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Abstract: While there is a vast body of literature on environmental sustainability, the disaggregated
impact of major non-renewable energy (NRE) consumption on the environmental sustainability of
the United States (U.S.) is understudied, particularly in terms of using a load capacity factor (LCF)
perspective. In this study, the above research gap is addressed using a dynamic autoregressive
distributed lag (DYNARDL) model to analyze the heterogeneous impact of NRE consumption on the
environmental sustainability of the U.S. from 1961 to 2022. Given the U.S.’s heavy reliance on energy
consumption from NRE sources, this analysis provides an in-depth examination of the long-term
effects of this energy consumption on the environment. Based on the analysis of the DYNARDL model,
it is found that an increase of one unit of coal, natural gas, and petroleum energy consumption reduces
environmental sustainability by 0.007, 0.006, and 0.008 units in the short-run and 0.006, 0.004, and
0.005 units in the long-run, respectively. However, one unit of nuclear energy consumption increases
environmental sustainability by 0.007 units in the long-run. The kernel-based regularized system
(KRLS) result reveals that coal and petroleum energy consumption have a significantly negative
causal link with environmental sustainability, while nuclear energy consumption demonstrates a
significant positive causal relationship. The research suggests the expansion of the use of nuclear
energy by gradually reducing the utilization of coal and petroleum-based forms of energy, then
natural gas, to improve environmental sustainability in the U.S., while considering the social and
economic implications of efforts aimed at shifting away from the use of fossil fuels.

Keywords: non-renewable energy; load capacity factor; CO2 emissions; dynamic ARDL; United States

1. Introduction

Global demand for energy resources has significantly grown in the wake of industrial-
ization since the middle of the 19th century [1]. Growing energy consumption has improved
economic development and gender as well as social equity [2], but has a substantial envi-
ronmental impact depending on the energy sources used. Thus, countries around the world
pledged in 2015 to keep global warming within 1.5 ◦C of pre-industrial levels [3], recogniz-
ing the urgent need to reduce greenhouse gas (GHG) emissions to safeguard our planet for
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future generations by transitioning to renewable energy (RE) sources. RE sources, charac-
terized by their clean and environmentally benign nature, offers a promising avenue for
mitigating the adverse impacts on the environment [4]. However, the United States (U.S.),
the second largest energy consumer and GHG emitter in the world [5,6], faces substantial
challenges in achieving this transition. The U.S. government aims to cut GHG emissions by
50% (to 2005 levels) by 2030 and achieve net-zero emissions by 2050 [7]. Despite a gradual
increase in renewable energy consumption, the country relies heavily on non-renewable
energy (NRE) resources to meet its energy demand [8]. In 2023, NRE sources—coal, natural
gas, petroleum, and nuclear energy (nuclear energy is a non-renewable resource because
while the energy itself produced by nuclear processes is renewable, the materials used,
i.e., uranium, in nuclear power plants are finite [9])—accounted for around 90% of total U.S.
energy consumption, whereas renewable energy accounted for only 9% [10]. This excessive
energy consumption of NREs significantly contributes to environmental degradation by
releasing GHGs, such as CO2, which are primary contributors to global warming and cli-
mate change [11]. Therefore, there is an apparent need for clean and modern RE sources for
environmental sustainability in the U.S. However, the transition from NRE consumption to
RE consumption is undoubtedly a prolonged process as new infrastructures and innovative
clean technologies need to be introduced to lessen the historical reliance on fossil fuels.
Most non-renewable fossil fuels, such as coal, natural gas, and petroleum oil, are harmful
to human health and the environment, but their contributions differ immensely from one
another [12,13]. Many studies have evaluated the effects of renewable and non-renewable
energy sources on environmental pollution, often using CO2 emissions as a key [14,15].

