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A B S T R A C T

Current methods for measuring wheat quality and dough rheology in the later stages of wheat breeding pro-
grams, including extensographs and farinographs, are costly and time-consuming. There is a significant interest 
in the Australian wheat industry for developing non-destructive, field-based, rapid dough-making quality 
assessment methods for Australian wheat varieties throughout earlier and later stages of the wheat breeding 
process. Fourier transform infrared (FTIR) spectroscopy is a valuable tool for analysis and quality control in the 
food industry as it is a simple and rapid technique requiring no sample pre-treatment before analysis.

We aimed to investigate the application of FTIR spectroscopy coupled with partial least squares (PLSR) 
regression data analysis to rapidly assess wheat flour’s dough-making quality. Results indicated that using FTIR 
data, PLSR could be applied to accurately predict multiple dough-making qualities, including protein content, 
extensibility, water absorption, dough development time (DDT), dough stability, and maximum resistance to 
tension (Rmax). FTIR spectroscopy could not only be used to accurately predict the dough making quality of 
wheat lines from an in-sample test dataset, but this method also outperformed genetic predictive analysis, an 
established quality-prediction method in wheat breeding, in predicting dough making quality using out-of- 
sample data.

1. Introduction

Standard methods to determine the end-product quality of newly 
developed wheat lines involve costly and time-consuming processes, 
including using expensive instruments such as farinographs and exten-
sographs (AACC, 1999b, 2011). These instruments are designed to 
measure the rheological parameters of dough. They are employed dur-
ing the later stages of the wheat breeding process to measure the dough 
quality of novel wheat lines (AACC, 2023). To measure dough quality, a 
large quantity of grain/flour is required so that dough can be physically 
made to perform multiple rheology measurements. These processes are 
destructive, have low repeatability and are expensive; as such, it is vital 
to determine early in the wheat breeding process that wheat lines 
selected for end-product testing are of high quality, as measuring sub- 
standard wheat lines is inefficient.

There remain considerable challenges to developing non-destructive 
and rapid methods for assessing dough-making quality in wheat vari-
eties early in breeding. Currently, genomic prediction is the standard 
method for early-stage predictive analysis (Norman et al., 2017). 
Adopting new scientific methods and technologies can help breeding 
companies ensure that lines in the breeding program have suitable 
quality within the parameters of the tests that correlate with desirable 
performance for end users. Combining multiple strategies and technol-
ogies is one way breeding companies can increase the efficiency of 
developing novel high-quality wheat lines.

FTIR spectroscopy measures the interaction of infrared (IR) radiation 
with compounds of interest, altering their vibrational or rotational states 
(Tyner & Francis, 2017). The different types of vibrations and rotations 
for each compound absorb different wavelengths of infrared radiation, 
which results in unique spectral properties for different molecular 
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species (Tyner & Francis, 2017). These unique spectral properties in 
biological samples, such as food products, can be regarded as a meta-
bolic fingerprint. This has led to research into various applications 
throughout the food and agriculture industry (Karoui et al., 2010), 
including meat and meat products (Rohman, 2019), milk and dairy 
(Jawaid et al., 2013), fats and oils (Rohman et al., 2020) and cereal 
products (Amir et al., 2013; Ferrão & Davanzo, 2005). The characteristic 
FTIR absorbance bands that appear in the spectrum due to specific 
functional groups and bonds in a compound can be associated with the 
different macro components found in biological samples, including 
proteins, fats, carbohydrates and water (Alina et al., 2011; Karoui et al., 
2010; Su & Sun, 2018). Both the protein and starch content in flour are 
important for dough quality (Salvador et al., 2006). The network of 
gluten proteins and their interaction with water and starch granules 
define the dough’s viscoelastic properties (Ortolan & Steel, 2017; 
Schiedt et al., 2013) and provide a range of on-site testing applications 
for wheat breeders, growers, and buyers. Infrared spectroscopy has 
already shown some success in applications for variety identification 
and classification (Amir et al., 2013; Porker et al., 2017), ensuring 
provenance and quality assessments, including macromolecule content 
and dough quality predictions (Dowell et al., 2006; Miralbés, 2004; 
Sujka et al., 2017).

Wheat flour dough characteristics depend significantly on the flour’s 
protein content, mixing conditions, the percentage of water added, and 
the air incorporated into the dough structure (Salvador et al., 2006). 
When water is added to flour, the gluten proteins gliadin and glutenin 
interact to create a three-dimensional gluten network (Schiedt et al., 
2013). As the flour and water are mixed, the protein chains align, the 
starch granules become more evenly distributed, and air bubbles are 
incorporated into the dough structure, contributing to its rheological 
changes (Schiedt et al., 2013). This structure of gluten proteins, starch, 
water, and air bubbles comprises the gluten network and is mainly 
responsible for the overall dough structure and quality.

