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Abstract
The Sasanian Empire (224–651 CE) has been given relatively little attention in research on climate-society interactions when 
compared to the neighboring Byzantine Empire, despite evidence of changing conditions and an agricultural economy that 
is theoretically vulnerable to droughts due to low annual precipitation. We review the available historical, archaeological, 
paleo-environmental, and paleo-climatic evidence to assess whether climatic conditions factored into periods of Sasanian 
growth and decline. We find evidence for drier conditions across Sasanian territories at the turn of the sixth century, a pat-
tern that extends to the Aegean, Anatolia, and Central Asia. These same conditions contributed to a significant decline for 
the nearby Kingdom of Himyar but occurred alongside a period of expansion and intensification for the Sasanian Empire. 
We suggest that a combination of careful management of water infrastructure, including qanats, which can conserve water 
resources during dry periods, and land-use strategies that are both diverse and flexible, may have mitigated the worst impacts 
of this dry period. However, we note several weaknesses in the available data that still hinder confident interpretations of the 
potential impacts of climate change in the Sasanian Empire. Notably, there are gaps in the coverage of paleo-hydrological 
records and a complete lack of terrestrial paleo-temperature records in the region, as well as low resolution and high chrono-
logical uncertainties in the archaeological and paleo-environmental evidence.

Keywords  Paleoclimate · Late antiquity · Resilience · Climate-society interactions · Water infrastructure · Archaeology · 
Sasanian empire

Introduction

In the past decade, scholarship on the societal impacts 
of climate change in Late Antiquity (third-seventh centu-
ries CE) has been growing, particularly in SW Asia (e.g., 
McCormick et al., 2012; Haldon et al., 2014; Fleitmann 

et al., 2022). Large-scale climate changes, such as the 
Dark Ages Cold Period (DACP: c. 450–800 CE) and Late 
Antique Little Ice Age (LALIA: c. 536–660 CE), have 
been argued to influence agricultural productivity, with 
consequent impacts on the economy, migrations, conflict, 
and the end of empires (e.g., Büntgen et al., 2016 and 
above references). Matloubkari and Islam (2022) have rea-
soned that the Sasanian Empire, which dominated Persia 
(Fig. 1) in a period roughly coincident with Late Antiq-
uity (224–651 CE), was severely influenced by climatic 
conditions. Based on prior research, however, we reached 
a different conclusion. We argue that this topic requires a 
full assessment for several reasons. First, despite a total 
of nine paleoclimate records detailing conditions for the 
Sasanian Empire, previous research has been limited to 
temporal correlations and/or environmentally determinis-
tic comments about “collapse” (e.g., Sharifi et al., 2015; 
Peregrine, 2020; Hoyer et al., 2023). Simplistic compari-
sons have long been comprehensively critiqued, with the 
establishment of causal links and examinations of societal 
resilience now considered crucial for successful studies 
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of human-climate interactions (Coombes & Barber, 2005; 
Haldon & Rosen, 2018; Moreland, 2018; Degroot et al., 
2021). We use the definition of climate resilience from 
ecology adopted by the IPCC that it is the ability of a 
system to retain or rapidly restore its essential functions 
and persist during periods of climate change (IPCC, 2012). 
Second, significant climate shifts have been identified in 
paleoclimate proxies in SW Asia and surrounding regions, 
which contributed to societal change in the contempora-
neous Byzantine Empire (Haldon et al., 2014; Izdebski 
et  al., 2016; Jacobson et  al., 2022) and the Kingdom 
of Himyar (Fleitmann et al., 2022). Likely, the Sasan-
ian Empire would also have experienced these events. 
Third, climate change in this region has been argued to 
have caused societal change in other historical periods 
(Altaweel et al., 2019; Sinha et al., 2019) and recent geo-
political instability (Gleick, 2014; Kelley et al., 2015; 
Flohr et al., 2017). Finally, agriculture was the key compo-
nent of the economy (Seyf, 2006) and the empire contains 
some of the driest and hottest places on earth (Mildrex-
ler et al., 2006; Djamali et al., 2011), including regions 
with annual precipitation close to the minimum threshold 

for rain-fed agriculture (250 mm/yr−1 according to Hole, 
2007) (Fig. 2). Even small hydro-climatic fluctuations thus 
had the potential to cause significant impacts.

We present an interdisciplinary investigation into cli-
matic, agricultural, and societal change during the Sasanian 
Empire and an assessment of the quality of available his-
torical, archaeological, paleoenvironmental, and paleocli-
matic evidence. Specifically, we present a history of climate 
changes and consider their relevance for periods of Sasanian 
growth and decline.

Materials and Methods

Paleoclimate Records

Paleoclimate proxy records provide indirect evidence for 
climatic conditions in the past, usually relating to precipita-
tion and/or temperature. Nine available continental paleo-
hydrological archives in Sasanian territory provide evidence 
of conditions during the Sasanian period (Table 1). Here, 
we focus on hydrological conditions due to the regional 

Fig. 1   Map showing the Sasanian Empire, with paleoclimate archives and locations mentioned in the text
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importance of effective moisture in determining potential 
agricultural productivity and the paucity of paleo-temper-
ature archives. The hydrological and erosive conditions in 
arid environments lead to scarce and unevenly distributed 
archives, mainly due to their requirement for adequate effec-
tive moisture to form (Burstyn et al., 2019). Eight of the 
nine available records are thus located in the western regions 
around the Fertile Crescent (Fig. 1), and all records are 
found at high elevations (> 650 m asl). These comprise four 
speleothem records and five sediment sequences: four from 

lakes and one from a peat deposit. Both speleothems – cave 
deposits such as stalagmites – and sediments record past 
climatic conditions during deposition in their geochemistry 
and physical properties (Jones et al., 2019). These records 
are grouped according to the frequency of their data points, 
with four deemed high-resolution (Gejkar, Hoti, Kuna Ba, 
Neor: 2.2–3 years between samples) while the remainder are 
low-resolution (Jiroft, Katalekhor, Mirabad, Van, Zeribar: 
67–333 years between samples). We utilize the high-reso-
lution records to assess short-term fluctuations in climatic 

Fig. 2   Modern precipitation data. The map shows CRU TS4.04 
(1901–2021) averaged monthly precipitation data (University of East 
Anglia Climatic Research Unit et al., 2022). Colored circles represent 

weather stations, labelled with their average annual precipitation (in 
mm) and matching with their seasonality of precipitation graphs (as 
percentages, right) (data from Peterson & Vose, 1997).