However, the comprehensive evaluation of a country’s long-term environmental sus-
tainability also requires addressing air, water, and land pollution. Therefore, recent research
has introduced the ecological footprint as a proxy for environmental degradation [16–18],
but the ecological footprint solely accounts for pollution resulting from human consump-
tion and absorption of its waste, and disregards the supply side, biocapacity [19]. Therefore,
the load capacity factor (LCF), which represents the ratio of biocapacity to the ecologi-
cal footprint, can be considered the best proxy for environmental sustainability [20,21].
The LCF indicates whether a country operates within its ecological means, with a ratio
value of less than one implying unsustainability [22]. The LCF of the U.S. has remained
consistently below 0.5 from 1970 to 2022, indicating poor performance in maintaining
environmental sustainability and that the current resource supply is inadequate to support
existing consumption as well as production levels [23]. As of 2024, the U.S. has a national
biocapacity shortfall of 110%, meaning that its ecological footprint is over twice its national
biocapacity [23]. The U.S. relies on high energy consumption for economic development
and has a diverse energy mix. Carbon is the major component of the ecological footprint,
so the U.S. needs to phase down carbon-intensive energy sources from the energy mix
to reduce the biocapacity deficit. In the context of the U.S., no significant studies have
determined the disaggregated effects of non-renewable energy source consumption on the
LCF. Hossain et al. [21] measured the impact of fossil fuels, nuclear, and renewables on the
LCF, but they did not disaggregate the fossil fuels and only used data from 1990 to 2018.
Therefore, this study aimed to determine the disaggregated impacts of NRE consumption
on environmental sustainability, proxied via the LCF, by using a dynamic autoregressive
distributed lag (DYNARDL) approach and provide necessary insights for devising targeted
regulations for gradually phasing out the most damaging NRE consumption.

2. Literature Review

Environmental sustainability has received significant attention in empirical research
over recent years. This literature review section synthesizes the latest findings on the
relationship between various sources of NRE consumption and environmental sustainabil-
ity. For instance, coal remains a major energy source for economic development in many
regions, despite being the largest contributor to CO2 emissions in the energy sector [24–26].
Alhassan et al. [27] analyzed coal consumption’s impact on environmental sustainabil-
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ity, using CO2 emissions as an indicator, and applied a generalized method of moments
(GMM) model for major coal-consuming developed and developing nations. Their findings
revealed that coal consumption is strongly linked to environmental degradation, with
developed countries experiencing slightly higher impacts compared to developing ones.
Similarly, Adebayo [28], utilizing the wavelet local multiple correlation technique, found
that, in China, increased coal consumption significantly worsened environmental quality
by raising CO2 emissions in both the short and long runs. On the other hand, the growing
reliance on natural gas, particularly for electricity generation, is a result of improvements in
gas extraction and global efforts to reduce GHG emissions from carbon-intensive sources,
including coal [13]. Etokakpan et al. [16] analyzed the relationship between per capita
natural gas consumption and CO2 emissions in China by using the autoregressive dis-
tributed lag (ARDL) model, showing a positive relationship between natural gas use and
CO2 emissions. Adebayo et al. [29] also applied ARDL and frequency domain causality
methods to examine the ecological impact of gas consumption, concluding that rising gas
use negatively affects environmental sustainability. Similarly, Alam and Paramati [30], us-
ing a vector error correction model (VECM), demonstrated that petroleum oil consumption
is a significant driver of CO2 emissions in 18 major oil-consuming developing countries.
Saboori et al. [31] echoed this finding in South Korea, noting a direct correlation between oil
consumption and CO2 emissions, while Zakari et al. [32] found that in African economies,
domestic oil consumption only negatively impacts the environment in the short run.

In contrast, nuclear energy is often considered a potential solution to environmental
degradation, and recent studies have investigated its environmental impact. Ullah and
Lin [33], using the DYNARDL method, found that nuclear power consumption in Pak-
istan improved environmental quality by enhancing the LCF. Apergis and Litinas [34]
observed a significant negative association between nuclear energy use and CO2 emissions
in 19 selected developed and developing countries. Baek and Pride [35] also established
that nuclear energy consumption significantly improves environmental quality by reducing
CO2 emissions in the six leading nuclear-power-generating countries. Nam et al. [36]
further confirmed that the increasing proportion of nuclear power usage in 18 key nuclear-
power-generating countries leads to long-term reductions in CO2 emissions. While most
studies indicate that nuclear energy has a positive impact on mitigating environmental
degradation, a few report contrary findings. For instance, Saidi and Omri [37] observed that
rising global investments in nuclear power are associated with increased CO2 emissions in
South Korea and the Netherlands. Similarly, Bandyopadhyay et al. [38] found that nuclear
energy consumption did not significantly contribute to preserving environmental health in
Germany, China, and France across various quantiles.

