowledge gaps that hinder the 
development of effective policies and informed decision-
making concerning the sustainable development, which 
deters the ability of governments to tackle the difficulties 
and maximize the advantages brought by socio-economic 
development. Our study addresses these gaps by provid-
ing a detailed empirical analysis of the 18 highest-emitting 
countries, which collectively account for 82% of the global 
emissions. This focus is critical as it offers insights that are 
directly applicable to the nation’s most responsible for cli-
mate change, thus providing a foundation for policy inter-
ventions that are both impactful and tailored to the specific 
economic and environmental contexts of these key countries.

3  Conceptual Framework

Socio-economic development can influence the carbon pro-
ductivity in two different ways. For instance, some socio-
economic factors such as GDP per capita, Trade, and FDI 
can improve the carbon productivity through the composition 
effect, technique effect, and by introducing innovative tech-
nologies [47]. On the other hand, some other socio-economic 
factors, such as energy consumption and urbanization, can 
have negative consequences on carbon productivity [23]. For 
example, increased energy consumption negatively impacts 
environmental quality though the use of energy-intensive 
industries and infrastructure. Moreover, in most of the coun-
tries, electricity production is mainly fueled by coal and 
other non-renewable sources [7]. Consequently, burning of 
fossil fuels increase CO2 emissions which reduce carbon 
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productivity. The Fig. 1 describes the channels through which 
socio-economic development can affect carbon productivity.

In a similar way, increasing urbanization has a negative impact 
on the environment. As urbanization continues, its rapid expan-
sion demand for energy and resources from industries and other 
economic sectors grows significantly and places immense strain 
on existing infrastructure, leading to congestion, inadequate 
transportation systems, and overwhelmed utilities such as water 
and sanitation [52]. Moreover, the uncontrolled growth of urban 
areas contributes to environmental degradation through land use 
changes and encroachment on agricultural land, deforestation, 
and increased pollution from industrial activities and transporta-
tion [53]. Conversely, increasing GDP per capita can improve 
carbon productivity through the economic efficiency. The EKC 
suggests that when GDP per capita crosses the threshold level, 
environmental quality improves due to shifting to a knowledge-
based economy [28]. Similarly, according to the Pollution Halo 
hypothesis, FDI can brings positive changes in the environmental 
management system and introduce environment-friendly technol-
ogy in the host country. Green technology will replace obsolete 

technology, which will reduce pollution and promote environ-
mentally friendly practices that will help in increasing carbon 
productivity [54]. Moreover, trade can benefit the environment 
as it serves as an engine of technological progress due to the 
technological spillovers it generates. In an open economy, tech-
nological progress also depends on technological spillover other 
than domestic research and development spending [22].

4  Material and Methods

4.1  Data and Variables

The study utilized a secondary-source panel dataset covering 
the period from 1990 to 2019 for the 18 largest carbon-emitting 
countries, with data sourced from the World Development 
Indicators (WDI). The countries comprise China, United States 
of America (USA), Japan, India, Germany, the United 
Kingdom, France, Italy, Poland, Ukraine, Mexico, South Korea, 
Australia, Brazil, Saudi Arabia, Spain, and Indonesia. The 
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Fig. 1  Underlying mechanism of hypothesized relationship
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variables are selected based on previous studies on the nexus 
between socio-economic development and carbon productivity 
(e.g., [19, 26, 47] and their established significance in 
influencing carbon productivity. GDP per capita is a fundamental 
indicator of economic performance, with numerous studies 
demonstrating its critical impact on carbon emissions due to 
increased industrial activity and energy consumption as 
economies grow [19, 20]. Urbanization level, often expressed 
as the percentage of the urban population, is widely recognized 
as a key factor affecting carbon emissions [23]. It is frequently 
included in studies examining the relationship between 
urbanization and environmental impact due to its role in altering 
energy consumption patterns and increasing infrastructure 
development (e.g., [43]. The structure and amount of energy use 
significantly affect carbon productivity. Studies have shown that 
energy use patterns, especially the reliance on fossil fuels, play 
a crucial role in environmental degradation (e.g., [24]. Foreign 
direct investment (FDI) is included due to its potential to transfer 
cleaner technologies and improve energy efficiency, thus 
influencing carbon productivity. Previous research has 
demonstrated significant correlations between FDI and CO2 
emissions [21]. Trade openness is another critical factor, as it 
affects carbon emissions through the scale, composition, and 
technique effects associated with international trade [22]. 
Therefore, GDP per capita (constant 2010 US$), energy use (kg 
of oil equivalent per capita), FDI net (BoP, current US$), net 
trade in goods and services (BoP, current US$), and urbanization 
(% of total population) are used as independent variables, while 
carbon productivity measured as 

(

GDP

CO2emissions

)

 is the dependant 
variable. It is the amount of CO2 required to produce a unit of 
output [15, 16]. However, we used the logarithmic form of the 
selected variables to linearize the relationship and stabilize the 
variance. Table 1 presents descriptive statistics of the selected 
variables.

