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Arctic charr (Salvelinus alpinus) is a salmonid species of high ecological and commercial value in the Holarctic
region. Nevertheless, more information is needed about its underlying genetic diversity and population structure
in the Nordics, especially regarding farmed populations. High-throughput sequencing was applied in three Arctic
charr populations of anadromous or landlocked origin from Finland, Norway and Sweden. More specifically, the

DdRAD
SNPs animals from the Swedish and Norwegian populations originated from a major egg supplier and producer,
Haplotypes respectively. Furthermore, in the case of the Finnish population, the sampled animals originated from the only

active conservation program for Arctic charr in the country with a potential interest in farming. Using double-
digest restriction site-associated DNA sequencing (ddRAD-seq) on more than 500 fish, over 2000 single nucle-
otide polymorphisms (SNPs), both in the form of individual SNPs and as read haplotypes, were used to study the
genetic diversity and structure of those populations. Genetic diversity metrics were similar between the Nor-
wegian and the Swedish populations. However, substantially lower (40-50 %) genetic diversity was found in the
Finnish population. Moreover, considerable genetic differentiation was implied between the studied populations
as the mean fixation index (Fst) was above 0.1 in all pairwise comparisons. All populations were easily
discernible through either principal component analysis (PCA) or discriminant analysis of principal components
(DAPQ). In addition, unsupervised machine learning models such as K-means, Gaussian and Bayesian Gaussian
mixtures were assessed for their ability to detect genetic clusters. A preceding dimensionality reduction step by
PCA resulted in all three models, suggesting that the most probable number of clusters was three. Overall, our
study affirmed the utility of the developed ddRAD-seq genotyping method and unveiled the genetic structure of
the studied populations, both of which could contribute to their more efficient management by captive breeding.

Unsupervised machine learning

1. Introduction sustainability of the farmed populations (Saura et al., 2021).

As such, deciphering the status of genetic diversity and unveiling

Fecundity in fish is orders of magnitude higher than in livestock. Due
to their very high fecundity, higher genetic gains are commonly
observed in aquaculture breeding programs than in livestock (Gjedrem
and Rye, 2016; Kause et al., 2022; Vandeputte et al., 2022). Neverthe-
less, the above makes it possible to reach short-term production volumes
using a minimal number of broodfish. Owing to the inherent difficulty of
keeping track of genetic relationships among individuals in aquaculture
settings, inbreeding levels may rise rapidly and threaten the long-term
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population structure in farmed fish populations is essential for efficient
management (Symonds et al., 2019). Moreover, aside from producing
fish for human consumption, aquaculture practices often aim to assist in
the recovery of endangered natural populations through restocking ac-
tivities (Mizuta et al., 2023). In those cases, minimising the loss of ge-
netic diversity is the main priority as it increases the chances for the
released fish to adapt to the natural environment (Fisch et al., 2015).
High-throughput sequencing technologies have powered up
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population genetic studies in fish, allowing for genome-wide genetic
diversity estimates. Genotyping by sequencing (GBS) approaches, such
as double digest restriction-site associated DNA (ddRAD-seq) (Peterson
et al., 2012), offer a cost-effective solution for the simultaneous de novo
detection of genetic markers like single nucleotide polymorphisms
(SNP) and genotyping using short-read sequencing platforms. Particu-
larly in genetic diversity studies, the characteristics of GBS constitute a
prominent advantage over SNP arrays as the former does not suffer from
SNP ascertainment bias, at least to the same extent (Davey et al., 2013).
Therefore, reliable genetic diversity metrics can be derived with insights
regarding potentially hidden population structure. Due to its ease of li-
brary construction, ddRAD has been routinely used over the last decade
in several genetic diversity studies in fish (Hosoya et al., 2018; Moses
et al., 2019; Nyinondi et al., 2020; Takahashi et al., 2020; Saha et al.,
2021; Palaiokostas et al., 2022; Naito et al., 2023).

Deriving inferences from the GBS data revolves almost entirely
around individual SNPs identified in the obtained sequenced reads. In
cases where several SNPs exist within the same read, it is customary to
retain only one for further analysis due to their high linkage disequi-
librium. Since paired-end sequence reads of 300-600 base pairs (bp)
long are usually produced, additional information could be gained by
considering the SNPs within the same sequenced read as phased hap-
lotypes (Malinsky et al., 2018).

