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Abstract
1. Competition between individuals is a key process that drives tree growth and sur-

vival in forests. Ecological theories predict that the effect of competition should 
be weaker in stressful environments. However, quantitative studies have failed to 
reach a consensus on the direction of the interaction between climate and com-
petition. In this study, we demonstrate that this interaction appears clearly when 
we explicitly focus on light competition.

2. We analysed the effect of light competition on tree growth and survival along 
both temperature and aridity gradients for the 33 major European tree species. 
We collected forest inventories from nine European countries, encompassing 
over 1 million trees from Spain to Scandinavia. We used species- specific crown 
allometric equations to connect this extensive database to the SamsaraLight ray 
tracing model and to calculate a tree- based light competition index from the light 
intercepted by the tree crown.

3. Within a given species' climatic niche, the effect of light competition on tree 
growth and survival decreased towards both the dry and cold margins, supporting 
the stress gradient hypothesis. Climate mainly affected tree growth in light, with 
slower growth in drier or colder conditions. In contrast, for survival, climate mainly 
affected trees in shade, with better survival in the dry or cold stress margins.

4. Among species, the mean sensitivity of tree growth and survival to light compe-
tition decreased with increasing mean aridity niche and shade tolerance of the 
species.
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1  |  INTRODUC TION

Climate change may cause a decline in tree growth and survival due 
to changes in temperature and in water regimes (Lindner et al., 2010; 
McDowell et al., 2020). In forests, individual trees are directly af-
fected by the local climate, which depends on weather conditions, 
but they are also indirectly affected through competition from 
neighbouring trees (Jump et al., 2017; Ruiz- Benito et al., 2013). 
Climate is likely to influence species competitiveness as well as the 
individual tree's response to competition, leading to changes in tree 
dynamics (Clark et al., 2011, 2014). Therefore, studying the effect 
of competition along climatic gradients is key to understanding how 
individual trees respond to climate and hence, to better grasp how 
forest species assemblages and structures will vary with climate 
change (Magalhães et al., 2021).

Several authors have suggested that the effect of competition 
varies along abiotic stress gradients and is weaker in stressful envi-
ronments (Bertness & Callaway, 1994; Craine, 2005; Grime, 1979; 
Maestre et al., 2009; Tilman, 1980). Grime (1979) argued for a 
weaker competitive effect in less productive and more stress-
ful environments since, for the tree, conserving energy may be 
a better strategy than competing for the limited resources avail-
able when stress is high. However, soon thereafter, Tilman (1980) 
emphasised the need to clarify which resources are involved. This 
is especially important in productive environments, where the 
abundance of below- ground resources leads to intense asymmet-
ric competition for access to light; on the contrary, in stressful 
environments, the limited availability of water or nutrients in the 
soil leads to intense competition for access to the below- ground 
resources. Later on, the stress gradient hypothesis considered 
not only competition but also facilitation processes (Bertness & 
Callaway, 1994; Maestre et al., 2009). These authors put forward 
the idea that the net competition effect should decrease with in-
creasing abiotic stress due to an increase in the frequency of fa-
cilitative interactions. One example of direct facilitation is canopy 
photoprotection in arid areas: direct exposure to strong sunlight 
could lead to greater heat and desiccation, and excessive irradi-
ance or UV radiation stress (Demmig- Adams & Adams III, 2006; 
Valladares & Niinemets, 2008). Another example is the beneficial 
effect of a dense canopy in cold areas, where the canopy layer 
protects tree organs from fatally low temperatures by limiting the 

upward dissipation of heat and by reducing the cooling effect of 
the wind (Charrier et al., 2015).

So far, studies that have attempted to assess how the effect of 
competition on tree growth and survival varies along climatic gradi-
ents have all concluded that there is a significant and important in-
teraction between climate and competition (Coomes & Allen, 2007; 
Fernández- de- Uña et al., 2015; Ford et al., 2017; Gómez- Aparicio 
et al., 2011; Kunstler et al., 2011; Rollinson et al., 2016; Ruiz- Benito 
et al., 2013; Taccoen et al., 2021). However, they have reported 
conflicting directions for this interaction, highlighting the need to 
be more specific about exactly which climatic gradient is being an-
alysed and which resources underpin the competitive interactions. 
For example, studies in the Mediterranean area have found a greater 
competition effect in water- limited environments (Gómez- Aparicio 
et al., 2011; Ruiz- Benito et al., 2013), while studies in temperate re-
gions have observed a greater competition effect in more produc-
tive sites where access to light is limited (Ford et al., 2017; Kunstler 
et al., 2011).

The first step towards disentangling the interactions between 
climate and competition is to analyse competition for a specific 
resource, rather than use a generic competition index. Previous 
studies have used crowding indices as proxies for the competition 
experienced by an individual tree. These models assume that the 
more neighbours an individual is surrounded by, and the larger 
these neighbours are, the more competition it faces. The main 
drawback of crowding indices is that they aggregate many pro-
cesses and may be misleading when we are trying to understand 
the effect of competition for a specific resource along large abiotic 
stress gradients, where stress factors are likely to vary between 
bioclimatic zones (Magalhães et al., 2021). Some studies have at-
tempted to distinguish the effects of light competition from those 
of competition for below- ground resources by using an asymmet-
ric crowding index to represent access to light and a symmetric 
index to represent access to water and nutrients (Ford et al., 2017). 
However, asymmetric versus symmetric crowding indices are not 
process- based and remain poor proxies for competition for a spe-
cific resource. We propose to focus on the role of the interaction 
between climate and light competition. Light competition is known 
to be a key process in forests and is an important determinant of 
both forest structure and tree dynamics (Pacala et al., 1996), with 
tree species strongly varying in their level of shade tolerance 

5. Synthesis. Our study emphasises the importance of considering species- specific 
interactions between light competition and climate on tree growth and survival. 
The impact of climate change on an individual tree is likely to depend on its light 
competition status within the forest stand, as well as its species- specific climatic 
niche and shade tolerance.

K E Y W O R D S
climatic gradients, continental range, individual- based model, light competition, plant–climate 
interactions, plant–plant interactions, shade tolerance, tree growth and survival
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(Valladares & Niinemets, 2008) and their sensitivity to light com-
petition (Kunstler et al., 2011). In addition, models for estimating 
tree light competition are more advanced than models represent-
ing competition for other resources, such as water or nutrients, 
making it possible to study variations in light competition effect at 
larger scales (Craine & Dybzinski, 2013).