In the infrared spectrum, the peptide backbone universally present in 
proteins exhibits three characteristic bands: the amide I C––O stretching 
band (1580–1720 cm− 1), as well as the amide II (1480–1580 cm− 1) 
N–H bending and amide III (1200–1340 cm− 1) C–N stretching bands 
(Dhaka & Khatkar, 2016; Nawrocka et al., 2018). In the FTIR spectrum 
of starch, bands appear at 2900–3000 cm− 1 (C–H single bond stretch-
ing), 1100–1150 cm− 1 (C–O, C–C and C-O-C single bond stretching) 
and 1100–900 cm− 1 (C-O-H bending) (Türker-Kaya & Huck, 2017). 
Despite the complexity of the molecular structure of starch and other 
storage carbohydrates, the bands in the region of 1100–900 cm− 1 are 
characteristic of changes in starch structure, and changes in this spectral 
region may be used to track the structural changes of storage carbohy-
drates in biological samples (Türker-Kaya & Huck, 2017). When inves-
tigating the infrared spectra of wheat flour, these infrared spectrum 
regions can be points of focus when developing appropriate prediction 
models.

Despite the complexity of FTIR spectra of wheat flour, applying 
chemometrics-based approaches may be able to extract qualitative or 
quantitative information from chemical data, including spectral data. 
Partial least squares regression (PLSR) is a multivariate analytical 
technique that can extract these latent variables from the data and 
construct regression models to predict observations or measurements of 
unknown samples. PLSR is widely used to extract information from 
spectral data sets because it can be used to analyse data with a large 
amount of ‘noisy’ and redundant variables and model several charac-
teristic variables simultaneously (Fu & Ying, 2016). As such, it has 
shown to be the multivariate regression model of choice for extracting 
data from spectral data sets of wheat samples (Fu & Ying, 2016; Karoui 
et al., 2010; Pojić & Mastilović, 2012; Qu et al., 2015; Woodcock et al., 
2008).

Our objective was to investigate the application of FTIR spectroscopy 
coupled with multivariate analysis to create prediction models for ac-
curate, rapid, and inexpensive wheat flour analysis. We aimed to 

construct prediction models using a wide range of Australian wheat 
varieties to predict multiple dough-making properties with accuracy and 
robustness that are suitable for use in process, quality control, or 
breeding.

2. Materials and methods

2.1. Wheat samples

Australian Grain Technologies (AGT) supplied wheat samples and 
rheology data. These samples and data were used to construct dough 
quality prediction models using multivariate analysis. Three sample sets 
were provided (Table 1).

Three sample sets were sample set A consisted of 29 flour samples, 
including eight different Australian varieties from five sets of quality 
experiments collected from Western Australia field trials. All samples 
underwent full dough rheology and end-product testing at AGT’s in- 
house laboratory (Roseworthy, South Australia). Varieties include 
Magenta, Wyalkatchem, Chief CL Plus, Scepter, Corack, Mace, Emu 
Rock, and Westonia. Sample set B consisted of 136 flour samples sup-
plied by AGT, taken from six sites in Western Australia and South 
Australia with varying climates and soil types; Northam, Gibson, Gno-
wangerup, Roseworthy, Eradu and Buntine. All the samples underwent 
full dough rheology and end-product testing at AGT’s in house labora-
tory (Roseworthy, South Australia). In sample set C, 131 grain samples 
were supplied by AGT. These samples were early generation material 
that had not yet undergone milling and dough rheology testing, however 
genomic predictions of the dough quality data was supplied. Sample set 
C was supplied as grain rather than flour. These samples were milled to 
flour for FTIR spectroscopy analysis using a NutriMill benchtop mill 
(NutriMill, USA) and a size 50 cell dissociation sieve to filter the bran.

2.2. Dough rheology testing

AGT supplied dough rheology analysis results. Measurements 
include protein content, farinograph water absorption, extensibility, and 
maximum resistance to tension (Rmax). These measurements were ob-
tained using the current standard techniques for assessing wheat quality 
parameters (AACC, 2023) and carried out at AGT’s in-house laboratory 
(Roseworthy, South Australia).

The protein content of wheat flour was determined using NIR 
reflectance spectroscopy (AACC, 1999a). Extensibility, i.e. how far the 
dough can be stretched until it breaks (cm), and Rmax, i.e. the maximum 
force applied to the dough (BU), were measured using a Brabender 
Extensograph (Brabender, Germany) following the standards 

Table 1 
Dough rheology data for sample sets A and B. Rmax, maximum resistance to 
tension (BU). DDT, dough development time (minutes).