Furthermore, regardless of whether the analysis is centred around
individual SNPs or haplotypes, most genetic diversity studies aim to
derive information about population structure and identify underlying
genetic clusters. Here, common analytic tools include the principal
component analysis and clustering approaches, which can be either
Bayesian-based (Pritchard et al., 2000) or in the form of discriminant
analysis of principal components (Jombart et al., 2010). Detecting ge-
netic clusters generally falls within the scope of a broad category of
machine learning algorithms known as unsupervised learning. Even
though machine learning algorithms have rarely been used in aquacul-
ture genetics, promising results have recently been derived from aqua-
culture breeding studies (Bargelloni et al., 2021; Palaiokostas, 2021).
Nevertheless, limited knowledge exists on whether unsupervised ma-
chine learning algorithms can help identify genetic clusters in SNP
datasets from fish populations.

Arctic charr (Salvelinus alpinus) is a high-value salmonid inhabiting
diverse Arctic ecosystems (Jacobs et al., 2020) with numerous geneti-
cally discrete populations across Europe (Klemetsen et al., 2003; Kot-
telat and Freyhof, 2007; Leskinen et al., 2013; Tiberti and Splendiani,
2019). Due to its inherent capacity for growth in cold waters even during
winter, Arctic charr is particularly suited for commercial farming in the
Nordics (Szther et al., 2013). Moreover, conservation programs have
been operating for several decades in Finland, aiming to support en-
dangered wild charr populations through captive breeding and
restocking (Primmer et al., 1999).

In the present study, we assessed the genetic diversity levels of three
geographically distant Arctic charr populations from the Nordics and
investigated their underlying population structure. The studied pop-
ulations represent Arctic charr strains that either have a high impact on
each country’s farming industry (Norway and Sweden) or, in the case of
Finland, could potentially form the base population for farming. More
specifically, in the case of Sweden and Norway, the sampled populations
originated from a major egg supplier and producer, respectively. On the
other hand, the Finnish population originated from the country’s only
active conservation program, which holds potential for aquaculture
purposes. Over 500 fish from those populations were genotyped using
ddRAD-seq. Genetic diversity metrics and population-level coancestry
coefficients were computed within and across populations using indi-
vidual SNPs and phased read haplotypes. Moreover, we investigated the
existence of genetic clusters using both commonly applied analytic tools
in population genomics and unsupervised machine learning models.
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2. Materials and methods
2.2. Background of studied populations

Arctic charr from the Swedish national breeding program, a com-
mercial farm in Norway and the Finnish conservation program were
used in our study. The Swedish breeding program for Arctic charr at
Aquaculture Centre North (ACN) facilities in Jamtland, central Sweden
(Fig. 1), has been active for approximately 40 years, supplying eggs to
farms nationwide. The base population originates from the large Lake
Hornavan in Northern Sweden, and a closed breeding nucleus has been
kept since the beginning of the program (Eriksson et al., 2010). A
representative sample of 170 brood fish (63 males, 107 females) from
the 2013 year class was used. Additionally, samples from a Norwegian
population of anadromous origin were obtained from a commercial farm
in Sigerfjord, Norway (Fig. 1). The population founders originated pri-
marily from the Hammerfest strain (~ 60-70 %) in northern Norway,
previously shown to have a higher growth rate than landlocked pop-
ulations in the country’s south (Torrissen and Barnung, 1991).
Secondarily, the Norwegian population originated from Svalbard (Nor-
way) and Iceland (personal communication with Sigerfjord Fisk AC,
January 2021). Mass spawning has been practised since 1995, with the
breeding population consisting of 700 — 800 females and 150 males, on
average, with seven generations recorded so far in captivity. In total,
164 breeding candidates (86 males and 78 females) from the 7th
hatchery generation of the Norwegian population were used. The third
sampled Arctic charr group represented a critically endangered land-
locked population from Lake Kuolimo, Southeastern Finland. Due to the
dramatic decline in population during the past century, natural repro-
duction has become scarce and is restricted only to some southern areas
of the large Vuoksi watershed. Consequently, the Finnish population
heavily depends on hatchery propagation and restocking activities
performed by the Natural Resources Institute of Finland (Luke)
(Primmer et al., 1999). Overall, 172 Finnish Arctic charr individuals
were sampled from the wild (years 2013-2015) and hatchery brood-
stock (2019). The wild fish (27 males, 43 females and 14 immature fish
with unknown sex) were captured from Lake Kuolimo and used to
establish a new hatchery broodstock at Luke’s Enonkoski aquaculture
station. The rest of the fish from the Finnish population were sampled at
the hatchery in 2019 (n = 88 fish) (Fig. 1).