Table 1   Paleo-hydrological 
records in Sasanian Persia

1 Interpretation comes from the original publication of each record
2 Years between samples averaged for the first millennium CE. High-resolution archives in bold

Archive Type Proxy Interpretation1 Resolution2 Ref(s)

Gejkar Cave δ18O Effective Moisture 2.17 (Flohr et al., 2017)
Hoti Cave δ18O Precipitation Amount 2.56 (Fleitmann et al., 2022)
Jiroft Peat Ti/Al Dust Influx/Aridity 66.67 (Vaezi et al., 2022)
Katalekhor Cave δ18O Precipitation Amount 66.67 (Andrews et al., 2020)
Kuna Ba Cave δ18O Precipitation Amount 2.98 (Sinha et al., 2019)
Mirabad Lake δ18O Precipitation Amount/Seasonality 333.33 (Stevens et al., 2006)
Neor Lake Ti Dust Influx/Aridity 2.99 (Sharifi et al., 2015)
Van Lake δ18O Humidity 125 (Wick et al., 2003; Barlas 

Şimşek & Çağatay, 
2018)

Zeribar Lake δ18O Precipitation Amount/Seasonality 100 (Stevens et al., 2001)
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conditions and all records to assess long-term trends and 
differences between centuries. It is important to note that all 
records have age uncertainties of ± multiple decades, which 
are especially challenging when assessing short-term fluc-
tuations. While all utilized proxy records are paleo-hydro-
logical (i.e., a large portion of their variability is determined 
by regional/local rainfall), each has a slightly different inter-
pretation due to effects during formation (Table 1). Most 
records here are produced from δ18O: ratios between heavier 
18O and the lighter 16O oxygen isotopes. A significant influ-
ence on this ratio in sediment sequences and speleothems 
is the “amount effect”, a negative correlation between the 
amount and δ18O of precipitation (Dansgaard, 1964). The 
ratios are then further modulated by the amount of water 
entering the lake or cave system, meaning δ18O ratios can 
more specifically be interpreted as lake water balance (input 
vs. output) and cave drip rates. This means that for some 
lakes, evaporation is a more significant influence on δ18O 
ratios than the “amount effect.” It is important to note that 
all δ18O records in this region have a winter-spring seasonal 
bias due to precipitation seasonality. The two other records 
use Titanium (Ti) measurements as a proxy for dust influx 
and aridity. Greater amounts of Ti signify an increase in 
Aeolian (wind-blown) dust input to the region, which will 
occur during drier conditions (Sharifi et al., 2015; Vaezi 
et al., 2022).

From previously published paleo-hydrological proxy 
data, we calculated z-scores, which are standardized units 

that enable simpler comparison of variables on different 
scales, as follows:

We calculated centurial averages for each record and 
decadal averages for the four high-resolution archives to 
simplify statistical comparison. In the records we discuss 
here, positive (negative) z-scores represent conditions 
drier (wetter) than mean conditions. We also calculated a 
mean z-score for each resolution, which broadly character-
izes climatic conditions across Sasanian Persia. However, 
as climatic conditions can be heterogeneous on a regional 
level (e.g., Jacobson et al., 2021), this calculated variable 
may obfuscate paleo-hydrological change on smaller spatial 
scales and should be used cautiously.

Evidence for Agricultural and Human 
Impacts

To investigate past vegetation and agriculture, we use 
palynological (pollen) data and information extracted from 
lake or peat sediments in the Sasanian Empire (Fig. 3). To 
synthesize the data from different sites, we extracted the 
percentages of cereal-type and walnut pollen (representa-
tive of the intensity of agriculture and arboriculture, respec-
tively) from the four records with > two samples during the 

Z =

value −mean

standard deviation

Fig. 3   Locations of and data from pollen cores (left) and archaeo-
logical surveys (right). It is important to consider that the pollen data 
has significant dating uncertainties that are not visualized here. Key 
regions highlighted (1) the Mughan Steppe, (2) Lower Mesopotamia, 

and (3) the Persian Gulf. Archaeological survey results are presented 
as z-scores. Blue highlighted sections represent the Sasanian period: 
224–651 CE. References for datasets can be found above
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Sasanian Period and examined the changes over time during 
the first Millennium. These records are from Lakes Almalou 
(Djamali, de Beaulieu, Andrieu-Ponel et al., 2009), Bouara 
(Gremmen & Bottema, 1991), Kongor (Shumilovskikh et al., 
2016), and Maharlou (Djamali, de Beaulieu, Miller et al., 
2009; Saeidi Ghavi Andam et al., 2020). We discuss records 
with fewer samples or without publicly available data but do 
not plot them. These are from Gomishan (Leroy et al., 2013), 
Jiroft (Vaezi et al., 2022), Kalan (Ramezani et al., 2021), 
Neor (Ponel et al., 2013), Parishan (Jones et al., 2015; Dja-
mali et al., 2016), Tuska Tchal (unpublished, but discussed 
in Shumilovskikh et al., 2017), Urmia (Talebi et al., 2016), 
and Van (Van Zeist & Woldring, 1978).