In summary, most of the literature highlights the benefits of nuclear energy in reducing
CO2 emissions, though some studies present conflicting evidence. Furthermore, very few
studies have employed the LCF as a measure of environmental sustainability, with limited
research examining the heterogeneous effects of NRE sources on the LCF [39,40]. To address
this gap, the present study assesses the disaggregated impacts of various NRE sources on
ecological sustainability in the U.S.

3. Materials and Methods
3.1. Data and Variables

In this study, the LCF is calculated by dividing biocapacity (global hectares) by the
ecological footprint (global hectares), using data from the Global Footprint Network (GFN)
website. The consumption data for coal (COAL), natural gas (NG), petroleum (PETRO), and
nuclear energy (NUCLEAR) were sourced from the U.S. Energy Information Administration
(EIA), with all values measured in quadrillion British thermal units (QBTUs). These variables
cover annual data from 1961 to 2022. The average LCF is 0.468, with a range from 0.379 to 0.640
and a low standard deviation of 0.065, indicating minimal variation. Coal consumption
averages 16.418, with a standard deviation of 4.245, showing greater variability and values
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ranging from 9.181 to 22.797. Natural gas consumption has a mean of 22.051, with a moderate
standard deviation of 4.512 and values between 12.926 and 33.347 (Table 1).

Table 1. Summary statistics.

Statistic LCF COAL NG PETRO NUCLEAR

Mean 0.468 16.418 22.051 33.299 5.062
Median 0.461 16.49 22.017 34.37 6.416

Maximum 0.64 22.797 33.347 40.217 8.459
Minimum 0.379 9.181 12.926 20.169 0.02
Std. Dev. 0.065 4.245 4.512 4.797 3.24
Skewness 1.083 −0.016 0.521 −1.146 −0.423
Kurtosis 3.959 1.643 3.216 3.838 1.568

Jarque–Bera 14.498 4.761 2.923 15.391 7.152
Probability 0.001 0.092 0.232 0 0.028

Sum 29.038 1017.89 1367.17 2064.55 313.823
Sum Sq. Dev. 0.258 1099 1241.93 1403.94 640.348
Observations 62 62 62 62 62

3.2. Model Specification

The LCF is used as a proxy for U.S. environmental sustainability in this study. There-
fore, following the representation function of Adedoyin et al. [41], the environmental
sustainability function employed in this study can be expressed as follows:

LCF = f (COAL, NG, PETRO, NUC) (1)

A counterfactual shock of 10 units (quadrillion British thermal units) is applied to the
selected independent variables—coal, natural gas, petroleum, and nuclear energy—over
28 years, from 2022 to 2050, to analyze their long-term effects on environmental sustainabil-
ity, as measured by the LCF.

Two conditions should be fulfilled before running the dynamic ARDL model on a
time series dataset. First, the dependent variable should be non-stationary at the level
I(0), but must become stationary at the first difference, I(1) [42]. Second, there must be a
long-run relationship among the studied variables. To analyze whether the variables are
stationary, three statistical tests were used: the augmented Dickey–Fuller (ADF) test by
Dickey and Fuller [43], the Phillips–Perron (PP) test suggested by Phillips and Perron [44],
and the ZA test introduced by Zivot and Andrews [45]. In comparison, the augmented
Dickey and the PP tests were useful in establishing whether the time series contained unit
roots; the ZA test was particularly useful in identifying the existence of any structural
breaks in the series. These tests are important to reduce false regression effects due to
non-stationary characteristics, thereby improving the stability and robustness of the model.
After confirming that the dependent variable (LCF) is strictly stationary at the first differ-
ence, the optimal lag for the model is estimated using the Akaike information criteria (AIC).
The cointegration among the variables is then tested using the Pesaran, Shin, and Smith
(PSS) bounds test, incorporating novel Kripfganz and Schneider (KS) critical values and
approximate p-values [46,47].

