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Abstract 411 

Although variation in effect sizes and predicted values among studies of similar phenomena is 412 

inevitable, such variation far exceeds what might be produced by sampling error alone. One possible 413 

explanation for variation among results is differences among researchers in the decisions they make 414 

regarding statistical analyses. A growing array of studies has explored this analytical variability in 415 

different fields and has found substantial variability among results despite analysts having the same 416 

data and research question. Many of these studies have been in the social sciences, but one small 417 

‘many analyst’ study found similar variability in ecology. We expanded the scope of this prior work by 418 

implementing a large-scale empirical exploration of the variation in effect sizes and model 419 

predictions generated by the analytical decisions of different researchers in ecology and evolutionary 420 

biology. We used two unpublished datasets, one from evolutionary ecology (blue tit, Cyanistes 421 

caeruleus, to compare sibling number and nestling growth) and one from conservation ecology 422 

(Eucalyptus, to compare grass cover and tree seedling recruitment). The project leaders recruited 423 

174 analyst teams, comprising 246 analysts, to investigate the answers to prespecified research 424 

questions. Analyses conducted by these teams yielded 141 usable effects (compatible with our meta-425 

analyses and with all necessary information provided) for the blue tit dataset, and 85 usable effects 426 

for the Eucalyptus dataset. We found substantial heterogeneity among results for both datasets, 427 

although the patterns of variation differed between them. For the blue tit analyses, the average 428 

effect was convincingly negative, with less growth for nestlings living with more siblings, but there 429 

was near continuous variation in effect size from large negative effects to effects near zero, and even 430 

effects crossing the traditional threshold of statistical significance in the opposite direction. In 431 

contrast, the average relationship between grass cover and Eucalyptus seedling number was only 432 

slightly negative and not convincingly different from zero, and most effects ranged from weakly 433 

negative to weakly positive, with about a third of effects crossing the traditional threshold of 434 

significance in one direction or the other. However, there were also several striking outliers in 435 

the Eucalyptus dataset, with effects far from zero. For both datasets, we found substantial variation 436 

in the variable selection and random effects structures among analyses, as well as in the ratings of 437 

the analytical methods by peer reviewers, but we found no strong relationship between any of these 438 

and deviation from the meta-analytic mean. In other words, analyses with results that were far from 439 

the mean were no more or less likely to have dissimilar variable sets, use random effects in their 440 

models, or receive poor peer reviews than those analyses that found results that were close to the 441 

mean. The existence of substantial variability among analysis outcomes raises important questions 442 

about how ecologists and evolutionary biologists should interpret published results, and how they 443 

should conduct analyses in the future. 444 

Introduction 445 

One value of science derives from its production of replicable, and thus reliable, results. When we 446 

repeat a study using the original methods, we should be able to expect a similar result. However, 447 

perfect replicability is not a reasonable goal. Effect sizes will vary, and even reverse in sign, by chance 448 

alone (Gelman and Weakliem 2009). Observed patterns can differ for other reasons as well. It could 449 

be that we do not sufficiently understand the conditions that led to the original result so when we 450 

seek to replicate it, the conditions differ due to some ‘hidden moderator’. This hidden moderator 451 

hypothesis is described by meta-analysts in ecology and evolutionary biology as ‘true biological 452 

heterogeneity’ (Senior et al. 2016). This idea of true heterogeneity is popular in ecology and 453 

evolutionary biology, and there are good reasons to expect it in the complex systems in which we 454 



work (Shavit and Ellison 2017). However, despite similar expectations in psychology, recent evidence 455 

in that discipline contradicts the hypothesis that moderators are common obstacles to replicability, 456 

as variability in results in a large ‘many labs’ collaboration was mostly unrelated to commonly 457 

hypothesized moderators such as the conditions under which the studies were administered (Klein et 458 

al. 2018). Another possible explanation for variation in effect sizes is that researchers often present 459 

biased samples of results, thus reducing the likelihood that later studies will produce similar effect 460 

sizes (Open Science Collaboration 2015; Parker et al. 2016; Forstmeier, Wagenmakers, and Parker 461 

2017; Fraser et al. 2018; Parker and Yang 2023). It also may be that although researchers did 462 

successfully replicate the conditions, the experiment, and measured variables, analytical decisions 463 

differed sufficiently among studies to create divergent results (Simonsohn, Simmons, and Nelson 464 

2015; Silberzahn et al. 2018). 465 

Analytical decisions vary among studies because researchers have many options. Researchers need 466 

to decide how to exclude possibly anomalous or unreliable data, how to construct variables, which 467 

variables to include in their models, and which statistical methods to use. Depending on the dataset, 468 

this short list of choices could encompass thousands or millions of possible alternative 469 

specifications (Simonsohn, Simmons, and Nelson 2015). However, researchers making these 470 

decisions presumably do so with the goal of doing the best possible analysis, or at least the best 471 

analysis within their current skill set. Thus, it seems likely that some specification options are more 472 

probable than others, possibly because they have previously been shown (or claimed) to be better, 473 

or because they are more well known. Of course, some of these different analyses (maybe many of 474 

them) may be equally valid alternatives. Regardless, on probably any topic in ecology and 475 

evolutionary biology, we can encounter differences in choices of data analysis. The extent of these 476 

differences in analyses and the degree to which these differences influence the outcomes of analyses 477 

and therefore studies’ conclusions are important empirical questions. These questions are especially 478 

important given that many papers draw conclusions after applying a single method, or even a single 479 

statistical model, to analyze a dataset. 480 

The possibility that different analytical choices could lead to different outcomes has long been 481 

recognized (Gelman and Loken 2013), and various efforts to address this possibility have been 482 

pursued in the literature. For instance, one common method in ecology and evolutionary biology 483 

involves creating a set of candidate models, each consisting of a different (though often similar) set 484 

of predictor variables, and then, for the predictor variable of interest, averaging the slope across all 485 

models (i.e. model averaging) (Burnham and Anderson 2002; Grueber et al. 2011). This method 486 

reduces the chance that a conclusion is contingent upon a single model specification, though use and 487 

interpretation of this method is not without challenges (Grueber et al. 2011). Further, the models 488 

compared to each other typically differ only in the inclusion or exclusion of certain predictor 489 

variables and not in other important ways, such as methods of parameter estimation. More explicit 490 

examination of outcomes of differences in model structure, model type, data exclusion, or other 491 

analytical choices can be implemented through sensitivity analyses (e.g., Noble et al. 2017). 492 

Sensitivity analyses, however, are typically rather narrow in scope, and are designed to assess the 493 

sensitivity of analytical outcomes to a particular analytical choice rather than to a large universe of 494 

choices. Recently, however, analysts in the social sciences have proposed extremely thorough 495 

sensitivity analysis, including ‘multiverse analysis’ (Steegen et al. 2016) and the ‘specification 496 

curve’ (Simonsohn, Simmons, and Nelson 2015), as a means of increasing the reliability of results. 497 

With these methods, researchers identify relevant decision points encountered during analysis and 498 

conduct the analysis many times to incorporate many plausible decisions made at each of these 499 

points. The study’s conclusions are then based on a broad set of the possible analyses and so allow 500 

the analyst to distinguish between robust conclusions and those that are highly contingent on 501 



particular model specifications. These are useful outcomes, but specifying a universe of possible 502 

modelling decisions is not a trivial undertaking. Further, the analyst’s knowledge and biases will 503 

influence decisions about the boundaries of that universe, and so there will always be room for 504 

disagreement among analysts about what to include. Including more specifications is not necessarily 505 

better. Some analytical decisions are better justified than others, and including biologically 506 

implausible specifications may undermine this process. Regardless, these powerful methods have yet 507 

to be adopted, and even the more limited forms of sensitivity analyses are not particularly 508 

widespread. Most studies publish a small set of analyses and so the existing literature does not 509 

provide much insight into the degree to which published results are contingent on analytical 510 

decisions. 511 

Despite the potential major impacts of analytical decisions on variance in results, the outcomes of 512 

different individuals’ data analysis choices have only recently begun to receive much empirical 513 

attention. The only formal exploration of this that we were aware of when we submitted our Stage 1 514 

manuscript were (1) an analysis in social science that asked whether male professional football 515 

(soccer) players with darker skin tone were more likely to be issued red cards (ejection from the 516 

game for rule violation) than players with lighter skin tone (Silberzahn et al. 2018) and (2) an analysis 517 

in neuroimaging which evaluated nine separate hypotheses involving the neurological responses 518 

detected with fMRI in 108 participants divided between two treatments in a decision making 519 

task (Botvinik-Nezer et al. 2020). Several others have been published since (e.g., Huntington-Klein et 520 

al. 2021; Schweinsberg et al. 2021; Breznau et al. 2022; Coretta et al. 2023), and we recently learned 521 

of an earlier small study in ecology (Stanton-Geddes, Freitas, and Sales Dambros 2014). In the red 522 

card study, 29 teams designed and implemented analyses of a dataset provided by the study 523 

coordinators (Silberzahn et al. 2018). Analyses were peer reviewed (results blind) by at least two 524 

other participating analysts; a level of scrutiny consistent with standard pre-publication peer review. 525 

Among the final 29 analyses, odds-ratios varied from 0.89 to 2.93, meaning point estimates varied 526 

from having players with lighter skin tones receive more red cards (odds ratio < 1) to a strong effect 527 

of players with darker skin tones receiving more red cards (odds ratio > 1). Twenty of the 29 teams 528 

found a statistically-significant effect in the predicted direction of players with darker skin tones 529 

being issued more red cards. This degree of variation in peer-reviewed analyses from identical data is 530 

striking, but the generality of this finding has only just begun to be formally 531 

investigated (e.g., Huntington-Klein et al. 2021; Schweinsberg et al. 2021; Breznau et al. 532 

2022; Coretta et al. 2023). 533 

In the neuroimaging study, 70 teams evaluated each of the nine different hypotheses with the 534 

available fMRI data (Botvinik-Nezer et al. 2020). These 70 teams followed a divergent set of 535 

workflows that produced a wide range of results. The rate of reporting of statistically significant 536 

support for the nine hypotheses ranged from 21% to 84%, and for each hypothesis on average, 20% 537 

of research teams observed effects that differed substantially from the majority of other teams. 538 

Some of the variability in results among studies could be explained by analytical decisions such as 539 

choice of software package, smoothing function, and parametric versus non-parametric corrections 540 

for multiple comparisons. However, substantial variability among analyses remained unexplained, 541 

and presumably emerged from the many different decisions each analyst made in their long 542 

workflows. Such variability in results among analyses from this dataset and from the very different 543 

red-card dataset suggests that sensitivity of analytical outcome to analytical choices may characterize 544 

many distinct fields, as several more recent many-analyst studies also suggest (Huntington-Klein et al. 545 

2021; Schweinsberg et al. 2021; Breznau et al. 2022). 546 



To further develop the empirical understanding of the effects of analytical decisions on study 547 

outcomes, we chose to estimate the extent to which researchers’ data analysis choices drive 548 

differences in effect sizes, model predictions, and qualitative conclusions in ecology and evolutionary 549 

biology. This is an important extension of the meta-research agenda of evaluating factors influencing 550 

replicability in ecology, evolutionary biology, and beyond (Fidler et al. 2017). To examine the effects 551 

of analytical decisions, we used two different datasets and recruited researchers to analyze one or 552 

the other of these datasets to answer a question we defined. The first question was “To what extent 553 

is the growth of nestling blue tits (Cyanistes caeruleus) influenced by competition with siblings?” To 554 

answer this question, we provided a dataset that includes brood size manipulations from 332 broods 555 

conducted over three years at Wytham Wood, UK. The second question was “How does grass cover 556 

influence Eucalyptus spp. seedling recruitment?” For this question, analysts used a dataset that 557 

includes, among other variables, number of seedlings in different size classes, percentage cover of 558 

different life forms, tree canopy cover, and distance from canopy edge from 351 quadrats spread 559 

among 18 sites in Victoria, Australia. 560 

We explored the impacts of data analysts’ choices with descriptive statistics and with a series of tests 561 

to attempt to explain the variation among effect sizes and predicted values of the dependent variable 562 

produced by the different analysis teams for both datasets separately. To describe the variability, we 563 

present forest plots of the standardized effect sizes and predicted values produced by each of the 564 

analysis teams, estimate heterogeneity (both absolute,𝜏2, and proportional, I2) in effect size and 565 

predicted values among the results produced by these different teams, and calculate a similarity 566 

index that quantifies variability among the predictor variables selected for the different statistical 567 

models constructed by the different analysis teams. These descriptive statistics provide the first 568 

estimates of the extent to which explanatory statistical models and their outcomes in ecology and 569 

evolutionary biology vary based on the decisions of different data analysts. We then quantified the 570 

degree to which the variability in effect size and predicted values could be explained by (1) variation 571 

in the quality of analyses as rated by peer reviewers and (2) the similarity of the choices of predictor 572 

variables between individual analyses. 573 

Methods 574 

This project involved a series of steps (1-6) that began with identifying datasets for analyses and 575 

continued through recruiting independent groups of scientists to analyze the data, allowing the 576 

scientists to analyze the data as they saw fit, generating peer review ratings of the analyses (based 577 

on methods, not results), evaluating the variation in effects among the different analyses, and 578 

producing the final manuscript. 579 

Step 1: Select datasets 580 

We used two previously unpublished datasets, one from evolutionary ecology and the other from 581 

ecology and conservation. 582 

Evolutionary ecology 583 

Our evolutionary ecology dataset is relevant to a sub-discipline of life-history research which focuses 584 

on identifying costs and trade-offs associated with different phenotypic conditions. These data were 585 

derived from a brood-size manipulation experiment imposed on wild birds nesting in boxes provided 586 

by researchers in an intensively studied population. Understanding how the growth of nestlings is 587 

influenced by the numbers of siblings in the nest can give researchers insights into factors such as the 588 



evolution of clutch size, determination of provisioning rates by parents, and optimal levels of sibling 589 

competition (Vander Werf 1992; DeKogel 1997; Royle et al. 1999; Verhulst, Holveck, and Riebel 590 

2006; Nicolaus et al. 2009). Data analysts were provided this dataset and instructed to answer the 591 

following question: “To what extent is the growth of nestling blue tits (Cyanistes caeruleus) 592 

influenced by competition with siblings?” 593 

Researchers conducted brood size manipulations and population monitoring of blue tits at Wytham 594 

Wood, a 380 ha woodland in Oxfordshire, U.K (1º 20’W, 51º 47’N). Researchers regularly checked 595 

approximately 1100 artificial nest boxes at the site and monitored the 330 to 450 blue tit pairs 596 

occupying those boxes in 2001-2003 during the experiment. Nearly all birds made only one breeding 597 

attempt during the April to June study period in a given year. At each blue tit nest, researchers 598 

recorded the date the first egg appeared, clutch size, and hatching date. For all chicks alive at age 14 599 

days, researchers measured mass and tarsus length and fitted a uniquely numbered, British Trust for 600 