2.3. DNA extraction and ddRAD library preparation

Genomic DNA was extracted from fin clips using a salt-based pre-
cipitation method (Palaiokostas et al., 2022). In summary, fin tissue was
digested at 55 °C for 4 h using a lysis solution containing 200 pL SSTNE
(50 mM Tris base, 300 mM NaCl, 0.2 mM each of EGTA and EDTA,
0.15 mM of spermine tetrahydrochloride, and 0.28 mM of spermidine
trihydrochloride; pH 9; Sigma-Aldrich, Darmstadt, Germany), 10 % SDS
(Bio-Rad, Hercules, USA), and 100 pg proteinase K. Thereafter, 5 pL
RNaseA (Thermo Fisher, Vilnius, Lithuania) (2 mg/ml) was added fol-
lowed by incubation at 37 °C for 60 min. Protein precipitation was
performed by adding 0.7 vol of 5 M NaCl (Sigma-Aldrich, Darmstadt,
Germany). With the addition of 0.7 vol of isopropanol and centrifuga-
tion (Pico 21, Thermo Fisher, Waltham, MA, USA) at 14 000 g for 5 min,
a DNA pellet was formed. The DNA pellet was cleaned through overnight
incubation with 75 % ethanol and dissolved in 30 pL of 5 mM Tris (pH
8.0; Sigma-Aldrich, Darmstadt, Germany). DNA content and quality
metrics were obtained using a NanoDrop 8000 (Thermo Scientific,
Waltham, MA, USA) spectrophotometer, agarose gel electrophoresis,
and Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA, USA). Finally,
5 mM Tris (pH 8.0) was used to dilute the DNA samples to 15 ng/pL.

The ddRAD library preparation was performed following a modified
version of the original protocol described in detail by Palaiokostas et al.
(2015). In total, four ddRAD libraries were prepared for 506 samples.
15 ng of each DNA sample were digested at 37 °C for 60 min with the
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Fig. 1. Geographical overview of the used Arctic charr (Salvelinus alpinus) populations from 1 — Norway (n = 164), 2 — Sweden (n = 170), and 3 - Finland (n = 172).
The Norwegian population was of admixed origin from Hammerfest-Svalbard in Norway and Iceland. The Swedish population originated from Lake Hornavan in

Sweden, while the Finnish population was from Lake Kuolimo in Finland.

high-fidelity enzyme Sbfl (CCTGCA |GG recognition motif) and the Nlalll
(CATG recognition motif) (New England Biolabs, UK). P1 and P2
adapters with a unique 5 or 7 bp barcode were ligated to the digested
DNA and incubated at room temperature for 120 min. The addition of
2.5 vol of PB buffer (Qiagen, Hilden, Germany) terminated the ligation
reaction, and the samples were combined in a multiplex pool and pu-
rified with a MinElute PCR Purification kit (Qiagen, Hilden, Germany).

Size selection (400 — 600 bp) was performed through electrophoresis
onal.1 % TAE agarose gel. The gel was run at constant voltages of 45 V
for 3 min, 60 V for 3 min, and 90 V for around 70 min. Following gel
purification (QIAquick gel extraction kit; Qiagen, Hilden, Germany) li-
brary templates of 40 pl each were obtained, and PCR amplification was
performed on a thermal cycler T100 (Bio-Rad, Redmond, WA, USA)
using the following cycling conditions: 98 C for 30 s, 13 — 14 PCR cycles
of 98°C for 10 s, 65°C for 30 s, and 72 C for 30 s, then a final step of 72C
for 5 min. Each PCR amplified library was purified using an equal vol-
ume of AMPure XP beads (Beckman Coulter, USA) and eluted with 20 pL
of EB buffer (MinElute Gel Purification Kit, Qiagen, Hilden, Germany).
Finally, the libraries were sequenced in an Illumina NovaSeq 6000 using
three lanes of two SP flow cells (150 base paired-end reads) at the Na-
tional Genomics Infrastructure centre in Uppsala, Sweden. The
sequenced reads were deposited in the National Centre for Biotech-
nology Information repository as fastq files under project ID
PRJINA1044256.