After confirming the stationarity and co-integration conditions, the estimation of the
ARDL model is required to be carried out for both the long run and short run. The ARDL
model aptly absorbs temporal variations and offers estimates for the long-run coefficient
(α) and the short-run coefficient (β) to foresee the unique effects of the selected variables
and the detailed relationships between the variables, enabling a thorough analysis of their
impacts. The ARDL bounds test model, employed to assess the long-run relationships
among the study variables, is outlined as follows:
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∆LCFt = α0 + α1LCFt−1 + α2COALt−i + α3NGt−i +α4PETROt−i + α5NUCt−i +
p
∑

i=1
β1∆LCFt−i

+
p
∑

i=1
β2∆COALt−i +

p
∑

i=1
β3∆NGt−i +

p
∑

i=1
β4∆PETROt−i +

p
∑

i=1
β5∆NUCt−i + ut

(2)

Here, all the variables are presented in their base forms. The model incorporates
the first-difference operator (∆) to capture changes in the variables over time. The lag
length (t−i) is determined according to the AIC. The random error term is expressed as
ut, which is the residual variation in the model. This analysis indicates that the ARDL
model can offer estimates for the long-run coefficient (α) and the short-run coefficient (β)
for the variables in order to compare the impacts. The null hypothesis (H0) in the ARDL
bounds indicates that there is no cointegration within the variables, while on the other side
the alternative hypothesis (H1) suggests that there is cointegration between the variables.
Subsequently, the analysis employs the bounds test of Pesaran, Shin, and Smith (PSS) to
examine the long-run cointegrating relationship of the ARDL model. Upon realizing the
long-run equilibrium relationships of the study variables, the bounds test is used before
employing the dynamic ARDL simulation model to determine the short- and long-run
coefficients. The error correction form of the ARDL bounds test is the equation used for
conducting the dynamic ARDL [42,48], which can be represented as follows:

∆LCFt = λ0 + θ0LCFt−1 + β1∆COALt + θ1COALt−1 +β2∆NGt + θ2NGt−1 + β3∆PETROt + θ3PETROt−1
+β4∆NUCt + θ4NUCt−1 + εECTt−1 + ut

(3)

Here, the error correction term (ECT) value informs us about the speed at which a
system returns to its long-run equilibrium following short-run disturbances.

A few diagnostic tests were conducted to ensure that the dynamic ARDL model is
robust and that the statistical inferences are reliable. Cameron and Trivedi’s decomposition
of the IM and Breusch–Godfrey’s LM tests were conducted to check for heteroskedasticity
and autocorrelation, respectively. Skewness and Kurtosis tests were used to check for
normality, and a standardized normal probability plot as well as Q-Q plot (to compare
residuals to a normal distribution) were used to further validate the residual distribution.
Possible structural breaks through a cumulative sum test were also conducted, which
helped confirm that the estimated coefficients remained stable over time. Finally, the
directional relationships among the variables when using the KRLS, a machine-learning
approach for causality, were checked and confirmed [49].

KRLS and DYNARDL simulations are expanding into energy, environmental, and
health economics time series analyses. The KRLS is a straightforward machine learning
algorithm that is especially effective at interpreting data while accounting for heterogeneity,
additivity, and nonlinearity [48]. The DYNARDL simulation algorithm can test cointegra-
tion and analyze both short- and long-term equilibrium relationships. A notable feature of
this DYNARDL approach is its visualization interface, which facilitates examining coun-
terfactual changes in a target variable under ceteris paribus assumptions. DYNARDL
simulations and the KRLS can enhance policy formulation through enhanced time series
analyses. Hence, the present study considers both models simultaneously.

4. Results

The results establish that the LCF, COAL, NG, and NUC are non-stationary at the level,
but are stationary at the first difference because the test statistics at I (1) for ADF, PP, and ZA
are significant. While at the level, PETRO fluctuates in a way that conveys mixed signals,
but it stabilizes in a highly distinctive manner at the first difference. Therefore, all variables
fulfill the conditions necessary for applying the dynamic ARDL model, confirming their
integration of order I (1). After that, the optimal lag length criteria for estimating the ARDL
model were also identified (Table 2).
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Table 2. Stationarity test.

Variable(s)
ADF PP ZA

I(0) I(1) I(0) I(1) I(0) Break Point I(1) Break Point

LCF −2.154 −6.556 *** −2.511 −6.557 *** −2.792 1968 −7.13 *** 1967
COAL −0.885 −6.713 *** −1.046 −6.801 *** −4.772 ** 2006 −5.412 *** 1998

NG −0.021 −6.163 *** −0.275 −6.219 *** −2.708 2007 −4.428 *** 1976
PETRO −2.97 ** −5.878 *** −2.859 * −5.880 *** −3.203 1972 −6.298 *** 1981
NUC −1.701 −5.577 *** −1.478 −5.615 *** −3.857 2000 −4.187 * 1976

Note: All the unit root tests include both a constant and a linear trend. ***, **, and * denote significance at the 1%,
5%, and 10% levels, respectively. ADF, PP, and ZA represent the augmented Dickey–Fuller, Phillips–Perron, and
Zivot–Andrews test statistics.