Ornithology (BTO) aluminium leg ring. Researchers attempted to capture all adults at their nests 601 

between day 6 and day 14 of the chick-rearing period. For these captured adults, researchers 602 

measured mass, tarsus length, and wing length and fitted a uniquely numbered BTO leg ring. During 603 

the 2001-2003 breeding seasons, researchers manipulated brood sizes using cross fostering. They 604 

matched broods for hatching date and brood size and moved chicks between these paired nests one 605 

or two days after hatching. They sought to either enlarge or reduce all manipulated broods by 606 

approximately one fourth. To control for effects of being moved, each reduced brood had a portion 607 

of its brood replaced by chicks from the paired increased brood, and vice versa. Net manipulations 608 

varied from plus or minus four chicks in broods of 12 to 16 to plus or minus one chick in broods of 4 609 

or 5. Researchers left approximately one third of all broods unmanipulated. These unmanipulated 610 

broods were not selected systematically to match manipulated broods in clutch size or laying date. 611 

We have mass and tarsus length data from 3720 individual chicks divided among 167 experimentally 612 

enlarged broods, 165 experimentally reduced broods, and 120 unmanipulated broods. The full list of 613 

variables included in the dataset is publicly available (https://osf.io/hdv8m), along with the data 614 

(https://osf.io/qjzby). 615 

Ecology and conservation 616 

Our ecology and conservation dataset is relevant to a sub-discipline of conservation research which 617 

focuses on investigating how best to revegetate private land in agricultural landscapes. These data 618 

were collected on private land under the Bush Returns program, an incentive system where 619 

participants entered into a contract with the Goulburn Broken Catchment Management Authority 620 

and received annual payments if they executed predetermined restoration activities. This particular 621 

dataset is based on a passive regeneration initiative, where livestock grazing was removed from the 622 

property in the hopes that the Eucalyptus spp. overstorey would regenerate without active (and 623 

expensive) planting. Analyses of some related data have been published (Miles 2008; Vesk et al. 624 

2016) but those analyses do not address the question analysts answered in our study. Data analysts 625 

were provided this dataset and instructed to answer the following question: “How does grass cover 626 

influence Eucalyptus spp. seedling recruitment?”. 627 

Additional Explanation: 

Shortly after beginning to recruit analysts, several analysts noted a small set of related errors in 

the blue tit dataset. We corrected the errors, replaced the dataset on our OSF site, and emailed 

the analysts on 19 April 2020 to instruct them to use the revised data. The email to analysts is 

available here (https://osf.io/4h53z). The errors are explained in that email. 

https://osf.io/hdv8m
https://osf.io/qjzby
https://osf.io/4h53z


Researchers conducted three rounds of surveys at 18 sites across the Goulburn Broken catchment in 628 

northern Victoria, Australia in winter and spring 2006 and autumn 2007. In each survey period, a 629 

different set of 15 x 15 m quadrats were randomly allocated across each site within 60 m of existing 630 

tree canopies. The number of quadrats at each site depended on the size of the site, ranging from 631 

four at smaller sites to 11 at larger sites. The total number of quadrats surveyed across all sites and 632 

seasons was 351. The number of Eucalyptus spp. seedlings was recorded in each quadrat along with 633 

information on the GPS location, aspect, tree canopy cover, distance to tree canopy, and position in 634 

the landscape. Ground layer plant species composition was recorded in three 0.5 x 0.5 m sub-635 

quadrats within each quadrat. Subjective cover estimates of each species as well as bare ground, 636 

litter, rock and moss/lichen/soil crusts were recorded. Subsequently, this was augmented with 637 

information about the precipitation and solar radiation at each GPS location. The full list of variables 638 

included in the dataset is publicly available (https://osf.io/r5gbn), along with the data 639 

(https://osf.io/qz5cu). 640 

 641 

Step 2: Recruitment and initial survey of analysts 642 

The lead team (TP, HF, SN, EG, SG, PV, DH, FF) created a publicly available document providing a 643 

general description of the project (https://osf.io/mn5aj/). The project was advertised at conferences, 644 

via Twitter, using mailing lists for ecological societies (including Ecolog, Evoldir, and lists for the 645 

Environmental Decisions Group, and Transparency in Ecology and Evolution), and via word of mouth. 646 

The target population was active ecology, conservation, or evolutionary biology researchers with a 647 

graduate degree (or currently studying for a graduate degree) in a relevant discipline. Researchers 648 

could choose to work independently or in a small team. For the sake of simplicity, we refer to these 649 

as ‘analysis teams’ though some comprised one individual. We aimed for a minimum of 12 analysis 650 

teams independently evaluating each dataset (see sample size justification below). We 651 

simultaneously recruited volunteers to peer review the analyses conducted by the other volunteers 652 

through the same channels. Our goal was to recruit a similar number of peer reviewers and analysts, 653 

and to ask each peer reviewer to review a minimum of four analyses. If we were unable to recruit at 654 

least half the number of reviewers as analysis teams, we planned to ask analysts to serve also as 655 

reviewers (after they had completed their analyses), but this was unnecessary. Therefore, no data 656 

analysts peer reviewed analyses of the dataset they had analyzed. All analysts and reviewers were 657 

offered the opportunity to share co-authorship on this manuscript and we planned to invite them to 658 

participate in the collaborative process of producing the final manuscript. All analysts signed 659 

[digitally] a consent (ethics) document (https://osf.io/xyp68/) approved by the Whitman College 660 

Institutional Review Board prior to being allowed to participate. 661 

We identified our minimum number of analysts per dataset by considering the number of effects 662 

needed in a meta-analysis to generate an estimate of heterogeneity (𝜏2) with a 95% confidence 663 

interval that does not encompass zero. This minimum sample size is invariant regardless of 𝜏2. This is 664 

because the same t-statistic value will be obtained by the same sample size regardless of variance 665 

Preregistration Deviation: 

Due to the large number of recruited analysts and reviewers and the anticipated challenges of 

receiving and integrating feedback from so many authors, we limited analyst and reviewer 

participation in the production of the final manuscript to an invitation to call attention to serious 

problems with the manuscript draft. 

https://osf.io/r5gbn
https://osf.io/qz5cu
https://osf.io/mn5aj/
https://osf.io/xyp68/


(𝜏2). We see this by first examining the formula for the standard error, SE for variance, (𝜏2) or (SE𝜏2) 666 

assuming normality in an underlying distribution of effect sizes (Knight 2000): 667 

SE(𝜏2) =  √
2𝜏4

𝑛 − 1
 668 

and then rearranging the above formula to show how the t-statistic is independent of τ2, as seen 669 

below. 670 

𝑡 =  
𝜏2

SE(𝜏2)
= √

𝑛 − 1

2
 671 

We then find a minimum 𝑛 = 12 according to this formula. 672 

Step 3: Primary data analyses 673 

Analysis teams registered and answered a demographic and expertise survey (https://osf.io/seqzy/). 674 

We then provided them with the dataset of their choice and requested that they answer a specific 675 

research question. For the evolutionary ecology dataset that question was “To what extent is the 676 

growth of nestling blue tits (Cyanistes caeruleus) influenced by competition with siblings?” and for 677 

the conservation ecology dataset it was “How does grass cover influence Eucalyptus spp. seedling 678 

recruitment?” Once their analysis was complete, they answered a structured survey 679 

(https://osf.io/neyc7/), providing analysis technique, explanations of their analytical choices, 680 

quantitative results, and a statement describing their conclusions. They also were asked to upload 681 

their analysis files (including the dataset as they formatted it for analysis and their analysis code [if 682 

applicable]) and a detailed journal-ready statistical methods section. 683 

 684 

 685 

Preregistration Deviation: 

We originally planned to have analysts complete a single survey (https://osf.io/neyc7/), but after 

we evaluated the results of that survey, we realized we would need a second survey 

(https://osf.io/8w3v5/) to adequately collect the information we needed to evaluate 

heterogeneity of results (step 5). We provided a set of detailed instructions with the follow-up 

survey, and these instructions are publicly available and can be found within the following files 

(blue tit: https://osf.io/kr2g9, Eucalyptus: https://osf.io/dfvym). 

Additional Information: 

As is common in many studies in ecology and evolutionary biology, the datasets we provided 

contained many variables, and the research questions we provided could be addressed by our 

datasets in many different ways. For instance, volunteer analysts had to choose the dependent 

(response) variable and the independent variable, and make numerous other decisions about 

which variables and data to use and how to structure their model. 

https://egouldo.github.io/ManyAnalysts/#ref-knight2000
https://osf.io/seqzy/
https://osf.io/neyc7/
https://osf.io/neyc7/
https://osf.io/8w3v5/
https://osf.io/kr2g9
https://osf.io/dfvym


Step 4: Peer reviews of analyses 686 

At minimum, each analysis was evaluated by four different reviewers, and each volunteer peer 687 

reviewer was randomly assigned methods sections from at least four analyst teams (the exact 688 

number varied). Each peer reviewer registered and answered a demographic and expertise survey 689 

identical to that asked of the analysts, except we did not ask about ‘team name’ since reviewers did 690 

not work in teams. Reviewers evaluated the methods of each of their assigned analyses one at a time 691 

in a sequence determined by the project leaders. We systematically assigned the sequence so that, if 692 

possible, each analysis was allocated to each position in the sequence for at least one reviewer. For 693 

instance, if each reviewer were assigned four analyses to review, then each analysis would be the 694 

first analysis assigned to at least one reviewer, the second analysis assigned to another reviewer, the 695 

third analysis assigned to yet another reviewer, and the fourth analysis assigned to a fourth reviewer. 696 

Balancing the order in which reviewers saw the analyses controls for order effects, e.g. a reviewer 697 

might be less critical of the first methods section they read than the last. 698 

The process for a single reviewer was as follows. First, the reviewer received a description of the 699 

methods of a single analysis. This included the narrative methods section, the analysis team’s 700 

answers to our survey questions regarding their methods, including analysis code, and the dataset. 701 

The reviewer was then asked, in an online survey (https://osf.io/4t36u/), to rate that analysis on a 702 

scale of 0-100 based on this prompt: “Rate the overall appropriateness of this analysis to answer the 703 

research question (one of the two research questions inserted here) with the available data. To help 704 

you calibrate your rating, please consider the following guidelines: 705 

• 100. A perfect analysis with no conceivable improvements from the reviewer 706 

• 75. An imperfect analysis but the needed changes are unlikely to dramatically alter outcomes 707 

• 50. A flawed analysis likely to produce either an unreliable estimate of the relationship or an 708 

over-precise estimate of uncertainty 709 

• 25. A flawed analysis likely to produce an unreliable estimate of the relationship and an over-710 

precise estimate of uncertainty 711 

• 0. A dangerously misleading analysis, certain to produce both an estimate that is wrong and 712 

a substantially over-precise estimate of uncertainty that places undue confidence in the 713 

incorrect estimate. 714 

*Please note that these values are meant to calibrate your ratings. We welcome ratings of any 715 

number between 0 and 100. 716 

After providing this rating, the reviewer was presented with this prompt, in multiple-choice format: 717 

“Would the analytical methods presented produce an analysis that is (a) publishable as is, (b) 718 

publishable with minor revision, (c) publishable with major revision, (d) deeply flawed and 719 

unpublishable?” The reviewer was then provided with a series of text boxes and the following 720 

prompts: “Please explain your ratings of this analysis. Please evaluate the choice of statistical analysis 721 

type. Please evaluate the process of choosing variables for and structuring the statistical model. 722 

Please evaluate the suitability of the variables included in (or excluded from) the statistical model. 723 

Please evaluate the suitability of the structure of the statistical model. Please evaluate choices to 724 

exclude or not exclude subsets of the data. Please evaluate any choices to transform data (or, if there 725 

were no transformations, but you think there should have been, please discuss that choice).” After 726 

submitting this review, a methods section from a second analysis was then made available to the 727 

reviewer. This same sequence was followed until all analyses allocated to a given reviewer were 728 

provided and reviewed. After providing the final review, the reviewer was simultaneously provided 729 

with all four (or more) methods sections the reviewer had just completed reviewing, the option to 730 

https://osf.io/4t36u/


revise their original ratings, and a text box to provide an explanation. The invitation to revise the 731 

original ratings was as follows: “If, now that you have seen all the analyses you are reviewing, you 732 

wish to revise your ratings of any of these analyses, you may do so now.” The text box was prefaced 733 

with this prompt: “Please explain your choice to revise (or not to revise) your ratings.” 734 

 735 

Step 5: Evaluate variation 736 

 737 

 738 

Additional Information: unregistered analysis 

To determine how consistent peer reviewers were in their ratings, we assessed inter-rater 

reliability among reviewers for both the categorical and quantitative ratings combining blue tit 

and Eucalyptus data using Krippendorff’s alpha for ordinal and continuous data respectively. This 

provides a value that is between -1 (total disagreement between reviewers) and 1 (total 

agreement between reviewers). 

Additional Information: analysis schematic 

The lead team conducted a range of preregistered and exploratory analyses to understand 

variation between analyses and their results. Figure 1 is intended to clarify the analyses 

described below.  

 

Figure 1: Schematic of research process showing recruited analyst and reviewer contributions in 

orange and core team contributions in blue. Items that are crossed out were preregistered but 

could not be conducted. Items with a greyed background were added as exploratory analyses 

after preregistration. 