To examine past societal changes, we collated settle-
ment counts and other data from previous archaeological 
projects in the territory of the Sasanian Empire (Fig. 3): 
Sirwan/Alwand (Casana & Glatz, 2017), the Diyala Plain 
(Adams, 1965), Deh Luran (Neely, 2016), Kur River basin 
(Hartnell, 2014), Bushehr (Carter et al., 2006) and East-
ern Arabia (Kennet, 2007). We also extracted data from the 
Seshat Global History Databank (https://​sesha​tdata​bank.​
info/), a systematic synthesis of nine multi-variate charac-
teristics for numerous polities based on archaeological and 
historical evidence. The Khuzistan/Susiana region is one 
of the databank’s case studies, with nine variables assessed 
for each century: polity population, polity territory, capital 
population (i.e., Ctesiphon for the Sasanian Empire), hierar-
chical levels, government complexity, infrastructure, infor-
mation systems (i.e., record keeping), texts (i.e., publishing 
of literature), and sophistication of currency (Turchin et al., 
2015). Turchin et al. (2017) previously conducted Principal 
Component Analysis (PCA) on this dataset and extracted a 
variable (PC1) that reflects societal “complexity.” Though 
historical quantification in such projects suffers from inher-
ent subjectivity and value judgments and will require updat-
ing as future research is conducted, the record is helpful in 
contextualizing and summarizing current understanding of 
broad societal change (Turchin et al., 2012; Turchin, 2018; 
Slingerland et al., 2020).

Results and Discussion

 Climate Change

The paleo-hydrological proxy records reveal significant 
spatial and temporal variability during the first Millennium 
CE (Fig. 4). Prior to the Sasanian Period, evidence sug-
gests a wetter first century and drier second century in all 
regions but the north. This pattern is most exaggerated in 
the Gejkar δ18O record, which suggests wet conditions peak-
ing at 30–110 CE and dry conditions at 140–230 CE (Flohr 
et al., 2017). However, it is also exemplified at Katalekhor, 

Kuna Ba, Jiroft, Hoti, and, as a result, in the centurial aver-
age z-score (Fig. 4). A short-lived amelioration of climate 
is then evidenced in the Kuna Ba and Gejkar records, before 
a return to arid conditions preceding the Sasanian takeover 
from the Parthians (200–220 CE). For the remainder of the 
third and the fourth century, effective moisture does not fluc-
tuate rapidly and is relatively stable, with a slight upward 
trend at Gejkar and Kuna Ba and the inverse at Neor and 
Hoti (Fig. 4b). The centurial averages suggest an overall 
slightly wet third and fourth centuries, despite drier condi-
tions at Neor and Gejkar (Fig. 4a). A rapid shift to much 
drier conditions from ~ 480 CE is arguably the most sig-
nificant change observed in these records during the Sasan-
ian Period. The Van, Neor, Katalekhor, and Hoti records 
suggest a period of significantly reduced effective moisture 
from ~ 480 to 540 CE (see full datasets in Supplementary 
Fig. S1). In the Neor and Hoti decadal averages, the 510s 
and 520s have the driest conditions, respectively. However, 
the Zeribar and Kuna Ba records suggest less pronounced 
drying that occurred ~ 540 CE. The centurial averages show 
a generally dry fifth and sixth century, despite this shift only 
coming at the end of the fifth century and not appearing 
in all records. There is further disagreement between the 
records in the sixth century, with the century average sug-
gesting slightly dry conditions, but Katalekhor and Jiroft 
suggest much wetter conditions than in the previous century. 
The sixth century thus has the largest range of z-scores, both 
averaged across the whole period and in the 520s due to the 
delayed drying at Kuna Ba.

It is striking that two independently-dated high-resolution 
paleo-hydrological records, as well as several of the low-res-
olution records, suggest a dry phase that precedes the start 
of the “Late Antique Little Ice Age“ (LALIA) at 536 CE, 
a cool period in the northern hemisphere caused by aerosol 
ejected in three volcanic eruptions (Sigl et al., 2015; Bünt-
gen et al., 2016). Drier conditions late in the fifth century CE 
are also indicated by pollen evidence from Lakes Gomishan, 
Maharlou and Parishan (Djamali, de Beaulieu, Miller et al., 
2009; Leroy et al., 2013; Djamali et al., 2016; Saeidi Ghavi 
Andam et al., 2020; Matloubkari & Islam, 2022). While it is 
possible that the drying observed prior to 536 CE is due to 
dating inaccuracies and the reduction in effective moisture in 
all records is linked to the LALIA, this is highly unlikely, as 
it would require a similar and systematic error across numer-
ous records with independent chronologies dated by differ-
ent techniques (radiocarbon and uranium-series dating). 
Additionally, historical evidence supports earlier drying, 
with a peak in the number of references to droughts in SW 
Asia from 500–540 CE (McCormick et al., 2012; Fleitmann 
et al., 2022). Specifically, in Sasanian territories, there were 
events both before (e.g., famine in 527–529 CE) and during 
the LALIA (e.g., drought in 536 CE that ruined pasturage 
and forced a reported 15,000 Arabs to cross into Byzantine 

https://seshatdatabank.info/
https://seshatdatabank.info/
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territory (Telelis, 2008; McCormick et al., 2012). Further-
more, high-resolution paleo-hydrological records in sur-
rounding regions indicate a reduction in effective moisture 
decades prior to 536 CE. This extends to the Aegean (Skala 
Marion, Trichonida, Mavri Trypa (Finné et al., 2017; Pso-
miadis et al., 2018; Seguin et al., 2020)), Anatolia (Sofular, 
Kocain (Fleitmann et al., 2009; Jacobson et al., 2021)), the 
Levant (Jeita, Kfar Giladi (Cheng et al., 2015; Morin et al., 

2019)), and Central Asia (Uluu-Too (Wolff et al., 2017)). 
Summer drying before 536 CE is also observed in central-
east Europe and blamed for Hunnic raiding (Büntgen et al., 
2021; Hakenbeck & Büntgen, 2022). However, it is worth 
noting that the only high-resolution record in Lower Meso-
potamia covering this period (Kuna Ba) does not indicate 
pre-LALIA drying (Sinha et al., 2019).