4.2  Model Specifications

The study used an advanced and robust methodologi-
cal framework. In the domain of panel data analysis, prior 
research often neglects crucial aspects such as cross-sectional 

dependence (CD), slope heterogeneity, and the nuances of 
causality influences, as noted in studies like Wang et al. [20]. 
Neglecting factors like cross-sectional dependence could lead 
to biased and unreliable estimates [55]. To mitigate these 
issues and address potential endogeneity, our study includes 
checks for heterogeneity, cross-sectional dependence, and 
unit root stationarity prior to conducting estimations and cau-
sality analysis. The empirical analysis is based on estimating 
a cross-sectionally augmented autoregressive distributed lag 
model (CS-ARDL). This model is specifically suitable for 
heterogeneous panels with cross-sectional dependence [56], 
and we complement this with robustness checks using mean 
group estimators such as common correlated effects mean 
group (CCEMG) and augmented mean group (AMG). Addi-
tionally, our study significantly increases the understanding 
of the socio-economic development’s impact on carbon pro-
ductivity by estimating country-specific effects, providing a 
detailed and refined analysis at the individual country level. 
Moreover, the study employs the novel panel granger non-
causality testing approach developed by Juodis et al. [57], 
which enhances our investigation into the directional associa-
tion between the socio-economic development and carbon 
productivity in the 18 largest carbon-emitting countries. This 
methodological approach allows us to overcome limitations 
of traditional models and provides a more reliable empiri-
cal understanding of the dynamics between socio-economic 
development and carbon productivity. The following func-
tional form contains the selected variables estimated to ascer-
tain the magnitude and direction of the relationship between 
carbon productivity and socio-economic development.

Here, ln_Ci,t is the log transformed carbon productivity, 
ln_Gi,t represents log of GDP per capita, ln_Ei,t accounts for 
log of energy use, ln_Fi,t shows log of FDI, ln_Ti,t for log of 
trade, and ln_Ui,t is the log of urban population. The model 
in the econometric specification is as follows:

ln_Ci,t = f
(

ln_Gi,t, ln_Ei,t, ln_Fi,t, ln_Ti,t, ln_Ui,t

)

,

ln
(

C
i,t

)

= �
i
+ �

i,1ln
(

G
i,t

)

+ �
i,2ln

(

E
i,t

)

+ �
i,3ln

(

F
i,t

)

+ �
i,4ln

(

T
i,t

)

+ �
i,5ln

(

U
i,t

)

+ �
it
.

Table 1  Descriptive statistics

Number of observations = 540

Variables Symbol Measurement unit Mean Std. Dev Minimum Maximum

Carbon productivity Ci,t
GDP

CO2emissions
2835148 524736.1 2253962 4207909

GDP per capita Gi,t Constant 2010 US$ 20121.24 2427.796 16587.6 24259.65

Energy use Ei,t kg of oil equivalent per capita 3115.564 462.0148 2732.867 4650.382

FDI net Fi,t BoP, current US$ −2.38 × 10
9

6.69 × 10
9 −1.53 × 10

10
1.13 × 10

10

Net trade Ti,t BoP, current US$ 1.54 × 10
10

1.10 × 10
10 −2.76 × 10

9
3.75 × 10

10

Urban population Ui,t % of total population 9.63 × 10
7

1.89 × 10
7

6.68 × 10
7

1.29 × 10
8
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The number of cross sections (countries) used in the 
analysis is denoted by i , whereas the time is represented by 
t  . The �i represents the intercept term in the model and �it 
shows residual term.

4.3  Estimation Methods

4.3.1  Slope Homogeneity Test

To examine the presence of heterogeneity in our sample, 
we utilize a slope homogeneity test by Swamy [58], who 
developed the framework to find if slope coefficients of the 
cointegration equation are homogeneous. Pesaran & Yama-
gata [59] improved Swamy’s slope homogeneity test and 
formed two ′delta′ test statistics, Δ̃ and Δ̃adj:

Where N denotes the number of cross-section units, S 
account for the Swamy test statistic, and k represents inde-
pendent variables. If p value of the test is larger than 5% , the 
null hypothesis is accepted at a 5% significance level, and the 
cointegrating coefficients are considered homogenous. The Δ̃ 
and Δ̃adj are suitable for large and small samples, respectively, 
where Δ̃adj is the ‘mean–variance bias adjusted’ version of Δ̃.

Standard delta test 
(

Δ̃
)

 requires error not to be autocor-
related. By relaxing the assumptions of homoskedasticity 
and serial independence of Pesaran & Yamagata 59, 
Blomquist & Westerlund 60 developed a Heteroskedasticity 
and Autocorrelation Consistent (HAC) robust version of 
slope homogeneity test,ΔHAC and 

(

ΔHAC

)

adj
:

The results of slope homogeneity tests are presented in 
Table 2. The findings indicate that null hypothesis of slope 
homogeneity cannot be rejected in the case of Pesaran and 
Yamagata’s (2008) tests because the probability values 
are larger than 0.05. However, in the case of Blomquist 
and Westerlund’s (2013) tests, the null hypothesis of 
homogeneous slopes is rejected at a 1% significance level. 
We rely on the latter, as it is “Heteroskedasticity and 
Autocorrelation Consistent.” Hence, slope coefficients 

Δ̃ =
√

N

�

N−1S − k
√

2k

�

∼ X2
k
,

Δ̃adj =
√

N

�

N−1S − k

v(T , k)

�

∼ N(0,1),

ΔHAC =
√

N

�

N−1SHAC − k
√

2k

�

∼ X2
k
,

�

ΔHAC

�

adj
=
√

N

�

N−1SHAC − k

v(T , k)

�

∼ N(0,1).

are not homogeneous, and heterogeneity exists in the 
relationship between the socio-economic development 
and carbon productivity across the sample countries. 
Consequently, based on the presence of heterogeneity, we 
employ heterogeneous panel techniques in our analysis.