On the other hand, Table 3 depicts the outcomes of determining the appropriate lag
length for the ARDL model, whereby lag 1 is favored most, as depicted by the lowest AIC
values. The p-values of less than 0.05 for all of the LR tests also corroborate the use of lag 1,
which became the most appropriate estimation.

Table 3. Selection of the optimal lag length criteria.

Lag LL LR Df p-Value FPE AIC HQIC SBIC

0 −397.589 NA NA NA 0.463135 13.4196 13.4879 13.5942
1 −23.2904 748.6 25 0.000 4.1 × 10−6 * 1.77635 * 2.18595 * 2.82352 *
2 −0.17058 46.24 * 25 0.006 4.4 × 10−6 1.83902 2.58996 3.75884

Note: * represents a 10% level of significance. LL, LR, Df, FPE, AIC, HQIC, and SBIC represent the log-likelihood,
likelihood ratio, degrees of freedom, final prediction error, Akaike information criterion, Hannan–Quinn informa-
tion criterion, and Schwarz Bayesian information criterion.

4.1. Results of Linear ARDL Model

Table 4 shows that coal, natural gas, and petroleum energy consumption are significant
predictors and cause negative impacts on environmental sustainability in both the short
run and the long run. Nuclear energy consumption is only significant in the long run and
improves environmental sustainability.

Table 4. ARDL short-run and long-run results.

Variable Coefficient Std. Err.

ECT −0.559 *** 0.094
Long Run

COAL −0.012 *** 0.002
NG −0.007 *** 0.002

PETRO −0.008 *** 0.001
NUC 0.014 *** 0.002

Short Run
PETRO −0.004 *** 0.001

NG −0.019 ** 0.008
Constant 0.584 0.095

R-squared 0.722
Observation 61

Note: *** and ** indicate 1% and 5% levels of significance, respectively.

4.2. Cointegration Test Result

The F-statistic value for the explanatory variables is 9.159, and the absolute t-statistic
value is 5.935. Since both values are above the upper bounds of the I(1) critical values
at the 10%, 5%, and 1% levels of significance, the H0 of no cointegration was rejected.
Furthermore, the significant p-value of the KS values (<0.01) also confirms the long-run
cointegration between the variables (Table 5).
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Table 5. Pesaran, Shin, and Smith bounds testing results.

K
10% 5% 1% p-Value

I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1)

F 9.159 2.562 3.711 3.057 4.323 4.185 5.692 0.000 0.000
t −5.935 −2.552 −3.658 −2.88 −4.029 −3.531 −4.753 0.000 0.000

4.3. Residual Diagnostic Test Results

The Breusch-Godfrey LM test results indicate no significant autocorrelation in the
model, as all p-values for the lags (1, 2, and 3) are above the common significance levels
(with values of 0.3852, 0.2387, and 0.2085, respectively). The subsequent step of the analysis
was focused on the residuals for heteroscedasticity using Cameron and Trivedi’s decom-
position of the IM test, as shown in Table 6b. The p-values obtained are more than 0.05,
and this indicates that heteroscedasticity does not affect the residuals of the model. In
addition, skewness and kurtosis tests were conducted to check the normality of residuals
of the model, as presented in Table 6c.

Table 6. Diagnostic test results.