The lead team conducted the analyses outlined in this section. We described the variation in model 739 

specification in several ways. We calculated summary statistics describing variation among analyses, 740 

including mean, SD, and range of number of variables per model included as fixed effects, the 741 

number of interaction terms, the number of random effects, and the mean, SD, and range of sample 742 

sizes. We also present the number of analyses in which each variable was included. We summarized 743 

the variability in standardized effect sizes and predicted values of dependent variables among the 744 

individual analyses using standard random effects meta-analytic techniques. First, we derived 745 

standardized effect sizes from each individual analysis. We did this for all linear models or 746 

generalized linear models by converting the t value and the degree of freedom (df) associated with 747 

regression coefficients (e.g. the effect of the number of siblings [predictor] on growth [response] or 748 

the effect of grass cover [predictor] on seedling recruitment [response]) to the correlation 749 

coefficient, r, using the following: 750 

𝑟 =
𝑡2

(𝑡2 + 𝑑𝑓)
 751 

This formula can only be applied if t and df values originate from linear or generalized linear models 752 

[GLMs; Nakagawa and Cuthill (2007)]. If, instead, linear mixed-effects models (LMMs) or generalized 753 

linear mixed-effects models (GLMMs) were used by a given analysis, the exact df cannot be 754 

estimated. However, adjusted df can be estimated, for example, using the Satterthwaite 755 

approximation of df, dfS, [note that SAS uses this approximation to obtain df for LMMs and 756 

GLMMs; Luke (2017)]. For analyses using either LMMs or GLMMs that do not produce dfS we 757 

planned to obtain dfS by rerunning the same (G)LMMs using the lmer() or glmer() function in 758 

the lmerTest package in R (Kuznetsova, Brockhoff, and Christensen 2017; R Core Team 2024). 759 

 760 

We then used the t values and dfS from the models to obtain r as per the formula above. All r and 761 

accompanying df (or dfS) were converted to Fisher’s Zr. 762 

𝑍𝑟 =
1

2
ln (

1 + 𝑟

1 − 𝑟
) 763 

and its sampling variance; 1/(n–3) where n=df+1. Any analyses from which we could not derive a 764 

signed Zr, for instance one with a quadratic function in which the slope changed sign, were 765 

considered unusable for analyses of Zr. We expected such analyses would be rare. In fact, most 766 

submitted analyses excluded from our meta-analysis of Zr were excluded because of a lack of 767 

sufficient information provided by the analyst team rather than due to the use of effects that could 768 

not be converted to Zr. Regardless, as we describe below, we generated a second set of standardized 769 

effects (predicted values) that could (in principle) be derived from any explanatory model produced 770 

by these data. 771 

Besides Zr, which describes the strength of a relationship based on the amount of variation in a 772 

dependent variable explained by variation in an independent variable, we also examined differences 773 

Preregistration Deviation: 

Rather than re-run these analyses ourselves, we sent a follow-up survey (referenced above under 

“Primary data analyses”) to analysts and asked them to follow our instructions for producing this 

information. The instructions are publicly available and can be found within the following files 

(blue tit: https://osf.io/kr2g9, Eucalyptus: https://osf.io/dfvym). 

https://osf.io/kr2g9
https://osf.io/dfvym


in the shape of the relationship between the independent and dependent variables. To accomplish 774 

this, we derived a point estimate (out-of-sample predicted value) for the dependent variable of 775 

interest for each of three values of our primary independent variable. We originally described these 776 

three values as associated with the 25th percentile, median, and 75th percentile of the independent 777 

variable and any covariates. 778 

 779 

We used the 25th and 75th percentiles rather than minimum and maximum values to reduce the 780 

chance of occupying unrealistic parameter space. We planned to derive these predicted values from 781 

the model information provided by the individual analysts. All values (predictions) were first 782 

transformed to the original scale along with their standard errors (SE); we used the delta 783 

method (Ver Hoef 2012) for the transformation of SE. We used the square of the SE associated with 784 

predicted values as the sampling variance in the meta-analyses described below, and we planned to 785 

analyze these predicted values in exactly the same ways as we analyzed Zr in the following analyses. 786 

 787 

We plotted individual effect size estimates (Zr) and predicted values of the dependent variable (yi) 788 

and their corresponding 95% confidence / credible intervals in forest plots to allow visualization of 789 

Preregistration Deviation: 

The original description of the out-of-sample specifications did not account for the facts that (a) 

some variables are not distributed in a way that allowed division in percentiles and that (b) 

variables could be either positively or negatively correlated with the dependent variable. We 

provide a more thorough description here:  

We derived three point-estimates (out-of-sample predicted values) for the dependent variable of 

interest; one for each of three values of our primary independent variable that we specified. We 

also specified values for all other variables that could have been included as independent 

variables in analysts’ models so that we could derive the predicted values from a fully specified 

version of any model produced by analysts. For all potential independent variables, we selected 

three values or categories. Of the three we selected, one was associated with small, one with 

intermediate, and one with large values of one typical dependent variable (day 14 chick weight 

for the blue tit data and total number of seedlings for the Eucalyptus data; analysts could select 

other variables as their dependent variable, but the others typically correlated with the two 

identified here). For continuous variables, this means we identified the 25th percentile, median, 

and 75th percentile and, if the slope of the linear relationship between this variable and the 

typical dependent variable was positive, we left the quartiles ordered as is. If, instead, the slope 

was negative, we reversed the order of the independent variable quartiles so that the ‘lower’ 

quartile value was the one associated with the lower value for the dependent variable. In the 

case of categorical variables, we identified categories associated with the 25th percentile, 

median, and 75th percentile values of the typical dependent variable after averaging the values 

for each category. However, for some continuous and categorical predictors, we also made 

selections based on the principle of internal consistency between certain related variables, and 

we fixed a few categorical variables as identical across all three levels where doing so would 

simplify the modelling process (specification tables available: blue 

tit: https://osf.io/86akx; Eucalyptus: https://osf.io/jh7g5). 

https://osf.io/86akx
https://osf.io/jh7g5


the range and precision of effect size and predicted values. Further, we included these estimates in 790 

random effects meta-analyses (Higgins et al. 2003; Borenstein et al. 2017) using the metafor package 791 

in R (Viechtbauer 2010; R Core Team 2024): 792 

𝑍𝑟~1 + (1|𝐸𝑓𝑓𝑒𝑐𝑡 𝐼𝐷) 793 

𝑦𝑖~1 + (1|𝐸𝑓𝑓𝑒𝑐𝑡 𝐼𝐷) 794 

where yi is the predicted value for the dependent variable at the 25th percentile, median, or 75th 795 

percentile of the independent variables. The individual Zr effect sizes were weighted with the inverse 796 

of sampling variance for Zr. The individual predicted values for dependent variable (yi) were weighted 797 

by the inverse of the associated SE2 (original registration omitted “inverse of the” in error). These 798 

analyses provided an average Zr score (�̅�𝑟) or an average yi (�̅�𝑖) with corresponding 95% confidence 799 

interval and allowed us to estimate two heterogeneity indices, τ2 and I2. The former, τ2, is the 800 

absolute measure of heterogeneity or the between-study variance (in our case, between-effect 801 

variance) whereas I2 is a relative measure of heterogeneity. We obtained the estimate of relative 802 

heterogeneity (I2) by dividing the between-effect variance by the sum of between-effect and within-803 

Preregistration Deviation: 

1. Standardizing blue tit out-of-sample predictions (yi) 

Because analysts of blue tit data chose different dependent variables on different scales, after 

transforming out-of-sample values to the original scales, we standardized all values as z scores 

(‘standard scores’) to put all dependent variables on the same scale and make them comparable. 

This involved taking each relevant value on the original scale (whether a predicted point estimate 

or a SE associated with that estimate) and subtracting the value in question from the mean value 

of that dependent variable derived from the full dataset and then dividing this difference by the 

standard deviation, SD, corresponding to the mean from the full dataset (Supplementary 

Material B, Equation B.1).  

Note that we were unable to standardise some analyst-constructed variables, so these analyses 

were excluded from the final out-of-sample estimates meta-analysis, see Supplementary Material 

B, section B.1.2.1 for details and explanation. 

2. Log-transforming Eucalyptus out-of-sample predictions yi 

All analyses of the Eucalyptus data chose dependent variables that were on the same scale, that 

is, Eucalyptus seedling counts. Although analysts may have used different size-classes 

of Eucalyptus seedlings for their dependent variable, we considered these choices to be akin to 

subsetting, rather than as different response variables, since changing the size-class of the 

dependent variable ultimately results in observations being omitted or included. Consequently, 

we did not standardise Eucalyptus out-of-sample predictions. 

We were unable to fit quasi-Poisson or Poisson meta-regressions, as desired (O’Hara and Kotze 

2010), because available meta-analysis packages (e.g. metafor:: and metainc::) do not provide 

implementation for outcomes as estimates-only, methods are only provided for outcomes as 

ratios or rate-differences between two groups. Consequently, we log-transformed the out-of-

sample predictions for the Eucalyptus data and use the mean estimate for each prediction 

scenario as the dependent variable in our meta-analysis with the associated SE as the sampling 

variance in the meta-analysis (Nakagawa et al. 2023, Table 2). 

https://egouldo.github.io/ManyAnalysts/supp_mat/SM2_EffectSizeAnalysis.html#eq-Z-VZ
https://egouldo.github.io/ManyAnalysts/supp_mat/SM2_EffectSizeAnalysis.html#eq-Z-VZ
https://egouldo.github.io/ManyAnalysts/supp_mat/SM2_EffectSizeAnalysis.html#sec-excluded-yi
https://egouldo.github.io/ManyAnalysts/supp_mat/SM2_EffectSizeAnalysis.html#sec-excluded-yi


effect variance (sampling error variance). I2 is thus, in a standard meta-analysis, the proportion of 804 

variance that is due to heterogeneity as opposed to sampling error. When calculating I2, within-study 805 

variance is amalgamated across studies to create a “typical” within-study variance which serves as 806 

the sampling error variance (Higgins et al. 2003; Borenstein et al. 2017). Our goal here was to 807 

visualize and quantify the degree of variation among analyses in effect size estimates (Nakagawa and 808 

Cuthill 2007). We did not test for statistical significance. 809 

 810 

 811 

Finally, we assessed the extent to which deviations from the meta-analytic mean by individual effect 812 

sizes (Zr) or the predicted values of the dependent variable (yi) were explained by the peer rating of 813 

each analysis team’s method section, by a measurement of the distinctiveness of the set of predictor 814 

variables included in each analysis, and by the choice of whether or not to include random effects in 815 

the model. The deviation score, which served as the dependent variable in these analyses, is the 816 

absolute value of the difference between the meta-analytic mean  �̅�𝑟 (or �̅�𝑖) and the 817 

individual Zr (or yi) estimate for each analysis. We used the Box-Cox transformation on the absolute 818 

values of deviation scores to achieve an approximately normal distribution (c.f. Fanelli and Ioannidis 819 

2013; Fanelli, Costas, and Ioannidis 2017). We described variation in this dependent variable with 820 

both a series of univariate analyses and a multivariate analysis. All these analyses were general linear 821 

Additional explanation: 

Our use of I2 to quantify heterogeneity violates an important assumption, but this violation does 

not invalidate our use of I2 as a metric of how much heterogeneity can derive from analytical 

decisions. In standard meta-analysis, the statistic I2 quantifies the proportion of variance that is 

greater than we would expect if differences among estimates were due to sampling error 

alone (Rosenberg 2013). However, it is clear that this interpretation does not apply to our value 

of I2 because I2 assumes that each estimate is based on an independent sample (although these 

analyses can account for non-independence via hierarchical modelling), whereas all our effects 

were derived from largely or entirely overlapping subsets of the same dataset. Despite this, we 

believe that I2 remains a useful statistic for our purposes. This is because, in calculating I2, we are 

still setting a benchmark of expected variation due to sampling error based on the variance 

associated with each separate effect size estimate, and we are assessing how much (if at all) the 

variability among our effect sizes exceeds what would be expected had our effect sizes been 

based on independent data. In other words, our estimates can tell us how much proportional 

heterogeneity is possible from analytical decisions alone when sample sizes (and therefore meta-

analytic within-estimate variance) are similar to the ones in our analyses. Among other 

implications, our violation of the independent sample assumption means that we (dramatically) 

over-estimate the variance expected due to sampling error, and because I2 is a proportional 

estimate, we thus underestimate the actual proportion of variance due to differences among 

analyses other than sampling error. However, correcting this underestimation would create a 

trivial value since we designed the study so that much of the variance would derive from analytic 

decisions as opposed to differences in sampled data. Instead, retaining the I2 value as typically 

calculated provides a useful comparison to I2 values from typical meta-analyses. 

Interpretation of τ2 also differs somewhat from traditional meta-analysis, and we discuss this 

further in the Results. 



(mixed) models. These analyses were secondary to our estimation of variation in effect sizes 822 

described above. We wished to quantify relationships among variables, but we had no a 823 

priori expectation of effect size and made no dichotomous decisions about statistical significance. 824 

When examining the extent to which reviewer ratings (on a scale from 0 to 100) explained deviation 825 

from the average effect (or predicted value), each analysis had been rated by multiple peer 826 

reviewers, so for each reviewer score to be included, we include each deviation score in the analysis 827 

multiple times. To account for the non-independence of multiple ratings of the same analysis, we 828 

planned to include analysis identity as a random effect in our general linear mixed model in 829 

the lme4 package in R (Bates et al. 2015; R Core Team 2024). To account for potential differences 830 

among reviewers in their scoring of analyses, we also planned to include reviewer identity as a 831 

random effect: 832 

DeviationScore𝑗 = 𝐵𝑜𝑥𝐶𝑜𝑥(DeviationFromMean𝑗) 833 

DeviationScore𝑖𝑗~Rating𝑖𝑗 + ReviewerID𝑖 + 𝐸𝑓𝑓𝑒𝑐𝑡𝐼𝐷𝑗  834 

ReviewerID𝑖~𝑁(0, 𝜎𝑖
2) 835 

𝐸𝑓𝑓𝑒𝑐𝑡𝐼𝐷 ~𝑁(0, 𝜎𝑗
2) 836 

Where DeviationFromMeanj is the deviation from the meta-analytic mean for the jth 837 

analysis, Reviewer IDi is the random intercept assigned to each i reviewer, and Effect IDj is the 838 

random intercept assigned to each j analysis, both of which are assumed to be normally distributed 839 

with a mean of 0 and a variance of σ2. Absolute deviation scores were Box-Cox transformed using 840 

the step_box_cox() function from the timetk package in R (Dancho and Vaughan 2023; R Core Team 841 

2024). 842 

Additional explanation: 

In our meta-analyses based on Box-Cox transformed deviation scores, we leave these deviation 

scores unweighted. This is consistent with our registration, which did not mention weighting 

these scores. However, the fact that we did not mention weighting the scores was actually an 

error: we had intended to weight them, as is standard in meta-analysis, using the inverse 

variance of the Box-Cox transformed deviation scores Supplementary Material C, equation C.1. 