4.3.2  Cross‑Sectional Dependence Test

The study examines the cross-sectional dependence (CD) 
in the data based on the method developed by Pesaran [55, 
61], Bailey et al. [62], and Xie and Pesaran [63]. We apply 
for the CD test because sample countries are connected 
in various ways, including culture, society, politics, and 
economics, which can lead to CD. CD means that the data 
from different countries may be related, often due to shared 
events, common policies, or effects that spread from one 
country to another [64]. If CD is present and not accounted 
for, it can result in biased results in the estimation process 
[55].

Table 3 shows the results of cross-sectional depend-
ence for relevant variables and error correction term 
(

ln_Ci,t, ln_Gi,t, ln_Ei,t, ln_Fi,t, ln_Ti,t, ln_Ui,t,ECT
)

 .  The 
findings indicate significant cross-sectional dependence in 
the variables and the residuals within our panel, hinting at 
the influence of unobserved common factors on carbon pro-
ductivity across sample countries. These factors may include 
global economic shifts, international policies on reducing 
carbon emissions, or advances in technology [64]. Addition-
ally, the transition towards a low-carbon economy exhibits 
national and regional differences, reflecting varied social, 
political, and economic settings [65]. Consequently, those 
estimation tools are selected that incorporate cross-sectional 
dependence in the estimation process.

Table 2  Slope homogeneity tests

*** represents statistical significance at 1%
Δ̃ and Δ̃adj represent the “simple” and “mean–variance bias adjusted” 
slope homogeneity tests, respectively
ΔHAC and 

(

ΔHAC

)

adj
 represent the “Heteroskedasticity and Autocor-

relation Consistent” versions of “simple” and “mean–variance bias 
adjusted” slope homogeneity tests, respectively

Pesaran & Yamagata [59]

Δ̃
√

N
�

N−1S−k
√

2k

�

∼ X2

k

0.200

Δ̃adj

√

N
�

N−1S−k

v(T ,k)

�

∼ N(0,1) 0.221***

Blomquist & Westerlund [60]
ΔHAC

√

N
�

N−1SHAC−k2
√

2k2

�

6.092***

(

ΔHAC

)

adj

√

N
�

N−1SHAC−k2

v(T ,k)

�

∼ N(0,1) 6.722***
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4.3.3  Panel Unit Root Test

To account for stationarity in the presence of cross-sectional 
dependence, we used second-generation unit root tests, spe-
cifically the Cross-Sectional Augmented Im, Pesaran and 
Shin (CIPS) and Cross-sectional Augmented Dickey-Fuller 
(CADF) tests developed by Pesaran [66–68] do not account 
for cross-sectional dependence when testing for stationarity. 
The equations for the CIPS and CADF unit root tests is given 
below:

Where ai is a deterministic term, yt is the cross-sectional 
mean at time t, and ρ is the lag order, while ti(N, T) denotes 
the corresponding t-ratio of �i and is known as cross-sec-
tional ADF (CADF), attributed to Pesaran [66]. The average 
of the t-ratios gives the cross-sectional IPS (CIPS), attrib-
uted to Pesaran [69]. Table 4 estimates unit root tests with a 
constant term both at the level and first difference.

The findings of CADF and CIPS tests show a mixed 

order of integration, i.e.,  
[I(1), I(1), I(0), I(0), I(0), I(0)]

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
[

In_C
i,t , In_Gi,t , In_Ei,t , In_Fi,t , In_Ti,t , In_Ui,t

]

 
The occurrence of mixed orders of integration can present 
challenges in econometric analysis. Nevertheless, our appli-
cation of the cross-sectionally auto-regressive distributed 
lag model (CS-ARDL) is beneficial as this method is well-
suited to manage variables with both first and mixed orders 
of integration [70]. This approach ensures the robustness of 
our econometric analysis in the face of the mixed integration 
properties of the dataset.

Δyi,t = ai + biyi,t−1 + ciyt−1 + diΔyt + �i,t.

4.3.4  Panel Cointegration Analysis

To address the issue of slope heterogeneity, CD, and mixed 
order of integration among the variables, we apply the CS-
ARDL model, attributed to Chudik & Pesaran [71], to examine 
the long-run and short-run relationship among C , Y , E,F, T , 
and U . The general equation for CS-ARDL is given as below:

To solve the issue of CD and slope heterogeneity, the 
extended version of the last equation is given as follows:

In the last equation, Zt−I =
(

D
i,tI
,X

i,tI

)

 provides the aver-
ages; similarly, lags are shown through pD , pX , pZ : Dit is the 
dependent variable (in this case ln_C ), followed by Xi,t for 
all the independent variables (here, ln_G , ln_E, ln_F, ln_T , 
and ln_U ). Z is a dummy for the time. The long-run coeffi-
cients are generally represented as follows:

Whereas following equation shows the mean group 
coefficients:

Di,t =
∑pD

I=0
�I,iDi,t−I +

∑pX

I=0
�I,iXi,t−I + �i,t

Di,t =
∑pD

I=0
�I,iWi,t−I +

∑pX

I=0
�I,iXi,t−I +

pZ
∑

I=0

��
i
IZt−I + �i,t,

�̂CS−ARDL,i =

∑pX
I=0

�̂I,i

1 −
∑pD

I=0
�̂I,i

,

̂
�MG =

1

N

∑N

i=1
�̂i,

Table 3  Tests for cross-
sectional dependence

a Statistical significance at 1%

Test Equation ln_Ci,t ln_Gi,t ln_Ei,t ln_Fi,t ln_Ti,t ln_Ui,t ECT

CD2015

NT

�

2

N(N−1)

∑N−1

i=1

∑N

j=i+1

1
√

T

∑T

t=1
�it�j

37.03a 66.61a 58.65a 31.70a 65.21a 65.45a 23.36a

CDBKP

√

TN(N−1)

2
�̂N

37.91a 67.75a 59.27a 33.41a 66.36a 66.61a 23.36a

Table 4  Second generation unit 
root tests

By definition: CIPS =
∑N

i=1
ti(N,T)

N
=

∑N

i=1
CADFi

N

*** and ** represent statistical significance at 1% and 5%, respectively

Cross-sectional ADF (CADF) test
ln_Ci,t Δln_Ci,t ln_Gi,t Δln_Gi,t ln_Ei,t ln_Fi,t ln_Ti,t ln_Ui,t

 − 1.518  − 3.881***  − 1.313  − 4.740***  − 2.572**  − 2.128**  − 4.691***  − 4.506***

Ci,t is I(1) Yi,t is I(1) Ei,t is I(0) Fi,t is I(0) Ti,t is I(0) Ui,t is I(0)
Cross-sectional IPS (CIPS) test
ln_Ci,t Δln_Ci,t ln_Gi,t Δln_Gi,t ln_Ei,t ln_Fi,t ln_Ti,t ln_Ui,t

 − 1.807  − 5.597***  − 1.552  − 5.369***  − 3.087***  − 2.595***  − 5.343***  − 5.373***

Ci,t is I(1) Yi,t is I(1) Ei,t is I(0) Fi,t is I(0) Ti,t is I(0) Ui,t is I(0)
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Similarly, the short-run coefficients are expressed with 
the following four equations:

In CS-ARDL, error correction mechanism ( ECM ) should 
be statistically significant, as it shows the speed of adjustment 
towards equilibrium.

4.3.5  Common Correlated Effects Mean Group (CCEMG) 
and Augmented Mean Group (AMG)

The CS-ARDL model has been criticized for imposing a 
homogeneity restriction in the long-run, despite countries 
exhibiting varied economic and social structures. Therefore, as 
a robustness check of the obtained estimates by CS-ARDL, we 
used two additional models, CCEMG and AMG, that address 
CD by allowing parameter to be heterogeneous in the long 
run. Pesaran [72] forwarded CCEMG model with an estimator 
�j
(

= � + �j

)

 which implies a common parameter � across the 
countries, while �j ∼ IID

(

0,V�

)

. CCEMG tends to eliminate 
CD asymptotically. Moreover, it allows heterogeneous slope 
coefficients across group members that are captured simply by 
taking the average of each country’s coefficient [73].

Attributed to Eberhardt and Teal [74], AMG model is alter-
nate to CCEMG, which also captures the unobserved common 
effect in the model. Moreover, the AMG estimator also meas-
ures the group-specific estimator and takes a simple average 
across the panel. The highlight of AMG is that it follows the 
first difference OLS for pooled data and is augmented with 
year dummies. The estimable model can be written as below:

Where i stands for cross-sectional dimension i = 1,… , n and 
time period t = 1,… , t and �i represents country-specific 
effects and dit denotes heterogeneous country-specific deter-
ministic trends. The �i is related to the coefficient of respec-
tive independent variables �i1 =

�i1

1−�i1
 , �i2 =

�i2

1−�i2
 , �i3 =

�i3

1−�i3
 , 

�i4 =
�i4

1−�i4
 and �i5 =

�i5

1−�i5
 , that are considered heterogeneous 

ΔDi,t = �i
[

Di,t−1 − �iXi,t

]

−
∑pD−1

I=1
�I,i,ΔIWi,t−I

+
∑pX

I=0
�I,iΔIXi,t +

∑pZ

I=0
��
i
IZt + �i,t,

�̂i = −
(

1 −
∑pD

I=1
�̂I,i

)

,

�̂i =

∑pX
I=0

�̂I,i

�̂i
,

̂
�MG =

∑N

i=1
�̂i.

ln_C
it
= �

i
+ c

i
t + d

i
�̂�a⋅

t
+ �

i,1

(

ln_G
i,t

)

+ �
i,2

(

ln_E
i,t

)

+ �
i,3

(

ln_T
i,t

)

+ �
i,4

(

ln_F
i,t

)

+ �
i,5

(

ln_U
i,t

)

+ �
i,t.

across the countries. It is also assumed that the short-run 
dynamics and their adjustment towards the long run take place 
via error term ui,t (= �́�ift + 𝜀i,t) . The ft characterizes the vec-
tor of unobserved common shocks and can be either stationary 
or nonstationary, which does not influence the validity of the 
estimation [75]. The AMG estimation finds an explicit esti-
mate for ft which renders �̂�a⋅

t
 (common dynamic process) 

economic meaningfulness. Total factor productivity (TFP) is 
one of the plausible interpretations of �̂�a⋅

t
 . It’s coefficient di 

represents the implicit factor loading on common TFP. In 
addition, the cross-sectional specific errors �i,t are permissible 
to be serially correlated over time and weakly dependent 
across the countries [76]. However, the regressors and unob-
served common factors have to be identically distributed.