Fig. 4   Paleo-hydrological data from the Sasanian Empire. (a) Centu-
rial and (b) decadal z-scores for each record, aligned from N-S. Aver-
age z-scores of all records are displayed at the top of both graphs; 
the decadal average was calculated using only the high-resolution 

records. Considering that these datasets have varied age uncertainties 
that are not visualized here is important. Full datasets are visualized 
in Supplementary Fig.  S1. References for datasets can be found in 
Table 1.
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After a brief wet phase around ~ 560 CE, another drier 
period is observed in the high-resolution records that 
ends ~ 620 CE at Neor and Hoti, and 670 CE at Kuna Ba. 
The seventh century overall experienced amelioration of 
conditions, being the wettest in terms of centurial average 
and during the 680s in the decadal average (Fig. 4). After the 
end of the Sasanian Empire, another period of low effective 
moisture is observed in many records between ~ 860 and 920 
CE; at Kuna Ba, this extends to ~ 960 CE. This arid phase is 
especially pronounced and causes the ninth-century average 
z-score and 890–920 CE decadal averages to be the driest of 
the entire first millennium CE (Fig. 4). Sea sediment core 
OS73 from the Gulf of Oman also evidences the onset of 
drier conditions at this time, which may relate to the start of 
the Medieval Climate Anomaly (MCA) (Miller et al., 2016).

We compared the decadal z-scores with records of tem-
perature and climate-forcing variables (volcanic eruptions 
and changes in solar irradiation) (Fig. 5). Overall, due to 
a lack of proximate records and the complexity of climate 
dynamics, causes for paleo-hydrological change in SW 
Asia are poorly understood. Tree-ring studies are prin-
cipally used for high-resolution temperature reconstruc-
tions. However, due in part to the region’s aridity, these 
do not extend into the first millennium CE in SW Asia 
(Luterbacher et al., 2012). Within the region, there is one 
sea surface temperature (SST) reconstruction from marine 
core T2S3 in the Persian Gulf (Safarkhani et al., 2021) and 
another nearby from core M2 in the Aegean Sea (Gogou 
et al., 2016) (Fig. 5c, d), both low-resolution. Two other 
high-resolution temperature reconstructions are included 
for comparison; however, none of the 257 archives uti-
lized by the PAGES 2k Consortium “Global” temperature 
anomaly dataset are from SW Asia (PAGES 2k Consor-
tium et al., 2019), and the European Alps summer tem-
perature dataset (Büntgen et al., 2016) is > 1,500 km out-
side the region. There is broad disagreement between the 
low-resolution temperature reconstructions from SW Asia 
and the high-resolution (but external) reconstructions. It is 
unclear whether the cause of these differences is actual cli-
matic variability, chronological uncertainties in the marine 
sediment cores, the seasonal bias of tree-ring-based tem-
perature reconstructions, or differences in the response 
times of land and sea temperatures. Three records of 
total solar irradiance (TSI) calculated from Greenland ice 
cores (Steinhilber et al., 2009; Vieira et al., 2011; Stein-
hilber et al., 2012) and a record of global volcanic forc-
ing (GVF) from known eruption events (Sigl et al., 2015) 
are included. We observe no simple linear relationship 
between these records and the decadal z-scores. As stated, 
the dry conditions from ~ 480 CE pre-date the LALIA 
cluster of volcanic eruptions. They may correspond to 
warmer conditions, as evidenced in the high-resolution 
temperature reconstructions and one of the TSI records, 

but there is no evidence for these increased temperatures 
nearby. Furthermore, the wetter phase after the Sasanian 
Period (680–720 CE) is roughly synchronous to a period 
of low TSI, but so is the arid phase dated ~ 860–920 CE. 
Forcing mechanisms and temperature changes impact 

Fig. 5   Comparison of decadal z-scores with records of temperature 
and climate-forcing mechanisms. (a) The 15-year average of global 
temperature anomaly record (PAGES 2k Consortium et al., 2019). (b) 
15-year average of European Alps summer (June-August) temperature 
anomaly record (Büntgen et  al., 2016). (c) Aegean SST reconstruc-
tion from sediment core M2 (Gogou et  al., 2016). (d) Persian Gulf 
SST reconstruction from sediment core T2S3 (Safarkhani et  al., 
2021). (e) Box plot of decadal paleo-hydrological z-scores (from 
Fig. 4b), with mean values (black line). (f) Reconstructions of Total 
Solar Irradiance (TSI), displayed as deviations from the 1986 value of 
1365.57 w/m-2: green (Steinhilber et al., 2009), brown (Vieira et al., 
2011) and blue (Steinhilber et al., 2012). (g) Global Volcanic Forcing 
(GVF) from known volcanic eruptions (Sigl et al., 2015). It is impor-
tant to consider that these datasets have varied age uncertainties that 
are not visualized here.
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paleo-hydrological fluctuations variably, both temporally 
and spatially, contributing to the region’s high climatic 
spatial heterogeneity (see Jacobson et al., 2021).

Climate and growth?

The Sasanian Period is the peak of all settlement surveys 
used in this study (Fig. 3) and the Khuzistan Plain surveys 
utilized by the Seshat databank (Adams, 1962; Wenke, 1987; 
Turchin et al., 2015). Archaeological and historical evidence 
suggest this was also the peak of irrigation construction, 
with an unprecedented expansion of river-fed canal systems, 
dams, weirs, and qanats (Gyselen, 2002; Campopiano, 2017; 
Manuel et al., 2018; Altaweel et al., 2019). The available 
pollen evidence suggests that the Sasanian Period was a 
peak of tree cultivation and cereal production in the region 
(Fig. 3), interpreted as resulting from political investment 
(Shumilovskikh et al., 2017). The empire also contributed to 
the development of colonies, such as in the Mughan Steppe, 
where military defenses with associated canal systems and 
settlements were constructed along the Araxes River (Ali-
zadeh & Ur, 2007; Alizadeh, 2011; Ur & Alizadeh, 2013; 
Alizadeh et al., 2021).

