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ABSTRACT
How genetic variation contributes to adaptation at different environments is a central focus in evolutionary biology. However, 
most free- living species still lack a comprehensive understanding of the primary molecular mechanisms of adaptation. Here, we 
characterised the targets of selection associated with drastically different aquatic environments—humic and clear water—in the 
common freshwater fish, Eurasian perch (Perca fluviatilis). By using whole- genome sequencing (WGS) on a large population 
dataset (n = 42 populations) and analysing 873,788 SNPs, our primary aim was to uncover novel and confirm known footprints of 
selection. We compared individual and pooled WGS, and developed a novel approach, termed dynamic outlier slicing, to assess 
how the choice of outlier- calling stringency influences functional and Gene Ontology (GO) enrichment. By integrating genome- 
environment association (GEA) analysis with allele frequency- based approaches, we estimated composite selection signals (CSS) 
and identified 2679 outlier SNPs distributed across 324 genomic regions, involving 468 genes. Dynamic outlier slicing identified 
robust enrichment signals in five annotation categories (upstream, downstream, synonymous, 5′UTR and 3′UTR) highlighting 
the crucial role of regulatory elements in adaptive evolution. Furthermore, GO analyses revealed strong enrichment of molecular 
functions associated with gated channel activity, transmembrane transporter activity and ion channel activity, emphasising the 
importance of osmoregulation and ion balance maintenance. Our findings demonstrate that despite substantial random drift 
and divergence, WGS of high number of population pools enabled the identification of strong selection signals associated with 
adaptation to both humic and clear water environments, providing robust evidence of widespread adaptation. We anticipate that 
the dynamic outlier slicing method we developed will enable a more thorough exploration of adaptive divergence across a diverse 
range of species.

1   |   Introduction

Understanding the genetic mechanisms underlying ad-
aptation is one of the fundamental goals of population 

genetics and evolutionary biology (Allendorf and Ryman 2002; 
Bernatchez  2016). Advances in high- throughput sequencing 
technologies have significantly enhanced our capacity to ex-
plore these mechanisms, particularly through the application 
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of hitchhiking mapping (Harr, Kauer, and Schlötterer 2002), 
also known as ‘genome scan’ approaches (Rellstab et al. 2015; 
Ahrens et  al.  2018). Whole- genome re- sequencing provides 
the highest resolution for detecting both neutral and putative 
adaptive regions within a species' genome. Compared to less 
densely sampled SNP datasets, this approach has enabled the 
identification of fine- scale peaks of genetic differentiation 
between populations, as well as strong association with phe-
notypes that were undetected using reduced- representation 
methods (see e.g., (a) Aguillon, Walsh, and Lovette (2021) vs. 
Aguillon et al. (2018); (b) Campagna et al. (2017) vs. Campagna 
et  al.  (2015) (c) Clucas, Kerr et  al.  (2019) vs. Clucas, Lou 
et al. (2019); and (d) Szarmach et al. (2021)). However, reliable 
genetic insights often require a large sample sizes, making 
individual whole- genome sequencing (WGS) cost- prohibitive. 
Pooling individuals offers a cost- effective alternative for SNP 
discovery and allele frequency estimation (Futschik and 
Schlötterer  2010; Gautier et  al.  2013). This cost- efficiency of 
pooled sequencing (pool- seq) has driven its widespread adop-
tion in investigating the genetic basis of complex traits (e.g., 
Cheeseman et al. 2015), identifying loci linked to local adap-
tation (e.g., Giska et al. 2022), and discerning genomic regions 
under selection during domestication (e.g., Rubin et al. 2010), 
among other applications.

In the exploration of genomic regions shaped by adaptation, 
researchers often compare populations living in different 
environments to detect highly differentiated genetic regions 
among them (via allele frequency differentiation or outlier 
methods), and identify correlations between allele frequen-
cies (AF) and environmental variables (genome- environment 
association, GEA) (Hoban et  al.  2016; Ahrens et  al.  2018). 
However, accurately modelling the null distribution and cal-
culating precise p- values for empirical datasets is challenging 
due to factors such as population structure, sample design 
(Lotterhos and Whitlock 2015), recombination rates (Booker, 
Yeaman, and Whitlock 2020) and approach can enhance the 
robustness (Grossman et al. 2010; Utsunomiya et al. 2013; Ma 
et al. 2015; Lotterhos et al. 2017). Furthermore, despite sub-
stantial algorithmic enhancements, one of the oft- discussed 
questions regarding genome scans pertains to the determi-
nation of which statistical threshold should be used to call 
a locus an outlier, significantly deviating from the neutral 
expectations (François et  al.  2016). Across and even within 
studies, various significance thresholds are often employed to 
identify selection signatures. These thresholds often encom-
pass the upper percentiles of the observed distribution, typ-
ically ranging from the top 5% to 0.1%, or rely on statistical 
measures such as p- values, q- values, standard deviations or 
other relevant statistics.

Thus, determining the most appropriate significance thresh-
olds can be challenging and is often arbitrary, given the 
apparent trade- offs between overly stringent or relaxed cri-
teria associated with potential false negative and positive 
detections (Whitlock and Lotterhos  2015; Whitlock and 
Lotterhos 2015). Here, we present a complementary approach 
using to assess the non- random distribution of SNP catego-
ries and Gene Ontology (GO) terms across different levels of 
outlier stringency levels. Since the true footprints of selection 

are expected to be enriched for certain type of variants (e.g., 
regulatory, missense) more than the others (e.g., intergenic, 
intronic) and correspond to specific molecular function 
(MM), cellular component (CC) and biological processes (BP) 
linked to the physiological process of adaptation, we tested 
how different thresholds of calling a set of loci as outliers in-
fluence their functional enrichment. We predicted that the 
use of small number of outliers with very stringent thresh-
olds (high level of false negatives) would result in a reduced 
power to observe significant functional enrichment. In con-
trast, overly relaxed outlier thresholds with high number of 
false positives, is expected to weaken the true signal of func-
tional enrichment. Thus, by screening across different outlier 
thresholds, we expect to obtain new functional information 
on the interplay between putative false negative and positive 
detections. We call this procedure ‘dynamic outlier slicing’ 
to reflect its explorative nature. This approach allows us to 
systematically explore the impacts of varying outlier thresh-
olds on non- random distribution of variants shaped by diver-
gent selection and functional enrichment of genes important 
for adaptation. Furthermore, it is applicable to any dataset 
that ranks loci based on the strength of evidence for selec-
tion or non- neutrality, whether derived from individual or 
pooled data.