4.3.6  Panel Granger Non‑causality Test

Although the CS-ARDL, CCEMG, and AMG provide reliable 
outcomes, they do not provide the direction of relationship 
between the selected variables, which is important for policy 
considerations. Hence, we utilize the novel approach by Juodis 
et al. [57] to explore the causal link between socio-economic 
development and carbon productivity. Juodis et al. [57] pro-
vided a superior version of the panel Granger Causality (1969) 
test for homogeneous or heterogeneous panels among more 
than two variables. This refined method adeptly addresses the 
issues of endogeneity and bidirectionality that often-complicate 
causal inference. Another superior version of the Granger Cau-
sality test is Dumitrescu and Hurlin [77], which also addresses 
CD and heterogeneity but overlooks “Nickell” bias.1 Dhaene & 
Jochmans [78] developed the Half Panel Jackknife (HPJ) tech-
nique to avoid size distortion and correct parameter bias. The 
methodology adopted by Juodis et al. [57] incorporates HPJ, 
enhancing the reliability of panel data inference by allowing 
for the presence of CD. The model is specified given as follows:

Where i = 1, 2, ...,N , t = 1, 2, ..., T , and �it ∼ N
(

0, �2
)

 . The N 
and T are the number of countries and times, correspondingly. 
In addition, �0i shows the individual fixed effect, �pi denotes 
autoregressive coefficient, and �qi depicts Granger causation 
parameters or feedback coefficients that are heterogeneous.

Se t   zit =
(

1, yit−1, ..., yit−P
)� ,   xit =

(

1, xit−1, ..., xit−Q
)�

,  �i =
(

�0i, ..., �Pi
)�,  βi =

(

β1i, ..., βQi
)�,  yi =

(

yi1, ..., yiT
)�

, �i =
(

�i1, ..., �iT
)� . So, yi can be reiterated, in vector form, 

as follows:

yit = �0i +
∑P

p=1
�piyit−p +

∑Q

q=1
�qixit−q + �it,

yi = Zi�i + Xi�i + �i,

1 For standard estimation test, it is hard to control asymptotic size.



46 B. Mehmood et al.

Where Zi =
(

zi1, ..., ziT
)

 shows a matrix of [T × (1 + P)] 
and Xi =

(

xi1, ..., xiT
)

 represents a matrix of [T × Q] . It is 
assumed that �i is homogeneous since the real coefficient 
vector of Xi is equal to zero under the H0 . Thus, yi becomes:

Juodis et al. [57] calculated the coefficient � , for the solu-
tion of the parameter bias:

Where � , �̂1∕2 , and �̂2∕1 portray the estimation of β coeffi-
cient via fixed effects estimation for cases of T1 = T  , T2 =

T

2
 

and T3 = T1 − T2 , correspondingly. The final component is 
“Nickell” bias.

The H0 is that there is no Granger causality in any cross-
section. Accordingly, HA is that the Granger causality exists 
in at least one cross-section:

HPJ-Wald statistic is as follows:

Where J =
1

NT

∑N

i=1
X�
i
MZi

XI  ,  MZi
= IT − Zi

(

Z�
i
Zi
)−1

Z�
i
 , 

V̂ = �̂2Ĵ  , and �̂2 =
1

N(T−1−P−Q)

∑N

i=1
(yi − Xi�)�MZi

�

y
i
− X

i
�̂

�

. 
Also, ŴHPJ adheres the �2 distribution of Q.

5  Results and Discussion

This section presents the main results and findings of the 
empirical outcomes gathered from our estimation techniques 
and analysis, which include CS-ARDL estimates, robust-
ness checks using CCEMG and AMG, country-specific 
results, and panel Granger non-causality findings. This fol-
lowed by an in-depth interpretation that contextualizes these 
results within the existing body of literature and theoretical 
framework.

5.1  CS‑ARDL Estimates

The results of the CS-ARDL estimation, presented in 
Table 5, support the hypothesis that socio-economic devel-
opment significantly affects carbon productivity both in short 
run and long run. The findings show that GDP per capita, 
FDI, and trade are the push factors, which means that these 
factors have a positive and statistically significant influence 
on carbon productivity. In another sense, it means that these 
indicators play a significant role in promoting carbon pro-
ductivity. The findings are consistent with the findings of 

yi = Zi�i + Xi� + �i,

�̃ ≡ 2�̂ −
1

2

(

�̂1∕2 + �̂2∕1

)

= �̂ +
{

�̂ −
1

2

(

�̂1∕2 + �̂2∕1

)}

,

(

H0 ∶ ∀�i = 0, i = 1, 2, ...,N;H1 ∶ ∃ �i ≠ 0, i = 1, 2, ...,N
)

.