2.4. Quality control of sequenced data - SNP identification and
genotyping

Sequencing quality was assessed with FASTQC v0.11.8, while Mul-
tiQC (Ewels et al., 2016) v1.8 was used to produce a single quality report
for all the samples. FASTP v0.22.0 (Chen et al., 2018) was used to trim
adapter-oligomeric sequences and filter out reads with a Phred quality
score below 20. Demultiplexing was performed using process radtags
from the Stacks software v2.5 (Rochette et al., 2019). The demultiplexed
reads were aligned to the Salvelinus sp. reference genome assembly
[Genbank accession number GCF_002910315.2] using the Bowtie2
program (Langmead and Salzberg, 2012).

Following SNP calling using the gstacks module of Stacks, genotypes
were extracted using the populations module of the same software either

in the form of a single SNP per ddRAD-tag or read haplotypes. The
applied filtering parameters retained SNPs, having observed heterozy-
gosity below 0.6, minor allele frequency (MAF) above 0.05 and calling
rate above 80 % amongst all three populations. The above data pro-
cessing was conducted using Snakemake v7.9 (Molder et al., 2021)
through a pipeline available at https://github.com/chpalaiokostas
/Genetic-diversity-insights-Nordic-Arctic-charr-using-ddRAD under the
Variant calling folder.

2.5. Genetic diversity metrics and population structure based on
individual SNPs

Prior to genetic analysis, the SNP data were further filtered using the
R packages SNPfiltR v1.0.1 (DeRaad, 2022) and vcfR v1.14.0 (Knaus and
Griinwald, 2017). More specifically, the provided pipeline of SNPfiltR
was used with minor adjustments across all three populations. Following
SNP filtering, generic diversity metrics like mean observed heterozy-
gosity (H,), expected heterozygosity (Hg), and Wright’s F statistics, i.e.
individual inbreeding coefficients (Fis) and the fixation index (Fsr), were
estimated using the populations module of Stacks.

A principal component analysis (PCA) was conducted using the R
package adegenet v2.1.5 (Jombart, 2008) to decipher the studied pop-
ulations’ underlying genetic structure. During PCA, the optimal number
of principal components (PCs) was limited to one less than the number of
the sampled populations to capture maximum among-population vari-
ation and reduce model overfitting (Thia, 2023). Thereafter, a
discriminant analysis of the PCs (DAPC) was performed to detect genetic
clusters using the same software (Jombart et al., 2010).

DAPC was also used in a cross-validation scheme, where the utility of
the SNP dataset for discriminating the charr samples among the three
populations was tested. Specifically, the origin of 30 % of the fish from
each population was masked and treated as a test set, while the rest of
the dataset was used for model training purposes. Predictions regarding
the animals’ population origin in the test set were made and compared
with the actual known data. To minimise stochastic error due to random
allocations to test and training sets, the whole process was repeated 100
times  (https://github.com/chpalaiokostas/Genetic-diversity-insights
-Nordic-Arctic-charr-using-ddRAD).
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2.6. Population structure using unsupervised machine learning models

Unsupervised machine learning (ML) models suitable for clustering
tasks were fitted, aiming to assess their potential in identifying the un-
derlying population structure. More specifically, K-means models were
fitted, where the hyperparameter corresponding to a priori number of
clusters had values ranging from 1 to 5. For the K-means models,
silhouette coefficients were used to assess the most probable number of
genetic clusters. The silhouette coefficients also provided confidence
metrics regarding each sample’s cluster allocation. Moreover, Gaussian
and Bayesian Gaussian mixture models were fitted. In both cases, the
hyperparameter corresponding to the number of components varied
from 1 to 5. Ten replicates of each model were performed to minimise
stochastics related to random initialisation, retaining the one with the
highest log-likelihood. The above models were also assessed after a
dimensionality reduction step with PCA was performed. More specif-
ically, the first two PCs were retained, as with the DAPC analysis. The
Python library scikit-learn v1.2.1 (Pedregosa et al., 2011) was used to fit
the above ML models. The Python code used is available at https://githu
b.com/chpalaiokostas/Genetic-diversity-insights-Nordic-Arctic-cha
rr-using-ddRAD under the ML genetic_clusters folder.