Unfortunately, when we did conduct the weighted analyses, they produced results in which some 

weighted estimates differed radically from the unweighted estimate because the weights were 

invalid. Such invalid weights can sometimes occur when the variance (upon which the weights 

depend) is partly a function of the effect size, as in our Box-Cox transformed deviation 

scores (Nakagawa et al. 2022). In the case of the Eucalyptus analyses, the most extreme outlier 

was weighted much more heavily (by close to two orders of magnitude) than any other effect 

sizes because the effect size was, itself, so high. Therefore, we made the decision to avoid 

weighting by inverse variance in all analyses of the Box-Cox transformed deviation scores. This 

was further justified because (a) most analyses have at least some moderately unreliable 

weights, and (b) the sample sizes were mostly very similar to each other across submitted 

analyses, and so meta-analytic weights are not particularly important here (Buck et al. 2022). We 

systematically investigated the impact of different weighting schemes and random effects on 

model convergence and results, see Supplementary Material C, section C.8 for more details. 

https://egouldo.github.io/ManyAnalysts/supp_mat/SM3_ExplainingDeviation.html#eq-folded-variance
https://egouldo.github.io/ManyAnalysts/supp_mat/SM3_ExplainingDeviation.html#sec-post-hoc-weights-analysis


We conducted a similar analysis with the four categories of reviewer ratings ((1) deeply flawed and 843 

unpublishable, (2) publishable with major revision, (3) publishable with minor revision, (4) 844 

publishable as is) set as ordinal predictors numbered as shown here. As with the analyses above, we 845 

planned for these analyses to also include random effects of analysis identity and reviewer identity. 846 

Both of these analyses (1: 1-100 ratings as the fixed effect, 2: categorical ratings as the fixed effects) 847 

were planned to be conducted eight times for each dataset. Each of the four responses 848 

(Zr, y25, y50, y75) were to be compared once to the initial ratings provided by the peer reviewers, and 849 

again based on the revised ratings provided by the peer reviewers. 850 

 851 

The next set of univariate analyses sought to explain deviations from the mean effects based on a 852 

measure of the distinctiveness of the set of variables included in each analysis. As a ‘distinctiveness’ 853 

score, we used Sorensen’s Similarity Index (an index typically used to compare species composition 854 

across sites), treating variables as species and individual analyses as sites. To generate an individual 855 

Sorensen’s value for each analysis required calculating the pairwise Sorensen’s value for all pairs of 856 

analyses (of the same dataset), and then taking the average across these Sorensen’s values for each 857 

analysis. We calculated the Sorensen’s index values using the betapart package (Baselga et al. 858 

2023) in R: 859 

𝛽𝑆𝑜𝑟𝑒𝑛𝑠𝑒𝑛 =
𝑏 + 𝑐

2𝑎 + 𝑏 + 𝑐
 860 

Preregistration deviation: 

1. We planned to include random effects of both analysis identity and reviewer identity in these 

models comparing reviewer ratings with deviation scores. However, after we received the 

analyses, we discovered that a subset of analyst teams had either conducted multiple 

analyses and/or identified multiple effects per analysis as answering the target question. We 

therefore faced an even more complex potential set of random effects. We decided that 

including Team ID and Effect ID along with Reviewer ID as random effects in the same model 

would almost certainly lead to model fit problems, and so we started with simpler models 

including just Effect ID and Reviewer ID. However, even with this simpler structure, our 

dataset was sparse, with reviewers rating a small number of analyses, resulting in models 

with singular fit (Supplementary Material C, section C.2). Removing one of the random 

effects was necessary for the models to converge. For both models of deviation from the 

meta-analytic mean explained by categorical or continuous reviewer ratings, we removed the 

random effect of Effect ID, leaving Reviewer ID as the only random effect. 

2. We conducted analyses only with the final peer ratings after the opportunity for revision, not 

with the initial ratings. This was because when we recorded the final ratings, the initial 

ratings were over-written, therefore we did not have access to those initial values. 

https://egouldo.github.io/ManyAnalysts/supp_mat/SM3_ExplainingDeviation.html#sec-convergence-singularity


where a is the number of variables common to both analyses, b is the number of variables that occur 861 

in the first analysis but not in the second and c is the number of variables that occur in the second 862 

analysis. We then used the per-model average Sorensen’s index value as an independent variable to 863 

predict the deviation score in a general linear model, and included no random effect since each 864 

analysis is included only once, in R (R Core Team 2024): 865 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒𝑗~𝛽𝑆𝑜𝑟𝑒𝑛𝑠𝑒𝑛𝑗  866 

Next, we assessed the relationship between the inclusion of random effects in the analysis and the 867 

deviation from the mean effect size. We anticipated that most analysts would use random effects in a 868 

mixed model framework, but if we were wrong, we wanted to evaluate the differences in outcomes 869 

when using random effects versus not using random effects. Thus, if there were at least 5 analyses 870 

that did and 5 analyses that did not include random effects, we would add a binary predictor variable 871 

“random effects included (yes/no)” to our set of univariate analyses and would add this predictor 872 

variable to our multivariate model described below. This standard was only met for 873 

the Eucalyptus analyses, and so we only examined inclusion of random effects as a predictor variable 874 

in meta-analysis of this set to analyses. 875 

Finally, we conducted a multivariate analysis with the five predictors described above (peer ratings 0-876 

100 and peer ratings of publishability 1-4; both original and revised and Sorensen’s index, plus a sixth 877 

for Eucalyptus, presence / absence of random effects) with random effects of analysis identity and 878 

reviewer identity in the lme4 package in R (Bates et al. 2015; R Core Team 2024). We had stated here 879 

in the text that we would use only the revised (final) peer ratings in this analysis, so the absence of 880 

the initial ratings is not a deviation from our plan: 881 

DeviationScore𝑗 = 𝐵𝑜𝑥𝐶𝑜𝑥(DeviationFromMean𝑗) 882 

DeviationScore𝑖𝑗~RatingContinuous𝑖𝑗 + RatingCategorical𝑖𝑗 + 𝛽Sorensen𝑗 + ReviewerID𝑖883 

+ Effect ID𝑗  884 

ReviewerID𝑖~𝑁(0, 𝜎𝑖
2) 885 

EffectID𝑗~𝑁(0, 𝜎𝑗
2) 886 

 887 

Additional explanation: 

When we planned this analysis, we anticipated that analysts would identify a single primary 
effect from each model, so that each model would appear in the analysis only once. Our 
expectation was incorrect because some analysts identified >1 effect per analysis, but we still 
chose to specify our model as registered and not use a random effect. This is because most 
models produced only one effect and so we expected that specifying a random effect to account 
for the few cases where >1 effect was included for a given model would prevent model 
convergence. 

Note that this analysis contrasts with the analyses in which we used reviewer ratings as 
predictors because in the analyses with reviewer ratings, each effect appeared in the analysis 
approximately four times due to multiple reviews of each analysis, and so it was much more 
important to account for that variance through a random effect. 



We conducted all the analyses described above eight times; for each of the four responses 888 

(Zr, y25, y50, y75) one time for each of the two datasets. 889 

We have publicly archived all relevant data, code, and materials on the Open Science Framework 890 

(https://osf.io/mn5aj/). Archived data includes the original datasets distributed to all analysts, any 891 

edited versions of the data analyzed by individual groups, and the data we analyzed with our meta-892 

analyses, which include the effect sizes derived from separate analyses, the statistics describing 893 

variation in model structure among analyst groups, and the anonymized answers to our surveys of 894 

analysts and peer reviewers. Similarly, we have archived both the analysis code used for each 895 

individual analysis (where available) and the code from our meta-analyses. We have also archived 896 

copies of our survey instruments from analysts and peer reviewers. 897 

Our rules for excluding data from our study were as follows. We excluded from our synthesis any 898 

individual analysis submitted after we had completed peer review or those unaccompanied by 899 

analysis files that allow us to understand what the analysts did. We also excluded any individual 900 

analysis that did not produce an outcome that could be interpreted as an answer to our primary 901 

question (as posed above) for the respective dataset. For instance, this means that in the case of the 902 

data on blue tit chick growth, we excluded any analysis that did not include something that can be 903 

interpreted as growth or size as a dependent (response) variable, and in the case of 904 

the Eucalyptus establishment data, we excluded any analysis that did not include a measure of grass 905 

cover among the independent (predictor) variables. Also, as described above, any analysis that could 906 

not produce an effect that could be converted to a signed Zr was excluded from analyses of Zr. 907 

Preregistration Deviation: 

Some analysts had difficulty implementing our instructions to derive the out-of-sample 
predictions, and in some cases (especially for the Eucalyptus data), they submitted predictions 
with implausibly extreme values. We believed these values were incorrect and thus made the 
conservative decision to exclude out-of-sample predictions where the estimates were > 3 
standard deviations from the mean value from the full dataset provided to teams for analysis. 

https://osf.io/mn5aj/


 908 

 909 

Additional explanation: unregistered analyses 

1. Evaluating model fit. 
We evaluated all fitted models using the performance::performance() function from 
the performance package (Lüdecke, Ben-Shachar, et al. 2021) and the glance() function from 
the broom.mixed package (Bolker et al. 2024). For all models, we calculated the square root of 
the residual variance (Sigma) and the root mean squared error (RMSE). For 
GLMMs performance::performance() calculates the marginal and conditional R2 values as well as 
the contribution of random effects (ICC), based on Nakagawa et al. (2017). The 
conditional R2 accounts for both the fixed and random effects, while the marginal R2 considers 
only the variance of the fixed effects. The contribution of random effects is obtained by 
subtracting the marginal R2 from the conditional R2. 
2. Exploring outliers and analysis quality. 
After seeing the forest plots of Zr values and noticing the existence of a small number of extreme 
outliers, especially from the Eucalyptus analyses, we wanted to understand the degree to which 
our heterogeneity estimates were influenced by these outliers. To explore this question, we 
removed the highest two and lowest two values of Zr in each dataset and re-calculated our 
heterogeneity estimates. 
To help understand the possible role of the quality of analyses in driving the heterogeneity we 
observed among estimates of Zr, we created forest plots and recalculated our heterogeneity 
estimates after removing all effects from analysis teams that had received at least one rating of 
“deeply flawed and unpublishable” and then again after removing all effects from analysis teams 
with at least one rating of either “deeply flawed and unpublishable” or “publishable with major 
revisions”. We also used self-identified levels of statistical expertise to examine heterogeneity 
when we retained analyses only from analysis teams that contained at least one member who 
rated themselves as “highly proficient” or “expert” (rather than “novice” or “moderately 
proficient”) in conducting statistical analyses in their research area in our intake survey. 
Additionally, to assess potential impacts of highly collinear predictor variables on estimates 
of Zr in blue tit analyses, we created forest plots (Supplementary Material B, Figure B.5) and 
recalculated our heterogeneity estimates after we removed analyses that contained the brood 
count after manipulation and the highly correlated (correlation of 0.89, Supplementary Material 
D, Figure D.2) brood count at day 14. This removal included the one effect based on a model that 
contained both these variables and a third highly correlated variable, the estimate of number of 
chicks fledged (the only model that included the estimate of number of chicks fledged). We did 
not conduct a similar analysis for the Eucalyptus dataset because there were no variables highly 
collinear with the primary predictors (grass cover variables) in that dataset (Supplementary 
Material D, Figure D.1). 
3. Exploring possible impacts of lower quality estimates of degrees of freedom. 
Our meta-analyses of variation in 𝑍𝑟  required variance estimates derived from estimates of the 
degrees of freedom in original analyses from which 𝑍𝑟  estimates were derived. While processing 
the estimates of degrees of freedom submitted by analysts, we identified a subset of these 
estimates in which we had lower confidence because two or more effects from the same analysis 
were submitted with identical degrees of freedom. We therefore conducted a second set of 
(more conservative) meta-analyses that excluded these 𝑍𝑟  estimates with identical estimates of 
degrees of freedom and we present these analyses in the supplement. 

https://easystats.github.io/performance/reference/model_performance.html
https://easystats.github.io/performance/reference/model_performance.html
https://egouldo.github.io/ManyAnalysts/supp_mat/SM2_EffectSizeAnalysis.html#fig-forest-plot-Zr-collinear-rm-subset
https://egouldo.github.io/ManyAnalysts/supp_mat/SM4_case_study_datasets.html#fig-ggpairs-bt
https://egouldo.github.io/ManyAnalysts/supp_mat/SM4_case_study_datasets.html#fig-ggpairs-bt
https://egouldo.github.io/ManyAnalysts/supp_mat/SM4_case_study_datasets.html#fig-ggpairs-eucalyptus
https://egouldo.github.io/ManyAnalysts/supp_mat/SM4_case_study_datasets.html#fig-ggpairs-eucalyptus


 910 

Step 6: Facilitated Discussion and Collaborative Write-Up of 911 

Manuscript 912 

We planned for analysts and initiating authors to discuss the limitations, results, and implications of 913 

the study and collaborate on writing the final manuscript for review as a stage-2 Registered Report. 914 

We built an R package, ManyEcoEvo:: to conduct the analyses described in this study (Gould et al. 915 

2023), which can be downloaded from https://github.com/egouldo/ManyEcoEvo/ to reproduce our 916 

analyses or replicate the analyses described here using alternate datasets. Data cleaning and 917 

preparation of analysis-data, as well as the analysis, is conducted in R (R Core Team 918 

2024) reproducibly using the targets package (Landau 2021). This data and analysis pipeline is stored 919 

in the ManyEcoEvo:: package repository and its outputs are made available to users of the package 920 

when the library is loaded. 921 

The full manuscript, including further analysis and presentation of results is written in Quarto (Allaire 922 

et al. 2024). The source code to reproduce the manuscript is hosted at 923 

https://github.com/egouldo/ManyAnalysts/ (Gould et al. 2024), and the rendered version of the 924 

source code may be viewed at https://egouldo.github.io/ManyAnalysts/. All R packages and their 925 

versions used in the production of the manuscript are listed in Table 7 at the end of this paper. 926 

Results 927 

Summary Statistics 928 

In total, 173 analyst teams, comprising 246 analysts, contributed 182 usable analyses (compatible 929 

with our meta-analyses and provided with all information needed for inclusion) of the two datasets 930 

examined in this study which yielded 215 effects. Analysts produced 134 distinct effects that met our 931 

criteria for inclusion in at least one of our meta-analyses for the blue tit dataset. Analysts produced 932 

81 distinct effects meeting our criteria for inclusion for the Eucalyptus dataset. Excluded analyses and 933 

effects either did not answer our specified biological questions, were submitted with insufficient 934 

information for inclusion in our meta-analyses, or were incompatible with production of our effect 935 

size(s). We expected cases of this final scenario (incompatible analyses), for instance we cannot 936 

extract a Zr from random forest models, which is why we analyzed two distinct types of 937 

Additional explanation: Best practices in many-analysts research 

After we initiated our project, a paper was published outlining best practices in many-analysts 
studies (Aczel et al. 2021). Although we did not have access to this document when we 
implemented our project, our study complies with these practices nearly completely. The one 
exception is that although we requested analysis code from analysts, we did not require 
submission of code. 