Sample 
Set

Number of 
Samples

Min Max Average ± 
SD

Protein A 29 8.9 13.2 11.0 ± 1.32
B 136 5.67 13.08 9.23 ± 1.92

Extensibility A 29 16.14 25.49 20.7 ± 2.65
B 136 11.38 25.49 17.34 ±

3.75
Rmax A 29 222.5 587.5 405.4 ±

90.12
B 136 222.5 602.5 397.37 ±

81.23
Water 

Absorption
A 29 60.6 69.1 63.7 ± 1.87

B 136 52.9 68.8 62.39 +
2.51

DDT A 29 3.61 8.59 5.69 ± 1.23
B 136 0.76 12.29 3.92 ± 2.60

Stability A 29 5.64 16.37 9.88 ± 2.70
B 136 0.96 31.96 8.57 ± 4.70
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procedures as described by the American Association of Cereal Chemists 
(AACC) (AACC, 1999b). Water absorption (14% moisture content flour), 
dough development time (DDT) and dough stability were measured 
using a Brabender Farinograph (Brabender, Germany) following the 
standards procedures as described by the AACC (AACC, 2011).

2.3. Genomic selection

AGT provided genomic predictions of the dough-making qualities of 
the sample set C wheat lines. These qualities include flour protein con-
tent, extensibility, farinograph water absorption, DDT, stability, and 
Rmax. AGT genotyped samples using a custom Axiom Affymetrix SNP 
array (Norman et al., 2017).

Genomic selection is a method for early-stage dough quality pre-
dictive analysis currently implemented in wheat breeding programs. 
Thus, to determine the viability of FTIR spectroscopy in these early 
stages of the wheat breeding process, comparisons were made between 
the accuracy of the FTIR spectroscopy predictions of dough quality and 
the standard methods of dough quality prediction.

2.4. FTIR spectroscopy

FTIR spectroscopy was performed using the Agilent Cary 630 ATR- 
FTIR analyser (Agilent Technologies, USA), a benchtop FTIR spectro-
photometer with a type IIa diamond crystal ATR accessory and the 
Microlab software (version B.05.4, Agilent Technologies, USA). Infrared 
absorption of the milled grain samples was measured in five replicates, 
and a background calibration was performed before each measurement. 
Instrument parameters included: Range 4000–650 cm− 1, resolution 4 
cm− 1, background scans 64, sample scans 64.

2.5. Spectral data pre-processing

Raw spectral data collected from the FTIR spectrophotometer un-
derwent pre-processing through normalisation using Microsoft Excel 
and first and second derivative spectroscopy using R (version 4.3.1.) (R 
Development Core Team, 2019) prior to multivariate analysis to opti-
mise the multivariate models’ predictability. Multiple data pre- 
processing techniques were tested, including first and second deriva-
tive spectroscopy, standard normal variate (SNV) normalisation, 1- 
norm, 2-norm, min-max normalisation, and band normalisation.

2.6. Multivariate analysis

All the multivariate analysis was performed using the statistical 
computing and graphics software R (version 4.3.1.) (Hovde Liland et al., 
2023; R Development Core Team, 2019). Prediction models were con-
structed using Partial Least Squares Regression (PLSR) with the FTIR 
spectral data to predict dough-making qualities, including protein con-
tent, farinograph water absorption, extensibility, extensibility without 
the influence of protein content (EXT-WP), DDT, stability and Rmax. 
Models were constructed to predict extensibility with and without the 
influence of protein content. Extensibility was regressed on protein 
content to remove the influence of protein content, and the residuals for 
protein and extensibility were calculated.

The optimal number of components (extracted latent variables) used 
to construct the PLSR models was determined by plotting the root mean 
standard error (RMSE) values of the leave-one-out (LOO) cross-validated 
predictions of the training data set for the first 10 components. For each 
PLSR model, components were chosen by minimising RMSE to construct 
the most accurate model without overfitting the data. Each model un-
derwent an examination of its RPD (Ratio of Performance to Deviation), 
a straightforward means to swiftly evaluate the statistical strengths of 
multivariate spectroscopy calibrations (Williams, 2014). A prediction 
model with an RPD of over 1.9 is considered suitable for preliminary 
screening of complex materials including grain and flour, and an RPD of 

over 2.9 is considered suitable for use in quality control (Williams, 
2014).