2.7. Haplotype-derived population structure

A haplotype-based analysis of the studied populations was per-
formed with the RADpainter and fineRADstructure software (Malinsky
et al., 2018). A coancestry matrix was estimated from all individuals
using RADpainter followed by clustering using the Markov chain Monte
Carlo (MCMC) algorithm of fineSTRUCTURE (Lawson et al., 2012).
Finally, a heatmap depicting the clustered coancestry matrix was drawn
with fineRADstructure.

3. Results
3.1. Sequencing output and SNP detection

Approximately 2.89 billion 150 bp paired-end reads were produced.
Following the quality control, ~ 2.2 billion reads were retained. The
executed pipeline identified 1.5 million loci with a mean sequence
coverage of 44X (SD 25X). Out of those, 11785 loci found in at least
80 % of the genotyped fish were kept for downstream analysis, resulting
in the detection of 5929 SNPs. Thereafter, a final round of filtering using
the R packages SNPfiltR and vcfR resulted in 1902 SNPs for the analysis
based on retaining a single SNP from each sequencing read. Regarding
read haplotypes, haplotype-wise filtering was conducted using the
Stacks populations module, resulting in 3638 SNPs. Moreover, 14 fish
with more than 30 % missing genotypes were removed, with the final
dataset consisting of 492 fish. The representation per population
involved 166 fish from Finland, 161 from Norway and 165 from Sweden.

3.2. Generic genetic diversity metrics

The Finnish charr had the lowest observed and expected heterozy-
gosity levels among the studied populations. This was observed in both
the individual SNP and the haplotypic-based analysis (Table 1). On the
other hand, the estimated heterozygosity metrics of the Swedish and
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Norwegian populations were practically equivalent. Fig coefficients
ranged between —0.001-0.06. Nevertheless, those estimates were un-
reliable as they were accompanied by high standard errors (0.07-0.24).
Finally, according to the Fgr index, the Finnish population appeared to
be the most genetically distant among all the pairwise comparisons.
More specifically, the genetic distance between the Finnish-Swedish and
Norwegian populations was 0.23 and 0.24 (the same Fgy values were
obtained with either individual SNPs or haplotypes). On the other hand,
the genetic distance between the Norwegian and the Swedish population
was 0.14.

3.3. Population structure using PCA and DAPC fitted on the individual
SNP dataset

The first two PCs from PCA were sufficient to separate the three
populations, accounting for 31 % and 15 % of the explained variance,
respectively (Fig. 2). A clear separation was shown between the Finnish
and the Swedish-Norwegian populations across the first PC. The latter
two populations were separated across the second PC.

DAPC was used to identify genetic clusters and provide insights
regarding the underlying genetic structure of the three populations.
Clustering was conducted by retaining the first two PCs in the discrim-
inant analysis. Three clusters were generated, consisting of 166, 161 and
165 fish, respectively. A complete correspondence was found between
the assigned cluster and the population of origin of each fish (Fig. 3).

Furthermore, the cross-validation scheme conducted using DAPC
was 100 % accurate in allocating all samples from the test dataset to
their origin population (Fig. 4).

3.4. Population structure using unsupervised machine learning models

The fitted ML models’ ability to identify the most probable number of
genetic clusters was assessed. Neither the Bayesian Gaussian nor the
Gaussian mixture models identified the expected number of genetic
clusters when the filtered SNP dataset was used per se. In the former case,
no conclusive result was obtained, while in the latter, the most probable
number of clusters was two (Supplementary Table S1). Conducting
dimensionality reduction with PCA before fitting the above ML models
resulted in the Bayesian Gaussian and the Gaussian mixture models
aligning with the DAPC results and suggesting that the most probable
number of genetic clusters was three (Supplementary Table S2).

In the case of the K-means models, a K of two and three were the most
probable values when the models were fitted using the original SNP
dataset (Fig. 5).

However, when a PCA preceded fitting the K-means models, the
existence of three clusters was well supported (Fig. 6).