Preregistration deviation:  

As described above, due to the large number of recruited analysts and reviewers and the 
anticipated challenges of receiving and integrating feedback from so many authors, we limited 
analyst and reviewer participation in the production of the final manuscript to an invitation to 
call attention to serious problems with the manuscript draft. 
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effects, Zr and out-of-sample predictions. Some effects only provided sufficient information for a 938 

subset of analyses and were only included in that subset. For both datasets, most submitted analyses 939 

incorporated mixed effects. Submitted analyses of the blue tit dataset typically specified normal error 940 

and analyses of the Eucalyptus dataset typically specified a non-normal error distribution 941 

(Supplementary Material A, Table A.1). 942 

For both datasets, the composition of models varied substantially in regards to the number of fixed 943 

and random effects, interaction terms, and the number of data points used, and these patterns 944 

differed somewhat between the blue tit and Eucalyptus analyses (See Supplementary Material A, 945 

Table A.2). Focusing on the models included in the Zr analyses (because this is the larger sample), 946 

blue tit models included a similar number of fixed effects on average (mean 5.2 ± 2.92 SD, range: 1 to 947 

19) as Eucalyptus models (mean 5.01 ± 3.83 SD, range: 1 to 13), but the standard deviation in 948 

number of fixed effects was somewhat larger in the Eucalyptus models. The average number of 949 

interaction terms was much larger for the blue tit models (mean 0.44 ± 1.11 SD, range: 0 to 10) than 950 

for the Eucalyptus models (mean 0.16 ± 0.65 SD, range: 0 to 5), but still under 0.5 for both, indicating 951 

that most models did not contain interaction terms. Blue tit models also contained more random 952 

effects (mean 3.53 ± 2.08 SD, range: 0 to 10) than Eucalyptus models (mean 1.41 ± 1.09 SD, range: 0 953 

to 4). The maximum possible sample size in the blue tit dataset (3720 nestlings) was an order of 954 

magnitude larger than the maximum possible in the Eucalyptus dataset (351 plots), and the means 955 

and standard deviations of the sample size used to derive the effects eligible for our study were also 956 

an order of magnitude greater for the blue tit dataset (mean 2611.09 ± 937.48 SD, range: 76 to 76) 957 

relative to the Eucalyptus models (mean 298.43 ± 106.25 SD, range: 18 to 351). However, the 958 

standard deviation in sample size from the Eucalyptus models was heavily influenced by a few cases 959 

of dramatic sub-setting (described below). Approximately three quarters of Eucalyptus models used 960 

sample sizes within 3% of the maximum. In contrast, fewer than 20% of blue tit models relied on 961 

sample sizes within 3% of the maximum, and approximately 50% of blue tit models relied on sample 962 

sizes 29% or more below the maximum. 963 

Analysts provided qualitative descriptions of the conclusions of their analyses. Each analysis team 964 

provided one conclusion per dataset. These conclusions could take into account the results of any 965 

formal analyses completed by the team as well as exploratory and visual analyses of the data. Here 966 

we summarize all qualitative responses, regardless of whether we had sufficient information to use 967 

the corresponding model results in our quantitative analyses below. We classified these conclusions 968 

into the categories summarized below (Table 1): 969 

• Mixed: some evidence supporting a positive effect, some evidence supporting a negative effect 970 

• Conclusive negative: negative relationship described without caveat 971 

• Qualified negative: negative relationship but only in certain circumstances or where analysts 972 

express uncertainty in their result 973 

• Conclusive none: analysts interpret the results as conclusive of no effect 974 

• Qualified none: analysts describe finding no evidence of a relationship but they describe the 975 

potential for an undetected effect 976 

• Qualified positive: positive relationship described but only in certain circumstances or where 977 

analysts express uncertainty in their result 978 

• Conclusive positive: positive relationship described without caveat 979 

For the blue tit dataset, most analysts concluded that there was negative relationship between 980 

measures of sibling competition and nestling growth, though half the teams expressed qualifications 981 

or described effects as mixed or absent. No analysts concluded that there was a positive relationship 982 

https://egouldo.github.io/ManyAnalysts/supp_mat/SM1_summary.html#tbl-Table1
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even though some individual effect sizes were positive, apparently because all analysts who 983 

produced effects indicating positive relationships also produced effects indicating negative 984 

relationships and therefore described their results as qualified, mixed, or absent. For 985 

the Eucalyptus dataset, there was a broader spread of conclusions with at least one analyst team 986 

providing conclusions consistent with each conclusion category. The most common conclusion for 987 

the Eucalyptus dataset was that there was no relationship between grass cover 988 

and Eucalyptus recruitment (either conclusive or qualified description of no relationship), but more 989 

than half the teams concluded that there were effects; negative, positive, or mixed. 990 

Table 1: Tallies of analysts’ qualitative answers to the research questions addressed by their analyses. 991 

Dataset Mixed Negative 
Conclusive 

Negative 
Qualified 

None 
Conclusive 

None 
Qualified 

Positive 
Qualified 

Positive 
Conclusive 

blue tit 5 37 27 4 1 0 0 

Eucalyptus 8 6 12 19 12 4 2 

 992 

Distribution of effects 993 

Effect sizes (Zr) 994 

Although the majority (118 of 131) of the usable Zr effects from the blue tit dataset found nestling 995 

growth decreased with sibling competition, and the meta-analytic mean �̅�r (Fisher’s transformation 996 

of the correlation coefficient) was convincingly negative (-0.35 ± 0.06 95%CI), there was substantial 997 

variability in the strength and the direction of this effect. Zr ranged from -1.55 to 0.38, and 998 

approximately continuously from -0.93 to 0.19 (Figure 2a and Table 4), and of the 118 effects with 999 

negative slopes, 93 had confidence intervals excluding 0. Of the 13 with positive slopes indicating 1000 

increased nestling growth in the presence of more siblings, 2 had confidence intervals excluding zero 1001 

(Figure 2a). 1002 

Meta-analysis of the Eucalyptus dataset also showed substantial variability in the strength of effects 1003 

as measured by Zr, and unlike with the blue tits, a notable lack of consistency in the direction of 1004 

effects (Figure 2b, Table 4). Zr ranged from -4.47 (Supplementary Material A, Figure A.2), indicating a 1005 

strong tendency for reduced Eucalyptus seedling success as grass cover increased, to 0.39, indicating 1006 

the opposite. Although the range of reported effects skewed strongly negative, this was due to a 1007 

small number of substantial outliers. Most values of Zr were relatively small with values <|0.2| and 1008 

the meta-analytic mean effect size was close to zero (-0.09 ± 0.12 95%CI). Of the 79 effects, fifty-1009 

three had confidence intervals overlapping zero, approximately a quarter (fifteen) crossed the 1010 

traditional threshold of statistical significance indicating a negative relationship between grass cover 1011 

and seedling success, and eleven crossed the significance threshold indicating a positive relationship 1012 

between grass cover and seedling success (Figure 2b). 1013 

 1014 
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Figure 2: Forest plots of meta-analytic estimated standardized effect sizes (Zr, blue triangles) and 1016 

their 95% confidence intervals for each effect size included in the meta-analysis model. (A) Blue tit 1017 

analyses: Points where Zr are less than 0 indicate analyses that found a negative relationship 1018 

between sibling number and nestling growth. (B) Eucalyptus analyses: Points where Zr are less than 0 1019 

indicate a negative relationship between grass cover and Eucalyptus seedling success. The meta-1020 

analytic mean effect size is denoted by a black circle and a dashed vertical line, with error bars also 1021 

representing the 95% confidence interval. The solid black vertical line demarcates effect size of 0, 1022 

indicating no relationship between the test variable and the response variable. Note that 1023 

the Eucalyptus plot omits one extreme outlier with the value of -4.47 (Supplementary Material A, 1024 

Figure A.2) in order to standardize the x-axes on these two panels. 1025 

Out-of-sample predictions (yi) 1026 

As with the effect size Zr, we observed substantial variability in the size of out-of-sample predictions 1027 

derived from the analysts’ models. Blue tit predictions (Figure 3a), which were z-score-standardised 1028 

to accommodate the use of different response variables, always ranged far in excess of one standard 1029 

deviation. In the y25 scenario, model predictions ranged from -1.84 to 0.42 (a range of 2.68 standard 1030 

deviations), in the y50 they ranged from -0.52 to 1.08 (a range of 1.63 standard deviations), and in 1031 

the y75 scenario they ranged from -0.03 to 1.59 (a range of 1.9 standard deviations). As should be 1032 

expected given the existence of both negative and positive Zr values, all three out-of-sample 1033 

scenarios produced both negative and positive predictions, although as with the Zr values, there is a 1034 

clear trend for scenarios with more siblings to be associated with smaller nestlings. This is supported 1035 

by the meta-analytic means of these three sets of predictions which were -0.66 (95%CI -0.82–0.5) for 1036 

the y25, 0.34 (95%CI 0.2-0.48) for the y50, and 0.67 (95%CI 0.57-0.77) for the y75. 1037 

Eucalyptus out-of-sample predictions also varied substantially (Figure 3b), but because they were not 1038 

z-score-standardised and are instead on the original count scale, the types of interpretations we can 1039 
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make differ. The predicted Eucalyptus seedling counts per 15 x 15 m plot for the y25 scenario ranged 1040 

from 0.04 to 26.99, for the y50 scenario ranged from 0.04 to 44.34, and for the y75 scenario they 1041 

ranged from 0.03 to 61.34. The meta-analytic mean predictions for these three scenarios were 1042 

similar; 1.27 (95%CI 0.59-2.3) for the y25, 2.92 (95%CI 0.98-3.89) for the y50, and 2.92 (95%CI 1.59-1043 

4.9) for the y75 scenarios respectively. 1044 

A

 

B

 
 1045 

 1046 

Figure 3: Forest plot of meta-analytic estimated out-of-sample predictions. A) Standardized (z-score) 1047 

blue tit out-of-sample predictions, yi. B) response-scale (stem counts) Eucalyptus out-of-sample 1048 

predictions. Triangles represent individual estimates. Circles represent the meta-analytic mean for 1049 

each prediction scenario. Dark-blue points correspond to y25 scenario, medium-blue points 1050 

correspond to the y50 scenario, while light blue points correspond to the y75 scenario. Error bars are 1051 

95% confidence intervals. Note that, for the Eucalyptus analysis, outliers (observations more than 3 1052 

SD above the mean) have been removed prior to model fitting and do not appear on this figure. The 1053 

x-axis is truncated to approximately 140, and thus some error bars are incomplete. 1054 

See Supplementary Material B, Figure B.6 for full figure. 1055 

 1056 

Quantifying heterogeneity 1057 

Effect sizes (Zr)  1058 

We quantified both absolute (τ2) and relative (I2) heterogeneity resulting from analytical variation. 1059 

Both measures suggest that substantial variability among effect sizes was attributable to the 1060 

analytical decisions of analysts. 1061 
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The total absolute level of variance beyond what would typically be expected due to sampling 1062 

error, τ2 (Table 2), among all usable blue tit effects was 0.08 and for Eucalyptus effects was 0.27. This 1063 

is similar to or exceeding the median value (0.105) of τ2 found across 31 recent meta-1064 

analyses (calculated from the data in Yang et al. 2023). The similarity of our observed values to 1065 

values from meta-analyses of different studies based on different data suggest the potential for a 1066 

large portion of heterogeneity to arise from analytical decisions. For further discussion of 1067 

interpretation of τ2 in our study, please consult discussion of post hoc analyses below. 1068 

Table 2: Heterogeneity in the estimated effects Zr for meta-analyses of: the full dataset, as well as 1069 

from post hoc analyses wherein analyses with outliers are removed, analyses with effects from 1070 

analysis teams with at least one “unpublishable” rating are excluded, analyses receiving at least one 1071 

“major revisions” rating or worse excluded, analyses from teams with at least one analyst self-rated 1072 

as “highly proficient” or “expert” in statistical analysis are included, and (blue tit only) analyses that 1073 

did not included the pair of highly collinear predictors together. τ2
Team is the absolute heterogeneity 1074 

for the random effect Team. τ2
Effect ID is the absolute heterogeneity for the random effect Effect 1075 

ID nested under Team. Effect ID is the unique identifier assigned to each individual statistical effect 1076 

submitted by an analysis team. We nested Effect ID within analysis team identity (Team) because 1077 

analysis teams often submitted >1 statistical effect, either because they considered >1 model or 1078 

because they derived >1 effect per model, especially when a model contained a factor with multiple 1079 

levels that produced >1 contrast. τ2
Total is the total absolute heterogeneity. I2

Total is the proportional 1080 

heterogeneity; the proportion of the variance among effects not attributable to sampling 1081 

error, I2
Team is the subset of the proportional heterogeneity due to differences 1082 

among Teams and I2
Team, Effect  ID is subset of the proportional heterogeneity attributable to among-1083 

Effect ID differences. 1084 

Dataset NObs τ2
Total τ2

Team τ2
Effect  ID I2

Total I2
Team I2

Team,   Effect  ID 

All Analyses 

Eucalyptus 79 0.27 0.02 0.25 98.59% 6.89% 91.70% 

blue tit 131 0.08 0.03 0.05 97.61% 36.71% 60.90% 

Blue tit analyses containing highly collinear predictors removed 

blue tit 117 0.07 0.04 0.03 96.92% 58.18% 38.75% 

All analyses, outliers removed 

Eucalyptus 75 0.01 0.00 0.01 66.19% 19.25% 46.94% 

blue tit 127 0.07 0.04 0.02 96.84% 64.63% 32.21% 

Analyses receiving at least one 'Unpublishable' rating removed 

Eucalyptus 55 0.01 0.01 0.01 79.74% 28.31% 51.43% 

blue tit 109 0.08 0.03 0.05 97.52% 35.68% 61.84% 

Analyses receiving at least one 'Unpublishable' and or 'Major Revisions' rating removed 

Eucalyptus 13 0.03 0.03 0.00 88.91% 88.91% 0.00% 

blue tit 32 0.14 0.01 0.13 98.72% 5.17% 93.55% 

Analyses from teams with highly proficient or expert data analysts 

Eucalyptus 34 0.58 0.02 0.56 99.41% 3.47% 95.94% 

blue tit 89 0.09 0.03 0.06 97.91% 31.43% 66.49% 

 1085 

In our analyses, I2 is a plausible index of how much more variability among effect sizes we have 1086 

observed, as a proportion, than we would have observed if sampling error were driving variability. 1087 

We discuss our interpretation of I2 further in the methods, but in short, it is a useful metric for 1088 

comparison to values from published meta-analyses and provides a plausible value for how much 1089 
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heterogeneity could arise in a normal meta-analysis with similar sample sizes due to analytical 1090 

variability alone. In our study, total I2 for the blue tit Zr estimates was extremely large, at 97.61%, as 1091 

was the Eucalyptus estimate (98.59% Table 2). 1092 

Although the overall I2 values were similar for both Eucalyptus and blue tit analyses, the relative 1093 

composition of that heterogeneity differed. For both datasets, the majority of heterogeneity 1094 

in 𝑍𝑟  was driven by differences among effects as opposed to differences among teams, though this 1095 

was more prominent for the Eucalyptus dataset, where nearly all of the total heterogeneity was 1096 

driven by differences among effects (91.7%) as opposed to differences among teams (6.89%) 1097 

(Table 2). 1098 

Out-of-sample predictions (yi) 1099 

We observed substantial heterogeneity among out-of-sample estimates, but the pattern differed 1100 

somewhat from the Zr values (Table 3). Among the blue tit predictions, I2 ranged from medium-high 1101 

for the y25 scenario (68.54) to low (27.9) for the y75 scenario. Among 1102 

the Eucalyptus predictions, I2 values were uniformly high (>82%). For both datasets, most of the 1103 

existing heterogeneity among predicted values was attributable to among-team differences, with the 1104 

exception of the y50 analysis of the Eucalyptus dataset. We are limited in our interpretation of τ2 for 1105 

these estimates because, unlike for the Zr estimates, we have no benchmark for comparison with 1106 

other meta-analyses. 1107 

Table 3: Heterogeneity among the out-of-sample predictions yi for both blue tit 1108 

and Eucalyptus datasets. τ2
Team is the absolute heterogeneity for the random effect Team. Τ2