ŴHPJ = NT �̃�
(

Ĵ−1V̂Ĵ−1
)−1

�̃
d
→ �2(Q),

previous studies conducted in different regions (e.g., [22, 28, 
47, 54]), which found a positive and significant impact of 
GDP per capita, FDI, and trade on carbon productivity. For 
instance, socio-economic factors such as GDP per capita, 
trade, and FDI can improve carbon productivity through 
the composition effect, technique effect, and by introduc-
ing innovative technologies [47]. Wang et al. [20] argued 
that higher GDP per capita often correlates with greater 
technological advancements and efficiency, potentially 
increasing carbon productivity. Additionally, EKC suggests 
that when GDP per capita crosses the threshold level, envi-
ronmental quality improves due to a shift to a knowledge-
based economy [28]. Moreover, trade openness and FDI can 
facilitate the transfer of cleaner technologies and sustainable 
practices across borders, enhancing carbon efficiency [21, 
22]. According to the Pollution Halo hypothesis, FDI can 
bring positive changes in the environmental management 
system and introduce environmentally friendly technology 
in the host country. Green technology will replace obso-
lete technology, which will reduce pollution and promote 
environmentally friendly practices that will help increase 
carbon productivity [54]. Furthermore, trade can benefit 
the environment as it serves as an engine of technological 
progress due to the technological spillovers it generates. In 
an open economy, technological progress also depends on 
technological spillovers other than domestic research and 
development spending [22].

Conversely, the results show that energy use and urbani-
zation are pull factors, which means that these factors have 
a negative relationship with carbon productivity. The find-
ings reveal that energy use significantly negatively affects 
carbon productivity both in the short run and the long run, 

Table 5  CS-ARDL estimation results

Dependent variable: ln_Ci,t

***, **, and * show statistical significance at 1%, 5%, and 10%, 
respectively
Parentheses contain standard errors

Variables Long run estimates Short run estimates

ln_Gi,t 0.884
∗∗∗

(0.164)

0.062
∗∗

(0.032)

ln_Fi,t 0.256
∗∗

(0.101)

0.166
∗∗

(0.120)

ln_Ti,t 0.122
∗∗

(0.056)

0.154

(0.111)

ln_Ei,t −0.173∗∗∗

(0.032)

−0.067∗∗

(0.037)

ln_Ui,t −0.067∗

(0.037)

−0.070

(0.074)

ECM (-1)−0.188∗∗∗
(0.056)
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while urbanization influences carbon productivity only in the 
long run with weak statistical significance. The findings are 
consistent with the findings of previous studies conducted 
in a similar environment (e.g., [7, 23, 24, 52]. For instance, 
it is argued that high energy consumption, particularly from 
non-renewable sources, and rapid urbanization can lead to 
increased emissions, thereby reducing carbon productivity 
[23, 24]. Similarly, increased energy consumption negatively 
impacts environmental quality through the use of energy-
intensive industries and infrastructure. Moreover, in most 
countries, electricity production is mainly fueled by coal and 
other non-renewable sources [7]. Consequently, the burning 
of fossil fuels increases CO2 emissions which reduces car-
bon productivity. In a similar way, increasing urbanization 
has a negative impact on the environment. Zhou et al. [52] 
explain that as urbanization continues its rapid expansion, 
demand for energy and resources from industries and other 
economic sectors grows significantly and places immense 
strain on existing infrastructure, leading to congestion, inad-
equate transportation systems, and overwhelmed utilities 
such as water and sanitation. Moreover, the uncontrolled 
growth of urban areas contributes to environmental degra-
dation through land use changes and encroachment on agri-
cultural land, deforestation, and increased pollution from 
industrial activities and transportation [53].

Besides, the ECM(−1) value show that around 19% of 
any disequilibrium in the relationship between the variables 
is corrected every year. This highlights the dynamic adjust-
ment process in the relationship between socio-economic 
development and carbon productivity. Therefore, our CS-
ARDL results provide robust evidence for the impact of 
socio-economic development on carbon productivity in the 
top 18 carbon-emitting countries. This underscores the criti-
cal role of sustainable economic practices, effective manage-
ment of trade, FDI, and urbanization in enhancing carbon 
productivity. This holistic approach is essential for fostering 
long-term economic resilience and sustainable development, 
aligning with global climate action goals outlined in SDG 
13.

5.2  Robustness Check using CCEMG and AMG 
Estimators

Table 6 presents the findings of CCEMG and AMG estima-
tors. Upon checking the results of CCEMG and AMG, we 
noticed that findings from these estimators are generally in 
line and stable with those obtained from CS-ARDL estima-
tions and support the robustness of our results. Additionally, 
these strengths the reliability and validity of our CR-ARDL 
estimations and reinforces the confidence in the relation-
ship observed among explanatory variables and carbon 
productivity. Moreover, under AMG estimates, the com-
mon dynamic process (CDP) is statistically significant at 

5%, with �̂�a⋅
t

= 0.143 . This significance can be attributed to 
shared policies, regional and international agreements, and 
the diffusion of technological innovations among the top 18 
carbon-emitting countries [51]. These factors collectively 
contribute to achieving higher levels of carbon productiv-
ity, highlighting the importance of coordinated efforts in 
addressing climate change and promoting sustainable eco-
nomic growth.