This brings us to the second line of inquiry: using large- scale stud-
ies covering broad environmental gradients to further understand 
forest responses to climate (Ruiz- Benito et al., 2020). Large- scale 
studies are crucial if we wish to include species' climatic margins, 
where demographic performance is likely to vary for a given spe-
cies (Kunstler et al., 2021). Another major advantage of large- scale 
studies is that they make it possible to compare numerous species, 
which helps to answer the question of whether the sensitivity to 
competition varies among species depending on their climatic niche 
or ecological strategies. The direction and intensity of the climate–
competition interaction effect is likely to vary with a species' tol-
erance to resource limitation (Maestre et al., 2009). For instance, 
Kunstler et al. (2011) found that the importance of competition for 
tree growth decreases with increasing productivity along the biocli-
matic gradients of temperature and aridity, and that the mean im-
portance of competition is higher for shade- intolerant species than 
for shade- tolerant species. These results emphasise the importance 
of not only examining competition- climate interactions for multiple 
species on a large geographical scale but also comparing the sensi-
tivity of different species to light competition based on their ecolog-
ical strategies.

Herein, we present a large- scale study of the effect of light com-
petition on individual tree growth and survival across Europe, made 
possible by the availability of a database of over 1 million trees, in-
cluding nine European countries from Spain to Scandinavia. Firstly, 
to analyse the effect of light competition, we derived a tree- level 
light competition index from the SamsaraLight ray tracing model 
(Courbaud et al., 2003, 2015), a spatially explicit and tree- based 
model that estimates the amount of light intercepted by a given tree 
based on light beam interception and attenuation by the 3D crowns 
of each tree in the stand. We used species- specific crown allome-
tries to represent the tree crown structure in space. Then, we con-
sidered two climatic gradients: temperature and aridity. We used a 
water balance model based on soil structure, monthly water fluxes 
and snow melt to derive a plot- level aridity index. Finally, we fitted 
species- specific tree- based growth and mortality models as a func-
tion of climate and light competition. We then used the models to 
predict annual tree growth and survival under different climates and 
levels of light competition to test whether the effect of light com-
petition varied along the two climatic gradients, with high aridity in 
drier climates and low temperatures in colder climates constraining 
tree dynamics. The main hypothesis is that the net light competitive 
effect will be dependent on the balance between the negative ef-
fect of shading (reduced carbon assimilation) and its positive effects 
(reduced evaporative demand, reduced frost stress, …). This balance 
is likely to change along climatic gradients, depending on the rela-
tive importance of these climatic stresses. In addition, the benefit of 

being in full light will not be the same depending on the occurrence 
of other climatic constraints. The performance improvement should 
be smaller when water supply is low or when low temperature stress 
is high. We addressed this question at two different scales: (i) within 
species—between the climatic margins of a given species, and (ii) 
among species—by comparing responses for different species with 
different levels of shade tolerance and different mean climatic niches. 
We hypothesised that (i) within a given species' climatic niche, the 
effect of light competition on growth and survival would be weaker 
at the cold or dry species stress margins, and (ii) among species and 
across Europe, the species mean sensitivity to light competition on 
growth and survival would be weaker for shade- tolerant species, and 
for species whose mean climatic niche is located either in the hot, dry 
Mediterranean region or in cold boreal regions.

2  |  MATERIAL S AND METHODS

Figure 1 summarises the methodology and the main hypotheses of 
the study.

2.1  |  Ontogenic, light competition index and 
climatic variables

2.1.1  |  Forest inventories

We harmonised forest inventory databases from nine European 
countries from Spain to Scandinavia covering most of the European 
climatic gradient (see the country- specific databases, references and 
harmonisation protocols in Appendix 1). The growth dataset was 
composed of 1,081,974 trees across 106,340 plots with 33 different 
species, and the mortality dataset was composed of 1,052,965 living 
trees and 30,050 dead trees across 104,658 plots with 29 different 
species (see Figure 1 in the Appendix 1 for the species distribution). 
Most of the databases are National Forest Inventories that consist 
of visit- revisit surveys where trees are sampled within circular plots 
whose radii depend on tree size (circular areas ranging from 0.008 ha 
for smaller trees to 0.196 ha for larger trees). The years between the 
two surveys vary among and within countries (ranging from 5 to 
20 years). All the databases contain either the exact or the blurred 
location of the plot. All the databases provide the species, the di-
ameter at breast height (dbh) and the tree status (i.e. living, dead 
or harvested) recorded for each sampled tree during both the first 
and second surveys. The position of the tree and its precise crown 
dimensions were not available in most databases, so we excluded 
them from our calculations. We removed all trees below 10 cm in 
dbh to harmonise the data. We also removed any plots with records 
of harvested trees or signs of disturbance between the two surveys, 
as this might influence our estimations of light competition. We ana-
lysed only the species with at least 1000 living individuals, 100 dead 
individuals (for the study of tree survival only) and present on at 
least 500 different plots. We computed tree annual diameter growth 
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as the difference in tree dbh between the two surveys divided by the 
time between the two surveys.

2.1.2  |  Light competition index

We used the SamsaraLight ray tracing model (a spatially explicit and 
tree- based model, Courbaud et al., 2003, 2015) on virtual stands rep-
resenting the statistical sampling of the trees from forest inventory 
plots, to estimate the amount of light energy intercepted by each 
tree within each plot throughout the year (see the methodology in 
Figure 2). We represented light competition for a given tree i  within 
a plot by defining a light competition index LCI, which we calculated 
as LCIi = 1 −

Ei

Epoti
, where Ei is the total light intercepted by the tree i  

and Epoti is the potential light the tree i  would intercept if it had no 
neighbours, both Ei and Epoti in MJ.year−1. LCI = 0 represents a tree in 
full light (i.e. no light competition), whereas LCI = 1 represents a tree 
in full shade (i.e. strong light competition). Therefore, our tree- based 
light competition index reflects the three- dimensional occupation of 
space by individuals of different heights, crown structures and leaf 
densities, and takes into account the geometry and intensity of the 
light beams specific to the stand location.

To assess whether our light competition index was a better pre-
dictor than more classical competition indices, we also computed 
two non- spatially explicit crowding indices typically used to rep-
resent stand competition: BAtotal (which is not light specific and is 

expressed as the total basal area of the plot) and BAlarger (which 
is generally considered to capture light competition but excludes 
crown characteristics and light processes and is expressed as the 
total basal area of the trees in the plot larger than the focal tree), 
both in m−2.ha−1. In order to standardise the two indices per hectare, 
we added the basal area of the sampled trees multiplied by their 
sampling weight.