In aquatic environments, fish are found in almost all habitat 
types, including those that pose extreme survival challenges 
(Wang and Guo  2019), such as caves (Proudlove et  al.  2010; 
Soares and Niemiller 2013), high hydrogen sulphide concen-
trations (Plath et al. 2007; Riesch, Plath, and Schlupp 2010), 
hypoxia (Yang et  al.  2021), hypersaline and hyperalkaline 
water (Tong et  al.  2017; Xu et  al.  2017; Tong and Li  2020). 
Among these extreme environments are also dystrophic lakes, 
which are characterised by high content of humic substances, 
low pH values, nutrient- poor and brown- coloured waters 
(Kalinowska et al. 2021; Karpowicz et al. 2023). These charac-
teristics act as limiting factors for the species richness, diversity 
and abundance of zooplankton and fish communities in tem-
perate zone (Arvola and Kankaala 1989; Finstad et al. 2014; 
Kalinowska et al. 2021). The dark brownish hue of water in 
these lakes is primarily attributed to the presence of dissolved 
organic matter (DOM), originating from surrounding forests 
and peat bogs as well as the decomposition of aquatic plant 
materials and bacteria (Wetzel 2001; Stedmon, Markager, and 
Bro  2003). DOM is typically quantified as dissolved organic 
carbon (DOC; Wood, Al- Reasi, and Smith  2011), and it sig-
nificantly regulates the carbon and energy cycle of inland wa-
ters and plays a pivotal role in shaping aquatic ecosystems, 
impacting their biological, chemical, and physical character-
istics (Battin et al. 2009). Over recent years, terrestrial loads 
of dissolved organic carbon have increased in lakes and riv-
ers across various regions, a process known as brownifica-
tion (Evans, Monteith, and Cooper  2005; Evans et  al.  2006; 
Williamson et al. 2015; Meyer- Jacob et al. 2019). This process 
has the potential to bring about significant alterations in the 
chemical, physical, and biological attributes of aquatic ecosys-
tems (Brothers et al. 2014; Jones and Lennon 2015; Hedström 
et al. 2017), leading to changes in both planktonic and benthic 
primary production due to strong changes in light and nutri-
ent availability (Kazanjian et al. 2021).
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Eurasian perch (Perca fluviatilis) is one of the few fish species 
capable of thriving in acidic and humic conditions of northern 
latitude lakes (Hesthagen et al. 1992; Bertolo and Magnan 2007; 
Rask et  al.  2014; Vasemägi et  al.  2023). Yet, a comprehensive 
understanding of the genetic basis and molecular mechanisms 
that enable Eurasian perch to thrive in these conditions is still 
lacking. Recently, Ozerov et al. (2022) provided initial insights 
on footprint of selection associated to adaptation to the humic 
environment by analysing full genomes of 32 individuals. This 
study revealed hundreds of genomic regions scattered across 
the genome shaped by divergent selection, and pinpointed the 
importance of plasma membrane and ion transportation pro-
cesses in humic adaptation. Furthermore, the enrichment of 
outlier variants in regulatory regions indicated the importance 
of regulatory elements in humic adaptation (Ozerov et al. 2022). 
However, because this study analysed only a single specimen 
per lake, the allele frequency estimates for individual popula-
tions could not be accurately estimated. Therefore, the previ-
ously identified footprints of selection likely represent only the 
most drastic differences between habitats (Ozerov et al. 2022).

In this study, we conducted a more comprehensive investigation 
using pooled WGS (pool- seq) across a larger number of popula-
tions (n = 42) sampled from lakes with extremely dark and clear 
waters. Our specific objectives include: (1) to compare individ-
ual and pooled WGS datasets to characterise population genetic 
diversity and structure; (2) to identify outlier SNPs and genomic 
regions likely subjected to selection; (3) to develop and test a 
dynamic outlier slicing approach to assess how varying levels 
of stringency in outlier calling influence functional and GO en-
richment analyses; and (4) to identify the most promising can-
didate genes and genomic regions involved in humic and clear 
water adaptation.

2   |   Materials and Methods

2.1   |   Sample Collection and Whole Genome 
Sequencing

A total of 42 populations collected from four countries (Sweden, 
Finland, Estonia, Lithuania) were studied, comprising 22 pop-
ulations from humic lakes and 20 populations from clear- water 
lakes (Figure 1A, Table 1). Lakes were selected based on dras-
tic differences in water colour while maintaining geograph-
ical proximity between lake types. Priority was given to lakes 
without outflows or, alternatively, those with migration barriers 
when outflows were present, to minimise the potential impact of 
gene flow on our inferences. Although our study design accounts 
for geographic proximity and contrasting environmental con-
ditions, it is not a strictly paired experimental design. Instead, 
we evaluated differences between humic and clear water lakes 
population as aggregated groups. This approach enhances the 
power of detecting loci under selection while minimising the ef-
fect of population structuring (De Mita et al. 2013; Whitlock and 
Lotterhos 2015; Hoban et al. 2016).

Genomic DNA from each individual fish was extracted from tis-
sue samples using the NucleoSpin Tissue kit (Macherey- Nagel) 
following the manufacturer's protocol. For each population, 
DNA from individuals were pooled equimolarly, with pool sizes 

ranging from 8 to 59 individuals per pool (mean 26.7, 25–75th 
percentile = 11.8–40.0). Whole- genome sequencing (WGS) 
was subsequently performed on these pooled population sam-
ples. Paired- end libraries were prepared for each pool using a 
TruSeq PCR- free kit (Illumina). The libraries were sequenced 
using an Illumina NovaSeq 6000 using paired- end sequencing 
(2 × 150- bp read length with 8- bp index) at the Science for Life 
Laboratory (SciLifeLab), Uppsala, Sweden.

2.2   |   Read Quality and Variant Calling

The quality of the sequence data was assessed using FastQC 
v.0.11.8 (http:// www. bioin forma tics. babra ham. ac. uk/ proje cts/ 
fastqc/ ). Short (< 60 bp) and low quality reads (average quality 
score < 25 in sliding window of 5 bp), poly- G tails and Illumina 
adaptors were trimmed with fastp v.0.20 (Chen et al. 2018) using 
the following parameters: - g - w 12 - r - W 5 - M 25 - - trim_front1 9 
- - trim_front2 9 - - trim_tail1 2 - - trim_tail2 2 - l 60. Filtered reads 
from each pool were aligned to the Eurasian perch reference 
genome (GenBank version: GCA_010015445.1) using Bowtie2 
v.2.4.4 (Langmead et al. 2009). Default parameters were applied, 
with the exception of the modified score minimum threshold 
(−- score- min L, - 0.3, - 0.3) and the maximum fragment length 
for valid paired- end alignments (−X 700).

The variant calling was carried out using two pipelines as per-
formed in Ozerov et al. (2022), briefly: (1) The SAMtools v.1.10 
(Li  2011) pipeline was applied to the aligned and sorted BAM 
files, then bcftools was applied to perform the variant calling 
with parameters set as: samtools mpileup - uIg - t DP,AD,INFO/
AD,ADF,ADR,SP - q 20. (2) HaplotypeCaller subroutine from 
gatk v.n 4.1.4.1 (McKenna et al. 2010) which was applied to the 
BAM files to generate single- sample GVCF files using the fol-
lowing parameters: - ERC GVCF - - minimum- mapping- quality 
20 - mbq 13 - - indel- size- to- eliminate- in- ref- model 12 - G 
AS_StandardAnnotation. The GenomicsDBImport tools was 
used to import the GVCF files into GenomicsDB. Finally, a 
final calling of the consensus genotypes was performed with 
GenotypeGVCFs. Variants discovered by both pipelines were 
further filtered using vcftools v.0.1.15 (Danecek et  al.  2011) as 
follows: - - max- meanDP 66 - - min- meanDP 10 - - max- missing 1 - - 
mac 2 - - min- alleles 2 - - max- alleles 2 - - minQ 30. Furthermore, 
variants occurring in repetitive genomic regions were excluded 
with - exclude- bed parameter using positions of low complexity 
regions in perch genome. Finally, we retained 1,635,970 variants 
consistently called by both pipelines. The bcftools module was 
employed to generate an mpileup format file using SNPs posi-
tions. This file was then processed using PoPoolation2 (Kofler, 
Pandey, and Schlötterer 2011) to obtain a sync format file (mpile-
up2sync.pl), which contains the synchronised variant informa-
tion across multiple populations. We further applied a minor 
allele frequency (MAF) threshold of 5% filter, resulting in a final 
dataset of 873,788 SNPs, distributed across 24 chromosomes, 
with a small portion located in unplaced scaffolds (Table S1).

The functional annotation of the SNPs was carried with SnpEff 
v.5.0 (Cingolani et al. 2012), employing the SnpEff database gen-
erated from the Eurasian perch reference genome sequence and 
its corresponding annotation file (NCBI: GCA_010015445.1). 
Furthermore, we identified the orthologous genes counterparts 
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in the human and zebrafish genomes using RENTREZ 
(Winter 2017).