For each multivariate model, the full FTIR spectrum (4000–650 
cm− 1) was divided into spectral ranges based on the bands corre-
sponding to specific macromolecular components. Data from the entire 
spectral region and specific spectral ranges were chosen to construct the 
regression models to maximise the predictive power of the model, as 
using all data points in the full range does not necessarily construct the 
best model for predicting output data for unknown samples. The spectral 
ranges chosen were 3680–2990 cm− 1 (A1), 2990–2825 cm− 1 (A2), 
1775–1710 cm− 1 (A3), 1710–1480 cm− 1 (A4), 1480–1180 cm− 1 (A5) 
and 1180–810 cm− 1 (A6). These ranges were chosen based on signifi-
cant bands along the spectrum and the PLSR loadings for the models 
constructed from the entire spectrum. Most spectral ranges involve 
bands corresponding to characteristic features of specific macromole-
cules: proteins (A4), fats (A2, A3), water (A1), and carbohydrates (A6)) 
(Alina et al., 2011; Karoui et al., 2010; Su & Sun, 2018). Variable 
importance in projection (VIP) and regression coefficient analysis was 
also utilised to confirm that the spectral regions selected for PLSR model 
calibration included the most relevant bands by scoring the importance 
of each variable (wavenumber) in the PLSR models and determining if 
there is a positive or negative correlation between each wavenumber 
and dough making quality respectively.

Preliminary PLSR prediction models were constructed from the FTIR 
spectroscopy data of sample set A and the supplied sample set A dough 
rheology data to predict the seven dough quality parameters. Using a 
sample set of control varieties, regression models were constructed to 
accurately predict dough-making parameters of wheat lines with a wide 
range of qualities. To strengthen the robustness and reduce the bias/ 
overfitting of the preliminary sample set A models, FTIR data from 
sample sets A and B were used to construct the finalised PLSR models.

To validate the accuracy of the regression models, a test set con-
sisting of randomly chosen samples from each sample set (five from 
sample set A and 20 from sample set A + B) were treated as flour samples 
with unknown dough-making quality. The data from the remaining flour 
samples were used to construct the prediction models for each dough- 
making quality parameter (i.e. the training set). The linear correlation 
between the predicted values of the test set samples and their measured 
values supplied by AGT was used to validate the accuracy of each pre-
diction model.

The finalised PLSR models built from the sample set A + B FTIR 
spectroscopy data were then used to predict the dough-making qualities 
of the sample set C flour samples. The sample set C provided the external 
data needed to validate the PLSR models. It represented a set of novel 
wheat lines that would benefit from FTIR dough-making quality pre-
dictions in a practical setting. The results of the PLSR predictions of the 
sample set C flour samples were then used to select 12 of the 131 sample 
set C samples for further dough rheology testing. This was done to 
confirm if FTIR spectroscopy could accurately predict the dough-making 
quality of flour samples from an external data set and to compare the 
accuracy of the FTIR spectroscopy prediction models to the genomic 
predictive analysis of the sample set C flour samples.

In wheat grain, there is a strong negative genetic correlation between 
protein content and grain yield (Acreche & Slafer, 2009; Bogard et al., 
2010). This means that wheat breeders do not select varieties based 
solely on protein content, as doing so would result in the selection of 
lines with reduced yield. This negative correlation is largely unex-
plained, although some researchers hypothesise that there may be 
competition between carbohydrates and protein production for energy 
(Munier-Jolain & Salon, 2005) or that protein is diluted by increased 
carbohydrate production (Acreche & Slafer, 2009). As such, the influ-
ence of grain yield on protein content was removed before ranking the 
samples for both protein content and extensibility. To remove the in-
fluence of yield, protein and extensibility were regressed on yield, and 
the residuals for protein and extensibility were calculated.
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2.7. Comparison of FTIR spectroscopy and genomic predictive analysis

Genomic predictive analysis is the standard method for early-stage 
dough making quality predictive analysis. The predicted dough mak-
ing qualities of the selected sample set C samples using FTIR spectros-
copy were compared to the genomic predictions of dough making 
quality supplied by AGT. Using the statistical computing and graphics 
software, R (version 44.3.1.) (R Development Core Team, 2019), Ken-
dall Tau distance and Spearman’s rank correlation were used to deter-
mine if there was any correlation between the rankings for genomic and 
FTIR spectroscopy dough quality predictions of the 131 sample set C 
flour samples. The accuracy of the two prediction methods was then 
determined by comparing the R2 values between the predicted dough 
quality values to the measured dough rheology results of the 12 selected 
sample set C samples.

3. Results and discussion

3.1. Training PLSR prediction models for dough making quality

Results of the PLSR predictions for the sample set A indicated that the 
models with the strongest predictive capabilities were the models pre-
dicting protein content (R2 = 0.977), stability (R2 = 0.968), water ab-
sorption (R2 = 0.921), Rmax (R2 = 0.816) and DDT (R2 = 0.810) 
(Table 2a). The regression models for extensibility and EXT-WP were 
less accurate, with an R2 value of 0.620 and 0.470, respectively 
(Table 2a). The RPD values of each model indicated that only the model 
predicting protein content was suitable for accurate process and quality 
control, with a value of 4.076. The PLSR models predicting Rmax, dough 
stability and water absorption all scored over 2.0, suggesting that these 
models were more suitable for implementation for preliminary 
screening. Both normalisation and differentiation methods were used to 
pre-process the raw spectral data. It was found that first derivative 
spectroscopy showed improved regression model accuracy for predict-
ing protein content using FTIR data. However, raw spectral data was 
most accurate for all other PLSR models.