5.3  Country Specific Effects

Table 7 shows the country-specific slopes for carbon pro-
ductivity. Notably, 83% of the sample countries exhibit 
expected positive relationships, indicating that socio-eco-
nomic development positively impacts carbon productiv-
ity in these nations. This suggests that these countries can 
serve as models for implementing effective low-carbon poli-
cies. Countries such as Australia, China, France, Germany, 
Indonesia, Italy, Japan, Poland, South Africa, South Korea, 
Spain, the UK, and Ukraine demonstrate significant positive 
effects, aligning with their advanced status and emphasis on 
green growth and sustainable development [79].

Conversely, Brazil, India, and Mexico show unexpected 
negative coefficients, indicating challenges in achieving 
carbon productivity improvements. This might be due to 
lower levels of energy use and their moderate rankings on 
the green growth index [80]. Kazakhstan and Saudi Ara-
bia exhibit inconclusive results, possibly due to their lower 
energy use and less focus on green growth policies. The 
statistical significance at 1%, 5%, and 10% levels for most 

Table 6  CCEMG and AMG 
estimation results

Dependent variable: ln_Ci,t

***, **, and * show statisti-
cal significance at 1%, 5%, and 
10%, respectively
CDP common dynamic process. 
Parentheses contain standard 
errors

Variables CCEMG AMG

ln_Gi,t 0.293
∗∗

(0.118)

0.159
∗∗

(0.074)

ln_Fi,t 0.247
∗∗

(0.102)

0.303
∗∗

(0.150)

ln_Ti,t 0.641
∗

(0.373)

0.214
∗

(0.116)

ln_Ei,t −1.002∗∗

(0.470)

−0.148∗∗

(0.066)

ln_Ui,t −0.543∗∗

(0.244)

−0.595∗∗

(0.272)

Constant 0.956
∗∗

(0.467)

0.026
∗∗∗

(0.008)

CDP - 0.143
∗∗

(0.058)
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countries underscores the robustness of these findings, 
emphasizing the varying impact of socio-economic factors 
on carbon productivity across different national contexts.

5.4  Panel Granger Non‑causality

The results described in Table 8 show the panel Granger 
non-causality test, exploring the relationship between socio-
economic development and carbon productivity. The estima-
tion is completed with cross-sectional heteroskedasticity-
robust standard errors. The findings reveal that GDP per 
capita and FDI have a feedback effect on carbon produc-
tivity, while trade exhibits a uni-causal relationship with 
carbon productivity. These results align with Rajbhandari 
and Zhang [81], who found causality from carbon inten-
sity to GDP growth, and Long et al. [21], who identified a 
positive effect of FDI on carbon productivity. The uni-causal 
relationship between trade and carbon productivity is sup-
ported by Feng et al. [82], who found that trade significantly 
increases carbon productivity, and Zhang et al. [83], who 
confirmed that import trade boosts carbon productivity in 
China.

Additionally, the findings indicate that energy consump-
tion has a feedback effect on carbon productivity, while 
urbanization shows a uni-causal effect. The uni-causality 
from urbanization to carbon productivity suggests that the 
expansion of urban centers corresponds to a significant 
increase in CO2 emissions. This finding is consistent with 

Table 7  Country-specific effects

country specific slopes 
(

�i
)

***, **, and * show statistical significance at 1%, 5% and 10%, 
respectively. Standard errors are in parenthesis

Country �i Country �i

Expected country specific effects
  Australia 5.492*** Poland 3.991***

(1.788) (1.185)
  China 4.330*** South Africa 7.423***

(1.291) (2.544)
  France 4.772*** South Korea 5.481***

(1.289) (1.594)
  Germany 9.644*** Spain 8.791***

(2.673) (2.442)
  Indonesia 7.325*** UK 9.593***

(2.225) (2.836)
  Italy 0.989** Ukraine 2.991**

(0.417) (1.185)
  Japan 2.900a – –

Unexpected country specific effects
  Brazil  − 3.492* Mexico  − 0.332*

(1.789) (0.187)
  India  − 1.972*** – –

(0.671)
Inconclusive expected country specific effects

  Kazakhstan 1.574 Saudi Arabia 2.276
(1.435) (1.391)

Table 8  Panel Granger non-
causality test results

***, **, and * show statistical significance at 1%, 5% and 10% respectively. Parentheses contain standard 
errors
ŴHPJ Wald statistic Half Panel Jack-knife estimator

Causality ŴHPJ
Coef Results Remarks

Gi,t → Ci,t 6.047** 0.177**

(0.072)
Causality from G to C Bi causality

Ci,t → Gi,t 14.191*** 1.119***

(0.297)
Causality from C to G

Fi,t → Ci,t 23.503*** 0.084***

(0.017)
Causality from E to C Bi causality

Ci,t → Fi,t 64.849*** 0.333***

(0.041)
Causality from C to E

Ti,t → Ci,t 2.779* 0.246*

(0.147)
Causality from T  to C Uni-causality from T  to C

Ci,t → Ti,t 0.420 0.110
(0.170)

No Causality from C to T

Ei,t → Ci,t 48.952***  − 1.034*

(0.148)
Causality from E to C Bi causality

Ci,t → Ei,t 10.306***  − 0.135***

(0.042)
Causality from C to E

Ui,t → Ci,t 5.062**  − 0.560**

(0.249)
Causality from U to C Uni-causality from U to C

Ci,t → Ui,t 0.303 0.231
(0.42)

No Causality from C to U
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Liu et al. [23] and Jahanger et al. [84], who found simi-
lar mechanisms for urbanization and carbon productivity. 
The robustness of these results is ensured by accounting for 
heteroskedasticity across sections, providing more accurate 
and reliable inferences. The statistical significance further 
strengthens the validity of the findings. In essence, the find-
ings highlight the significant impact of socio-economic fac-
tors on carbon productivity and underscore the necessity 
for integrated policies that promote sustainable economic 
growth while mitigating carbon emissions.