The chronologies of these datasets are challenging (see 
below). However, current evidence indicates that Sasan-
ian expansion and economic growth occurred during two 
main periods: first, the reign of Shapur II (309–379 CE), 
and second, the period from the restoration of Kavad I to 
the reign of Khosrau II (498–622 CE). Khosrau II’s reign 
ended in 628 CE, but from 622 CE, military losses and eco-
nomic policy changes began to weaken the empire (Dary-
aee, 2022) (see below). This pattern is also reflected in the 
Seshat databank, with the largest increase in PC1 (“societal 
complexity”) observed in the fourth century CE, with two 
further large increases in the sixth and seventh centuries 
CE (Fig. 3). Before we can investigate the role of climate 
in these developments, we first explain what changes are 
defined as “growth” in each period:

The first growth phase aligns with the rule of Shapur II 
(309–379 CE), the longest-reigning monarch in Iranian his-
tory, who led successful campaigns in Arabia (Bosworth, 
1999; Shayegan, 2004), against the Romans in Mesopo-
tamia and the Mughan Steppe (Sicker, 2000; Daryaee & 
Rezakhani, 2016), and eastwards to Central Asia and India 
(Rezakhani, 2017). People from conquered territories were 
forcibly relocated to work in mines and on construction pro-
jects, many of which were completed in the fourth century 
CE (Morony, 2004; Shayegan, 2004). Large-scale military 
defenses (e.g., War-i Tāzigān, and Qal’eh Kharabeh) and 
cities (e.g., Bishapur, Nisibis, Susa) were constructed and 
rebuilt in new territories and core regions (Daryaee, 2009; 
Sauer et al., 2013, 2017). Cereal pollen percentages peaked 

at this time at Van, Almalou, and Bouara, indicating the 
intensification of agriculture (Van Zeist & Woldring, 1978; 
Gremmen & Bottema, 1991; Djamali, de Beaulieu, Andrieu-
Ponel et al., 2009). Increased centralization and stratification 
of the Sasanian state and the completion of the Avesta, the 
sacred texts of Zoroastrianism, further contributed to the rise 
in PC1 observed in the Seshat dataset (Turchin et al., 2015; 
Daryaee & Rezakhani, 2017).

The second growth phase (498–622 CE) is linked to the 
restructuring of the Sasanian Empire by Kavad I (498–531 
CE) and Khosrau I (531–579 CE) and expansion by Khosrau 
II (591–628 CE). The former designated Zoroastrian fire 
temples as economic and administrative institutions (Payne, 
2014; Daryaee & Rezakhani, 2017) that organized the con-
struction and maintenance of cities, irrigation infrastructure, 
and military defenses (Manuel et al., 2018; Maresca, 2019), 
e.g., forts at Fulayj and Ultan Qalası (Alizadeh, 2011; Al-
Jahwari et al., 2018). Taxes on irrigation usage funded mili-
tary campaigns and construction projects, (Gyselen, 1998; 
Khaneiki & Al-ghafri, 2022), a fixed agricultural tax that 
gave the Sasanian treasury a predictable income (Axwor-
thy, 2008; Schindel, 2013a; Canepa & Daryaee, 2018) and 
expansion of Sasanian trade networks, including blocking 
Byzantine trade (Seland, 2012; Fakhar & Hesari, 2013; 
Howard-Johnston, 2017; Payne, 2018). This is exemplified 
by the proliferation of fifth-seventh century CE Sasanian 
silver coins across the Eastern Mediterranean and SW Asia 
(Schindel, 2013b), and further afield, e.g., Central Asia (Li, 
2021), China (Li, 2006) and Britain (Abdy & Williams, 
2006), as well as the dissemination of Sasanian commodi-
ties as far as Japan (Priestman, 2016). The increased wealth, 
as well as social and military reforms, enabled successful 
military campaigns and expansion (Sicker, 2000; Cameron, 
2012). Continued conflict under Khosrau II led the Sasanian 
Empire to its greatest spatial extent between 619 and 628 
CE (Fig. 1), including Yemen, Mesopotamia, the Levant, 
and Egypt (Yule, 2007; Cameron, 2012; Bowersock, 2013; 
Daryaee & Rezakhani, 2017).

Disentangling the factors contributing to these two 
growth phases is challenging. However, the role of climate 
appears negligible. The first growth phase occurred during a 
relatively stable period of effective moisture, with a slightly 
wet fourth-century z-score (Fig. 4), and persistently colder 
conditions suggested by the global and Alpine temperature 
reconstructions (Büntgen et al., 2016; PAGES 2k Consor-
tium et al., 2019). It could be tempting to argue that the 
stable hydro-climate and colder conditions enabled the first 
growth phase through increased agricultural productivity, 
as reflected in the cereal maxima in many pollen records. 
However, the second growth phase occurs alongside the 
driest (and possibly coldest) conditions experienced by the 
Sasanian Empire. The same dry conditions around 490–550 
CE contributed to a significant decline in the Kingdom of 
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Himyar, with its capital in Zafar (Fleitmann et al., 2022; 
Haldon & Fleitmann, 2023). This brings into question the 
different situation in the Sasanian Empire that enabled it to 
continue unabated – or even thrive – under the same condi-
tions, at least in some regions. It is possible that some parts 
of the Sasanian Empire were less susceptible to the drought, 
for example, in the north where rainfall is higher (Fig. 2), 
or were not impacted, for example, in the Fertile Crescent 
where the Kuna Ba record does not indicate pre-LALIA dry-
ing (Sinha et al., 2019). However, this would be surprising 
given the strong evidence for this in the Aegean, Anatolia, 
Levant, and Central Asia, all areas also under the influence 
of westerlies, and does not account for the Sasanian territo-
ries that were undeniably impacted. This implies that some 
characteristics of the Sasanian Empire made it resilient to 
climate change. Two important properties of a resilient sys-
tem are (1) omnivory, a diversity of resources and resource-
obtainment strategies, and (2) flexibility, meaning a system 
can rapidly adjust if required (Wildavsky, 1988; Barnett, 
2001; Jacobson, 2022a, b). The available pollen and archaeo-
logical evidence, as well as the Babylonian Talmud, indicate 
varied agricultural strategies were adopted across Sasanian 
territories, with a wide range of crops, animal products, and 
shifting land-use patterns (Elman, 2004; Mashkour et al., 
2017; Shumilovskikh et al., 2017; Adamo & Al-ansari, 
2020; Panahipour, 2021). Perhaps more important for their 
resilience was the organized installation, repair, use, and 
maintenance of irrigation structures (Gyselen, 2002; Payne, 
2014; Manuel et al., 2018).