2.3   |   Comparison of Individual Versus Pooled WGS 
Datasets

One of the objectives of our study was to assess the performance 
of individual and pooled WGS approaches for detection of foot-
prints of selection. To achieve this, we conducted a compara-
tive analysis between a previously published dataset (Ozerov 
et al. 2022) and a new dataset comprising 42 populations gen-
erated for this study. The individual WGS dataset, referred to as 
‘ind- seq’ included 32 genomes sampled from 16 humic and 16 
clear- water lakes in Northern Europe, with a single individual per 
lake (Figure 1A). This dataset consists of 810,591 SNPs, a more 
detailed description can be found in Ozerov et  al.  (2022). The 
pooled dataset, henceforth referred to as ‘pool- seq’ comprised 

the 42 populations and 873,788 SNPs, as mentioned earlier. 
Altogether, 24 populations (lakes) and 739,922 SNPs overlapped 
between these two datasets (Figure  1B). Individuals analysed 
by Ozerov et al. (2022) were also included for pool- seq, with one 
individual overlapping in each of 24 shared populations.

2.4   |   Genetic Population Structure, Differentiation 
and Diversity

The allele frequency for each pool was calculated using the cal-
freq function within the popoolation2helper tool, which uses the 
synchronised data format (sync file; https:// github. com/ Yiguan/ 
popoo latio n2helper). Diversity statistics, including segregating 
sites (S), nucleotide diversity (π) and Watterson's θ were com-
puted using NPStats v1 (Ferretti, Ramos- Onsins, and Pérez- 
Enciso 2013), with parameters - l 50,000 –mincov 4 and –maxcov 
500, where - l is the window length in bases, mincov minimum 

FIGURE 1    |    Geographic origins and overview of datasets for the study populations. (A) Map illustrating the geographic origins of all samples anal-
ysed. Colours denote countries: Greens for Estonia, blues for Finland, reds for Lithuania and purples for Sweden. Symbols represent sequencing tech-
niques: Circles indicate populations sequenced using pooled sequencing (pool- seq), triangles indicate individual sequencing (ind- seq), and squares 
denote populations analysed with both techniques. (B) Venn diagrams depicting the overlap of SNPs and populations for ind- seq and pool- seq. (C) 
Correlation between dissolved organic content (DOC) in mg/L and coloration in mg Pt/L. The dashed line represents the midpoint value between the 
highest coloration in clear water lakes and the lowest coloration in the humic lakes. (D) Allele frequency correlations between ind- seq and pool- seq 
for populations in clear and humic lakes.
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TABLE 1    |    Summary information on studied populations, including country of origin, lake type (H—Humic, C—Clear- water), pool sample size, 
latitude, longitude, dissolved organic carbon concentration (DOC, mg L−1), coloration (mgPt L−1) and sequencing depth.

ID Country
Lake 
type Lake name N Latitude Longitude DOC Coloration

Sequencing 
depth

EAAK Estonia H Akste järv 10 58.17 27.05 28.89 205 37.4

EANTa Estonia C Äntu Valgejärv 40 59.06 26.24 13.38 17.5 42.5

EHEIa Estonia H Heisri Mustjärv 41 58.02 26.83 33.28 315 62.2

EHINa Estonia C Hino järv 40 57.58 27.23 13.91 15 52.6

EHKI Estonia H Holvandi Kivijärv 40 58.04 27.20 50.04 520 60.6

EKAH Estonia C Kurtna Ahnejärv 10 59.26 27.56 6.25 17.5 44.4

EKAR Estonia C Karujärv 8 58.38 22.22 10.2 15 28.2

EKIS Estonia C Kisõjärv 40 57.64 27.21 12.98 37.5 40.7

EKUUa Estonia H Kuulma järv 40 57.96 27.16 47.1 447.5 72.2

EKVA Estonia C Koorküla Valgjärv 28 57.90 25.87 7.54 12.5 27.5

ELAS Estonia H Lasa järv 16 57.92 25.79 26.03 247.5 33.0

ELOOa Estonia H Loosalu järv 40 58.94 25.08 17.41 172.5 52.0

EMAH Estonia C Mähuste järv 12 59.41 25.61 9.92 60 24.0

EMATa Estonia H Matsimäe Pühajärv 40 59.06 25.51 41.63 307.5 68.8

EMEEa Estonia H Meelva järv 40 58.14 27.39 47.77 517.5 59.9

ENIG Estonia H Nigula järv 12 58.01 24.71 26.66 215 17.1

EPAIa Estonia C Paidra järv 40 57.91 27.19 10.23 30 79.8

EPAL Estonia H Peraküla Allikajärv 11 59.21 23.61 23.44 187.5 37.4

EPARa Estonia H Partsi Saarjärv 40 58.00 27.17 64.8 765 62.7

EPIIa Estonia C Piigandi järv 40 58.02 26.79 8.34 20 32.4

EPUH Estonia H Puhatu järv 12 59.17 27.69 21.43 195 33.8

ESAAa Estonia C Saadjärv 40 58.55 26.61 11.24 27.5 53.1

EUDRa Estonia H Udriku Suurjärv 40 59.37 25.92 34.26 267.5 54.6

EUIAa Estonia C Uiakatsi järv 22 57.95 26.64 6.68 20 43.9

EVERa Estonia C Kasaritsa Verijärv 40 57.81 27.05 16.78 27.5 68.9

EVIIa Estonia C Viitna Pikkjärv 40 59.45 26.01 5.27 17.5 61.2

EVIRa Estonia H Virosi järv 31 58.03 27.26 66.1 752.5 58.2

FIMUa Finland H Isomustalampi 10 64.31 30.29 9.97 122.5 68.1

FIVAa Finland C Iso- Valkeainen 10 64.70 30.00 4.07 20 59.9

FKALa Finland H Kalletomanlampi 8 64.36 29.97 10.62 147.5 63.9

FLLA Finland H Lehtolampi 10 64.59 29.90 9.04 120 57.0

FPPEa Finland C Pitkän- Perjantai 8 64.74 30.01 4.32 20 55.4

LTGIR Lithuania H Girutiškis 22 55.21 25.86 12.47 115 43.9

LTILG Lithuania C Ilgis 25 54.27 24.20 5.99 10 48.5

LTLEIa Lithuania C Leikštikas 28 55.04 25.65 4.93 7.5 56.5

LTPURa Lithuania H Purvynas 19 55.03 25.63 17.37 95 45.8

(Continues)
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coverage and maxcov maximum coverage. Heterozygosity 
estimates within populations were calculated using the com-
pute.fstats function implemented in PoolFstat v2.1.2 (Gautier 
et al. 2022), which employs the formula H = 1- Q1. Here, Q1 rep-
resents the probability of identity in state (IIS or AIS for Alike- 
In- State) within a population. A principal component analysis 
(PCA) was performed using AF and the prcomp function within 
the R v.4.3.1 environment to visualise the relationships among 
the studied populations. To quantify population differentiation 
between pools, pairwise fixation indices (FST) were calculated 
using compute.pairwiseFST function in PoolFstat v.2.1.2 in R 
(Gautier et al. 2022).

2.5   |   Genetic Signatures of Selection

Combining diverse methodologies for detecting loci deviating 
from neutral expectations is expected to facilitate identifica-
tion of genomic regions potentially under selection (Vasemägi 
and Primmer  2005; Rellstab et  al.  2015; François et  al.  2016; 
Dalongeville et  al.  2018). Accordingly, we employed two dif-
ferent strategies for detection of loci potentially associated with 
humic adaptation by using: (1) allele frequency differentiation 
among populations and (2) association between AF and envi-
ronmental variables (genotype- environment association, GEA). 
The genetic divergence between humic and clear- water pools 
was assessed by first calculating AF separately for each popula-
tion. Then, the mean allele frequency for humic and clear- water 
groups were calculated, followed by determining the absolute 
allele frequency difference (|AFD|) between humic and clear- 
water populations.