6  Conclusion and Recommendations

This study embarked on an in-depth exploration of the rela-
tionship between socio-economic development and carbon 
productivity in the top 18 CO2-emitting countries, aligning 
closely with the SDGs, particularly SDG 13: Climate Action. 
The objective is to test the hypothesis that socio-economic 
development factors—such as GDP per capita, trade, FDI, 
energy consumption, and urbanization—affect carbon produc-
tivity over the period from 1990 to 2019. Using a panel data-
set, we applied advanced econometric techniques, including 
the CS-ARDL, CCEMG, and AMG estimations, along with 
novel Granger non-causality tests, to ensure a comprehensive 
robust analysis. Our findings from the CS-ARDL model reveal 
that GDP per capita, trade, and FDI positively influence car-
bon productivity, highlighting the role of economic growth 
and international investment in enhancing environmental 
efficiency. Conversely, energy consumption and urbanization 
were found to negatively impact carbon productivity, empha-
sizing the need for cleaner energy sources and sustainable 
urban planning. The robustness checks using CCEMG and 
AMG estimators confirmed these results, underscoring their 
reliability and consistency across different estimation tech-
niques. The country-specific effects analysis indicated that 
83% of the sample countries exhibit positive relationships 
between socio-economic development and carbon produc-
tivity, suggesting that these nations can serve as models for 
effective low-carbon policies. However, countries like Brazil, 
India, and Mexico showed negative coefficients, pointing to 
specific challenges in improving carbon productivity. The 
panel Granger non-causality tests further supported these 
findings, demonstrating bi-directional relationships for GDP 
per capita, FDI, and energy use with carbon productivity and 
uni-causal relationship for trade and urbanization.

The findings of this study highlight several important pol-
icy implications for enhancing carbon productivity and pro-
moting sustainable development. Firstly, policymakers should 
focus on promoting economic growth that incorporates tech-
nological advancements and increased efficiency, as higher 
GDP per capita was found to positively influence carbon pro-
ductivity. Investments in green technologies and innovation 

are essential to achieving this goal. Secondly, trade openness 
and FDI play key roles in transferring cleaner technologies 
and sustainable practices across borders. Therefore, policies 
that facilitate international trade and attract environmentally 
friendly foreign investments should be prioritized. Thirdly, to 
address the negative impact of energy consumption on carbon 
productivity, countries must transition to renewable energy 
sources such as wind, solar, hydro, and nuclear power. Gov-
ernments should implement policies that incentivize the adop-
tion of renewable energy technologies and improve energy 
efficiency in both industrial and residential sectors. Fourthly, 
the detrimental effect of urbanization on carbon productiv-
ity necessitates sustainable urban planning and development 
strategies. Policymakers should promote energy-efficient 
infrastructure, public transportation systems, and green spaces 
to mitigate the environmental impact of urban expansion. Last 
but not least, international cooperation is important for shar-
ing best practices and technologies to improve carbon produc-
tivity globally. Countries should collaborate on research and 
development initiatives, exchange knowledge on sustainable 
practices, and participate in international agreements that aim 
to reduce carbon emissions.

Although this study is comprehensive, it has some limita-
tions that should be addressed in future research. Firstly, the 
analysis is confined to the top 18 CO2-emitting countries, 
which limits the generalizability of the findings to other 
nations with different socio-economic and environmental 
contexts. Future studies should expand the scope to include 
a broader range of countries, particularly those with emerg-
ing economies and varying levels of industrialization. Sec-
ondly, the time span of this study is before the COVID-19 
pandemic, which limits the relevance of the findings to the 
current context and may not fully capture recent changes 
and trends in socio-economic factors and carbon productiv-
ity. The pandemic has brought about unprecedented changes 
in global economic activity, energy consumption patterns, 
and industrial operations, all of which are important fac-
tors influencing carbon productivity. The decision to focus 
on the period before COVID-19 was made to ensure data 
consistency and avoid the volatile disruptions caused by 
the pandemic. However, it is essential for future research to 
investigate the impacts of COVID-19 and the post-pandemic 
recovery period on socio-economic factors and carbon pro-
ductivity. This would provide a more comprehensive under-
standing of how such global disruptions affect environmental 
efficiency and economic sustainability. Finally, the impact of 
other potential factors such as policy changes, technological 
advancements, and social behaviors on carbon productivity 
could be explored in more detail. By addressing these limita-
tions, future research can build on the findings of this study 
to develop more comprehensive and nuanced strategies for 
increasing carbon productivity and achieving sustainable 
development goals.
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