Effect ID is 1109 

the absolute heterogeneity for the random effect Effect ID nested under Team. Effect ID is the unique 1110 

identifier assigned to each individual statistical effect submitted by an analysis team. We 1111 

nested Effect ID within analysis team identity (Team) because analysis teams often submitted >1 1112 

statistical effect, either because they considered >1 model or because they derived >1 effect per 1113 

model, especially when a model contained a factor with multiple levels that produced >1 1114 

contrast. τ2
Total is the total absolute heterogeneity. I2

Total is the proportional heterogeneity; the 1115 

proportion of the variance among effects not attributable to sampling error, I2
Team is the subset of the 1116 

proportional heterogeneity due to differences among Teams and I2
Team,Effect ID is subset of the 1117 

proportional heterogeneity attributable to among-Effect ID differences. 1118 

 1119 

Prediction 
Scenario 

NObs ΤTotal Τ2
Team Τ2

Effect  ID I2
Total I2

Team I2
Team,  Effect  ID 

blue tit 

y25 63 0.23 0.11 0.03 68.54% 53.43% 15.11% 

y50 60 0.23 0.06 0.00 50% 46.29% 3.71% 

y75 63 0.23 0.02 0.00 27.9% 27.89% 0.01% 

Eucalyptus 

y25 38 5.75 1.48 0.68 86.93% 59.54% 27.39% 

y50 38 5.75 1.32 0.83 89.63% 55% 34.64% 

y75 38 5.75 1.03 0.41 80.19% 57.41% 22.78% 



Post-hoc analysis: Exploring outlier characteristics and the effect of 1120 

outlier removal on heterogeneity 1121 

Effect sizes (Zr) 1122 

The outlier Eucalyptus Zr values were striking and merited special examination. The three negative 1123 

outliers had very low sample sizes that were based on either small subsets of the dataset or, in one 1124 

case, extreme aggregation of data. The outliers associated with small subsets had sample sizes 1125 

(n= 117, 90, 18) that were less than half of the total possible sample size of 351. The case of extreme 1126 

aggregation involved averaging all values within each of the 351 sites in the dataset. 1127 

Surprisingly, both the largest and smallest effect sizes in the blue tit analyses (Figure 2a) come from 1128 

the same analyst (anonymous ID: ‘Adelong’), with identical models in terms of the explanatory 1129 

variable structure, but with different response variables. However, the radical change in effect was 1130 

primarily due to collinearity with covariates. The primary predictor variable (brood count after 1131 

manipulation) was accompanied by several collinear variables, including the highly collinear 1132 

(correlation of 0.89 Supplementary Material D, Figure D.2) covariate (brood count at day 14) in both 1133 

analyses. In the analysis of nestling weight, brood count after manipulation showed a strong positive 1134 

partial correlation with weight after controlling for brood count at day 14 and treatment category 1135 

(increased, decreased, unmanipulated). In that same analysis, the most collinear covariate (the day 1136 

14 count) had a negative partial correlation with weight. In the analysis with tarsus length as the 1137 

response variable, these partial correlations were almost identical in absolute magnitude, but 1138 

reversed in sign and so brood count after manipulation was now the collinear predictor with the 1139 

negative relationship. The two models were therefore very similar, but the two collinear predictors 1140 

simply switched roles, presumably because a subtle difference in the distribution of weight and 1141 

tarsus length data. 1142 

When we dropped the Eucalyptus outliers, I2 decreased from high (98.59 %), using Higgins’ (Higgins 1143 

et al. 2003) suggested benchmark, to between moderate and high (66.19 %, Table 2). However, more 1144 

notably, τ2 dropped from 0.27 to 0.01, indicating that, once outliers were excluded, the observed 1145 

variation in effects was similar to what we would expect if sampling error were driving the 1146 

differences among effects (since τ2 is the variance beyond that driven by sampling error). The 1147 

interpretation of this value of τ2 in the context of our many-analyst study is somewhat different than 1148 

a typical meta-analysis, however, since in our study (especially for Eucalyptus, where most analyses 1149 

used almost exactly the same data points), there is almost no role for sampling error in driving the 1150 

observed differences among the estimates. Thus, rather than concluding that the variability we 1151 

observed among estimates (after removing outliers) was due only to sampling 1152 

error (because τ2 became small: 10% of the median from Yang et al. 2023), we instead conclude that 1153 

the observed variability, which must be due to the divergent choices of analysts rather than sampling 1154 

error, is approximately of the same magnitude as what we would have expected if, instead, sampling 1155 

error, and not analytical heterogeneity, were at work. Conversely, dropping outliers from the set of 1156 

blue tit effects did not meaningfully reduce I2, and only modestly reduced τ2 (Table 2). Thus, effects 1157 

at the extremes of the distribution were much stronger contributors to total heterogeneity for effects 1158 

from analyses of the Eucalyptus than for the blue tit dataset. 1159 

Table 4: Estimated mean value of the standardised correlation coefficient, �̅�𝑟, along with its standard 1160 

error and 95% confidence intervals. We re-computed the meta-analysis for different post hoc subsets 1161 

of the data: All eligible effects, removal of effects from blue tit analyses that contained a pair of 1162 

highly collinear predictor variables, removal of effects from analysis teams that received at least one 1163 
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peer rating of “deeply flawed and unpublishable”, removal of any effects from analysis teams that 1164 

received at least one peer rating of either “deeply flawed and unpublishable” or “publishable with 1165 

major revisions”,, inclusion of only effects from analysis teams that included at least one member 1166 

who rated themselves as “highly proficient” or “expert” at conducting statistical analyses in their 1167 

research area. 1168 

Dataset �̂� 𝑆𝐸[𝜇]̂ 95% CI statistic p 

All analyses 

Eucalyptus −0.09 0.06 [−0.22,0.03] −1.47 0.14 

blue tit −0.35 0.03 [−0.41,−0.29] −11.02 <0.001 

Blue tit analyses containing highly collinear predictors removed 

blue tit −0.36 0.03 [−0.42,−0.29] −10.97 <0.001 

All analyses, outliers removed 

Eucalyptus −0.03 0.01 [−0.06,0.00] −2.23 0.026 

blue tit −0.36 0.03 [−0.42,−0.30] −11.48 <0.001 

Analyses receiving at least one 'Unpublishable' rating removed 

Eucalyptus −0.02 0.02 [−0.07,0.02] −1.15 0.3 

blue tit −0.36 0.03 [−0.43,−0.30] −10.82 <0.001 

Analyses receiving at least one 'Unpublishable' and or 'Major Revisions' rating removed 

Eucalyptus −0.04 0.05 [−0.15,0.07] −0.77 0.4 

blue tit −0.37 0.07 [−0.51,−0.23] −5.34 <0.001 

Analyses from teams with highly proficient or expert data analysts 

Eucalyptus −0.17 0.13 [−0.43,0.10] −1.24 0.2 

blue tit −0.36 0.04 [−0.44,−0.28] −8.93 <0.001 

 1169 

Out-of-sample predictions (yi) 1170 

We did not conduct these post hoc analyses on the out-of-sample predictions as the number of 1171 

eligible effects was smaller and the pattern of outliers differed. 1172 

Post hoc analysis: Exploring the effect of removing analyses with poor 1173 

peer ratings on heterogeneity 1174 

Effect sizes (Zr) 1175 

Removing poorly rated analyses had limited impact on the meta-analytic means (Supplementary 1176 

Material B, Figure B.3). For the Eucalyptus dataset, the meta-analytic mean shifted from -0.09 to -1177 

0.02 when effects from analyses rated as unpublishable were removed, and to -0.04 when effects 1178 

from analyses rated, at least once, as unpublishable or requiring major revisions were removed. 1179 

Further, the confidence intervals for all of these means overlapped each of the other means 1180 

(Table 4). We saw similar patterns for the blue tit dataset, with only small shifts in the meta-analytic 1181 

mean, and confidence intervals of all three means overlapping each other mean (Table 4). Refitting 1182 

the meta-analysis with a fixed effect for categorical ratings also showed no indication of differences 1183 

in group meta-analytic means due to peer ratings (Supplementary Material B, Figure B.1). 1184 

For the blue tit dataset, removing poorly-rated analyses led to only negligible changes in I2
Total and 1185 

relatively minor impacts on τ2. However, for the Eucalyptus dataset, removing poorly-rated analyses 1186 

led to notable reductions in I2
Total and substantial reductions in τ2. When including all analyses, 1187 

the Eucalyptus I2
Total was 98.59% and τ2 was 0.27, but eliminating analyses with ratings of 1188 
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“unpublishable” reduced I2
Total to 79.74% and τ2 to 0.01, and removing also those analyses “needing 1189 

major revisions” left I2
Total at 88.91% and τ2 at 0.03 (Table 2). Additionally, the allocations of I2 to the 1190 

team versus individual effect were altered for both blue tit and Eucalyptus meta-analyses by 1191 

removing poorly-rated analyses, but in different ways. For blue tit meta-analysis, between a third and 1192 

two-thirds of the total I2 was attributable to among-team variance in most analyses until both 1193 

analyses rated “unpublishable” and analyses rated in need of “major revision” were eliminated, in 1194 

which case almost all remaining heterogeneity was attributable to among-effect differences. In 1195 

contrast, for Eucalyptus meta-analysis, the among-team component of I2 was less than third until 1196 

both analyses rated “unpublishable” and analyses rated in need of “major revision” were eliminated, 1197 

in which case almost 90% of heterogeneity was attributable to differences among teams. 1198 

Out-of-sample predictions (yi) 1199 

We did not conduct these post hoc analyses on the out-of-sample predictions as the number of 1200 

eligible effects was smaller and our ability to interpret heterogeneity values for these analyses was 1201 

limited 1202 

Post hoc analysis: Exploring the effect of including only analyses 1203 

conducted by analysis teams with at least one member self-rated as 1204 

“highly proficient” or “expert” in conducting statistical analyses in 1205 

their research area 1206 

Effect sizes (Zr) 1207 

Including only analyses conducted by teams that contained at least one member who rated 1208 

themselves as “highly proficient” or “expert” in conducting the relevant statistical methods had 1209 

negligible impacts on the meta-analytic means (Table 4), the distribution of Zr effects 1210 

(Supplementary Material B, Figure B.4), or heterogeneity estimates (Table 2), which remained 1211 

extremely high. 1212 

Out-of-sample predictions (yi) 1213 

We did not conduct these post hoc analyses on the out-of-sample predictions as the number of 1214 

eligible effects was smaller. 1215 

Post hoc analysis: Exploring the effect of excluding estimates of Zr in 1216 

which we had reduced confidence 1217 

As described in our addendum to the methods, we identified a subset of estimates of Zr in which we 1218 

had less confidence because of features of the submitted degrees of freedom. Excluding these effects 1219 

in which we had lower confidence had minimal impact on the meta-analytic mean and the estimates 1220 

of total I2 and τ2 for both blue tit and Eucalyptus meta-analyses, regardless of whether outliers were 1221 

also excluded (Supplementary Material B, Table B.1). 1222 
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Post hoc analysis: Exploring the effect of excluding effects from blue 1223 

tit models that contained two highly collinear predictors 1224 

Effect sizes (Zr) 1225 

Excluding effects from blue tit models that contained the two highly collinear predictors (brood count 1226 

after manipulation and brood count at day 14) had negligible impacts on the meta-analytic means 1227 

(Table 4), the distribution of Zr effects (Supplementary Material B, Figure B.5), or heterogeneity 1228 

estimates (Table 2), which remained high. 1229 

Out-of-sample predictions  1230 

Inclusion of collinear predictors does not harm model prediction, and so we did not conduct these 1231 

post hoc analyses. 1232 

Explaining Variation in Deviation Scores 1233 

None of the pre-registered predictors explained substantial variation in deviation among submitted 1234 

statistical effects from the meta-analytic mean (Table 5, Table 6). 1235 

Table 5: Summary metrics for registered models seeking to explain deviation (Box-Cox transformed 1236 

absolute deviation scores) from �̅�𝑟 as a function of Sorensen’s Index, categorical peer ratings, and 1237 

continuous peer ratings for blue tit and Eucalyptus analyses, and as a function of the presence or 1238 

absence of random effects (in the analyst’s models) for Eucalyptus analyses. We report coefficient of 1239 

determination, R2, for our models including only fixed effects as predictors of deviation, and we 1240 

report R2
Conditional, R2

Marginal and the intra-class correlation (ICC) from our models that included both 1241 

fixed and random effects. For all our models, we calculated the residual standard deviation σ and 1242 

root mean squared error (RMSE). 1243 

Dataset NObs R2 R2
Conditional R2

Marginal ICC σ RMSE 

Deviation explained by categorical ratings 

Eucalyptus 346  0.13 0.01 0.12 1.06 1.02 

blue tit 473  0.09 7.47 × 10−3 0.08 0.5 0.48 

Deviation explained by continuous ratings 

Eucalyptus 346  0.12 7.44 × 10−3 0.11 1.06 1.03 

blue tit 473  0.09 3.44 × 10−3 0.09 0.5 0.48 

Deviation explained by Sorensen's index 

Eucalyptus 79 1.84 × 10−4    1.12 1.1 

blue tit 131 6.32 × 10−3    0.51 0.51 

Deviation explained by inclusion of random effects 

Eucalyptus 79 8.75 × 10−8    1.12 1.1 

 1244 

Table 6: Parameter estimates from models of Box-Cox transformed deviation scores from �̅�𝑟 as a 1245 

function of continuous and categorical peer ratings, Sorensen scores, and the inclusion of random 1246 

effects. Standard Errors (SE), 95% confidence intervals (95% CI) are reported for all estimates, while t 1247 

values, degrees of freedom and p-values are presented for fixed-effects. Note that positive 1248 

parameter estimates mean that as the predictor variable increases, so does the absolute value of the 1249 

deviation from the meta-analytic mean. 1250 
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Parameter Random 
effect 

Coefficient SE 95% CI t df p 

Deviation explained by inclusion of random effects - Eucalyptus 

(Intercept)  -2.53 0.27 [-3.06, -1.99] -9.31 77 <0.001 

Mixed model  0.00 0.31 [-0.60, 0.60] 0.00 77 >0.9 

Deviation explained by Sorensen’s index - Eucalyptus 

(Intercept)  -2.65 1.05 [-4.70, -0.60] -2.53 77 0.011 

Mean Sorensen's 
index 

 0.18 1.51 [-2.78, 3.14] 0.12 77 >0.9 

Deviation explained by Sorensen’s index - blue tit 

(Intercept)  -1.53 0.28 [-2.08, -0.98] -5.42 129 <0.001 

Mean Sorensen's 
index 

 0.42 0.47 [-0.49, 1.34] 0.91 129 0.4 

Deviation explained by continuous ratings - Eucalyptus 

(Intercept)  -2.23 0.23 [-2.69, -1.78] -9.65 342 <0.001 

RateAnalysis  -0.004 0 [-0.011, 0] -1.44 342 0.15 

SD (Intercept) Reviewer ID 0.37 0.09 [ 0.24, 0.60]    

SD (Observations) Residual 1.06 0.04 [0.98, 1.15]    