a. Breusch–Godfrey LM Test for Autocorrelation

lags(p) F df Prob > F
1 0.767 52 0.3852
2 1.474 51 0.2387
3 1.569 50 0.2085

b. Cameron and Trivedi’s Decomposition of IM Test

Source chi2 df P

Heteroskedasticity 37.42 35 0.3584
Skewness 3.14 7 0.8715
Kurtosis 0.73 1 0.3938
Total 41.29 43 0.5455

c. Skewness and Kurtosis Tests for Normality

Variable Obs Pr(skewness) Pr(kurtosis) Adj chi2(2) Prob > chi2

res1 61 0.7311 0.7751 0.2 0.905

These results suggest that the residuals were normally distributed since the null hy-
pothesis of normal distribution cannot be rejected at a 0.05 level of significance. Further
confirmation of this conclusion is provided via visual analysis through standardized nor-
mal probability plots (Figure 1a) and quantile–quantile plots (Figure 1b), whereby the
results indicate that the residuals follow a normal distribution. Finally, the stability of the
estimated parameters was checked over time by using the cumulative sum (CUSUM) test,
as shown in Figure 2. The value of the test statistic stays less than one, thus confirming
the temporal stability of the model coefficients and indicating that the test is within the
95% confidence bounds.

4.4. Dynamic Autoregressive Distributed Lag Results

The DYNARDL simulation results are provided in Table 7. The ECT, which is estimated
to be −0.521 and significant at a 5% level, provides evidence supporting the finding
of long-run integration between the consumption of coal, natural gas, petroleum, and
nuclear energy and the LCF. This means that fluctuations in these parameters are uniquely
associated with long-term changes in environmental sustainability. The results of the
DYNARDL method reveal that the consumption of coal, natural gas, and petroleum has a
significant negative relationship with environmental sustainability, both in the short and
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long run. While an increase of one unit in coal-based energy consumption decreases the
LCF by 0.007 and 0.006 units, an increase of one unit in natural energy consumption leads to
a 0.006 and 0.004 unit decrease in the LCF in the short and long run, respectively. Essentially,
petroleum oil energy consumption also has negative effects on the LCF, with marginal
effects of −0.008 and −0.005 units on the LCF in the short and long run, respectively. On
the other hand, nuclear energy consumption positively impacts long-term environmental
sustainability. An increase in nuclear energy use by 1 unit also increases the LCF by
0.007 units.
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Table 7. Result of the DYNARDL model.

Variable(s) Coefficient Std. Err.

∆ COAL −0.007 *** 0.0024
COAL −0.006 *** 0.0013
∆ NG −0.006 *** 0.0021
NG −0.004 *** 0.0011

∆ PETRO −0.008 *** 0.0016
PETRO −0.005 *** 0.0014
∆ NUC −0.011 0.0075
NUC 0.007 *** 0.0018

ECT(−1) −0.521 *** 0.1101
Constant 0.546 0.1122

R-squared 0.7275
Note: *** represents a 1% level of significance.

Although the short-run effect of nuclear energy is not significant, its long-run benefits
are clear. These findings align with the study of Kanat et al. [50], which confirms that
environmental quality degrades with increasing coal, natural gas, and oil consumption,
while nuclear energy consumption positively correlates with environmental sustainability.
Our findings align well with other studies from different countries’ perspectives. For
instance, Aruga et al. [51] estimated an ARDL model and found that energy consumption
derived from fossil fuels contributes significantly to CO2 emissions in Japan that exacerbate
environmental degradation. Similarly, Bello et al. [52] considered the Association of South-
east Asian Nations (ASEAN) region and found that NRE consumption causes substantial
environmental harm, thus requiring urgent policy interventions to reduce pollution and
ensure sustainability. Furthermore, Apergis et al. [53] applied an augmented ARDL model
to the U.S. and found that even though aggregated NRE sources deteriorate environmental
quality, investments in cleaner energy and sustainable alternatives are much needed to
compensate for these effects of deterioration and make the environmental quality more
sustainable. Kadioglu and Gurbuz [54] showed the role that nuclear energy could play in a
green economy, establishing that it has a comparative advantage in long-term sustainability
over fossil fuels.

The graphical representations further illustrate these impacts. Figure 3a–d show the
effect of reducing coal, natural gas, petroleum, and nuclear energy consumption by 10 units
from 2022 to 2050. The dark blue circular dots, representing the predicted LCF under
these scenarios, show a steady increase, indicating a positive impact on sustainability.
This means that reducing coal, natural gas, petroleum, and nuclear energy consumption
significantly enhances the LCF. These findings collectively underscore the importance of
transitioning from fossil fuels to nuclear energy to achieve better environmental outcomes,
making a strong case for policy changes aimed at reducing fossil fuel dependency and
increasing nuclear energy use for a sustainable future. The confidence intervals around
these predictions lend credibility to the results, offering policymakers and stakeholders a
solid foundation upon which to base their decisions.