These investments ensured that large areas of previously 
non-arable land were now cultivable and increased agricul-
tural productivity across the Sasanian Empire. These devel-
opments, which may have been responses to already dry 
conditions, possibly buttressed against increasing aridity. 
An important distinction between the Sasanian Empire and 
the Kingdom of Himyar, which may have altered their rela-
tive resilience, is the water infrastructure primarily utilized. 
Qanats, which utilize gravity transport of water from upland 
regions to arid plains through underground tunnels, were 
abundant in the Sasanian Empire, especially in the Central 
Plateau (Beaumont, 1971; Semsar Yazdi & Semsar Yazdi, 
2020). They are less sensitive to hydroclimatic fluctuations, 
as they draw water from aquifers rather than rainfall, and, 
due to their subterranean nature, are resistant to evaporation. 
This allows a near-continuous flow that only varies slightly 
between wet and dry years, thus providing water buffer (a 
key resilient characteristic) for use during drier years (Wil-
davsky, 1988; Lightfoot, 1996; Manuel et al., 2018). While 
a system similar to qanats is utilized in the modern Ara-
bian Peninsula (there named ghuyūl), water infrastructure in 
the Kingdom of Himyar was almost entirely above ground, 
resulting in significantly more water loss through evapo-
ration (Manuel et al., 2018; Haldon & Fleitmann, 2023). 

Furthermore, while qanats require careful management, a 
relatively small workforce can perform this compared to the 
considerable numbers required to maintain and repair ter-
races and dams (Harrower & Nathan, 2018).

In summary, as agriculture was the primary component of 
the Sasanian economy and the Empire contained exception-
ally hot and dry regions, hydro-climatic fluctuations had the 
potential to cause significant damage. However, careful man-
agement of irrigation infrastructure, diverse agro-pastoral 
strategies and techniques, export of non-agricultural prod-
ucts, and import/movement of foodstuffs may have mitigated 
some negative impacts.

Climate and Decline?

From 622 CE, the Sasanian Empire experienced rapid 
economic decline, with an associated loss of stability and 
manpower, associated with a counter-offensive launched 
from Constantinople by the Byzantine Heraclius (Daryaee, 
2022). In response to Byzantine incursions, Khosrau II’s 
son, Shērōē/Kavad II (628 CE) seized power and executed 
his father and brothers (Payne, 2014; Daryaee & Rezakhani, 
2016). A few months later, he died in an outbreak of the 
plague (Shērōē’s Plague: 627/8 CE), and during the civil 
war that followed, 11 monarchs took the throne between 628 
and 632 CE (Daryaee & Rezakhani, 2016; Shahraki et al., 
2016) (see Fig. 6). This conflict culminated with Yazdegerd 
III (632–651 CE) inheriting the throne at eight years old; 
however, many regional kings and governors had proclaimed 
independence, and the empire had returned to a political sys-
tem akin to the decentralized Parthians (Pourshariati, 2008; 
Kia, 2016). This fragmentation emboldened attacks from 
the Göktürks in Central Asia and Khazars in the Caucasus, 
contemporaneous to invasions by the Rashidun Caliphate 
(Wiesehöfer, 2010). Yazdegerd III was eventually murdered 
in 651 CE in the city of Merv while attempting to flee the 
invading Rashidun Caliphate (Wiesehöfer, 2010), signaling 
the end of the Sasanian Empire.

The actual impact of these developments on communities 
within Sasanian territories has been contested (e.g., Soroush, 
2020). For example, the Pahlavi letters suggest that ordinary 
people near modern Tehran continue living as before in the 
seventh-ninth centuries (Weber, 2012). However, there is a 
reduction in settlement numbers in all archaeological sur-
veys (Fig. 3), and tax records indicate a significant reduction 
(~ 50%) in revenue in Lower Mesopotamia from the sixth to 
seventh centuries (Christensen, 1993; Daryaee, 2022). In 
the Persian Gulf, the reduction in site numbers at Bushehr 
(Carter et al., 2006) is mirrored in other nearby districts 
(Askari Chaveri & Azarnoush, 2004; Asadi, 2010, 2013). 
However, it is less extreme in other regions, such as the Kur 
River basin (Hartnell, 2014) (Fig. 3). Following the Muslim 
conquests, the abandonment of fortified sites in this region, 
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which acted as administrative centers for local agriculture, 
is suggested to have caused the reduction of settlement num-
bers (Asadi et al., 2013). Abandonment of fortifications was 
widespread, for example, at Ultan Qalası in the Mughan 
Steppe (Alizadeh et al., 2021), as was a decline in irrigation 
infrastructure. Deterioration of infrastructure was previously 
interpreted as a cause of decline; however, it is now better 
understood that a failure to recover from damage is a symp-
tom of strife as a community’s ability to organize and mobi-
lize the required large workforce is undermined (Asadi et al., 
2013; Jacobson, 2022a, b). Another Late Antique example 
of this occurred in the Arabian Peninsula, with the abandon-
ment of the dam of Ma’rib following the dissolution of the 
Kingdom of Himyar (Harrower & Nathan, 2018; Fleitmann 
et al., 2022). In contrast, Mehrnoush Soroush convincingly 
argues that infrastructure was less influenced by the inva-
sions than is often presumed, with investment continuing 
in Lower Mesopotamia throughout the Sasanian Period and 
beyond (Soroush, 2014, 2020). She suggests that a gradual 
decline in the quality of irrigation infrastructure occurred 
much later, in the ninth-tenth centuries CE, associated with 
down-cutting of riverbeds that increased maintenance costs 
(Soroush, 2020).