Deviation explained by continuous ratings - blue tit 

(Intercept)  -1.16 0.11 [-1.37, -0.94] -10.60 469 <0.001 

RateAnalysis  -0.002 0 [-0.004, 0] -1.22 469 0.2 

SD (Intercept) Reviewer ID 0.16 0.03 [0.10,0.24]    

SD (Observations) Residual 0.5 0.02 [0.46,0.53]    

Deviation explained by categorical ratings - Eucalyptus 

(Intercept)  -2.66 0.27 [-3.18, -2.13] -9.97 340 <0.001 

Publishable with 
major revision 

 0.29 0.29 [-0.27, 0.85] 1.02 340 0.3 

Publishable with 
minor revision 

 0.01 0.28 [-0.54, 0.56] 0.04 340 >0.9 

Publishable as is  0.05 0.31 [-0.55, 0.66] 0.17 340 0.9 

SD (Intercept) Reviewer ID 0.39 0.09 [ 0.25, 0.61]    

SD (Observations) Residual 1.06 0.04 [0.98, 1.15]    

Deviation explained by categorical ratings - blue tit 

(Intercept)  -1.11 0.11 [-1.33, -0.89] -9.91 467 <0.001 

Publishable with 
major revision 

 -0.19 0.12 [-0.42, 0.04] -1.62 467 0.10 

Publishable with 
minor revision 

 -0.19 0.12 [-0.42, 0.04] -1.65 467 0.10 

Publishable as is  -0.13 0.13 [-0.39, 0.12] -1.02 467 0.3 

SD (Intercept) Reviewer ID 0.15 0.04 [ 0.10, 0.24]    

SD (Observations) Residual 0.5 0.02 [0.46, 0.53]    

 1251 

Deviation scores as explained by reviewer ratings 1252 

Effect sizes (Zr) 1253 

We obtained reviews from 153 reviewers who reviewed analyses for a mean of 3.27 (range 1 - 11) 1254 

analysis teams. Analyses of the blue tit dataset received a total of 240 reviews, each was reviewed by 1255 

a mean of 3.87 (SD 0.71, range 3-5) reviewers. Analyses of the Eucalyptus dataset received a total of 1256 

178 reviews, each was reviewed by a mean of 4.24 (SD 0.79, range 3-6) reviewers. We tested for 1257 

inter-rater-reliability (IRR) to examine how similarly reviewers reviewed each analysis and found 1258 



approximately no agreement among reviewers. When considering continuous ratings, IRR was 0.01, 1259 

and for categorical ratings, IRR was -0.14. 1260 

Many of the models of deviation as a function of peer ratings faced issues of failure to converge or 1261 

singularity due to sparse design matrices with our pre-registered random effects (Effect ID and 1262 

Reviewer ID) (see Supplementary Material C). These issues persisted after increasing the tolerance 1263 

and changing the optimizer. For both Eucalyptus and blue tit datasets, models with continuous 1264 

ratings as a predictor were singular when both pre-registered random effects were included. 1265 

When using both categorical and continuous ratings as predictors, only models converged and 1266 

allowed 95% confidence intervals to be calculated when specifying Reviewer ID as a random effect. 1267 

The categorical ratings model had a R2
C of 0.09 and a R2

M of 0.01, the continuous ratings model had 1268 

a R2
C of 0.09 and a R2

M of 0.01 for the blue tit dataset and a R2
C of 0.12 and a R2

M of 0.01 for the 1269 

Eucalyptus dataset. Neither continuous or categorical reviewer ratings of the analyses meaningfully 1270 

predicted deviance from the meta-analytic mean (Table 6, Figure 4). We re-ran the multi-level meta-1271 

analysis with a fixed effect for the categorical publishability ratings and found no difference in mean 1272 

standardised effect sizes among publishability ratings (Supplementary Material B, Figure B.1). 1273 

 1274 

Figure 4: Violin plot of Box-Cox transformed deviation from meta-analytic mean �̅�𝑟 as a function of 1275 

categorical peer rating. Grey points for each rating group denote model-estimated marginal mean 1276 

deviation, and error bars denote 95%CI of the estimate. A Blue tit dataset, B Eucalyptus dataset. 1277 
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Out-of-sample predictions (yi) 1278 

Some models of the influence of reviewer ratings on out-of-sample predictions (yi) had issues with 1279 

convergence and singularity of fit (see Supplementary Material C, Table C.3) and those models that 1280 

converged and were not singular showed no strong relationship (Supplementary Material C, 1281 

Figure C.2, Supplementary Material C, Figure C.3), as with the Zr analyses. 1282 

Deviation scores as explained by the distinctiveness of variables in 1283 

each analysis 1284 

Effect sizes (Zr) 1285 

We employed Sorensen’s index to calculate the distinctiveness of the set of predictor variables used 1286 

in each model (Figure 5). The mean Sorensen’s score for blue tit analyses was 0.59 (SD: 0.1, range 1287 

0.43-0.86), and for Eucalyptus analyses was 0.69 (SD: 0.08, range 0.55-0.98). 1288 

We found no meaningful relationship between distinctiveness of variables selected and deviation 1289 

from the meta-analytic mean (Table 6, Figure 5) for either blue tit (mean 0.42, 95%CI -0.49,1.34) 1290 

or Eucalyptus effects (mean 0.18, 95%CI -2.78,3.14). 1291 

A

 

B

 
 1292 

Figure 5: Fitted model of the Box-Cox-transformed deviation score (deviation in effect size from 1293 

meta-analytic mean) as a function of the mean Sorensen’s index showing distinctiveness of the set of 1294 

predictor variables. Grey ribbons on predicted values are 95% CI’s. A) blue tit dataset, B) Eucalyptus 1295 

dataset. 1296 

Out-of-sample predictions (yi) 1297 

As with the Zr estimates, we did not observe any convincing relationships between deviation scores 1298 

of out-of-sample predictions and Sorensen’s index values (see Supplementary Material C4.1). 1299 

Deviation scores as explained by the inclusion of random effects 1300 

Effect sizes (Zr) 1301 

There were only three blue tit analyses that did not include random effects, which is below the pre-1302 

registered threshold for fitting a model of the Box-Cox transformed deviation from the meta-analytic 1303 

mean as a function of whether the analysis included random-effects. However, 1304 

17 Eucalyptus analyses included only fixed effects, which crossed our pre-registered threshold. 1305 
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Consequently, we performed this analysis for the Eucalyptus dataset only. There was no relationship 1306 

between random-effect inclusion and deviation from meta-analytic mean among 1307 

the Eucalyptus analyses (Table 6, Figure 6). 1308 

 1309 

Figure 6: Violin plot of mean Box-Cox transformed deviation from meta-analytic mean as a function 1310 

of random-effects inclusion in Eucalyptus analyses. White point for each group of analyses denotes 1311 

model-estimated marginal mean deviation, and error bars denote 95% CI of the estimate. 1312 

Out-of-sample predictions (yi) 1313 

As with the Zr estimates, we did not examine the possibility of a relationship between the inclusion 1314 

of random effects and the deviation scores of the blue tit out-of-sample predictions. When we 1315 

examined the possibility of this relationship for the Eucalyptus effects, we found consistent evidence 1316 

of somewhat higher Box-Cox-transformed deviation values for models including a random effect, 1317 

meaning the models including random effects averaged slightly higher deviation from the meta-1318 

analytic means (Supplementary Material C, Figure C.5). 1319 

Multivariate Analysis Effect size (Zr) and out-of-sample predictions (yi) 1320 

Like the univariate models, the multivariate models did a poor job of explaining deviations from the 1321 

meta-analytic mean. Because we pre-registered a multivariate model that contained collinear 1322 

predictors that produce results which are not readily interpretable, we present these models in the 1323 

supplement. We also had difficulty with convergence and singularity for multivariate models of out-1324 

of-sample (yi) result, and had to adjust which random effects we included (Supplementary Material 1325 

C, Table C.8). However, no multivariate analyses of Eucalyptus out-of-sample results avoided 1326 

problems of convergence or singularity, no matter which random effects we included 1327 

(Supplementary Material C, Table C.8). We therefore present no multivariate Eucalyptus yi models. 1328 
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We present parameter estimates from multivariate Zr models for both datasets (Supplementary 1329 

Material C, Table C.6, Table C.7) and from yi models from the blue tit dataset (Supplementary 1330 

Material C, Table C.10, Table C.9). We include interpretation of the results from these models in the 1331 

supplement, but the results do not change the interpretations we present above based on the 1332 

univariate analyses. 1333 

Discussion 1334 

When a large pool of ecologists and evolutionary biologists analyzed the same two datasets to 1335 

answer the corresponding two research questions, they produced substantially heterogeneous sets 1336 

of answers. Although the variability in analytical outcomes was high for both datasets, the patterns 1337 

of this variability differed distinctly between them. For the blue tit dataset, there was nearly 1338 

continuous variability across a wide range of Zr values. In contrast, for the Eucalyptus dataset, there 1339 

was less variability across most of the range, but more striking outliers at the tails. Among out-of-1340 

sample predictions, there was again almost continuous variation across a wide range (2 SD) among 1341 

blue tit estimates. For Eucalyptus, out-of-sample predictions were also notably variable, with about 1342 

half the predicted stem count values at <2 but the other half being much larger, and ranging to 1343 

nearly 40 stems per 15 m x 15 m plot. We investigated several hypotheses for drivers of this 1344 

variability within datasets, but found little support for any of these. Most notably, even when we 1345 

excluded analyses that had received one or more poor peer reviews, the heterogeneity in results 1346 

largely persisted. Regardless of what drives the variability, the existence of such dramatically 1347 

heterogeneous results when ecologists and evolutionary biologists seek to answer the same 1348 

questions with the same data should trigger conversations about how ecologists and evolutionary 1349 

biologists analyze data and interpret the results of their own analyses and those of others in the 1350 

literature (e.g., Silberzahn et al. 2018; Simonsohn, Simmons, and Nelson 2020; Auspurg and Brüderl 1351 

2021; Breznau et al. 2022). 1352 

Our observation of substantial heterogeneity due to analytical decisions is consistent with a small 1353 

earlier study in ecology (Stanton-Geddes, de Freitas and de Sales Dambros 2014) and a growing body 1354 

of work from the quantitative social sciences (e.g., Silberzahn et al. 2018; Botvinik-Nezer et al. 1355 

2020; Huntington-Klein et al. 2021; Schweinsberg et al. 2021; Breznau et al. 2022; Coretta et al. 1356 

2023). In these studies, when volunteers from the discipline analyzed the same data, they produced 1357 

a worryingly diverse set of answers to a pre-set question. This diversity included a wide range of 1358 

effect sizes, and in most cases, even involved effects in opposite directions. Thus, our result should 1359 

not be viewed as an anomalous outcome from two particular datasets, but instead as evidence from 1360 

additional disciplines regarding the heterogeneity that can emerge from analyses of complex 1361 

datasets to answer questions in probabilistic science. Not only is our major observation consistent 1362 

with other studies, it is, itself, robust because it derived primarily from simple forest plots that we 1363 

produced based on a small set of decisions that were mostly registered before data gathering and 1364 

which conform to widely accepted meta-analytic practices. 1365 

Unlike the strong pattern we observed in the forest plots, our other analyses, both registered 1366 

and post hoc, produced either inconsistent patterns, weak patterns, or the absence of patterns. Our 1367 

registered analyses found that deviations from the meta-analytic mean by individual effect sizes (𝑍𝑟̅̅ ̅) 1368 

or the predicted values of the dependent variable (�̅�) were poorly explained by our hypothesized 1369 

predictors: peer rating of each analysis team’s method section, a measurement of the distinctiveness 1370 

of the set of predictor variables included in each analysis, or whether the model included random 1371 

effects. However, in our post hoc analyses, we found that dropping analyses identified as 1372 
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unpublishable or in need of major revision by at least one reviewer modestly reduced the observed 1373 

heterogeneity among the Zr outcomes, but only for Eucalyptus analyses, apparently because this led 1374 

to the dropping of the major outlier. This limited role for peer review in explaining the variability in 1375 

our results should be interpreted cautiously because the inter-rater reliability among peer reviewers 1376 

was extremely low, and at least some analyses that appeared flawed to us were not marked as 1377 

flawed by reviewers. Thus, it seems that the peer reviews we received were of mixed quality, possibly 1378 

due to lack of expertise or lack of care on the part of some reviewers. However, the hypothesis that 1379 

poor quality analyses drove a substantial portion of the heterogeneity we observed was also 1380 

contradicted by our observation that analysts’ self-declared statistical expertise appeared unrelated 1381 

to heterogeneity. When we retained only analyses from teams including at least one member with 1382 

high self-declared levels of expertise, heterogeneity among effect sizes remained high. Thus, our 1383 

results suggest lack of statistical expertise is not the primary factor responsible for the heterogeneity 1384 

we observed, although further work is merited before rejecting a role for statistical expertise. 1385 

Besides variability in expertise, it is also possible that the volunteer analysts varied in the effort they 1386 

invested, and low effort presumably drove at least some heterogeneity in results. However, analysts 1387 

often submitted thoughtful and extensive code, tables, figures, and textual explanation and 1388 

interpretations, which is evidence of substantial investment. Further, we are confident that low effort 1389 

alone is an insufficient explanation for the heterogeneity we observed because we have worked with 1390 

these datasets ourselves, and we know from experience that there are countless plausible modeling 1391 

alternatives that can produce a diversity of effects. Additionally, heterogeneity in analytical outcomes 1392 

differed notably between datasets, and there is no reason to expect that one set of analysts took this 1393 

project less seriously than the other. Returning to our exploratory analyses, not surprisingly, simply 1394 

dropping outlier values of Zr for Eucalyptus analyses, which had more extreme outliers, led to less 1395 

observable heterogeneity in the forest plots, and also reductions in our quantitative measures of 1396 

heterogeneity. We did not observe a similar effect in the blue tit dataset because that dataset had 1397 

outliers that were much less extreme and instead had more variability across the core of the 1398 

distribution. 1399 

Our major observations raise two broad questions; why was the variability among results so high, 1400 

and why did the pattern of variability differ between our two datasets. One important and plausible 1401 

answer to the first question is that much of the heterogeneity derives from the lack of a precise 1402 

relationship between the two biological research questions we posed and the data we provided. This 1403 

lack of a precise relationship between data and question creates many opportunities for different 1404 

model specifications, and so may inevitably lead to varied analytical outcomes (Auspurg and Brüderl 1405 

2021). However, we believe that the research questions we posed are consistent with the kinds of 1406 

research question that ecologists and evolutionary biologists typically work from. When designing 1407 

the two biological research questions, we deliberately sought to represent the level of specificity we 1408 

typically see in these disciplines. This level of specificity is evident when we look at the research 1409 

questions posed by some recent meta-analyses in these fields: 1410 

• “how [does] urbanisation impact mean phenotypic values and phenotypic variation … [in] 1411 

paired urban and non-urban comparisons of avian life-history traits” (Capilla-Lasheras et al. 1412 