The dough-making quality predictions from the sample set A gave an 
early indication that FTIR spectroscopy combined with PLSR regression 
has the potential to accurately predict multiple dough-making proper-
ties for a wide variety of wheat lines with accuracy suitable for imple-
mentation in the early stages of the wheat breeding process. 

Consequently, FTIR data of the sample set A flour samples was combined 
with that of the sample set B flour samples to construct more robust 
regression models and to validate the accuracy of the initial sample set A 
models.

As with the sample set A models, the prediction model for protein 
content from the combined sample set A + B data proved to be the most 
accurate model (R2 = 0.963 Table 2b and Fig. 1), which is coherent with 
previous studies reporting the ability of PLSR to accurately predict 
protein content in wheat samples using both FTIR spectroscopy (R2 =

0.93) (Sujka et al., 2017) and NIR spectroscopy (R2 = 0.97) (Dowell 
et al., 2006). The prediction models calculated from the extensibility, 
farinograph water absorption and Rmax data also showed predictive 
capabilities, with R2 values of 0.927, 0.700 and 0.620, respectively 
(Fig. 1). RPD values of the sample set A + B models indicated that the 
protein content and extensibility of PLSR models were suitable for high- 
quality process and quality control and that PLSR would be suitable for 
preliminary screening of DDT. The RPD values of the models predicting 
the remaining dough qualities suggested that these models still need 
improvement.

The strongest prediction models for protein content and extensibility 
were constructed from FTIR data from the A5 region of the spectrum 
(1480–1180 cm− 1). While the A4 region (1710–1480 cm− 1), encom-
passing the amide I and II bands, was initially hypothesised to be critical 
for predicting these qualities, it appeared that the amide III band 
(1330–1230 cm− 1), characterised by N–H bending and C–N stretching, 
played a more significant role in these predictions.

Investigation of the cumulative loadings of the protein and extensi-
bility PLSR models indicated that the bands that attributed most to the 
predictive ability were at ca 1350 cm− 1 and ca 1450 cm− 1 (Fig. 2). The 
average spectrum of the sample set A and B samples showed that there 
are observable bands at 1490–1400 cm− 1 (ṽ3) and 1400–1270 cm− 1 (ṽ4) 
(Fig. 3). These bands are suggested to correlate to amide III vibrations 
from the polypeptide backbone or contributions from side-chain vibra-
tions (Barth, 2000; Ji et al., 2020). Side-chain vibrations, including CH 
and CH2, may also result in less intense bands or shoulders within the 
1370 - 1320 cm− 1 range (ṽ4) (Barth, 2000). The exact wavenumbers and 
intensities of these bands depend on the abundance and types of amino 
acids present. Some protein-related bands also appear at ca 1450 cm− 1 

(ṽ3), associated with amide II or side-chain vibrations (Barth, 2000; Ji 
et al., 2020). The cumulative loadings of the DDT model also showed 
that the band around 1450–1420 cm− 1 contributed most to the 

Table 2 
PLSR results for (a) sample set A and (b) sample set A + B using FTIR spectral data.

(a)

Dough quality parameter Wavenumber range aComponents bTest set R2 cRMSE dRPD eSlope fBias Derivative

Protein A5 3 0.977 0.429 4.076 1.064 0.215 1st
Extensibility A5 4 0.620 1.413 1.534 1.221 − 0.310 None
gEXT-WP A4 8 0.470 1.509 0.852 0.407 − 0.001 None
hRmax A4 6 0.816 77.06 2.597 1.100 3.200 None
iDDT FULL 9 0.810 0.745 1.604 0.965 0.304 None
Stability FULL 6 0.968 1.945 2.213 0.799 0.857 None
Water Absorption A2 6 0.921 1.354 2.710 0.846 0.096 None