4.5. Kernel-Based Regularized Least Squares-Based Causality Test Result

The results show that the higher consumption of both coal and petroleum causally
leads to large reductions in environmental sustainability, with average effects of −0.004 and
−0.008, respectively. These negative effects are of high significance, thus indicating very
strong evidence that higher consumption of these fuels negatively affects the environment.
Natural gas exudes a very negligible effect, statistically insignificant, which may mean
that it shares a very minimal or not clearly determined relationship with environmental
sustainability (Table 8).
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Figure 3. Predicted change in the LCF by a 10-unit shock in (a) coal, (b) natural gas, (c) petroleum,
and (d) nuclear energy consumption. The circular dark blue dot (.) represents the predicted value of
the LCF. Green, orange, and cyan spikes denote 75, 90, and 95% confidence intervals. On the x-axis,
time 0 corresponds to the year 2022, and time 30 represents the year 2052, with intervals of 10 years.

Table 8. Results of the causality test.

Variable Avg. SE t P > |t| P25 P50 P75

COAL −0.004 0.001 −3.992 0.000 −0.008 −0.004 −0.001
NATURAL GAS −0.001 0.001 −1.334 0.187 −0.002 0.000 0.001

PETROLEUM −0.008 0.001 −13.071 0.000 −0.012 −0.009 −0.006
NUCLEAR 0.004 0.001 2.588 0.012 0.002 0.004 0.005

Lamda 0.086 Sigma 4 R-square 0.977 Tolerance 0.062
Eff. df. 4 Looloss 0.17

Nuclear power reveals a positive causal impact, adding 0.004 units to the LCF, indi-
cating that nuclear energy possibly improves environmental sustainability. This effect is
statistically significant as well. The overall model is very robust, accounting for 97.7% of
the variation in the LCF and supporting the reliability of these causal inferences.

5. Discussion

In our study, the results of the ARDL and dynamic ARDL models reveal that coal,
natural gas, and petroleum consumption significantly negatively impact environmental
sustainability in the U.S., both in the short run and the long run. Acheampong [55] identified
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a similar trend between fossil fuel consumption and environmental degradation in a study
of 116 countries.

On the other hand, our findings indicate that nuclear energy consumption has a posi-
tive effect on environmental sustainability, as it does not produce CO2 during electricity
generation. This aligns with Lin and Ullah [56], who demonstrated that nuclear energy
helps reduce CO2 emissions. Similarly, Khan et al. [57] found long-term environmental
advantages of nuclear energy compared to fossil fuels, recognizing its potential to signifi-
cantly enhance environmental sustainability over time. Nevertheless, nuclear energy is not
without its challenges. One of the primary concerns is waste management, especially with
newer technologies like small modular reactors (SMRs), which generate waste that requires
long-term disposal solutions, potentially limiting their environmental benefits [58,59]. The
economic viability of SMRs is also in question, given their high construction costs and
uncertain financial returns [60]. Additionally, political and institutional barriers across
states complicate nuclear energy’s role in pollution reduction, as each state has its own reg-
ulatory framework and varying degrees of public acceptance [61,62]. In response, the U.S.
government has tried to address these challenges by investing in advanced reactor designs
and streamlining regulatory processes to reduce costs and accelerate construction [63]. Fur-
thermore, the Department of Energy (DOE) is working on improving the safety of nuclear
technologies, developing better waste management strategies, and ensuring the economic
viability of nuclear energy through initiatives such as the Civil Nuclear Credit [63].

Despite these efforts, the transition to cleaner energy in the U.S. faces significant
hurdles. While regions that have embraced clean energy—such as those investing in
wind and solar—are largely supportive, states heavily reliant on fossil fuels, like West
Virginia, are concerned about job losses and the broader economic impact of this shift [64].
There is also a notable political divide, with Democrats generally favoring the transition to
clean energy while many Republicans express skepticism about the economic and energy
reliability implications [65]. Additionally, local opposition to clean energy projects, such
as wind farms, often arises due to concerns about environmental impacts and property
values [66]. Carley and Konisky [67] have pointed out that “a just” transition strategy that
includes support for affected workers and communities is crucial for ensuring widespread
acceptance of the energy transition.