2022) 1413 

• “[what are] the effects of ocean acidification on the crustacean exoskeleton, assessing both 1414 

exoskeletal ion content (calcium and magnesium) and functional properties (biomechanical 1415 

resistance and cuticle thickness)” (Siegel et al. 2022) 1416 

• “[what is] the extent to which restoration affects both the mean and variability of 1417 

biodiversity outcomes … [in] terrestrial restoration” (Atkinson et al. 2022) 1418 

https://egouldo.github.io/ManyAnalysts/#ref-auspurg2021
https://egouldo.github.io/ManyAnalysts/#ref-auspurg2021


• “[does] drought stress [have] a negative, positive, or null effect on aphid fitness” (Leybourne 1419 

et al. 2021) 1420 

• “[what is] the influence of nitrogen-fixing trees on soil nitrous oxide emissions” (Kou-1421 

Giesbrecht and Menge 2021) 1422 

There is not a single precise answer to any of these questions, nor to the questions we posed to 1423 

analysts in our study. And this lack of single clear answers will obviously continue to cause 1424 

uncertainty since ecologists and evolutionary biologists conceive of the different answers from the 1425 

different statistical models as all being answers to the same general question. A possible response 1426 

would be a call to avoid these general questions in favor of much more precise alternatives (Auspurg 1427 

and Brüderl 2021). However, the research community rewards researchers who pose broad 1428 

questions (Simons, Shoda, and Lindsay 2017), and so researchers are unlikely to narrow their scope 1429 

without a change in incentives. Further, we suspect that even if individual studies specified narrow 1430 

research questions, other scientists would group these more narrow questions into broader 1431 

categories, for instance in meta-analyses, because it is these broader and more general questions 1432 

that often interest the research community. 1433 

Although variability in statistical outcomes among analysts may be inevitable, our results raise 1434 

questions about why this variability differed between our two datasets. We are particularly 1435 

interested in the differences in the distribution of Zr since the distributions of out-of-sample 1436 

predictions were on different scales for the two datasets, thus limiting the value of comparisons. The 1437 

forest plots of Zr from our two datasets showed distinct patterns, and these differences are 1438 

consistent with several alternative hypotheses. The results submitted by analysts of 1439 

the Eucalyptus dataset showed a small average (close to zero) with most estimates also close to zero 1440 

(± 0.2), though about a third far enough above or below zero to cross the traditional threshold of 1441 

statistical significance. There were a small number of striking outliers that were very far from zero. In 1442 

contrast, the results submitted by analysts of the blue tit dataset showed an average much further 1443 

from zero (- 0.35) and a much greater spread in the core distribution of estimates across the range 1444 

of Zr values (± 0.5 from the mean), with few modest outliers. So, why was there more spread in 1445 

effect sizes (across the estimates that are not outliers) in the blue tit analyses relative to 1446 

the Eucalyptus analyses? 1447 

One possible explanation for the lower heterogeneity among most Eucalyptus Zr effects is that weak 1448 

relationships may limit the opportunities for heterogeneity in analytical outcome. Some evidence for 1449 

this idea comes from two sets of “many labs” studies in psychology (Klein et al. 2014, 2018). In these 1450 

studies, many independent lab groups each replicated a large set of studies, including, for each 1451 

study, the experiment, data collection, and statistical analyses. These studies showed that, when the 1452 

meta-analytic mean across the replications from different labs was small, there was much less 1453 

heterogeneity among the outcomes than when the mean effect sizes were large (Klein et al. 1454 

2014, 2018). Of course, a weak average effect size would not prevent divergent effects in all 1455 

circumstances. As we saw with the Eucalyptus analyses, taking a radically smaller subset of the data 1456 

can lead to dramatically divergent effect sizes even when the mean with the full dataset is close to 1457 

zero. 1458 

Our observation that dramatic sub-setting in the Eucalyptus dataset was associated with 1459 

correspondingly dramatic divergence in effect sizes leads us towards another hypothesis to explain 1460 

the differences in heterogeneity between the Eucalyptus and blue tit analysis sets. It may be that 1461 

when analysts often divide a dataset into subsets, the result will be greater heterogeneity in 1462 

analytical outcome for that dataset. Although we saw sub-setting associated with dramatic outliers in 1463 



the Eucalyptus dataset, nearly all other analyses of Eucalyptus data used close to the same set of 351 1464 

samples, and as we saw, these effects did not vary substantially. However, analysts often analyzed 1465 

only a subset of the blue tit data, and as we observed, sample sizes were much more variable among 1466 

blue tit effects, and the effects themselves were also much more variable. Important to note here is 1467 

that subsets of data may differ from each other for biological reasons, but they may also differ due to 1468 

sampling error. Sampling error is a function of sample size, and sub-samples are, by definition, 1469 

smaller samples, and so more subject to variability in effects due to sampling error (Jennions et al. 1470 

2013). 1471 

Other features of datasets are also plausible candidates for driving heterogeneity in analytical 1472 

outcomes, including features of covariates. In particular, relationships between covariates and the 1473 

response variable as well as relationships between covariates and the primary independent variable 1474 

(collinearity) can strongly influence the modeled relationship between the independent variable of 1475 

interest and the dependent variable (Morrissey and Ruxton 2018; Dormann et al. 2013). Therefore, 1476 

inclusion or exclusion of these covariates can drive heterogeneity in effect sizes (Zr). Also, as we saw 1477 

with the two most extreme Zr values from the blue tit analyses, in multivariate models with collinear 1478 

predictors, extreme effects can emerge when estimating partial correlation coefficients due to high 1479 

collinearity, and conclusions can differ dramatically depending on which relationship receives the 1480 

researcher’s attention. Therefore, differences between datasets in the presence of strong and/or 1481 

collinear covariates could influence the differences in heterogeneity in results among those datasets. 1482 

Although it is too early in the many-analyst research program to conclude which analytical decisions 1483 

or which features of datasets are the most important drivers of heterogeneity in analytical outcomes, 1484 

we must still grapple with the possibility that analytical outcomes may vary substantially based on 1485 

the choices we make as analysts. If we assume that, at least sometimes, different analysts will 1486 

produce dramatically different statistical outcomes, what should we do as ecologists and 1487 

evolutionary biologists? We review some ideas below. 1488 

The easiest path forward after learning about this analytical heterogeneity would be simply to 1489 

continue with “business as usual”, where researchers report results from a small number of statistical 1490 

models. A case could be made for this path based on our results. For instance, among the blue tit 1491 

analyses, the precise values of the estimated Zr effects varied substantially, but the average effect 1492 

was convincingly different from zero, and a majority of individual effects (84%) were in the same 1493 

direction. Arguably, many ecologists and evolutionary biologists appear primarily interested in the 1494 

direction of a given effect and the corresponding p-value (Fidler et al. 2006), and so the variability we 1495 

observed when analyzing the blue tit dataset may not worry these researchers. Similarly, most 1496 

effects from the Eucalyptus analyses were relatively close to zero, and about two-thirds of these 1497 

effects did not cross the traditional threshold of statistical significance. Therefore, a large proportion 1498 

of people analyzing these data would conclude that there was no effect, and this is consistent with 1499 

what we might conclude from the meta-analysis. 1500 

However, we find the counter arguments to “business as usual” to be compelling. For blue tits, there 1501 

were a substantial minority of calculated effects that would be interpreted by many biologists as 1502 

indicating the absence of an effect (28%), and there were three traditionally ‘significant’ effects in 1503 

the opposite direction to the average. The qualitative conclusions of analysts also reflected 1504 

substantial variability, with fully half of teams drawing a conclusion distinct from the one we draw 1505 

from the distribution as a whole. These teams with different conclusions were either uncertain about 1506 

the negative relationship between competition and nestling growth, or they concluded that effects 1507 

were mixed or absent. For the Eucalyptus analyses, this issue is more concerning. Around two-thirds 1508 

of effects had confidence intervals overlapping zero, and of the third of analyses with confidence 1509 



intervals excluding zero, almost half were positive, and the rest were negative. Accordingly, the 1510 

qualitative conclusions of the Eucalyptus teams were spread across the full range of possibilities. But, 1511 

as we describe in the next paragraph, even this striking lack of consensus may be much less of a 1512 

problem than what could emerge as scientists select which results to publish. 1513 

A potentially larger argument against “business as usual” is that it provides the raw material for 1514 

biasing the literature. When different model specifications readily lead to different results, analysts 1515 

may be tempted to report the result that appears most interesting, or that is most consistent with 1516 

expectation (Gelman and Loken 2013; Forstmeier, Wagenmakers and Parker 2017). There is growing 1517 

evidence that researchers in ecology and evolutionary biology often report a biased subset of the 1518 

results they produce (Deressa et al. 2023; Kimmel, Avolio and Ferraro 2023), and that this bias 1519 

exaggerates the average size of effects in the published literature between 30 and 150% (Yang et al. 1520 

2023; Parker and Yang 2023). The bias then accumulates in meta-analyses, apparently more than 1521 

doubling the rate of conclusions of “statistical significance” in published meta-analyses above what 1522 

would have been found in the absence of bias (Yang et al. 2023). Thus, “business as usual” does not 1523 

just create noisy results, it helps create systematically misleading results. 1524 

If we move away from “business as usual”, where do we go? Many obvious options involve multiple 1525 

analyses per dataset. For instance, there is the traditional robustness or sensitivity check (e.g., Pei et 1526 

al. 2020; Briga and Verhulst 2021), in which the researcher presents several alternative versions of an 1527 

analysis to demonstrate that the result is ‘robust’ (Lu and White 2014). Unfortunately, robustness 1528 

checks are at risk of the same potential biases of reporting found in other studies (Silberzahn et al. 1529 

2018), especially given the relatively few models typically presented. However, these risks could be 1530 

minimized by running more models and doing so with a pre-registration or registered report. 1531 

Another option is model averaging. Averages across models often perform well (e.g. Taylor and Taylor 1532 

2023), and in some forms this may be a relatively simple solution. Model averaging, as most often 1533 

practiced in ecology and evolutionary biology, involves first identifying a small suite of candidate 1534 

models (see Burnham and Anderson 2002), then using Akaike weights, based on Akaike’s Information 1535 

Criterion (AIC), to calculate weighted averages for parameter estimates from those models. As with 1536 

typical robustness checks, the small number of models limits the exploration of specification space, 1537 

but examining a larger number of models could become the norm. However, there are more 1538 

concerning limitations. The largest of these limitations is that averaging regression coefficients is 1539 

problematic when models differ in interaction terms or collinear variables (Cade 2015). Additionally, 1540 

weighting by AIC may often be inconsistent with our modelling goals. AIC balances the trade-off 1541 

between model complexity and predictive ability, but penalizing models for complexity may not be 1542 

suited for testing hypotheses about causation (Arif and MacNeil 2022). So, AIC may often not offer 1543 

the weight we want to use, and we may also not wish to just generate an average at all. Instead, if we 1544 

hope to understand an extensive universe of possible modelling outcomes, we could conduct a 1545 

multiverse analysis, possibly with a specification curve (Simonsohn, Simmons, and Nelson 1546 

2015, 2020). This could mean running hundreds or thousands of models (or more!) to examine the 1547 

distribution of possible effects, and to see how different model specification choices map onto these 1548 

effects. However, exploring large areas of specification space may come at the cost of including 1549 

biologically implausible specifications. Thus, we expect a trade-off, and attempts to limit models to 1550 

the most biologically plausible may become increasingly difficult in proportion to the number of 1551 

variables and modeling choices. To make selecting plausible models easier, one could recruit multiple 1552 

analysts to design one or a few plausible specifications each as with our ‘many analyst’ 1553 

study (Silberzahn et al. 2018). An alternative that may be more labor intensive for the primary 1554 

analyst, but which may lead to a more plausible set of models, could involve hypothesizing about 1555 

causal pathways with DAGs [directed acyclic graphs; Arif and MacNeil (2023)] to constrain the model 1556 



set. As with other options outlined above, generating model specifications with DAGs could be 1557 

partnered with pre-registration to hinder bias from undisclosed data dredging. 1558 

Responses to heterogeneity in analysis outcomes need not be limited to simply conducting more 1559 

analyses, especially if it turns out that analysis quality drives some of the observed heterogeneity. As 1560 

we noted above, we cannot yet rule out the possibility that insufficient statistical expertise or poor-1561 

quality analyses might drive some portion of the heterogeneity we observed. Improving the quality 1562 

of analyses might be accomplished with a deliberate increase in investment in statistical education. 1563 

Many ecology and evolutionary biology students learn their statistical practice informally, with many 1564 

ecology doctoral programs in the USA not requiring a statistics course (Touchon and McCoy 2016), 1565 

and no formal courses of any kind included in doctoral degrees in most other countries. In cases 1566 

where formal investment in statistical education is lacking, informal resources, such as guidelines and 1567 

checklists, may help researchers avoid common mistakes. However, unless following guidelines or 1568 

checklists is enforced for publication, the adherence to guidelines is patchy. For example, despite the 1569 

publication of guidelines for conducting meta-analyses in ecology, the quality of meta-analyses did 1570 

not improve substantially over time (Koricheva and Gurevitch 2014). Even in medical research where 1571 

adherence to guidelines such as the PRISMA standards for systematic reviews and meta-analyses is 1572 

more highly valued, adherence is often poor (Page and Moher 2017). 1573 

Although we have reviewed a variety of potential responses to the existence of variability in 1574 

analytical outcomes, we certainly do not wish to imply that this is a comprehensive set of possible 1575 

responses. Nor do we wish to imply that the opinions we have expressed about these options are 1576 

correct. Determining how the disciplines of ecology and evolutionary biology should respond to 1577 

knowledge of the variability in analytical outcome will benefit from the contribution and discussion 1578 

of ideas from across these disciplines. We look forward to learning from these discussions and to 1579 

seeing how these disciplines ultimately respond. 1580 

Conclusions 1581 

Overall, our results suggest to us that, where there is a diverse set of plausible analysis options, no 1582 

single analysis should be considered a complete or reliable answer to a research question. Further, 1583 

because of the evidence that ecologists and evolutionary biologists often present a biased subset of 1584 

the analyses they conduct (Deressa et al. 2023; Yang et al. 2023; Kimmel, Avolio and Ferraro 2023), 1585 

we do not expect that even a collection of different effect sizes from different studies will accurately 1586 

represent the true distribution of effects (Yang et al. 2023). Therefore, we believe that an increased 1587 

level of skepticism of the outcomes of single analyses, or even single meta-analyses, is warranted 1588 

going forward. We recognize that some researchers have long maintained a healthy level of 1589 

skepticism of individual studies as part of sound and practical scientific practice, and it is possible 1590 

that those researchers will be neither surprised nor concerned by our results. However, we doubt 1591 

that many researchers are sufficiently aware of the potential problems of analytical flexibility to be 1592 

appropriately skeptical. We hope that our work leads to conversations in ecology, evolutionary 1593 

biology, and other disciplines about how best to contend with heterogeneity in results that is 1594 

attributable to analytical decisions. 1595 
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