SamsaraLight
We divided the virtual stand into square cells of 5mx5m, with trees 
explicitly located in the stand with a simplified representation of 
their crowns. Firstly, we estimated both the diffuse and direct rays 
of sunlight that would arrive each month and quantified their en-
ergy, direction and angle, depending on stand location (see more 
details in Appendix 2.1). Secondly, we projected each single ray to-
wards the centre of each cell in the stand. Thirdly, when a ray was 
intercepted by the crown of a tree, we computed the associated 
intercepted light energy. We considered the crown as a turbid me-
dium and applied the Beer–Lambert law (see equation in Figure 2b), 
which includes the incident energy of the ray Eincident, the length of 
the path throughout the crown L and the leaf area density (LAD) of 
the tree LAD. We assumed that the leaves were opaque, arranged 
homogeneously and not aggregated within the crown, thus setting 
k and � to constants (k = 0.5 and � = 1; Ligot, Balandier, Courbaud, 
& Claessens, 2014). Thus, we were able to estimate the attenuation 
of the energy of each light ray after successive interceptions by 

F I G U R E  1  Methodology, questions and hypotheses of the study. (1) Ontogenic, light competition index and climatic variables used for 
each tree. (2) Fit of tree- based growth and mortality models for each species. (3) Predictions from the fitted species- specific models for 
annual tree growth and survival probability for a tree in light or in shade in different climates. (4) Testing these predictions for two ecological 
questions on how the effect of light competition varies along two bioclimatic gradients, both within and among species.
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676  |    BEAUCHAMP et al.

the tree crowns and calculate the sum of the energy intercepted 
from each ray, for all the trees in the stand. To account for the 
fact that we did not have any data on the environment surrounding 
the stand, we represented plot boundaries using a torus system 
(Courbaud et al., 2003).

We did not consider the topography of the plot to compute light 
interception, as we did not have both the exact coordinates nor in-
formation about the slope and orientation for all plots. Radiation 
data from the PVGIS database (Huld et al., 2012) were based on the 
incident energy on a horizontal plane and virtual plots were consid-
ered to be flat with a null slope.

Virtual stands
To link the SamsaraLight model to the forest inventory plots and 
calculate the light intercepted by each tree, we needed to create 
an explicit representation of the plots. However, the trees in the 
forest inventories are statistically sampled within a plot and do not 
provide a complete representation of the stand. In general, trees 
are sampled within circles of different sizes, depending on their 
diameter and the protocol of each country, and are therefore as-
signed a statistical weight corresponding to the number of equiva-
lent trees in a one- hectare stand. Thus, for each plot, we generated 

a representative virtual one- hectare stand (100 × 100 m in size) con-
sisting of the sampled trees replicated as many times as their as-
sociated weight per hectare and randomly positioned in the stand. 
The replicated trees in the virtual stand allowed us to derive the 
mean intercepted energy of each sampled tree and to determine 
the uncertainty due to not knowing the exact location of the sam-
pled trees. The uncertainty around the mean estimated light com-
petition index was slight enough that we were able to discriminate 
between trees in shade and trees in light, even with random tree 
positions (see Appendix 2.5).

Tree crowns
To calculate the light intercepted by a tree, we needed to explic-
itly represent its crown. We used the species- specific allometric 
relationships in Touzot et al. (under revision), which predict tree 
height, crown diameter and crown ratio (ratio of crown depth to 
tree height) from the species, dbh and local crowding index of the 
tree (see equations in Appendix 2.2). We defined tree crown shape 
as ellipsoidal for broadleaved species and semi- ellipsoidal for co-
nifers. We approximated LAD for each species based on species 
succession status, building on the idea that late successional spe-
cies can sustain a higher leaf density in their crowns (Leuschner & 

F I G U R E  2  Methodology to compute the tree- based light competition index LCI. (Panel a) We generated virtual 100 m × 100 m stands 
from observed European forest inventory plots by replicating each sampled tree according to its weight per hectare and assigning each tree 
a random location within the stand. Then, we represented the 3D crown structure of each tree from species- specific allometries, and we 
assigned a leaf area density (LAD) value depending on the species shade tolerance and its taxonomic group (angiosperm or gymnosperm). 
(Panel b) Brief explanation of the SamsaraLight ray tracing model. (Panel c) We linked the SamsaraLight ray tracing model to the virtual 
stands, and by averaging estimated values of the replicated trees, we estimated the tree- level value of both the potential intercepted energy 
without neighbours and the intercepted energy considering the attenuation of rays by competing crowns. Finally, we computed a tree- based 
light competition index LCI to estimate the light competition from a given tree's neighbours while accounting for plot location.
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    |  677BEAUCHAMP et al.

Meier, 2018; see methodology in Appendix 2.3). These allomet-
ric equations do not account for within- species climatic effects 
on crown dimensions. However, according to Lines et al. (2012), 
within- species effects are of a much smaller magnitude than inter-
specific differences.

2.1.3  |  Climatic variables

To model tree growth and survival response to climate, we se-
lected two climatic variables known to be key factors in forest 
productivity (Boisvenue & Running, 2006): the sum of growing de-
gree days (sgdd) and the ratio of actual to potential evapotranspira-
tion (aet2pet). sgdd is related to the annual temperatures at the plot 
and the length of the growing season, and aet2pet is a proxy for the 
aridity of the plot. For each plot, we computed sgdd and aet2pet for 
each year between the two surveys; we added 2 years before the 
first survey to take into account the lag effect of climate on tree 
dynamics (Kunstler et al., 2021) and then averaged the results over 
the time period.

The sum of growing degree days
sgdd was computed as the sum of the daily mean temperatures 
above 5.5°C during the year (Zimmermann & Kienast, 1999). As 
we had monthly data, we considered that the mean temperature 
of any given day was equal to the mean temperature of the month. 
We extracted monthly mean temperatures from the Chelsa da-
tabase (Karger et al., 2021) for each plot at a resolution of one 
arcsec (around 1 km × 1 km). Since altitude can vary greatly in 
a 1 km × 1 km cell, especially in mountainous regions, and since 
Chelsa climatic variables are estimated at the mean altitude of 
the cell, we corrected the monthly temperatures with altitude. 
To do so, we used a moving window regression (MWR) approach 
to estimate the local temperature lapse rate (see methodology in 
Appendix 3.1).