However, nuclear energy remains a critical and scalable low-carbon energy alternative
that could play a pivotal role in reducing global reliance on fossil fuels. It offers a reliable
solution to the ongoing issues of air pollution and climate change, and it is key to helping
the U.S. meet its goals under Sustainable Development Goal (SDG) 7 (Affordable and
Clean Energy) and SDG 13 (Climate Action) [57]. Hao et al. [68] also argue that achieving
a balanced mix of nuclear and renewable energy sources is the most effective strategy
for enhancing environmental quality and achieving decarbonization as well as emission
reduction targets.

The graphical representations in our study highlight the significant policy implica-
tions of reducing fossil fuel consumption and increasing nuclear energy use to promote
environmental sustainability. Scenario-based energy modeling, as emphasized by scholars
like Gillingham and Stock [69], is an essential tool for policymakers to assess the long-term
impact of various energy policies. In the U.S., these models underscore the urgent need for
immediate policy interventions such as carbon pricing, renewable energy subsidies, and
greater investments in nuclear infrastructure. These tools are widely recognized as effective
in accelerating the transition to clean energy and achieving the U.S.’s decarbonization goals
under SDG 7 and SDG 13 [70].

Furthermore, our findings are reinforced by the KRLS causality test, which shows that
fossil fuel consumption—particularly of coal and petroleum—has a negative effect on envi-
ronmental sustainability. Thombs [71] examined the link between fossil fuel dependency
and the carbon intensity of well-being at the U.S. state level, revealing that reliance on fossil
fuels negatively impacts both social and environmental well-being. In contrast, nuclear
energy demonstrates a growing potential to mitigate the environmental degradation caused
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by fossil fuel use. However, as nuclear energy continues to expand, it is essential that robust
regulatory frameworks are put in place to ensure the safety, transparency, and public trust
necessary for its broader adoption [72].

6. Conclusions and Policy Recommendations

As one of the world’s largest energy consumers and contributors to greenhouse gas
(GHG) emissions, the U.S. faces significant challenges in transitioning from non-renewable
energy sources to cleaner, renewable alternatives. Given the ongoing reliance on non-
renewable energy (NRE) and its harmful environmental impacts, this study aims to assess
the disaggregated effects of NRE consumption on environmental sustainability, using the
LCF as a proxy. The findings will help inform targeted policies for phasing out the most
damaging energy sources and improving the U.S.’s ecological footprint. Employing a
dynamic autoregressive distributed lag (DYNARDL) model, this research explores the
heterogeneous effects of coal, natural gas, petroleum, and nuclear energy consumption
from 1961 to 2022. The results show that all NRE sources, including coal, natural gas, and
petroleum, significantly reduce environmental sustainability in both the short and long
run. Additionally, the consumption of nuclear energy negatively impacts environmental
sustainability in the long run. The KRLS analysis further confirms the significant adverse
effects of coal and petroleum on environmental sustainability, while natural gas shows no
significant causal relationship.

Given these findings, this study recommends that U.S. energy policies focus on phasing
out coal due to its severe negative environmental impact. This could be achieved by
implementing stricter emission regulations, incentivizing the closure of coal-fired power
plants, and promoting renewable energy alternatives like solar and wind. Although natural
gas is cleaner than coal, it still negatively affects sustainability. Therefore, a gradual
reduction in its use is necessary, which can be supported by promoting energy efficiency,
increasing renewable energy use, and modernizing the grid to handle renewable sources
better. The significant negative effects of petroleum on environmental sustainability also call
for policies aimed at reducing its consumption. This could include promoting electric vehicles,
improving public transportation infrastructure, and supporting biofuel development.

In contrast, the positive long-run impact of nuclear energy on environmental sus-
tainability suggests that increasing nuclear capacity should be a major policy focus. At
the same time, efforts should be intensified to expand the use of RE sources like wind,
solar, and hydroelectric power. This study’s key limitations are the lack of analysis of the
environmental impacts of nuclear waste management and the omission of economic and
social costs, such as job losses and retraining, associated with the transition from fossil
fuels. These factors are critical for evaluating the long-term sustainability and feasibility of
energy policy changes. A comprehensive disaggregated RE consumption source’s impact
on environmental sustainability in the U.S. can be determined by using the same method.
In this case, the less focused RE consumption sources, such as geothermal and hydroelectric
energy, can be taken into consideration.
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