For the exploration of genetic variants associated with environ-
mental variables, we performed a redundancy analysis (RDA). 
RDA is one of the best performing GEA approaches and exhib-
its low false- positive rates (Capblancq and Forester 2021). RDA 
was carried out with the R package vegan v.2.6–4 (Oksanen 
et  al.  2018). Two indicators that characterised the presence of 
DOM and the visual conditions within lakes were used: DOC 
(mg L−1) and coloration (mg Pt L−1). Despite high correlation be-
tween these two parameters (Figure  1C), in addition to DOC, 
water coloration is influenced by additional factors, such as iron 
concentration in the water (Maloney et al. 2005; Weyhenmeyer, 
Prairie, and Tranvik 2014; Lei, Thompson, and McDonald 2020). 
For RDA, we accounted for the influence of genetic and spatial 

structure by incorporating the principal component (PC) 1 load-
ings extracted form PCA on intergenic SNPs (Figure S1), which 
explained a significant proportion of the variation (10%) and 
captured broad- scale spatial patterns. Additionally, we included 
the geographic coordinates of the lakes to further account for 
spatial structure.

2.6   |   Composite Selection Signals

Recent studies have demonstrated that employing composite 
measures of selection significantly improves the signal- to- 
noise ratio and increases the power of genome scans for selec-
tion signatures (Ma et al. 2015; Lotterhos et al. 2017) compared 
to using overlaps of single statistics. Here, we combined AFD 
and RDA to use the composite selection signals (CSS) ap-
proach implemented in R package MINOTAUR v.0.0.1 (Verity 
et al. 2017). Raw statistics were converted to fractional ranks 
and then transformed into z- scores using the CSS function. 
Genome- wide p- values were computed using the stat_to_
pvalue function. The CSS p- values were then transformed 
to the corresponding q- values using the p.adjust R function 
and the Benjamini and Hochberg method (Benjamini and 
Hochberg  1995). To further explore genomic regions poten-
tially under selection, we defined SNPs as putative outliers 
with q- values lower than 0.05. This criterion was applied to 
both ind- seq and pool- seq datasets. In the study conducted by 
Ozerov et al. (2022), candidate SNPs under selection were de-
fined as those detected by at least two of the three methods 
(latent factor mixed model [LFMM], RDA and loci with high 
AFD). This resulted in a set of 10,245 SNPs and 3,245 genes. 
Here we also recalculated outliers from Ozerov et  al.  (2022) 
data using CSS approach. For subsequent analyses of the CSS 
pool- seq dataset, we focused on genomic regions rather than 
individual outlier SNPs. A genomic region was considered po-
tentially under selection if it encompassed ≥ 3 outlier SNPs, 
spaced less than 50 kb apart. This approach is expected to mi-
nimise the false- positive identification of outlier SNPs.

2.7   |   Dynamic Outlier Slicing of Functional 
and GO Enrichment

To assess the impact of selecting different outlier thresholds 
on functional and GO enrichment outcomes, we developed a 

ID Country
Lake 
type Lake name N Latitude Longitude DOC Coloration

Sequencing 
depth

SWABO Sweden C Aborrträsk 29 64.48 19.43 3.925 7.5 34.2

SWNBa Sweden H Nedre Björntjärnen 20 64.12 18.78 19.05 252.5 38.0

SWOSK Sweden C Östra Skärträsket 59 64.43 19.45 3.05 10 46.3

SWSNOa Sweden C Snotterntjärnen 10 63.92 18.86 8.80 60 32.6

SWSTO Sweden H Stortjärnen 23 64.26 19.76 23 235 30.1

SWSTR Sweden H Struptjärnen 26 64.02 19.49 22 235 44.6
aIndicate populations that were also included in the study by Ozerov et al. (2022), where WGS was performed on a single individual per lake.

TABLE 1    |    (Continued)
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dynamic outlier slicing procedure. This entailed a comprehen-
sive exploration of outlier cutoffs, using standard deviation 
values ranging from 2 to 6, with increments of 0.05 for the 
raw CSS statistics. This exploration resulted in the definition 
of a total of 81 distinct thresholds, thereby generating 81 dif-
ferent subsets of outlier SNPs. After obtaining the 81 groups 
of loci, we subsequently evaluated the overrepresentation and 
underrepresentation of SNPs within specific annotation cat-
egories (Sequence Ontology Mappings for SNPeff as Regions 
and Effects). We conducted chi- squared tests, comparing each 
subset of SNPs against the complete SNP dataset for each an-
notation category.

Similar to SNP annotation, we conducted GO enrichment 
analysis for each subset of outlier SNPs using clusterProfiler 
v.4.8.2 (Wu et  al.  2021) package, leveraging the human gene 
database from org. Hs. eg.db package (Carlson et  al.  2019). 
This analysis covered the three ontologies: MM, and biolog-
ical process and a significance threshold of 0.05 (Benjamini- 
Hochberg adjusted p- value) was applied to determine enriched 
categories.

The dynamic outlier slicing, examination of the overrepre-
sentation/underrepresentation of SNPs within variant anno-
tation categories, and GO analyses for each subset of SNPs 
at each threshold was conducted for both the pool- seq and 
the ind- seq datasets. These analyses were executed using 
a specialised custom R script developed for this purpose 
(Supporting Information). The visualisation was executed 
through heatmaps with the function geom_tile() implemented 
in ggplot2 package (Wickham  2009), employing the tables 
that encompassed distinct categories for both the functional 
annotation of the variants and the GO terms across all SNP 
subsets.

3   |   Results

3.1   |   Allele Frequency Estimates From Individual 
Versus Pooled WGS

Altogether, our analyses comprised a total of 50 populations 
(42 pooled and 32 individual datasets; 24 lakes shared) distrib-
uted throughout Northern Europe (Figure 1A). The selection 
of the lakes for this study was based on pronounced contrasts 
in water colour and dissolved organic carbon (DOC) content 
(mean clear water lakes = 8.39; mean humic lakes = 29.65). 
DOC and water colour exhibited a very strong positive correla-
tion, with a Pearson correlation coefficient of 0.96 (p < 2.2−16; 
Figure 1C).

The assessment of allele frequency correlation between the full 
ind- seq and pool- seq datasets for clear and humic lake popula-
tions separately, revealed very strong correlations between the 
ind- seq and pool- seq datasets. The Pearson correlation coeffi-
cients for ind- seq and pool- seq datasets was 0.92 (p < 2.2−16) and 
0.93 (p < 2.2−16) for clear and humic lakes populations, respec-
tively (Figure  1D). However, the correlation for the estimated 
allele frequency differences (|AFD|) between humic and clear- 
water lakes for both datasets was weaker (r = 0.27), although 
highly significant (p < 2.2−16).

3.2   |   Genetic Diversity, Differentiation 
and Population Structure

The evaluation of genetic diversity in the pool- seq dataset re-
vealed higher levels of genetic diversity in clear- water lake pop-
ulations than in humic lake populations (Table S2). For example, 
the mean estimated heterozygosity for clear- water lakes was 
0.23 ± 0.05, in contrast to 0.19 ± 0.07 in humic lakes (Wilcoxon 
test, p = 0.02) (Figure 2A). Similarly, π was higher in the clear- 
water lakes compared to humic lakes (0.00139 ± 0.00017 vs. 
0.00125 ± 0.00022, Wilcoxon test, p = 0.03). The Watterson's θ, 
and the number of segregating sites (S) were also higher for clear- 
water lakes, but these differences were not statistically signif-
icant. To further compare diversity estimates between ind- seq 
and pool- seq datasets, we focused on the 24 shared populations. 
The correlation of estimated heterozygosities between pool- seq 
and ind- seq datasets was almost perfect (r = 0.98, p < 2.2−16, 
Figure 2B), indicating that WGS of a single individual per lake 
provided essentially the same information on population diver-
sity as pool- seq.

Analyses of the 42 populations using pool- seq dataset revealed a 
substantial level of genetic differentiation, with half of the pair- 
wise comparisons exhibiting average FST values higher than 0.35 
(Figure 2E, Table S3). This pattern likely reflects the impact of 
strong genetic drift, combined with the limited connectivity and 
gene flow between the lakes. Furthermore, the average FST be-
tween countries ranged from 0.257 (Estonia- Lithuania) to 0.454 
(Sweden- Finland). Within each country, mean FST values varied 
between 0.003 (Lithuania: LTLEI- LTPUR) and 0.860 (Estonia: 
ELOO- ELAS).