Ratio of actual to potential evapotranspiration
aet2pet was computed from an annual water balance by estimat-
ing the soil water holding capacity from soil variables (SoilGrids 
database, Poggio et al., 2021; and European Commission JRC, 
Panagos et al., 2012) and the monthly flux of soil water content 
from precipitation, snow melt and potential evapotranspiration pet 
from climatic variables (Chelsa database, Karger et al., 2021; see 
methodology in Appendix 3.2, inspired by Piedallu et al., 2013 and 
McCabe & Markstrom, 2007). For each month, we computed actual 
evapotranspiration aet with the monthly water entry, taking into ac-
count that as the soil water content decreases it becomes increas-
ingly difficult for the tree to absorb water from the soil to meet the 
pet requirement. Finally, we computed monthly aet2pet as the ratio 
between actual evapotranspiration aet and potential evapotranspi-
ration pet, and we averaged monthly values for a given year. aet2pet 
ranges from 0 (dry) to 1 (no water stress).

2.2  |  Species- specific tree- based growth and 
mortality models

2.2.1  |  Model definitions

We followed the growth and survival model designed in Kunstler 
et al. (2021).

Growth model
For each species, we fitted a linear mixed model (LMM) to predict 
the logarithm of the annual increment in dbh G (in mm.year−1). We 
performed a log- transformation to avoid heteroscedasticity (we re-
moved null and negative growth; 4.39% of the growing trees). For 
sgdd, we fitted two different forms, including a unimodal relation-
ship, to represent two alternative hypotheses: an asymptotic inverse 
function to represent a biological optimum at high sgdd (Equation 1), 
and a quadratic polynomial function to represent different optima 
along the sgdd range (Equation 2). In contrast, for aet2pet we only 
used an asymptotic function to represent a biological optimum for 
growth at an aet2pet of 1 (indicating no water stress). The choice 
of these response curves is based on a preliminary exploration of 
the data with smoothing functions. We used maximum likelihood to 
compare the models and restricted maximum likelihood to estimate 
model parameters. We used the lme function from the nlme pack-
age (Pinheiro et al., 2022) in R version 4.2.2 (R Core Team, 2022) to 
fit the models.

where Gi,p is the annual increment in dbh of tree i  in plot p; dbhi is the 
dbh of tree i  at first survey; LCIi is the light competition index of tree i  ; 
sgddp is the sum of growing degree days for plot p; and aet2petp is the 
aridity index for plot p. Parameters a1 to a8 are the estimated regression 
coefficients. a0,p is a normal random plot effect to account for the non- 
independence of the trees in the same plot. a0,c is the country- specific 
intercept to account for country- specific protocols. ϵi is the normal 
error term.

Mortality model
For each species, we estimated the annual probability of mortality of an 
individual tree by fitting a generalised linear model (GLM). We used a 
complementary log–log link function (cloglog) and added the logarithm 
of the time between surveys as an offset coefficient to account for 

(1)
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different times between surveys. We used the same predictor variables 
as for the growth models (see equations in Appendix 5.1). However, we 
did not include a plot random effect because it caused fitting difficul-
ties, as too many plots had no dead trees. We fitted the model with the 
glm function in R (R Core Team, 2022).

2.2.2  |  Data resampling, cross- validation and model 
selection

Since our dataset contained relatively few individuals in extreme 
climates or in large diameter classes, we performed a weighted re-
sampling to reduce the number of individuals in over- represented 
classes. We then performed a k- fold cross- validation on this new 
dataset: we randomly split the data into five folds, then fitted the 
models on the first four folds and estimated a prediction error on the 
fifth independent fold. We repeated this process for each fold. To 
account for uncertainty in the selection of model variables, we fitted 
all the possible sub- models of both equation 1 (asymptotic function 
of sgdd) and Equation 2 (quadratic function of sgdd) by removing one 
by one the climatic variables (sgdd and aet2pet) and the interaction 
with light competition LCI. We selected the best models based on 
the Akaike information criteria (ΔAIC < 2 compared with the lowest 
AIC) and used the AIC weight to average the predictions from the se-
lected models (Wagenmakers & Farrell, 2004; see detailed method-
ology in Appendix 5.2). We applied this method 20 times to account 
for stochasticity in the weighted resampling.

2.2.3  |  Comparison between competition indices

To assess the reliability of our light competition index LCI, we com-
pared tree growth and mortality models that included either LCI or the 
classical crowding indices (i.e. BAtotal or BAlarger). When considering 
competition with BAtotal, we also tested for the interaction with dbh 
(BAtotalXdbh) to reveal any possible size effect on the symmetric com-
petition. We also fitted a control model where no competition indices 
were included (control). We compared the models using ΔAICcontrol 
(difference in AIC with the control model). We quantified the predic-
tion error with the mean absolute error (MAE) for annual growth pre-
dictions and with the AUC ROC indicator (area under ROC curve) as an 
indicator of model sensitivity and specificity of the mortality models 
(Bradley, 1997). Model performance and the response curves for the 
growth and survival models with LCI are presented in Appendices 5.4 
and 5.5 for each species.

2.3  |  Predictions of annual tree growth and 
survival probability

For each species, we used the fitted growth and mortality models 
to predict the annual diameter increment and survival probability of 
a tree of that species growing either in shade (LCI = 0.9) or in light 

(LCI = 0.1) in a given climate. We fixed the individual tree size at its 
species- specific observed mean value. We averaged the coefficients 
of the country variable weighted by the number of observations of 
the species in that country. The methodology used in Section 2.2.2 
allowed us to predict 100 values of annual diameter increment and 
survival probability (20 weighted resamplings × 5 folds), from which 
we were able to derive a 95% error interval between the 2.5% and 
the 97.5% quantiles of the predictions (Geyer, 2013).

2.4  |  Effect of light competition along 
temperature and aridity gradients

We derived metrics to study how the effect of light competition var-
ies both within a given species' climatic range and among species (all 
equations in Appendix 6.1).

2.4.1  |  Within- species study

Species climatic margins
We predicted the annual growth and survival probability of a tree 
in either light or shade within the two margins of both temperature 
(sgdd) and aridity (aet2pet) gradients. We defined the two margins of 
a climatic gradient as the 2.5% and 97.5% quantiles of the species- 
specific observed values of the given climatic variable while fixing 
the other climatic variable to its species- specific observed mean 
value.