(b)
Dough quality parameter Wavenumber Range aComponents bTest set R2 cRMSE dRPD eSlope fBias Derivative
Protein A5 2 0.963 0.460 4.950 0.969 0.127 None
Extensibility A5 2 0.927 1.391 3.687 0.941 − 0.336 None
gEXT-WP A4 8 0.372 1.326 1.421 0.815 − 0.411 1st
hRmax A4 6 0.620 71.940 1.750 1.078 − 1.588 1st
iDDT A5 1 0.815 1.427 2.477 0.959 − 0.270 1st
Stability FULL 4 0.450 3.075 0.935 1.030 0.106 1st
Water Absorption A6 4 0.700 1.302 1.887 − 0.433 1.001 None

a Latent variables. b Squared correlation coefficient of the predicted and measured values for the test set samples. c Root mean standard error for leave-one-out cross- 
validated predictions of the training data set. d Ratio of Performance to Deviation, calculated by dividing the Standard deviation of reference values by RMSE. e 

relationship between predicted values versus reference values. f the mean difference between the predictor variables and the response variable. g extensibility without 
the influence of protein content. h maximum resistance to tension (BU). I dough development time (minutes).
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Fig. 1. Correlation plots of the predicted and measured dough qualities for the PLSR models constructed from the sample set A + B data set. (B) Protein content (%), 
(B) extensibility (cm), (C) water absorption (%) and (D) Rmax (BU).

Fig. 2. Partial least squares (PLS) loadings of the optimal calibrations. Each PLSR model is constructed from the sample set A + B dataset. The optimal number of PLS 
loadings is in brackets.
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predictive ability of the model (Fig. 2). This suggested that amide II 
bands relating to protein content were also the main factor in predicting 
DDT, as with extensibility and flour protein content. The gluten network 
plays a vital role in dough extensibility and development time (Song & 
Zheng, 2008), which may be why protein-related FTIR bands contrib-
uted most to the PLSR models.

For the models predicting water absorption, the strongest model was 
constructed from region A6 (1180–810 cm− 1) containing bands at 
1100–1150 cm− 1 (C–O, C–C and C-O-C single bond stretching) and 
1100–900 cm− 1 (C-O-H bending), all present in starch and other car-
bohydrates. As starch has the most significant impact on flour’s water 
absorption, this result was not unexpected (Lovegrove et al., 2020). 
Investigations of the PLSR loading values for the model predicting water 
absorption indicated that bands around 990 cm− 1 contributed most to 
the predictive ability of the model, suggesting the importance of the 
presence of C-O-H bonds (Fig. 2).

The cumulative PLSR loadings of the Rmax model indicated that 
multiple bands between 1500 cm− 1 and 1700 cm− 1 contributed to the 
predictive ability (Fig. 2). Two bands were observed in the sample set A 
+ B flour samples, at 1700–1575 cm− 1 (ṽ1) and 1575–1485 cm− 1 (ṽ2). 
The band at 1700–1575 cm− 1 is often associated with the stretching 
vibration of the carbonyl (C=O) group in amide bonds, whereas the 
band at 1575–1485 cm− 1 is associated with amide II N–H bending and 
C–N stretching bands (Dhaka & Khatkar, 2016; Nawrocka et al., 2018). 
As with the extensibility and DDT models, the PLSR loadings of the Rmax 
model indicated that the bands corresponding to protein content are the 
most important for predicting Rmax.

When we compared the models built using only data from sample set 
A to those using data from both sample sets A and B, we observed a 
decrease in the accuracy of predicting Rmax, water absorption, dough 
stability, and EXT-WP, but an increase in accuracy for predicting 
extensibility for sample set A + B. By constructing multivariate models 
with multiple data sets (sample set A + B), the bias of the model’s 
predictions towards the model’s training data is reduced. The higher R2 

values seen in the sample set A models for Rmax, dough stability, EXT-WP 
and water absorption may be due to the increased bias seen in the 
models for predicting the validation sample set dough making qualities, 
as the validation sample set also comprised of solely sample set A data.

The results of the internal validation of the sample set A and sample 
set A + B PLSR models also indicated that FTIR spectroscopy combined 
with PLSR could accurately predict extensibility but not EXT-WP. This 

suggests that PLSR is using the same latent variables that predict protein 
content to predict extensibility. Analysis of the loadings for the models 
predicting protein content and extensibility also indicated that the same 
range of wavenumbers had similar relative loading values for predict-
ability (Fig. 2). Previous research has highlighted that there is often a 
negative correlation between wheat grain yield and protein content 
(Acreche & Slafer, 2009; Bogard et al., 2010; Simmonds, 1995), often 
leading to wheat breeders not selecting varieties based on protein con-
tent alone as this would result in selections of lines with reduced yield. 
As the extensibility PLSR models may be using the same variables to 
predict extensibility as the protein PLSR models, a similar issue may 
arise whereby wheat lines being selected for their high extensibility 
values may result in selections of lines with lower yields. This means that 
if the extensibility models were to be used on unknown wheat lines, the 
yield of these lines must be taken into consideration to affirm that va-
rieties with high yield and high extensibility are being selected to enter 
the later stages of the wheat breeding process.