The PC analysis based on the allele frequency estimates of the 
42 populations using pool- seq dataset revealed three main clus-
ters irrespective of the humic content of the lake. PC 1 and 2 
accounted for 10.1% and 6.63% of variation of pool- seq data, 
respectively (Figure  2C). The populations from Estonia and 
Lithuania clustered together, except of one lake (Girutiškis: 
LTGIR), which appeared to be further away from the main clus-
ter. Additionally, populations from Finland and Sweden formed 
each separate clusters. Similar patterns were also observed for 
the ind- seq dataset, where samples from each country clustered 
together. In this case, PC1 and PC2 explained 16.31% and 6.51% 
of the variance, respectively (Figure 2D).

3.3   |   The Frequency and Chromosomal 
Distribution of Composite Selection Signatures: 
Pool- Seq Versus. Ind- Seq

The identification of outlier loci by combining AFD and RDA 
analyses using CSS, revealed 3,556 and 2,040 outlier SNPs for 
pool- seq and ind- seq datasets (q-  < 0.05), respectively, distributed 
across all 24 chromosomes, with no SNPs identified in unplaced 
scaffolds (Figure 3; Tables S4 and S5). However, only 160 SNPs 
were found to be common between the two datasets (Table S6). 
In contrast, a total of 993 and 619 genes containing outlier SNPs 
were identified in the pool- seq and ind- seq datasets, respectively, 
with 148 common genes (Table S7). In the pool- seq dataset, the 
frequency of outliers was not uniform among chromosomes, 
with 11 and five chromosomes displayed a significant deficiency 
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FIGURE 2    |     Legend on next page.
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and excess, respectively (deficiency: CHRs 1, 5, 6, 12, 13, 14, 16, 
17, 18, 19 and 23; excess: CHRs 9, 10, 15, 21 and 24). Meanwhile, 
for ind- seq, seven chromosomes showed significant deficiency 
(CHRs 2, 3, 6, 11, 17, 18 and 21), and five chromosomes displayed 
a significant excess of candidate SNPs (CHRs 7, 10, 13, 14, 20). 
The visual inspection of Manhattan plots revealed a pronounced 
clustering of highly significant outliers within the pool- seq data-
set compared to the ind- seq dataset. This pattern is likely due 
to the larger number of studied populations, which increases 
the power to detect outliers, along with more accurate allele fre-
quency estimation (see Table S8 for Supporting Information).

The CSS analysis conducted on pool- seq dataset confirmed the 
outlier status of a small number of SNPs and genes previously 
linked to the adaptation differences in humic/clear- water lakes 
for the Eurasian perch (Ozerov et al. 2022). In total, 493 outlier 
SNPs and 447 outlier genes were found to overlap between CSS 
pool- seq and the results reported by Ozerov et al. (2022), while 
1769 putative outlier SNPs and 580 outlier genes overlapped be-
tween CSS ind- seq and Ozerov et al. (2022) dataset (Tables S9 
and S10).

Subsequently, upon identifying candidate genomic regions po-
tentially under selection, we investigated the patterns of genetic 

diversity within them to ascertain whether the reduction in ge-
netic diversity was more pronounced in humic or clear- water 
environments, aiming to identify the specific habitat where 
adaptation most likely occurred. This analysis revealed a total 
of 324 candidate regions under selection, with 277 displaying 
reduced heterozygosity levels in humic environment, while 
47 regions exhibited lower heterozygosity in clear- water hab-
itat (Fisher's exact test for equal proportion, p = 0.0001). The 
size of the genomic regions identified ranged from < 100 bp to 
462.4 kb (median = 18.4 kb; mean = 31.9 kb). The number of out-
lier SNPs within these regions ranged from 3 to 143 (median = 5; 
mean = 8.3, r = 0.72, p < 2.2−16, Figure  S3). The distribution of 
genes within these regions was as follows: 74 regions contained 
no genes, 142 regions contained a single gene, 55 regions con-
tained two genes, 29 regions contained three genes and 24 re-
gions harboured more than four genes (Table S11).

3.4   |   Functional and GO Enrichment Analysis 
Using Dynamic Outlier Slicing

Next, we explored the effect of outlier calling stringency on 
functional and GO enrichment analysis. In the pool- seq data, 
five SNP annotation categories (upstream, downstream, 

FIGURE 2    |    Genetic diversity and population differentiation. (A) Heterozygosity levels in populations analysed with pool- seq. (B) Correlation of 
heterozygosity levels estimated for pool- seq and ind- seq datasets across the 24 common populations. Each data point represents a single population. 
(C) Principal component analysis (PCA) for populations studied using pool- seq. (D) PCA for populations studied using ind- seq. (E) Heatmap of FST 
values across all pairs of populations analysed with pool- seq.

FIGURE 3    |    Mirrored Manhattan plots of composite selection signatures (CSS). The upper panel presents a Manhattan plot of q- values for the 
pool- seq dataset, while the lower panel shows a Manhattan plot of q- values for the ind- seq dataset. The genome- wide significance level is set at 
- log10(0.05) = 1.3, plotted as the red line. Significant SNPs common to both datasets are highlighted in green.
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synonymous, 5′UTR, and 3′UTR) showed significant overrep-
resentation of outliers. 3′UTR was enriched at lower thresh-
olds (SD 2–4.8), while upstream, synonymous and downstream 
regions at higher thresholds (SD 3.1–6) and 5′UTR only at SD 
5.85 and 5.9. Conversely, splice region & synonymous, non- 
synonymous, intergenic and intron were consistently depleted, 
with splice region & synonymous and non- synonymous de-
pleted at SD 2–2.45; intergenic regions at SD 2–4.65, and intron 
at SD 4.45–6 (Figure 4A).

In the ind- seq dataset, four SNP annotation categories (down-
stream, 5′UTR, 3′UTR, and intron) showed significant enrich-
ment. Downstream outliers were enriched at SD 2.45–6, while 
3′UTR and 5′UTR were enriched in a narrower ranges (SD 
2.5–4.4 and SD 3.85, respectively) than pool- seq. Notably, in-
tronic outliers showed enrichment across several thresholds (SD 
4.1–6), contrasting with their depletion in pool- seq. Depletion 
was observed in upstream regions (SD 4.4–6), synonymous cat-
egory (SD 6) and intergenic regions (SD 2–5.3), similar to the 
pool- seq pattern (Figure 4B).

The application of dynamic outlier slicing for GO enrichment 
analysis within pool- seq dataset revealed enrichment of outliers 
for a large number of GO terms. Specifically, the BP category 
revealed enrichment of multiple terms (n = 328) from threshold 
SD 2–4.35, with several of its most significant terms associated 
with the nervous system, such as synapse organisation, regu-
lation of nervous system development, dendrite development 

and morphogenesis, synapse assembly, and axon development, 
among others. The CC category consisted the GO terms (n = 115) 
exhibiting enrichment to the highest thresholds (SD up to 4.8), 
featuring with synaptic processes, such as synaptic membrane, 
presynaptic membrane, postsynaptic density, and hippocampal 
mossy fibre to CA3 synapse. MF category exhibited enrichment 
of various terms (n = 73) up to SD 4.3 including cell adhesion 
molecule binding, calmodulin binding, gated channel activ-
ity, transmembrane transporter activity, voltage- gated channel 
activity, ion channel activity, actin filament binding and actin 
binding (Table S12, Figure 5).

