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Bone damage in laying hens remains a significant welfare concern in the egg industry. Breeding compa-
nies rely on selective cross-breeding of purebred birds to produce commercial hybrids, which farmers 
raise for table-egg production. Genomic prediction is a potential tool to improve bone quality in laying 
hens. Because commercial layers are crossbred and kept in different environments than pure lines, the 
question arises whether to use within-line purebred selection or whether to use crossbred data. While 
selection based on pure line data is common, achieving optimal bone strength in hybrids may require 
incorporating hybrid data to account for heterosis and housing-specific effects. This study aims to eval-
uate how combining pure line and hybrid data could affect the accuracy of breeding values for bone 
strength. Genotypes and phenotypes were available from two types of white hybrids (Bovans White 
and Lohmann Selected Leghorn Classic) housed in two housing systems (furnished cages and floor hous-
ing). This resulted in four hybrid-housing combinations (n ∼ 220 for each). Tibia strength and genotypes 
for pure breeding lines of White Leghorn (WL, n = 947) and Rhode Island Red (RIR, n = 924) were also 
included. Each of the hybrid-housing combinations and pure lines was fitted separately into (1) single-
trait Genomic Best Linear Unbiased Prediction (GBLUP), then simultaneously via multitrait GBLUP, (2) 
within hybrids across housing, (3) across hybrids within housing, (4) across hybrids and housing, (5) 
the latter in combination with WL and/or RIR data. Including hybrid data slightly increased the accuracy 
of the genomic estimated breeding value (GEBV) of other hybrids, but not that of pure lines. Pure line data 
increased the GEBV accuracy of hybrids over and above that of combining hybrid information. Combining 
data from two pure lines improved the GEBV accuracy of both. In comparison to the combination of data 
across lines and/or houses, combining tibia strength and BW within-lines increased tibia strength GEBV 
accuracy. The maximum GEBV accuracy obtained for tibia strength ranged from 0.42 to 0.65 for hybrids 
and from 0.63 to 0.78 for pure lines. Further study is required to test whether modelling the interactions 
of genotype by environment could help to breed hybrids for specific housing systems.

© 2025 The Author(s). Published by Elsevier B.V. on behalf of The animal Consortium. This is an open 
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 
Implications 

Bone damage in laying hens is a major welfare challenge, but 
the moderate heritability of bone strength suggests selective 
breeding for stronger bones as a key option. Selective breeding of 
purebreds creates hybrids, but the housing of purebreds and 
hybrids may differ. Integrating bone data of purebreds and hybrids 
could optimise selection for hybrids’ housing. This study evaluates 
how combining data from purebreds and hybrids would affect the 
breeding value accuracy of bone strength. Hybrid data slightly 
improved breeding value accuracy for other hybrids but not for 
purebreds. Purebred data increased breeding value accuracy for 
hybrids and other purebreds. 
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Introduction 

Bone damage in laying hens remains a major welfare challenge 
in the egg industry, with high prevalence among commercial layers 
(Thøfner et al., 2021; Grafl et al., 2017; Heerkens et al., 2016; Riber 
and Hinrichsen, 2016; Käppeli et al., 2011; Wilkins et al., 2011; 
Gregory and Wilkins, 1989). The problem is complicated because 
bone damage has different components: genetic (Sallam et al., 
2023; Dunn et al., 2021; Bishop et al., 2000), environmental, 
including housing (Fleming et al., 2006), and potentially 
genotype-by-environment interaction (Johnsson et al., 2022). 
Commercial layers, referred to as hybrids or crossbred, are pro-
duced from a four-way cross of pure lines and are kept in different 
environments than pure lines. The differing genetic compositions 
and environments between pure lines and hybrids, raise questions 
about whether to utilise only purebred data for breeding purposes 
or incorporate also data from the crossbred layers. 

The most obvious breeding strategy would be to record bone 
strength in pure lines and perform within-line (genomic) selection. 
However, the target is to enhance bone quality in hybrids. If the 
genetic differences and genotype-by-environment effects are sub-
stantial enough, selection based on hybrid data may be necessary, 
and could be achieved with the aid of genomics. Such selection 
could proceed according to four steps: (1) estimate genomic breed-
ing values of hybrids’ bone strength, then (2) use the marker effects 
from such a model for selection within the pure lines, (3) quantify 
the genetic gain for bone strength in the hybrids, i.e., grand-
offspring of the selected individuals. While the goal is to select 
within pure lines for the commercial hybrid performance, the cur-
rent study focuses on the first step. 