As discussed above, the driest climatic conditions dur-
ing the Sasanian Period pre-date the Empire’s decline (from 
628 CE) and end (651 CE) by over a century. During the 
decline, many paleoclimate proxy records indicate that con-
ditions were getting wetter, with the seventh century CE 
having the wettest centurial z-score (Fig. 4). However, Kuna 
Ba, the only high-resolution archive covering this period 

in Lower Mesopotamia, does indicate slightly drier con-
ditions 620–680 CE (Sinha et al., 2019). From about 640 
CE, the closer SST records suggest cooling (Gogou et al., 
2016; Safarkhani et al., 2021), coincident with a reduction 
in total solar irradiance (Steinhilber et al., 2009; Vieira 
et al., 2011; Steinhilber et al., 2012) (Fig. 5). Overall, cur-
rent evidence suggests that climate was not a factor in the 
decline of the Sasanian Empire. As Daryaee (2022) recently 
explained, fighting wars on numerous fronts and internally, 
decline in agriculture and irrigation infrastructure, plague, 
and fragmentation of power to generals left the Sasanian 
state weakened and easily overrun when the Muslim armies 
attacked. For the Sasanian Empire, a coalescence of factors 
contributed to their decline, as has been observed in other 
regions in Late Antiquity (Korotayev et al., 1999; Fleitmann 
et al., 2022; Jacobson et al., 2022); however, in this instance, 
climate change does not appear to have been one of the deci-
sive factors.

Challenges

We have incorporated currently available archaeological, 
pollen, and paleoclimatic proxy evidence into the complex 
and detailed history of the Sasanian Empire. We now fur-
ther examine the challenges in linking climate change to the 
Sasanian Empire’s development and suggest future research 
directions. One of the key challenges in studying Iranian 
archaeology is the division of research between English, 
other European, and Persian-language literature; this is also 

Fig. 6   Timeline of the Sasanian 
Empire (dates from Daryaee 
& Rezakhani, 2016). Years 
with multiple monarchs/civil 
wars are highlighted by a black 
diamond
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a key weakness of this study. As such, Iranian researchers 
may have already rectified some of the challenges we outline 
below in research that we are unable to access.

Despite nine paleo-hydrological records of varying qual-
ity and other indicators of past climatic changes (pollen, 
historical records) in the region, there are still notable gaps 
in our knowledge of climatic and environmental conditions 
during the Sasanian Period. The most prominent is that only 
one low-resolution paleo-temperature record is present due 
to environmental conditions. Therefore, we do not know how 
temperature evolved in shorter timescales and other areas. 
This is especially limiting, as the Persian Gulf sediment core 
T2S3 record does not match with the high-resolution global 
and Alpine temperature reconstructions (Büntgen et al., 
2016; PAGES 2k Consortium et al., 2019; Safarkhani et al., 
2021). Furthermore, there is no simple relationship between 
temperature and paleo-hydrological conditions, as has been 
noted elsewhere (e.g., Jacobson et al., 2021), with dry and 
wet phases accompanied by both hot and cold conditions 
under different circumstances (Fig. 5). Additionally, there 
are spatial and temporal gaps in the coverage of paleo-hydro-
logical records. Most records are limited to the west due to 
their formation conditions, as they require adequate effective 
moisture to form, which is not present in the drier east. Two 
records, Jiroft (Vaezi et al., 2022) and Hoti (Fleitmann et al., 
2022), are east of 50°E – the former is low-resolution and 
the latter is more appropriate for conditions over the Ara-
bian Peninsula than Persia. Jiroft deviates from many of the 
other records (Fig. 4 and Supplementary Fig. S1), so find-
ing a high-resolution archive nearby and to the north where 
there is a complete absence of records between 30° – 40° N 
and 50° – 70° E, is high-priority. In Lower Mesopotamia, 
the Kuna Ba record (Sinha et al., 2019) suggests the region 
experienced different climatic changes (Fig. 4), but more 
archives are required to determine the spatial extent of these 
differences.

Issues of chronology further complicate assessing the role 
of climate changes in the history of the Sasanian Empire. 
Paleoclimate records each have unique resolutions and 
chronological uncertainties, which can make displaying line 
graphs of the data misleading as these do not visualize such 
uncertainties. This is a significant challenge, but we can be 
more confident of paleoclimate changes when supported by 
multiple independently-dated records. Above, we discuss 
how the drying prior to 536 CE is unlikely to result from 
uncertainties given the large number of supporting records, 
both internal and external to the Sasanian Empire. The 
archaeological evidence presents bigger chronological chal-
lenges, partially resulting from a bias toward researching the 
Achaemenid and Islamic periods in Iranian history (Genito, 
2016). Unfortunately, settlement surveys, which date identi-
fied settlements and associated irrigation infrastructure pri-
marily with ceramics, rarely provide chronologies that are 