On the other hand, when employing dynamic outlier slicing 
for GO enrichment within ind- seq dataset, we observed that 
BP (n = 304) and CC (n = 130) ontologies were enriched to more 
stringent levels compared to pool- seq (Table  S13, Figure  S2). 
For instance, the BP category exhibited enrichment of multi-
ple terms ranging from threshold SD 2–5.25, while the CC cat-
egory showed enrichment from SD 2 up to 6. Meanwhile, the 
MF category (n = 92) displayed enrichment up to a threshold of 
3.2. Furthermore, a majority of the shared terms between pool- 
seq and ind- seq were observed in CC with 16 common terms, 
followed by BP with 10 terms and MF with 7 terms. Consistent 
with pool- seq results, BP showed several categories associated 
with the nervous system, while CC terms were related to synap-
sis function. MF exhibited enrichment in terms such as protein 
kinase activity, semaphorin receptor activity and monoatomic 
cation channel activity, among others.

FIGURE 4    |    Dynamic outlier slicing for genome annotation. Overrepresentation and underrepresentation of candidate SNPs across 81 distinct 
cutoffs for the raw CSS statistics are shown for (A) pool- seq and (B) ind- seq, respectively. These thresholds were determined using standard deviation 
values ranging from 2 to 6, with increments of 0.05. The analysis covers 14 specific annotation categories (Sequence Ontology Mappings for SNPeff 
as Regions and Effects) for both pool- seq and ind- seq datasets. The colour red represents enrichment, while the colour blue indicates depletion of 
annotation categories.
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11 of 20

FIGURE 5    |    Dynamic outlier slicing for Gene Ontology (GO) enrichment analysis in the pool- seq dataset. The 20 most prevalent GO terms are 
plotted across the three ontologies: Molecular function (MM), cellular component (CC) and biological process (BP) for the pool- seq dataset. GO terms 
in bold represents categories common to both pool- seq and ind- seq datasets.
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3.5   |   Genes Previously Implicated in Adaptation to 
Humic Environment

Despite the relatively moderate overlap of outlier SNPs between 
CSS pool- seq and the study by Ozerov et al. (2022) several can-
didate regions were identified in both analyses. For instance, on 
chromosome 1, we localised a 21 kb region exhibited reduced 
genetic diversity in humic populations (Figure  6A), harbour-
ing the gene WDR19. Mutations in WDR19 have been linked to 
retinal diseases that can lead to blindness in humans (Coussa 
et al. 2013; Sajovic et al. 2023) and associated to adaptation for 

nocturnal vision of night herons (Luo et  al.  2022). Similarly, 
candidate regions containing CDON (CHR. 2; −log10 = 1.99) and 
CHD7 (CHR. 11; −log10 = 2.12) were also linked to nocturnal 
vision adaptation in herons (Luo et al. 2022) and identified in 
Ozerov et al. (2022).

Another region, covering 174 kb and encompassing 55 outlier 
SNPs, was identified on chromosome 4 (Figure 6B). This region 
showed a notable reduction in genetic diversity within humic 
lake populations and harboured the FOXP1 gene. FOXP1 is a 
member of the highly conserved FOX gene family, which play 

FIGURE 6    |    Detailed visualisation of significant genomic regions in the CSS analysis for pool- seq. The upper portion of each plot features lines 
representing heterozygosity levels, calculated using windows of 25 SNPs, displayed on the secondary y- axis for populations from clear (light blue 
line) and humic (dark grey line) environments. The genome- wide significance threshold is set at - log10(0.05) = 1.3, represented by a dashed red line. 
Significant SNPs are colour- coded to represent allele frequency differences (AFD) between the populations: Red for AFD > 0.4, orange for AFD 
≤ 0.35, yellow for AFD ≥ 0.3, and light blue for AFD < 0.3. Missense mutations are shown as filled diamond shapes.
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pivotal roles in several developmental and homeostatic processes 
(Hannenhalli and Kaestner 2009). Specifically, the FOXP1 gene 
has shown to be differentially expressed in songbird and human 
brain regions crucial for the developmental involved in speech 
and language (Horn et  al.  2010). Furthermore, FOXP genes 
exert regulatory influence over the adaptative immune system 
(Pignata and Romano 2014). On the same chromosome, within a 
region of 69, 492 kb apart from the previous region, we identified 
the genes CXXC1, TFE3, GNL3L and OPN1LW, the latter is one 
of the four red- sensitive opsin- like gene orthologues, also identi-
fied by Ozerov et al. (2022) (Figure 6C).

One of the most significant regions in pool- seq dataset was local-
ised in chromosome 7 (−log10 = 4.33), within a 97.6 kb segment 
harbouring 18 outlier SNPs. This region included the TCHH, 
PHC1 and M6PR genes and showed reduced genetic diversity in 
humic populations (Figure 6D). The TCHH gene is known for its 
role in human hair and skin development (Medland et al. 2009; 
Wu et al. 2016). PHC1 is a member of the Polycomb group (PcG) 
of proteins, which act antagonistically to Trithorax group (TrxG) 
components in gene regulation during cell differentiation and 
development (Schuettengruber et al. 2017); while M6PR belongs 
to P- type lectins, which plays crucial role in lysosomal enzyme 
transport, bacterial resistance and viral entry (Liu et al. 2023). 
Additionally, a 157 kb region on chromosome 9 containing 90 
outlier SNPs harbours the genes MISP, GRIN3B and TMEM259 
(Figure 6E). GRIN3B gene, implicated in synaptic development 
and neurotransmission (Chikina, Robinson, and Clark  2016), 
TMEM259 is involved in inhibiting neuron death and positive 
regulation of ERAD pathway (Zhu et al. 2017).

We also identified MYLIP on chromosome 13 (−log10 = 2.15) 
within a region of 5.4 kb and 14 outlier SNPs (Figure 6F). This 
region exhibited one of the highest allele frequency differences 
between humic and clear- water perch in the 32 genome data-
set (Ozerov et al. 2022). The MYLIP gene, also known as IDOL, 
plays role in lipid metabolism (Lindholm, Bornhauser, and 
Korhonen 2009; van Loon, Lindholm, and Zelcer 2019) and has 
been implicated in the early embryonic development of zebraf-
ish, particularly in calcium- dependent mechanisms during gas-
trulation (Knowlton, Chan, and Kelly 2003).

3.6   |   Newly Identified Genes Potentially 
Contributing to Humic Adaptation

The CSS analysis conducted on the pool- seq dataset revealed 
3,063 novel outlier SNPs and 546 genes that had not been previ-
ously detected in Eurasian perch. On chromosome 12, a 100 kb 
with 24 outlier SNPs displayed lower genetic diversity in humic 
populations. This region contains the IFT88, ZMYM2 and 
CRYL1 genes (Figure 6H). The IFT88 is involved on transport 
of opsin molecules in zebrafish (Sukumaran and Perkins 2009; 
Hudak et al. 2010) and has shown evidence of positive selection 
in secondary adaptation to temperate environments in non- 
Antarctic icefish, following specialisation to Antarctic condi-
tions, including unique polar light–dark regime (Rivera- Colón 
et al. 2023). Additionally, the CRYL1 gene, initially discovered in 
rabbit and hare lenses, encodes the Lambda- crystallin protein, 
related to hydroxyacyl- coenzyme A dehydrogenases (Mulders 
et  al.  1988). CRYL1 has shown increased gene expression 

in retina cells following exposure to cadmium in zebrafish 
(Scudiero et al. 2017). On chromosome 15, we identified a sig-
nificant cluster of 147 SNPs within a 662 kb region, which exhib-
ited reduced genetic diversity in humic population throughout 
most of the area (Figure  6G). This region contains the PNMT 
gene, associated with predatory feeding behaviour and aggres-
sion in mandarin fishes (He et al. 2020). Additionally, the region 
encompasses the PLTP gene, which is involved in lipid and li-
poprotein metabolism (Vuletic et al. 2003; Albers, Vuletic, and 
Cheung 2012) and influences cognitive performance in humans 
(Tong et al. 2015).