Difference in the effect of light competition between species' 
climatic margins
For each species, we computed the effect of light competition on 
tree growth �growth (and survival) as the difference in annual growth 
(and in annual survival probability) between light and shade con-
ditions within each of the four climatic species margins (aridity: 
�
growth

wet
 and �growth

dry
, temperature: �growthwarm  and �growth

cold
). Then, we com-

puted the difference in the effect of light competition on tree 
growth (and survival) between the margins of the aridity gradient 
Δ�

growth

aet2pet
= �

growth

wet
− �

growth

dry
 and between the margins of the tempera-

ture gradient Δ�growth
sgdd

= �
growth
warm − �

growth

cold
. Δ𝜂 > 0 means that the ef-

fect of light competition was greater in the species' wet margin on 
the aridity gradient, or in the species' warm margin on the tempera-
ture gradient. To estimate the average species response, we fitted a 
mixed model with species as a random effect, for both growth and 
survival and for each climatic gradient. We used the lme function 
from the nlme package (Pinheiro et al., 2022) to obtain the predicted 
mean of the margin effect and the associated standard error and 
p- value.

Difference in the effect of climate on a tree in light and a tree in 
shade
For each species, we computed tree annual growth (and annual sur-
vival probability) in each of the four margins, for a tree in light and 
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    |  679BEAUCHAMP et al.

a tree in shade. Then, for each climatic gradient and for both a tree 
in light and a tree in shade, we fitted a mixed model to predict the 
growth (and survival) in a given margin, with species as a random ef-
fect. We also obtained the predicted mean of the margin effect and 
the associated standard error and p- value.

2.4.2  |  Among- species study

Mean sensitivity to light competition
We defined the mean sensitivity of a given species to light com-
petition in terms of growth Ωgrowth and survival Ωsurvival as the rela-
tive effect of light competition in the species' mean climatic niche. 
Mean sensitivity to light competition is calculated as the log ratio of 
growth (and survival) between a tree in light and a tree in shade, all 
calculated at the species- specific observed mean value of sgdd and 
aet2pet in the dataset.

Relationships between species mean sensitivity to light competition 
and species' ecological strategies
To describe the species' ecological strategies, we considered each 
species' mean climatic niche and its shade tolerance shadetol . Species 
mean sgdd and aet2pet (sgddmean and aet2petmean) were strongly corre-
lated, with hot, dry climates at low latitudes and cold, wet climates at 
high latitudes (see Appendix 4.1.1 and Figure 17 in Appendix). It was 
therefore difficult to separate the relative contribution of sgdd and 
aet2pet when comparing species with different mean climatic niches. 
We finally chose aet2petmean as a proxy of species location within 
the European climatic gradient, as it performed better than sgddmean 
or the first axis of a PCA with sgddmean and aet2petmean (see com-
parison of results in Appendix 6.2.2). We used the species- specific 
shade tolerance values from Niinemets and Valladares (2006). We 
complemented the database for Mediterranean species with values 
from Poorter et al. (2012). If the species was not specified in either 
database, we set the species' shade tolerance as the average of all 
species in the same genus. Shade tolerance, defined as the minimum 
light at which a given species, is able to grow, was a continuous value 

ranging from 0 (shade- intolerant species) to 5 (highly shade- tolerant 
species). For the sake of graphical representation only, we have as-
signed a shade tolerance group to each species: shade- intolerant 
(species in [0,2.25[) , mid shade- tolerant (species in [2.25,3.75[) and 
highly shade- tolerant (species in 

[

3.75,5
]

).
We fitted a LMM to predict species mean sensitivity to light 

competition (in terms of growth Ωgrowth or survival Ωsurvival) as a func-
tion of species shade tolerance shadetol and species mean aridity 
niche aet2petmean, plus their interactions. We fitted the model with 
the mean of the 100 predicted values of species mean sensitivity 
to light competition (see Section 2.3) and we included species as a 
random effect.

3  |  RESULTS

3.1  |  Our light competition index was a better 
predictor of growth and survival than were generic 
crowding indices

Globally, over all the species studied, the model including the light 
competition index LCI explained both tree growth and survival bet-
ter than did the classical crowding indices (lower ΔAICcontrol, see 
Table 1). Over the 100 fits of a given species, the LCI model was the 
best fitting competition index for 19 out of 33 species for growth, 
and for 26 out of 29 species for survival. The LCI model was also 
better at predicting individual growth (the MAE of predictions on 
independent data for all species was 1.407 mm.year−1 compared with 
1.483 mm.year−1 for the control model), and the individual survival 
probability (the mean area under the ROC curve of predictions on 
new data for all species was 0.700 compared with 0.659 for the con-
trol model).

The benefit of using LCI rather than crowding indices was greater 
for the survival models than for the growth models. For growth, 
although the three comparison indicators for the LCI model were 
much better than for the asymmetric index BAlarger, they were only 
slightly better than for the non- resource- specific symmetric index 

Growth Survival

ΔAICcontrol nspecies

MAE (in 
mm.year−1) ΔAICcontrol nspecies AUC ROC

Control 0% 0 1.483 0% 0 0.659

BAlarger −0.89% 0 1.444 −1.38% 1 0.679

BAtotal −1.60% 1 1.424 −1.52% 1 0.682

BAtotalXdbh −2.35% 13 1.410 −1.78% 1 0.686

LCI −2.64% 19 1.407 −2.68% 26 0.700

Note: ΔAICcontrol is the mean relative difference in Akaike information criteria (AIC) with the control 
model for all the species and their 100 associated fits, weighted by the number of individuals in 
each species. nspecies is the number of species for which the competition index was the best (lowest 
mean AIC over the 100 fits). MAE is the mean absolute error, and AUC ROC is the area under the 
ROC curve, averaged for all the species and their 100 associated fits. In bold is the best- performing 
competition index.

TA B L E  1  Comparison of the four 
competition indices and the control model 
(i.e. no competition index).
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680  |    BEAUCHAMP et al.

BAtotalXdbh (see ΔAICcontrol, nspecies and MAE for growth in Table 1). 
In contrast, for survival, the model with LCI outperformed all the 
non- resource- specific indices (BAlarger, BAtotal and BAtotalXdbh) 
whether they were symmetric or asymmetric (see ΔAICcontrol, nspecies 
and AUC ROC for survival in Table 1).