3.5. Population structure based on read haplotypes

The haplotype-derived coancestry values provided additional in-
sights regarding the underlying genetic structure of the three pop-
ulations. As expected, individuals within the Finnish population showed
higher coancestry levels compared to the other two populations. The
above agreed with the previous results suggesting lower genetic di-
versity in the Finnish population. Moreover, the produced heatmap
showed that the coancestry levels between the Norwegian and the

Table 1
Genetic diversity metrics.
Populations SNPs Haplotypes
HgSE) H%SE) F%E) HE,SE) H](ESE) FgE)
Finnish 0.12(0-009) 0.14©-009 0.06029 0.15(0:003) 0.16(0-003) 0.0200-19
Norwegian 0‘24(&004) 0.24(0.004) 0.03(024) 0.25(0.003) 0.25(&003) _0.001(0.14)
Swedish 0'23(0,005) 0.23(0.004) 0'02(0,12) 0.24(0.003) 0'24(0,003) 70'01(0,07)

H, refers to observed heterozygosity; Hg, refers to the expected heterozygosity; Fis refers to the inbreeding coefficient.
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Fig. 2. Principal component analysis (PCA) of three Nordic Arctic charr populations. A unique colour is used to represent individuals belonging to the same
population. The Norwegian population was of admixed origin from Hammerfest-Svalbard in Norway and Iceland. The Swedish population originated from Lake
Hornavan in Sweden, while the Finnish population was from Lake Kuolimo in Finland.
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Fig. 3. Ancestry analysis assigning individual Arctic charr to genetic clusters. The top header of the figure represents the true population origin of each fish. Each
single vertical bar represents an individual. The same colour indicates that the respective individuals belong to the same genetic cluster. The Norwegian population
was of admixed origin from Hammerfest-Svalbard in Norway and Iceland. The Swedish population originated from Lake Hornavan in Sweden, while the Finnish

population originated from Lake Kuolimo in Finland.

Swedish populations were higher than the Finnish population. None-
theless, overall coancestry levels were estimated to be lower between
the Finnish and the Norwegian populations than between the Finnish
and the Swedish ones (Fig. 7).

4. Discussion

In contrast to farmed salmonids like Atlantic salmon (Salmo salar)
and rainbow trout (Oncorhynchus mykiss), limited information exists

about the genetic differentiation between Nordic populations of Arctic
charr, especially regarding ones with potential value for aquaculture.
The current study attempted to assess the genetic diversity status of
Nordic Arctic charr populations from Norway, Sweden and Finland that
either significantly impact the domestic industry or, in the case of
Finland, represent the country’s only active hatchery that supports a
conservation program for this species. Whole-genome resequencing has
previously suggested comparable levels of genetic diversity between the
Norwegian and Swedish populations (Pappas et al., 2023). Nevertheless,



C. Palaiokostas et al.

Confusion matrix (%)

100

Finland

Norway

True label

Sweden

Predicted label

Fig. 4. Confusion matrix for prediction efficiency (% of successful classifica-
tion) of the SNP dataset using cross-validation. A cross-validation scheme was
followed to discriminate the three study populations. The origin of 30 % of
randomly selected individuals from each population was masked and used as a
test set. The above procedure was repeated 100 times to minimise potential bias
due to stochastic sample allocation in the training/test dataset. The diagonal
contains the mean percentage of correct population assignments for the cross-
validation scheme. Off-diagonals contain the mean percentage of wrong pop-
ulation allocations for each particular case. Reported numbers have been
standardised to range between 0 and 100. The Norwegian population was of
admixed origin from Hammerfest-Svalbard in Norway and Iceland. The Swed-
ish population originated from Lake Hornavan in Sweden, while the Finnish
population was from Lake Kuolimo in Finland.

the above study used a relatively small number of animals from each
population (n=24 fish) and might not have fully captured the entire
spectrum of genetic diversity. Furthermore, no prior study attempted to
use high-throughput sequencing on the Finnish Arctic charr population.
As such, genotyping using ddRAD was performed in a relatively high
number of animals from all three populations (~ 500 fish).

4.1. Genetic diversity status of studied Nordic Arctic charr populations

The Finnish population had significantly lower genetic diversity
compared to the Norwegian and Swedish populations, as evidenced by
both observed and expected heterozygosity metrics. In particular, the
Finnish population’s mean H, and Hg metrics were nearly half those
obtained from the Swedish and the Norwegian (0.12 - 0.16 versus 0.23 —
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0.25). Overall, the obtained diversity values of the Finnish population
were within the lower range reported in the literature (e.g. Hg ~ 0.1 —
0.4) in similar studies on farmed fish that used ddRAD (Jansson et al.,
2016; Torati et al.,, 2019; Nyinondi et al., 2020; Palaiokostas et al.,
2022).