Other regions exhibiting significant differences in genetic di-
versity include a 145 kb region on chromosome 21, with 59 
outlier SNPs containing 10 genes: ITGAX, ALDOA, VKORC1, 
MAPK7, PRSS8, PAX6, MMP17, CA4, HRC, TRPM4 (Figure 6I). 
Among these, ALDOA and MAPK7 have been involved in the 
response to hypoxic environments in Tibetan fish species, com-
mon carp and Schizothoracines fishes (Zhang et al. 2017; Hung 
et al. 2022; Martínez Sosa and Pilot 2023). The TRPM4 gene has 
been shown to be associated with response to light stimuli and 
inflammation in teleosts (You et al. 2020; Li et al. 2021), and is a 
candidate for putative thermosensors with evidence of diversify-
ing selection in Antarctic fishes (Cryonotothenioidea) (York and 
Zakon  2022). PAX6 has transcriptional control over crystallin 
genes in jellyfish, and is involved in vertebrate lens morphogen-
esis (Cvekl et al. 2017; Hahn et al. 2017).

3.7   |   Newly Identified Genes Potentially Involved 
in the Clear- Water Adaptation

Among the regions that showed lower genetic diversity in clear 
water environment, some noteworthy candidates were iden-
tified. On chromosome 1, a 10 kb region contained 3 outliers 
SNPs and the SART1 gene, which is involved in cell death and 
vision- related pathways in zebrafish (Henson and Taylor 2020). 
Chromosome 2 featured a 74 kb region with 26 outliers SNPs 
harbouring the GRIK4 gene, associated with ion regulation 
(Ding et al. 2023). On chromosome 12, a 5 kb region included 
the GPR183 gene, also known as the Epstein–Barr virus- induced 
G- protein coupled receptor 2, which plays a role in immune re-
sponse regulation (Chen, Huang, and Li 2022). Chromosome 22 
had 26 kb region containing the NCOA2 gene, known to mod-
ulate lipid metabolism and control energy homeostasis in pigs, 
thus playing a significant role in the regulation of metabolic 
processes (Ramayo- Caldas et al. 2014). Finally, on chromosome 
24, a 25 kb region with 76 outlier SNPs harboured the FLO11 
gene, which is implicated in cell–cell and cell- surface adhesion 
(Halme et al. 2004).

4   |   Discussion

This study focused on detecting novel and confirming known 
genomic signatures of selection linked to humic substances in 
Eurasian perch, leveraging a large set of populations living in 
humic and clear- water environments. Specifically, we aimed to 
evaluate a newly developed outlier slicing approach by testing 
how different outlier thresholds influence the outcomes of func-
tional enrichment, and to compare the efficacy of pooled versus 
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individual sequencing methodologies for outlier detection. Our 
analysis revealed regional population structure and genetic 
isolation among most populations, consistent with strong ge-
netic drift, combined with limited connectivity between the 
lakes. Nevertheless, despite substantial drift, analyses of a large 
number of populations enabled the identification of consistent 
signals of selection involving numerous genomic regions associ-
ated with humic adaptation.

One of the primary challenges in population genetics is differ-
entiating between genomic regions influenced by selection and 
those representing neutral genetic variation (Beaumont  2005; 
Oleksyk, Smith, and O'Brien 2010; Ahrens et al. 2018; Weigand 
and Leese  2018). Various factors can significantly impact the 
effectiveness of identifying true footprints of selection, such as 
variation in recombination, mutation rate, gene flow, linkage 
disequilibrium and demographic history (Hoban et  al.  2016). 
Furthermore, pronounced genetic structure and differentiation, 
as well as small population size where drift can have strong ef-
fects, may obscure signals of selection in the genome. Following 
a similar approach as Ozerov et al. (2022), we selected geograph-
ically neighbouring lakes with drastic differences in humic con-
tent. This design allowed us to compare fish living in markedly 
different environments, while accounting for comparable phylo-
genetic backgrounds. To mitigate the effect of drift, we incorpo-
rated data from 42 populations spanning various locations across 
four countries. This extensive population sampling is expected 
to significantly improve the power of both allele frequency- 
based outlier tests and GEA approaches (De Mita et  al.  2013; 
Whitlock and Lotterhos  2015). Additionally, by encompassing 
diverse populations, we aimed to capture a wider spectrum of 
adaptive variation, providing deeper insights into the adaptive 
potential of the species (Lotterhos and Whitlock  2014). While 
we did not focus on population- specific adaptations due to the 
different challenges they present, our study system provides a 
solid foundation for future investigations into both common and 
regional adaptive signals.

4.1   |   Genetic Evidence for Adaptation to Humic 
and Clear Water Environments

We combined signals from allele frequency- based outlier tests 
with GEA approaches and identified 3,556 SNPs outliers, of 
which 2,679 were distributed across 324 genomic regions in-
volving 468 genes suggesting that adaptation to humic environ-
ment likely involves large number of regions scattered across the 
genome. This is consistent with the earlier analyses of selective 
sweeps associated with humic environment involving 32 indi-
vidual perch genomes (Ozerov et al. 2022) as 447 common genes 
were identified by both studies as potential targets influenced by 
divergent selection. Yet, by directly comparing the signatures of 
selection inferred from individual genomes (Ozerov et al. 2022) 
and whole- genome pool- seq data, the latter approach revealed 
more distinct peaks of selection across several genomic regions 
(Figure 3). This is likely caused by more accurate representation 
of AF involving higher number of populations in pool- seq data 
(42 vs. 32 populations for pool- seq and ind- seq, respectively). 
Among the identified regions, 277 displayed reduced heterozy-
gosity levels in humic populations, while 47 regions exhibited 
lower heterozygosity in clear water populations (Fisher's exact 

probability test, p = 0.0001). Thus, an excess of reduced genetic 
variation in humic environment within candidate regions sup-
ports the hypothesis that adaptation to extreme humic envi-
ronment represents a prevalent type of selection in the studied 
system. However, a smaller proportion of adaptation signals 
were also associated with clear- water environment. Clear- water 
environment are complex habitats where many biotic factors, 
such as competition with other fish species, mating prefer-
ences, rich parasite and predator community, may act as im-
portant selective agents (Magnhagen and Heibo 2004; Horppila 
et  al.  2011; Ranåker et  al.  2012, 2014). For example, earlier 
studies have shown that perch populations in clear- water lakes 
often host high prevalence of Diplostomid eye parasites in con-
trast to humic lakes that typically lack eye flukes (Noreikiene 
et  al.  2020; Diaz- Suarez et  al.  2024). Furthermore, evaluation 
of the genetic diversity within candidate regions revealed many 
areas with rather similar heterozygosity estimates in humic and 
clear- water lakes. Thus, these regions may lack a typical char-
acteristic of hard sweep and may be more compatible with more 
complex history of selection, for example soft sweeps where 
the local reduction of diversity is not prominent (Hermisson 
and Pennings 2005). In terms of geological history, clear- water 
habitats likely represent the ancestral habitat type, as the entire 
study area was covered by an ice sheet 12,000–14,000 years ago 
(Stroeven et al. 2016). Following the ice melt, the initial aquatic 
habitats in this region were predominantly consisted of cold, oli-
gotrophic, clear- water lakes.