3.2  |  The effect of light competition decreased 
towards both the colder and drier species climatic 
margins

Along the temperature gradient, the effect of light competition was 
significantly greater in the warm species margin than in the cold mar-
gin for 13 out of 33 species for growth (Figure 3, Panel 1a), and for 12 
out of 29 species for survival (Figure 3, Panel 1b). The difference in 
the average effect of light competition across all species between the 
warm and cold margins was significant on annual tree diameter growth 
with a mean difference of 0.922 mm.year−1 (95% confidence interval 
[0.306, 1.538], p value < 0.01) and was also significant on annual tree 
survival probability with a mean difference of 0.010 ([0.002, 0.018], 
p value < 0.05). Along the aridity gradient, the effect of light competi-
tion was significantly greater in the wet than in the dry species margin 
for 9 out of 33 species for growth (Figure 3, Panel 2a), and for 13 out 
of 29 species for survival (Figure 3, Panel 2b). The difference in the 
average effect of light competition across all species between the wet 
and dry margins was significant on annual tree diameter growth with 
a mean difference of 0.527 mm.year−1 ([0.166, 0.887], p value < 0.01) 
and was also significant on annual tree survival probability with a 
mean difference of 0.004 ([0.002, 0.007], p value < 0.01).

We did not find clear relationships between species ecological 
strategies (shade tolerance or environmental distribution range) and 
the intensity of Δ� (difference in light competition effect between 
species' margins) (analyses not shown).

3.3  |  The effect of climate differed for trees in 
light and trees in shade

On average across species, our results show that a tree in light grows 
significantly faster in its warm margin than in its cold margin (1.074 mm.
year−1 [0.426, 1.722], p value < 0.01) and also significantly faster in its 
wet margin than in its dry margin (0.666 mm.year−1 [0.194, 1.139], p 
value < 0.01; Figure 4, Panel 1a, yellow shapes). However, there was 
no significant effect of climate on the annual diameter growth of a 
tree in shade (Figure 4, Panel 1a, grey shapes). In contrast, for survival, 
a tree in shade survives significantly better in its cold margin than 
in its warm margin (−0.011 [−0.02, −0.002], p value < 0.05) and also 

significantly better in its dry margin than in its wet margin (−0.004 
[−0.007, −0.002], p value < 0.01; Figure 4, Panel 1b, grey shapes). 
However, there was no significant effect of climate on the annual sur-
vival probability of a tree in light (Figure 4, Panel 1b, yellow shapes).

The European beech (Fagus sylvatica L.) is a major tree species 
in Europe and is therefore an interesting illustrative species for the 
results we show above (Figure 4, Panels 2a–d). Beech trees in light 
grow faster in their warm or wet climatic margins while beech trees 
in shade survive better in their cold or dry climatic margins, resulting 
in a stronger effect of light competition in the warm and in the wet 
margins for both growth and survival.

3.4  |  Species mean sensitivity to light competition 
varied with species mean aridity niche and shade 
tolerance

For growth, there was a significant interaction effect between spe-
cies mean aridity niche and species shade tolerance (p value < 0.001). 
The species mean sensitivity to light competition decreased with 
species mean aridity niche, especially for more shade- tolerant spe-
cies (Figure 5a). For survival, there was a significant positive effect 
of species mean aridity niche (p value < 0.01) and a significant nega-
tive effect of shade tolerance (p value < 0.01) on species mean sen-
sitivity to light competition (Figure 5b). It is interesting to note that 
two shade- intolerant species with a wet mean climatic niche showed 
a low sensitivity to light competition for survival: Betula pubescens 
(shadetol = 1.46 and aet2petmean = 0.90 with Ωsurvival = 0.011, spe-
cies number 6 in Appendix 6.2.2) and Larix decidua (shadetol = 1.85 
and aet2petmean = 0.95 with Ωsurvival = 0.007 , species number 12 
in Appendix 6.2.2). These species are also associated with cold 
climates (Betula pubescens sgddmean = 1297

◦

C and Larix decidua 
sgddmean = 1664

◦

C ). The regressions are plotted in insets of Figure 5 
(Panel A for growth and Panel B for survival) and coefficients are pre-
sented in Appendix 6.2.2. See also species' mean climatic niche and 
the equivalent of Figure 5 including species names in Appendix 6.2.2.

4  |  DISCUSSION

4.1  |  Our light competition index was a better 
predictor of growth and survival than were generic 
crowding indices

Our light competition index appeared to be a better predictor than 
classical competition indices based on symmetric or asymmetric 
crowding intensities (BAlarger, BAtotal and BAtotalXdbh in Table 1). 

FI G U R E 3 Differences in the effect of light competition on tree growth (Panel a) and survival (Panel b) between species' warm vs cold margins 
(Panel 1) and wet vs dry margins (Panel 2). For each species, the point represents the predicted mean and the error bar represents the 95% 
percentile interval, based on the 100 species predictions. The ‘-  -  - ’ symbol below the error bar indicates that the error bar extends beyond the 
figure and has been truncated to simplify the figure (see Appendix 6.2.1 for full length error bar figures). Species with error bars that do not cross 0 
are considered significant. The average species response is based on a LMM (see Section 2.4.1) with the error bar representing the 95% confidence 
interval around the mean prediction. Species are ordered from top to bottom by aet2petmean (i.e. species living in wetter to drier climates).
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682  |    BEAUCHAMP et al.

Our 3D light interception model takes into account individual tree 
height, species- specific crown geometries and the relative energy 
carried by light rays coming from different directions in the sky (var-
ying with plot latitude and cloud cover; Huld et al., 2012); it has been 
shown to robustly simulate light measured with hemispherical pho-
tographs (André et al., 2021; Courbaud et al., 2003; Ligot, Balandier, 
Courbaud, Jonard, et al., 2014). Competition among trees in a forest 
is primarily influenced by canopy cover, and implies light competition 
(Pacala et al., 1996), which may explain why our light competition 
index produced better predictions. The difference among indices 
was even more significant when predicting survival, which indicates 
that light competition may be an important factor in the tree survival 
process.