3.2. Validating the PLSR models using an external dataset

Dough making quality predictions of the 131 sample set C grain 
samples were made using the PLSR prediction models constructed from 
the sample set A + B data, then ranked from highest to lowest, and 
finally compared to the rankings of the genomic predictions for dough 
quality of the same samples. Both Kendall Tau distance and Spearman’s 
rank correlation concluded that there was no association between ranks 
for the predictions of protein content or dough extensibility (see Sup-
plementary data, Table S1).

Using the results from FTIR spectroscopy and genomic predictions of 
each dough quality, 12 wheat samples from sample set C consisting of 
wheat lines with low and high predicted dough making qualities were 
selected to be sent for further dough rheology testing. Of the 12 selected 
samples, only 11 were tested due to weevil damage to one sample. The 
predictions were compared to the results of the dough rheology tests and 
regression coefficients were calculated between the predicted and 
measured values (Table 3).

The results of the comparison between the predicted and measured 
values of the 11 sample set C samples indicated that FTIR spectroscopy 
was superior at predicting parameters including protein content, 
extensibility, DDT, stability, and water absorption, whereas genomic 
predictive analysis was more accurate at predicting Rmax. The higher 

Fig. 3. Mean FTIR spectrum of the flour samples from sample sets A and B. Labelled bands (ṽ1- ṽ5) are identified as important for the predictive analysis of dough- 
making quality according to the cumulative loadings of the PLSR models. Sample set A is shown as a solid line, and sample set B is shown as a dotted line. A1 to A6 
are the selected spectrum regions for the PLSR models.
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accuracy for genomic analysis to predict Rmax may have been due to the 
fact that Rmax is dictated by the expression of specific glutenin proteins, 
which is determined by the allelic composition for six glutenin subunits 
(Kovács et al., 2013). Dough rheology measurements such as extensi-
bility and water absorption are generally dictated by overall protein 
content in wheat flour, which may be why FTIR spectroscopy is more 
suited to predict these qualities (Abdelaleem & Al-Azab, 2021; Blakeney 
et al., 2009).

The PLSR prediction accuracies of each of the dough quality pa-
rameters for sample set C still showed similar relative accuracies when 
compared to the results of the internal validation sets for sample set A +
B (Table 2), with the protein model having the strongest predictive ac-
curacy, followed by extensibility. The drop in overall predictive accu-
racy when compared to the internal validation results was to be 
expected, as the regression models were only constructed from two sets 
of data. For preliminary or exploratory analysis, these ‘lower’ R2 values 
may be acceptable, as the primary goal at this stage is to identify broad 
trends and make initial assessments rather than achieve precise pre-
dictions. This level of accuracy may be sufficient to measure early-stage 
wheat lines, allowing researchers to determine which lines fall into the 
bottom 30–50 % in terms of quality and subsequently eliminate them 
from further consideration. Nonetheless, the results still indicated that 
FTIR spectroscopy was more accurate than genomic analysis for this 
prediction. Over time, more sample sets will become available to in-
crease the robustness of the PLSR models, which will improve the pre-
diction models.

Although these results indicate that FTIR spectroscopy is superior to 
genomic analysis for predicting dough making quality, it should be 
noted that the dough making quality predictions came from the direct 
FTIR spectroscopy measurements of flour samples. On the other hand, 
genomic selection is a prediction based on the genotype of the wheat line 
using many datasets to calibrate each marker locus value, rather than a 
prediction formed from a direct assessment/measurement of wheat flour 
itself. In doing a direct comparison of predicted and measured values of 
the dough making quality parameters, FTIR spectroscopy was expected 
to outperform genomic predictive analysis. For accurate characterisa-
tion of the line’s actual genetic performance, genomic selection should 
be more accurate for that line’s long-term value.

3.3. Model limitations and future improvements

Despite the promising results of the FTIR prediction models, the 
accuracy of the predictions for dough stability, Rmax and EXT-WP sug-
gested that the FTIR data used to build the models in this study may not 
have fully captured the complexity of these traits. The relatively poor 
performance of the EXT-WP model suggested that there is a close link 
between extensibility and total protein content. This makes it difficult 
for PLSR to identify other variables within the FTIR data that may be 
associated with extensibility. After removing the influence of protein 
content on extensibility, by regressing extensibility with protein con-
tent, the remaining variability in extensibility likely reflected mea-
surement noise, experimental errors, or secondary factors such as starch 
structure or lipid composition, which may influence extensibility but to 

a much smaller extent than protein content. Because extensibility is 
largely impacted by gluten protein composition in wheat flour, FTIR 
spectra may not adequately capture differences in starch or lipid struc-
tures that could have a small effect on extensibility.