4.2   |   Dynamic Outlier Slicing of Functional 
Annotation Categories

Genetic variants differ in their likelihood of influencing pheno-
typic effects and being targets of selection (Nielsen 2005). To bet-
ter understand the non- random distribution of outliers and the 
robustness of the enrichment signals, we systematically evalu-
ated the enrichment spanning multiple outlier thresholds. We 
observed a consistent overrepresentation of outliers within the 
upstream, downstream and 3′UTR regions across various out-
lier thresholds. This finding suggests that our outlier identifica-
tion strategy combining different approaches was robust across 
various significance thresholds since random set of SNPs are 
not expected to generate significant enrichments. Furthermore, 
these results strongly indicate that regulatory elements play an 
important role in perch facilitating adaptation to humic sub-
stances. Interestingly, similar patterns were observed when dy-
namic outlier slicing was applied to an earlier dataset of Ozerov 
et al.  (2022), which consisted of 32 individual perch genomes. 
In addition, we identified significant enrichment of outliers for 
synonymous variants, suggesting its relevance in adaptive pro-
cesses. This finding aligns with recent evidence suggesting that 
synonymous mutations may also have functional significance 
(Bailey, Alonso Morales, and Kassen  2021; Shen et  al.  2022), 
despite being frequently regarded as neutral (Williamson 
et al. 2005; Bailey, Alonso Morales, and Kassen 2021). Indeed, 
many earlier studies indicate that silent sites are not completely 
neutral and are shaped by purifying evolution (Eőry, Halligan, 
and Keightley 2010; Pollard et al. 2010; Künstner, Nabholz, and 
Ellegren 2011; Lawrie et al. 2013; Dutoit et al. 2017). Finally, the 
underrepresentation of outliers across intergenic and intronic 
regions aligns well with available knowledge since these regions 
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have shown to mostly evolve neutrally, and being less frequently 
targets of selection (Andolfatto  2005; Haddrill, Bachtrog, and 
Andolfatto 2008).

4.3   |   Dynamic Outlier Slicing of GO Categories

Dynamic outlier slicing of GO categories revealed significant 
enrichment of large number of GO terms. Specifically, several 
terms associated with nervous system functions in the BP cat-
egory. The nervous system plays a pivotal role in animal adap-
tation and evolution, controlling sensory, motor, and cognitive 
functions within the brain and spinal cord. Extensive research 
supports the intricate connection between environmental con-
ditions, sensory systems, speciation and adaptation in aquatic 
organisms (Boughman 2002; Borghezan et al. 2021). The abun-
dance of terms associated with the nervous system in our study 
suggests the potential involvement of sensory modalities in 
adapting to the humic environment. Furthermore, CCs also in-
cluded terms such as neuron- to- neuron synapse and synaptic 
membrane, supporting the notion of genes playing roles in sen-
sory system. On the other hand, the presence of several terms 
associated with ion channel complexes within both CC and the 
MF categories (such as ion channel complex, monoatomic ion 
channel activity, monoatomic cation channel activity, calmod-
ulin binding) suggests the involvement of gene families in osmo-
regulation and ion balance. Given the extreme differences in pH 
levels between humic (typically pH 4–5) and clear- water lakes 
(typically pH 6–8), it was anticipated that gene families related 
to osmoregulation would exhibit signs of selection. Similar pat-
terns were found by Ozerov et al. (2022 where some of the top 
10 most significant GO terms included nervous system develop-
ment (BP); actin and calmodulin binding (MF) and cell junction, 
including nervous tissues (CC).

4.4   |   Individual Candidate Genes

Similar to previous research, this study found that the signa-
tures of selection related to humic substances are distributed 
throughout the entire genome, involving numerous genes with 
diverse functions. Although we found relatively small overlap of 
outlier SNPs between our CSS Pool- seq analysis and the study 
by Ozerov et  al.  (2022), several candidate regions were identi-
fied in both studies, highlighting their potential role in adaptive 
processes to humic environments. For instance, genes such as 
WDR19, CDON, CHD7 and OPN1LW, which are involved in vi-
sual traits, may be linked to adaptive changes in the extreme 
visual conditions of humic environments, akin to observa-
tions in other fish species inhabiting blackwater environments 
(Marques et al. 2017). Moreover, genes like FOXP1, GRIN3B and 
TMEM259, which are important for synaptic development and 
neuronal and synaptic survival, suggest roles in neurological 
adaptations. The MYLIP gene, shows high divergence between 
humic and clear- water lake populations, consistent with find-
ings from Ozerov et al. (2022), indicating its potential associa-
tion with compensating for Ca2+ deficiency during embryonic 
development in humic lakes.

Among newly discovered candidates were genes involved in 
opsin molecule transport, such as IFT88, and those showing 

increased expression in zebrafish retina cells under cadmium 
exposure, such as CRYL1. PAX6 is critical for crystallin gene 
transcription and lens morphogenesis in vertebrates, which also 
suggest that selective pressures influence changes in their vi-
sual sensitivity to better align with the ambient light conditions 
(Escobar- Camacho et al. 2017). Additionally, genes responding 
to hypoxic conditions in fish, such as ALDOA and MAPK7, may 
be involved in the adaptation of fish to oxygen stratification in 
humic lakes (Kankaala et  al.  2006). This is supported by the 
finding that changes in oxidative and physiological parameters, 
which are associated with the presence of humic substances, 
have been observed in other fish species. The findings high-
light the intricate and multifaceted nature of genetic adapta-
tion to challenging environmental conditions, emphasising 
the complexity and breadth of adaptive responses to humic 
environments.

4.5   |   Analysis of Individual Versus Pooled 
Genomes: Genetic Diversity and Differentiation

The accurate estimation of AF is a crucial starting point for deci-
phering evolutionary processes such as genetic drift, gene flow, 
and natural selection within natural populations (Nielsen and 
Slatkin 2013). Yet, whole- genome analyses based on just a sin-
gle individual per population have been able to reveal neutral 
and adaptive evolutionary processes at remarkable detail (Jones 
et al. 2012; Ozerov et al. 2022). In this study, a high correlation 
observed in AF was observed between the pool- seq and ind- 
seq datasets, indicating general consistency in AF across pop-
ulations inhabiting clear- water and humic lakes. However, the 
estimated allele frequency differences in pool- seq and ind- seq 
datasets showed a much weaker correlation, which also was re-
flected by limited overlap between identified outlier SNPs. The 
high genetic differentiation and structure observed among the 
studied populations are consistent with the results of a previ-
ous study by Ozerov et al. (2022), which used populations with 
the same geographical origin. This pattern of strong genetic 
differentiation provides compelling evidence for importance 
of genetic drift, combined with isolation and either limited or 
non- existent gene flow among populations. More generally, the 
similarity in genetic structuring between the pool- seq and ind- 
seq results underscores the reliability of pool- seq in capturing 
population genetic patterns shown also by other studies (Dorant 
et al. 2019; Chen, Parejo et al. 2022).

The analysis of genetic diversity based on pool- seq datasets also 
provided important insights into the genetic diversity of popu-
lations inhabiting different habitats. Our findings revealed that 
perch living in clear water lakes exhibited on average higher lev-
els of genetic diversity compared to their conspecifics in humic 
lakes. A similar trend was observed by Ozerov et  al.  (2022). 
The reduced genetic diversity observed in dark lakes is likely 
associated with the extreme humic environment where low 
pH may cause failures in perch recruitment (Rask 1984; Rask 
et al. 2014). Thus, the genomic data supports the notion of ex-
treme environment of highly humic lakes for Eurasian perch. 
Furthermore, our analyses revealed almost perfect correlation 
of genetic diversity estimates between pool- seq and ind- seq data 
across 24 populations. This reflects the power of WGS for ac-
curate estimation of genetic diversity and suggests the potential 
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of using a very small number of individuals per population for 
future genetic monitoring.

5   |   Conclusions

We aimed to characterise the genetic footprints of selection 
associated with contrasting aquatic environments in Eurasian 
perch in order to enhance our understanding of the evolution-
ary dynamics of humic adaptation. The comparison between 
pool- seq and ind- seq showed high correlation in diversity and 
allele frequency, as well as congruency in population genetic 
structuring patterns. The dynamic outlier slicing approach re-
vealed an overrepresentation of outliers in the regions of up-
stream, downstream, synonymous, 5′UTR and 3′UTR, while 
four annotation categories (splice region & synonymous, non- 
synonymous, intergenic and intron) were underrepresented 
among outliers. Additionally, the GO analysis indicated several 
enriched terms for BP and CC related to nervous system and 
synaptic processes. The MF category included gated channel 
activity, transmembrane transporter activity, voltage- gated 
channel activity, ion channel activity, among others. Several 
genes identified in this study were consistent with previous 
work. Overall, these findings highlight the complex and di-
verse nature of genetic adaptation to challenging humic envi-
ronmental conditions.
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