4.2  |  The effect of light competition decreased 
towards both the colder and drier species climatic 
margins

Our results in Figure 3 highlight the importance of considering the 
species- specific interactive effect between light competition and 
climate, and support ecological theories that predict a decreas-
ing effect of competition with increasing abiotic stress (Bertness & 
Callaway, 1994; Grime, 1979; Maestre et al., 2009; Tilman, 1980). 
Coomes and Allen (2007) found similar results for mountain beech 
growth along an altitudinal gradient in New Zealand: the intensity 
of asymmetric competition decreased with altitude (i.e. as the envi-
ronment became colder and more stressful). In contrast, for survival, 
Ruiz- Benito et al. (2013) found a stronger effect of asymmetric com-
petition on tree mortality under stressful hotter and drier conditions 
along a Mediterranean climatic gradient, and Taccoen et al. (2021) 
found excess mortality of suppressed trees with increasingly stress-
ful hot temperatures. The latter studies were based on crowding 
indices that were not specific to light competition. This opens the 
door to confusion between light competition and competition for soil 
resources, by capturing more intense competition through a greater 
competition for water in drier, more stressful environments. This 
highlights the importance of using an explicit resource- specific com-
petition index.

Few species in Figure 3 stood out and showed a reverse direc-
tional effect (i.e. greater light competition effect in cold and dry mar-
gins). A possible explanation could be that these species are typical 
of forests with intensive management strategies (e.g. high thinning 
intensity, coppice, plantation outside the native ecological niche). 
More specifically, the vast majority of these species are mainly 
managed in coppice, such as Carpinus betulus (European hornbeam), 
Castanea sativa (sweet chestnut), Quercus suber (cork oak, plus spe-
cific management by bark removal) and Quercus ilex (evergreen oak). 
This could lead to inappropriate estimates of crown dimensions, 
light interception and tree dynamics due to complex crown shapes. 
Another hypothesis is the unusual ecological niche of some spe-
cies, leading to possible difficulties in estimating the environmen-
tal drivers. For example, Alnus glutinosa (black alder), which grows 

very close to rivers, or Pinus pinaster (maritime pine), which has been 
widely planted outside its native range.

In our study, we simplified the climatic effect to two dimen-
sions, a negative effect of low temperature and a negative effect 
of high aridity. This allowed us to hypothesise that abiotic stress 
would increase along the temperature gradient towards the spe-
cies' cold margin and along the aridity gradient towards the species' 
dry margin. We are aware that climatic effects can be much more 
complex: isolated excessive temperatures can be stressful enough 
to perturb photosynthesis (as photosynthesis has a thermal opti-
mum at around 45°C, Bennett et al., 2021); or complex interactions 
exist between temperature and aridity (Ruehr et al., 2016). However, 
we believe that in arid areas, our two climatic variables capture the 
main climatic constraint on tree dynamics, given the spatial (all of 
Europe) and temporal scale (time between surveys ranging from 5 to 
20 years) of our data.

4.3  |  The effect of climate differed for trees in 
light and trees in shade

Our results in Figure 4 showed that trees in shade and trees in light 
responded differently to the stand climatic conditions, resulting in 
an effect of light competition that varied along climatic gradients. 
However, the processes underlying these interactions between cli-
mate and light competition were different for growth and survival.

For growth (Figure 4, Panel 1a), we showed that trees in light grow 
faster in both their wet and their warm species margins, whereas 
there was no difference in growth for trees in shade. This could in-
dicate control by the most limiting factor (van der Ploeg et al., 1999); 
a tree in shade will not be able to benefit from the favourable condi-
tions of non- limited climatic conditions (with adequate warmth and 
sufficient water) because it does not have access to its primary re-
source for photosynthesis: light. Similarly, Ford et al. (2017) observed 
an effect of climate on the growth of four tree species only when 
crowding competition was low, since high competition constrained 
growth even when climatic conditions were favourable.

For survival (Figure 4, Panel 1b), we found that trees in shade had 
a better chance of surviving in both their cold and their dry species 
margins, whereas there was no significant difference in survival for 
trees in light. These results support the stress gradient hypothesis 
(Bertness & Callaway, 1994; Maestre et al., 2009), which suggests 
that the importance of facilitative interactions increases in stressful 
environments. Shade stress intensity depends on climatic conditions 
(Holmgren et al., 1997), becoming less stressful in colder and drier 
species margins. Shade can help trees in arid areas by protecting 
them from photo- inhibition, defined as prolonged exposure to light 
that causes stress (e.g. through increased heat, drought conditions, 
excessive irradiance or UV radiation). Photo- inhibition therefore 
reduces carbon assimilation (Demmig- Adams & Adams III, 2006). 
Similarly, in colder environments, shade provided by the canopy 
above protects the tree from harsh conditions, such as frost or wind 
(Charrier et al., 2015).
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However, the higher survival of trees in shade in stressful 
conditions cannot be explained by facilitation processes alone. 
We do not have a clear physiological explanation for this pat-
tern, but two mechanisms could be involved. First, stressful abi-
otic conditions could lead to plastic variation in traits that allow 
greater allocation of resources to reserve and structure organs. 
This process, which is characteristic of a conservative strategy 
(see Zhou et al., 2024 for cold environments and Rodriguez- 
Zaccaro & Groover, 2019 for dry environments), could also favour 
greater tolerance to shade, as observed in cases of polytolerance 
(Valladares et al., 2016). On the contrary, low- stress abiotic con-
ditions could lead to a plastic allocation of resources for a faster 
foliage and height growth, characteristic of a shade- avoidance 
strategy (Henry & Aarssen, 2001), which could be inefficient in 
the long term for suppressed trees and costly for their survival. 
At present, there is a lack of studies that have investigated these 
physiological mechanisms on an intraspecific scale and under dif-
ferent environmental conditions.

4.4  |  Species mean sensitivity to light competition 
varied with species mean aridity niche and shade 
tolerance

The results in Figure 5 highlight that species mean sensitivity to light 
competition varies with species mean aridity niche. The effect of 
light competition on both tree growth and survival was weaker for 
species whose mean climatic niche is located in more arid climates 
(i.e. hot, dry Mediterranean climates). Also, on an interspecific scale, 
our results support the ecological theories that predict a decreas-
ing effect of competition with increasing abiotic stress (Bertness & 
Callaway, 1994; Grime, 1979; Maestre et al., 2009; Tilman, 1980).