more precise than just ‘Sasanian’ (Fig. 3). Other ceramics 
are designated to even broader chronologies that encompass 
the Parthian and/or the early Islamic periods (Mousavi & 
Daryaee, 2012; Neely, 2016). This is a common problem in 
archaeology and implies settlement occupation for an entire 
period, which may be accurate, but occupation could equally 
have been of short duration or discontinuous, restarting mul-
tiple times throughout the period (Plog, 1973; Dewar, 1991). 
Thus, sites that were not contemporaneous may appear as 
such (Schacht, 1984; Premo, 2014). Settlements could be 
better dated with tighter chronological ceramic typologies 
(e.g., Kennet, 2002), toponymal analysis (many cities were 
named after the kings that (re-)built them, e.g., Bishapur 
(Karimian, 2010), or assessment of coin finds (Mousavi & 
Daryaee, 2012). However, much of such work has not yet 
been completed. Additionally, a lack of widespread use of 
scientific dating methods in the archaeology of the Sasanian 
Empire hinders our ability to understand past climate-society 
interactions. This issue is common across the Antique and 
Medieval periods, for example, in studies of the Roman East-
ern Mediterranean. Troubles with precise chronology make 
assessing factors behind the growth and decline especially 
challenging. For example, the abandonment of the Mughan 
Steppe and the decline of irrigation in Lower Mesopota-
mia could have occurred before, during, or after the Islamic 
conquests (Soroush, 2014; Alizadeh et al., 2021). Though 
there are a few pollen records with numerous data points 
during the Sasanian Period (Fig. 3), most only contain one 
or two samples, which limits understanding. Furthermore, 
excluding Lake Van, which is dated by varve counts (Van 
Zeist & Woldring, 1978); the pollen records are dated by 
varying numbers of radiocarbon dates, which have large 
chronological uncertainties (often ± centuries). While the 
Sasanian Period appears to be the peak of arboriculture and 
cereal cultivation in most pollen records (Shumilovskikh 
et al., 2017), it is hard to say this for sure and particularly to 
identify more precisely when this was.

An additional challenge is understanding the influence 
of specific climate changes, how their impacts are lessened 
or intensified by the community/society being studied, and 
baseline environmental conditions. Assumptions are often 
made in studies of ancient climate-society interactions that 
do not appear valid for the Sasanian Empire. One exam-
ple is the theory that cool temperatures have more severe 
negative impacts than warming (McMichael, 2012; Bünt-
gen et al., 2016), with warmer and wetter conditions being 
advantageous to agricultural productivity (Harper, 2017). 
However, the second Sasanian growth period occurred dur-
ing the driest (possibly also colder) conditions and the sub-
sequent decline coincided with increasing moisture. It seems 
likely that climate was not a driver for these developments. 
However, it is also likely that the supposed impacts of spe-
cific changes would be different in the varied regions of the 
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Sasanian Empire, especially given the high temperatures 
and aridity of some regions. In such environments, cooler 
temperatures may be more advantageous as increased effec-
tive moisture, resulting from reduced evaporation, promotes 
plant growth (Gohari et al., 2013). Furthermore, perhaps due 
to the persistent aridity, the Sasanians (and their predeces-
sors) were already reliant on hydraulic infrastructure and 
diverse agro-pastoral strategies to overcome a deficiency of 
effective moisture (Seyf, 2006; Shumilovskikh et al., 2017; 
Soroush, 2020), which may have reduced the impacts of a 
multi-year drought. Similarly, northern regions that expe-
rience high precipitation (e.g., 1181 mm/yr at Lenkoran: 
see Fig. 2), may have been relatively insensitive to hydro-
climatic fluctuations.

In summary, there are still many gaps in our knowledge 
regarding the Sasanian Empire and past climate changes; 
these currently hinder our ability to make confident conclu-
sions about their interactions. A productive next step would 
be to study Sasanian climate-society interactions in a much 
smaller case-study region, selected based on the availability 
and quality of datasets. This approach has proved produc-
tive elsewhere, such as in Greece (Weiberg et al., 2021) and 
Turkey (Jacobson et al., 2022). Currently, Lower Mesopo-
tamia (or Khuzistan for a smaller case study) is perhaps best 
suited to this type of assessment, although it would benefit 
from an improved archaeological chronology and a closer 
pollen record.

Conclusion

We collated a wide range of archaeological, historical, pale-
oclimatic, and pollen data to assess whether climate change 
played a role in the growth and decline of the Sasanian 
Empire. Based on the currently available data, we suggest 
that climate change did not play a significant role in these 
developments, with the Empire expanding during two peri-
ods with very different conditions. The first (309–379 CE) 
period had stable effective moisture and cooler temperatures, 
tempting a climatic interpretation. However, the second 
(498–622 CE) was the driest phase in the Sasanian Empire’s 
history – the same dry phase that caused detrimental effects 
in other regions. We suggest that the prevalence of qanats, 
careful management of irrigation infrastructure, as well as 
diverse agro-pastoral strategies and techniques (which were 
possibly necessitated by the region’s predominantly hot/dry 
conditions) made the Sasanian Empire more resilient in the 
face of this long-lasting drought.

However, in the last section, we emphasize three key 
gaps in our knowledge that currently preclude confident 
conclusions. First, detailed evidence of how and on what 
spatial scales climatic conditions changed is still lacking. 
No high-quality paleo-temperature records are relevant for 

the Sasanian Empire, making understanding the influence 
of temperature on societal changes impossible. The Kuna 
Ba record from Lower Mesopotamia also shows different 
climatic changes to those in surrounding regions, so more 
research is required to ascertain the spatial extent of these 
differences. Second, the chronologies and resolutions of 
archaeological and pollen datasets need to be improved. 
Especially in settlement archaeology, data only suggest a 
peak during the Sasanian Period (and in some surveys, the 
Parthian-Sasanian or Sasanian-early Islamic periods). This 
tells us nothing about when the growth or decline of settle-
ments occurred and makes assessing the relevance of differ-
ent factors challenging. Finally, there is uncertainty about 
what influence should be expected from specific climate 
changes. The impact of climatic shifts on agriculture and 
society will differ depending on the baseline environmental 
conditions of the study region and the practices of the com-
munities living there. Overall, further research is required to 
confirm our conclusions or those of Matloubkari and Islam 
(2022).
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