To overcome these issues, future research should focus on con-
structing and enhancing prediction models with more diverse wheat 
lines that span different genetic backgrounds and environmental con-
ditions. Combining FTIR spectroscopy with other techniques, such as 
NIR and Raman spectroscopy, could also enhance model performance 
and provide a more comprehensive analysis of dough making quality for 
wheat breeders by capturing a broader range of spectral features. Such 
models, may also capture secondary factors related to extensibility, 
which may help wheat breeders select lines with desired extensibility 
traits without selecting for total protein content.

Another limitation to consider with the prediction models in this 
study is that, even though the FTIR models demonstrated strong pre-
dictive power for dough making quality, their performance could vary 
across different wheat varieties, growing conditions and environmental 
stresses. Factors such as soil quality and climate could influence the 
chemical composition of the wheat grain/flour and, consequently, its 
dough-making properties. To validate the robustness of FTIR pre-
dictions, future studies should incorporate trials and samples that ac-
count for these environmental variables. Additionally, the inclusion of a 
broader range of wheat genotypes, including those grown under stressed 
conditions, would be valuable in assessing the adaptability FTIR spec-
troscopy for predicting dough making quality.

3.4. Future implications

Our results suggest that FTIR spectroscopy can add value to wheat 
breeding programs combined with genomic analysis to produce a more 
comprehensive analysis of the dough qualities of novel wheat lines to 
make more informed decisions in the early stages of the wheat breeding 
process. FTIR spectroscopy may be implemented in wheat breeding 
programs either by using dough making quality predictions to check the 
suitability of grain samples from a site to both cull wheat lines with poor 
dough-making quality and select wheat lines with acceptable dough- 
making quality for further dough rheology analysis, or by producing 
covariate values that can be used to improve the accuracy of the data 
collected from dough rheology testing. Both approaches would ulti-
mately improve the accuracy of genomic selection by reducing error in 
the datasets used in further calibrations of the genomic models, which 
would in turn help wheat breeders develop wheat lines that can produce 
higher quality end-products for consumers.

FTIR spectroscopy has been utilised to analyse various aspects of 
wheat and flour quality. For instance, FTIR has been used to analyse 
dough rheology in wheat dough samples (Fanari et al., 2022), for flour 
quality control by building models to predict protein, fat, ash content, 
moisture, falling number, and fatty acids (Sujka et al., 2017), and for 
analysing flour macromolecule composition (Golea, Codina, & Oroian, 
2023). However, no prior work has investigated the use of FTIR spec-
troscopy in a wheat breeding context to predict dough-making quality 
traits commonly measured in wheat breeding dough rheology labora-
tories. The results from this study provide a foundation for advancing 
the implementation of FTIR spectroscopy in the early stages of wheat 
breeding programs, offering an efficient method for evaluating 
dough-making quality parameters and improving the selection process 
for high-performing wheat lines.

Looking forward, the combination of FTIR spectroscopy with other 
high-throughput techniques, such as Raman spectroscopy, may also 
offer a promising avenue for enhancing predictive models for dough- 
making quality in the early stages of the wheat breeding process. 
Raman spectroscopy provides complementary insights into molecular 
structure and chemical bonding. Integrating these two spectroscopic 
techniques alongside early-stage genomic analysis could offer a more 
comprehensive understanding of wheat dough properties, allowing 

Table 3 
Correlation (R2) between the predicted and measured dough qualities for the 
stage 2 tested grain samples (sample set C).

Dough Quality 
Parameter

FTIR 
spectroscopy

FTIR 1st 
Derivative

FTIR 2nd 
Derivative

Genomic 
prediction

Protein 0.400 0.453 0.469 0.037
Extensibility 0.355 0.343 0.379 0.056
Water 

Absorption
0.151 0.061 0.089 0.005

DDT 0.497 0.034 0.066 0.122
Stability 0.107 0.153 0.073 0.119
Rmax 0.065 0.239 0.050 0.754
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breeders to better capture the molecular dynamics that determine dough 
quality.

4. Conclusion

FTIR spectroscopy combined with PLSR is capable of predicting 
dough making qualities including protein content, extensibility, DDT, 
and water absorption with an accuracy allowing for applications in 
screening and quality control, and predict Rmax and dough stability in 
preliminary screenings. The accuracy of the PLSR models suggests that 
FTIR spectroscopy is superior to genomic analysis for predicting dough 
making quality of novel wheat lines for each studied dough quality 
parameter, other than Rmax. These findings suggest that FTIR spectros-
copy has the potential to be used in combination with current predictive 
analysis techniques, such as genomic analysis, to provide more informed 
decisions early in the wheat breeding process on the viability for wheat 
lines to be selected for further dough rheology analysis, as well as be 
used alongside dough rheology measurements to improve the accuracy 
of dough quality testing.
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