Our results in Figure 5 show that species mean sensitivity to light 
competition in terms of growth and survival also varied with spe-
cies shade tolerance. For survival (Figure 5b), our study highlights 
a direct effect of species shade tolerance, with the species mean 
sensitivity to light competition decreasing as species shade tolerance 
increases. These results are relevant because the shade tolerance 

F I G U R E  4  Panels (1a and b) show the average response across all species of the difference between margins (warm vs. cold and wet vs. 
dry) in growth (1a) and survival (1b) for a tree in light and a tree in shade. The error bars show the 95% confidence interval around the mean 
prediction. Significance of the species margin effect is shown by ***p value < 0.001; **p value < 0.01 and *p value < 0.05 (see Section 2.4.1). 
Panels (2a–d) show the prediction of annual growth and survival probability for a major species in Europe, the European beech (Fagus 
sylvatica L.), along its species- specific temperature and aridity gradients. The grey areas represent the confidence interval around the values 
predicted from the 100 species sets of parameters.
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index in Niinemets and Valladares (2006), which we used in our 
study, is based on the ability of a species to survive in a given level 
of shade. Similarly, Kulha et al. (2023) found that the effect of asym-
metric competition on tree mortality was weaker for shade- tolerant 
species. For growth (Figure 5a), however, we found an interactive 
effect between species shade tolerance and species mean climatic 
niche. The decrease in the species mean sensitivity to light compe-
tition towards drier sites was more pronounced for shade- tolerant 
species. As a result, species living in wetter climates were equally 
and strongly sensitive to light competition on their growth, regard-
less of their shade tolerance: trees in light grew rapidly, while trees in 
shade did not. On the contrary, when comparing species associated 
with Mediterranean climates, there was an effect of species shade 
tolerance, with shade- intolerant species being more sensitive to 
light competition than mid shade- tolerant species. It is important to 
note that in the Mediterranean climates in our study, all the shade- 
intolerant species were of the genus Pinus, and all the mid shade- 
tolerant species were of the genus Quercus; we did not observe any 
shade- tolerant species in the Mediterranean area. It is therefore diffi-
cult to disentangle the genus effect from the shade tolerance effect. 
As Niinemets and Valladares (2006) showed an inverse relationship 

between species shade-  and drought tolerance, it is likely that the 
shade- intolerant genus Pinus would be more drought- tolerant, and 
therefore, Pinus trees in high light could still grow rapidly even with 
high aridity.

We found a strong negative correlation between species sgddmean 
and aet2petmean along the European latitudinal gradient, with species 
either living in hot, dry Mediterranean climates at low latitudes or 
in colder, wetter climates at higher latitudes. This could explain why 
we found that species mean sensitivity to light competition was 
not weaker for species associated with cold, stressful climates. In 
fact, the species in colder climates were also associated with wetter 
ones, for which we found a greater species mean sensitivity to light 
competition. We also found that there was a high variability in spe-
cies mean sensitivity to light competition that was not explained by 
shade tolerance or aet2petmean, which could indicate effects of other 
climatic dimensions or ecological strategies. For instance, Betula pu-
bescens Ehrh. (downy birch) and Larix decidua Mill. (European Larch), 
despite being shade- intolerant species, had low sensitivity to light 
competition for survival. In fact, these two species stand out be-
cause their mean climatic niche is exceptionally cold compared with 
the rest of the European climatic gradient.

F I G U R E  5  Relationships between species mean sensitivity to light competition and species mean aridity niche and shade tolerance for 
tree growth (Panel a) and survival (Panel b). Points represent the species mean sensitivity averaged over the 100 predictions and error bars 
represent the 95% quantile interval for the 100 predictions. Insets show the regressions for three values of shade tolerance, respectively 1.5 
(shade- intolerant, yellow line), 3 (mid shade- tolerant, brown line) and 4.5 (highly shade- tolerant, black line). The range of the regression on 
the x- axis 

(

aet2petmean

)

 was calculated for each of the three shade tolerance groups from the minimum to the maximum mean aridity niche of 
the species in that group.
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4.5  |  On the complexity of representing tree 
competition for resources

Our light competition index resulted in an improvement in growth 
and survival predictions compared with non- resource- specific com-
petition indices (Table 1). This is all the more remarkable as we were 
unable to take full advantage of the spatially explicit light intercep-
tion model due to limitations in the forest inventories we used. 
Firstly, we did not know the exact location of each tree and there-
fore used random locations. This could lead to an underestimation 
of the light intercepted by a tree in a gap, or an overestimation for 
a tree in a dense patch. Second, we used simplified crown shapes 
based on species- specific crown allometries that ignore the pos-
sible adaptability of trees to the surrounding environment. LiDAR 
would be a promising technology to more precisely represent crown 
structure and plasticity in forest plots (Terryn et al., 2023), which are 
likely to improve the estimation of light interception by individual 
trees. Unfortunately, such data are not currently available for use in 
European national forest inventories.

We recognise that our light competition index could be cor-
related to competition for below- ground resources (Craine & 
Dybzinski, 2013). However, by using a 3D light interception model 
that takes into account specific characteristics of light (influence 
of crown shape, geometry and intensity of the light rays, effect of 
latitude, etc.), we have constructed a competition index that is as 
specific to light as possible. It was difficult to accurately account for 
competition for below- ground resources, as explicit physical models 
of competition for water and nutrients are less common in the litera-
ture (Craine & Dybzinski, 2013). These models require detailed infor-
mation on tree root geometry and soil structure (e.g. HETEROFOR 
1.0 model, Wergifosse et al., 2020) and are not yet well suited for 
large- scale studies. It would have been interesting to observe varia-
tions in the effect of competition for below- ground resources along 
climatic gradients in parallel with light competition. Following the 
theory of Tilman (1980), we could expect inverse relationships be-
tween below- ground and light competition, with the effect of water 
or nutrient competition increasing on constrained sites.

4.6  |  Implications for forest community dynamics

Our study highlights the need to consider interactions between 
light competition and climatic conditions to correctly predict forest 
responses to global change. The intensity of the effect on annual 
tree growth and survival may seem low, but will be amplified over 
consecutive years through an increasing access to light for the domi-
nant trees and a decreasing access for the suppressed ones. This 
corresponds to the process of size differentiation among individuals 
(Oliver & Larson, 1996). Because light competition is more impor-
tant in climates with higher productivity, differentiation may play a 
greater role there than in forests where resources are scarce and 
stress is high. We expect the environment to become more stressful 
with climate change, which may lead to less differentiation between 

trees in light and in shade, with potential implications on forest 
dynamics, structure, biodiversity and ecosystem services (Lindner 
et al., 2010; McDowell et al., 2020).
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