Notably, in the case of the Swedish and Norwegian populations, the
genetic heterozygosity metrics from either individual SNPs or read
haplotypes were almost indistinguishable, with the later ones being only
~ 4 % higher. On the other hand, a prominent increase of 15-20 % was
observed in the heterozygosity estimate of the Finnish population when
read haplotypes were used. As by construction, haplotypes are expected
to be more informative and discern relationships at a higher resolution
than individual SNPs (Longo et al., 2024), obtaining higher diversity
estimates from the latter is not so surprising. Most likely, the higher
discrepancy observed between the two analyses in the Finnish popula-
tion can be attributed to the combination of the sparse genotyping we
followed and the low levels of genetic diversity among those fish. The
above reasoning is further supported by the heterozygosity estimates in
the Norwegian and Swedish populations closely aligned with the pre-
viously reported ones where considerably higher genotyping densities
were used (Palaiokostas et al., 2022; Pappas et al., 2023). Nevertheless,
it is essential to acknowledge that the reported metrics cannot be used to
estimate levels of inbreeding, and they are also insufficient to conclude
that the Finnish population is under inbreeding depression. A higher
genotyping density would be required to estimate inbreeding through
runs of homozygosity accurately (Yoshida et al., 2020).

4.2. Population differentiation and underlying genetic structure using
tools commonly applied in population genetics

The ddRAD datasets sufficed to differentiate the studied charr pop-
ulations. The Fgr index was exceptionally high among all pairwise
comparisons, ranging from 0.14 to 0.24. As a rule of thumb, Fgr values in
the range of 0.15 and above denote the existence of a high genetic dif-
ferentiation (Wright, 1978). Considering our study populations’
geographical and ecological differentiation, this pattern was antici-
pated. Natural allopatric Arctic charr populations are known to form
highly distinctive genetic groups even at a relatively small spatial scale
(e.g. Kapralova et al., 2011). For Alaskan charr populations with
different historical biogeography (separate drainages), a mean weighted
pairwise Fgr of 0.21 was estimated from a genomic analysis based on
nearly 16k sequenced SNPs (Klobucar et al., 2021).
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Fig. 5. Silhouette diagram for values of k (depicting the number of genetic clusters) between 2 and 5. Silhouette coefficients were estimated for different K-means
models fitted to the SNP dataset. The dashed red lines represent the mean silhouette coefficients for each k value.
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Fig. 6. Silhouette diagram for values of k between 2 and 5 (depicting the number of genetic clusters). Silhouette coefficients were estimated from K-means models
following a dimensionality reduction to the original SNP dataset through PCA and by retaining the first two principal components. The dashed red lines represent the

mean silhouette coefficients for each k value.
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Fig. 7. Heatmap of the haplotype-derived coancestry matrix. The sidebar colour gradient shows the magnitude of shared coancestry between each pair of in-
dividuals. The Norwegian population was of admixed origin from Hammerfest-Svalbard in Norway and Iceland. The Swedish population originated from Lake
Hornavan in Sweden, while the Finnish population originated from Lake Kuolimo in Finland.

Moreover, our results indicated that the Finnish population was
more genetically distant than the other two, probably reflecting their
different phylogeographic origins (i.e. Atlantic vs. Siberian lineages; see
Brunner et al., 2001). The Finnish population is also critically endan-
gered, with a suspected low effective population size (Primmer et al.,

1999), and this is likely an additional reason. Therefore, a potential
immediate farming endeavour would be advised only in a hypothetical
scenario where the population shows clear evidence of beneficial
phenotypic traits for farming, such as growth rate. Furthermore, a
routine usage of genomic information would benefit all three
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populations as it would allow for a more efficient management of ge-
netic diversity.

Complementing the typical single SNP-based genetic diversity anal-
ysis with haplotype-based information could offer additional insights,
revealing previously undetected population structure. For instance,
haplotype-based analysis using ddRAD recently suggested the indepen-
dent and parallel evolution of different Arctic charr ecotypes (Jacobs
et al., 2020). Our study’s use of read haplotypes allowed for a finer
resolution regarding the genetic relationships among the studied fish. In
particular, the estimated coancestry coefficients from the
haplotype-based analysis suggested that the Finnish population con-
tained individuals more related to each other than in the other two
populations. From a practical point of view, this information warrants
careful decisions regarding the formation of mating pairs when new year
classes are formed.

4.3. Assessing the efficiency of unsupervised machine learning models for
detecting genetic clusters

Machine learning has recently been suggested to set a new paradigm
in population genetics (Schrider and Kern, 2018). The availability of
powerful algorithms suited for high-dimensional datasets fits ideally
with the current norm of genomic datasets (Lopez-Cortés et al., 2020).
Even though the application of machine learning models in genomic
studies is still in its infancy, it has already been part of the machinery of
commonly used tools in population genetics. More specifically, the
K-means algorithm constitutes the primary step of DAPC when a de novo
clustering is performed (Miller et al., 2020). Nevertheless, an explicit
assessment of machine algorithms in terms of their suitability for iden-
tifying genetic clusters is lacking, especially in the case of farmed fish. As
such, we tested three machine learning algorithms of increasing
complexity. Starting with the computationally lighter K-means and
moving to more computationally demanding ones like the Gaussian and
Bayesian Gaussian mixture models. Fitting the latter two directly to the
SNP dataset failed to deliver reliable results. In comparison, K-means
was more efficient even though it was not possible from its output to
discern between the existence of two or three genetic clusters.

Detection of genetic clusters using the K-means algorithm requires
the a priori definition of a suitable number of centroids. Naturally, the
above unavoidably results in a certain level of subjectivity regarding the
reported results. As a counterbalance, the custom data analysis approach
relies on testing several a priori centroids and estimates, each using
metrics such as inertia. Thereafter, the recorded metric is plotted as a
function of the number of clusters K, with the resulting curve often
displaying an inflexion point called the “elbow”. This point is considered
the most probable number of genetic clusters.

Nevertheless, the fact that the recorded metric of this workflow by
construction decreases as the a priori number of centroids increases re-
sults in subjectivity in identifying the curve’s inflexion point. Instead,
estimating silhouette coefficients can be a more precise approach,
though a more computationally demanding one (Géron, 2019). Simul-
taneously, estimating silhouette coefficients provides a metric of un-
certainty regarding the assignment of each sample on each genetic
cluster. As mentioned above, a dimensionality reduction step through
PCA resulted in a silhouette diagram supporting the existence of three
genetic clusters with a confident assignment of each individual. It would
be fair to mention that in our study, a substantial genetic differentiation
among the three populations appears to exist. Therefore, following the
typical approach and attempting to identify the “elbow” of the curve
depicting inertia against a predefined number of centroids would
probably have been as efficient. Despite that, estimating silhouette co-
efficients is a valuable and surprisingly underused tool.

Regardless of which of the two analysis paths one chooses, the
required prior decision on the number of centroids propagates a certain
amount of subjectivity in the conducted analysis. Considering the above,
algorithms like Bayesian mixture models are particularly appealing as,
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in this case, only an upper threshold in the number of genetic clusters
can be defined (Lu, 2021). As such, only minimal prior knowledge is
required. As with the Gaussian mixture model, a dimensionality
reduction step through PCA also detected three genetic clusters by the
Bayesian mixture model. Bayesian mixture models have been previously
used in genetic studies to identify genetic variants involved in human
diseases (Moser et al., 2015). However, except for the similar architec-
ture of a Dirichlet mixture model that used genetic and spatial infor-
mation for clustering (Reich and Bondell, 2011), Bayesian mixture
models have not been used in similar studies to the best of our
knowledge.

As suggested in our study, both the Bayesian and the Gaussian
mixture models tend to suffer from overfitting. Therefore, direct appli-
cation in genomic datasets will presumably not result in robust genetic
cluster identification. Further, before concluding that either of the two
models can efficiently detect genetic clusters, both should be tested in
more challenging datasets where the studied populations demonstrate
less striking genetic distances. Nevertheless, it should also be stressed
that in comparison to K-means, where the algorithm is not efficient in
detecting clusters of geometric shapes different from a circle (Géron,
2019), both the Bayesian and the Gaussian mixture models can be more
flexible, implying that the latter ones could be applicable in more
scenarios.

5. Conclusion

Our study identified distinct genetic differences amongst three Arctic
charr populations that either have a substantial influence in the do-
mestic industry (Norway and Sweden) or represent the only practical
option for farming (Finland) using the genomic profile of each fish. The
gene pool of the Finnish population appeared to be the most narrow one.
Future genomic information for the management of all three populations
should be applied. Unsupervised machine learning models could be
worth considering for identifying genetic clusters. A dimensionality
reduction step through PCA was beneficial towards increasing the
robustness of the derived inference from each of the tested machine
learning models.
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