Modern commercial hybrid layers are the product of crosses of 
different genetic lines. White Leghorn (WL) and Rhode Island Red 
(RIR) are two important breeds used for the production of white 
and brown commercial hybrids. Both WL and RIR are selected for 
egg production, but they are genetically distinct. In WL, earlier 
maturity (or age at first egg) displayed unfavourable genetic corre-
lation with BW and tibia breaking strength. In RIR, on the other 
hand, bigger egg mass displayed unfavourable genetic correlation 
with age at first egg and tibia breaking strength (Dunn et al., 
2021). These patterns (regarding correlations between egg, BW, 
and bone) may be sustained, mitigated or even exacerbated in 
the outcomes of all possible crosses (hybrids) of WL and RIR, a pro-
cess that is governed by heterosis (Isa et al., 2020). 

Housing is an important environmental component of bone 
damage (Fleming et al., 2006). Conventional battery cages, fur-
nished cages, and non-cage systems (such as floor or aviary setups) 
are commonly used. In conventional cages with limited move-
ments, bones tend to be weaker than bones from housing offering 
more opportunity for movements (Fleming et al., 2006), but the 
tibia bone may develop a little more strength if birds tend to stand 
more (Silversides et al., 2012). In conventional cages, keel fractures 
are less common during the laying period (Sandilands, 2011; 
Sherwin et al., 2010), but more frequent during depopulation, com-
pared to both furnished cages and non-cage housing (Sherwin 
et al., 2010). Furnished cage and non-cage housing promote the 
strength of bones (tibia, humerus and keel) due to increased move-
ment opportunities and access to items such as perches or multi-
tiers of the system, compared to the conventional cages 
(Leyendecker et al., 2005; Fleming et al., 2004). However, non-
cage housing poses a higher risk of collision accidents and severe 
bone damage, particularly to the keel bone (Petrik et al., 2015; 
Sandilands, 2011). Keel fractures are more frequent in non-cage 
housing than in furnished cages and conventional cages. (Thøfner 
et al., 2021). Despite the rise in non-cage and furnished cage egg 
markets, conventional cages remain predominant. Developing 
2

selection criteria for hybrids that foster strong bones with less 
damage for specific housing systems is a key challenge. 

As housing environments of hybrids are varied, and not neces-
sarily identical to that of breeding pure lines, there is a potential 
for genotype-by-environment interactions. The selected lines of 
high bone strength that were described by Bishop et al. (Bishop 
et al., 2000) resulted in reduced keel damage; however, that reduc-
tion was less in aviary than in cages (Fleming et al., 2006). Johnsson 
et al. (Johnsson et al., 2022) showed that GWAS significant markers 
on tibia strength are different in caged versus non-caged hybrids. 
Also, in wing bones, the improvement in the radius when compar-
ing battery cages to a non-cage housing was not to the same extent 
in brown as in white hybrids (Silversides et al., 2012), suggesting a 
different pattern of genotype by environment interaction in white 
and brown hybrids. This suggests that data from several geneti-
cally and environmentally distinct sources are needed to select lay-
ing hens for optimal bone quality. 

Laying hens have a relatively low genetic diversity. The popula-
tions of commercial layers (and broilers) are less varied than non-
commercial ones (Zhang et al., 2020; Muir et al., 2008). Muir et al. 
(Muir et al., 2008) suggested three reasons for low diversity in 
commercial populations: (1) only a few breeding organisations 
supply the majority of commercial layers, (2) a limited number 
of breeds are utilised to produce the commercial layers, (3) com-
mercial layers are the end-product of within-breeding company 
intensive selections followed by a pyramid expansion, analogous 
to a bottleneck event. The intensive selection suggests extensive 
linkage disequilibrium (LD) and lower effective population size, 
the advantage of this is a possibility of genomic prediction with 
relatively small reference populations (Hayes et al., 2009). More-
over, the moderate to strong heritability of tibia strength 
(Johnsson et al., 2022) would facilitate genomic prediction. The 
objective of the present study is to evaluate how combining infor-
mation across populations (pure lines and hybrids) would affect 
the breeding value accuracy of tibia strength. 

Material and methods 

Animals, management and housing 

The hybrids in the present study are the same as in (Johnsson 
et al., 2022; Wall et al., 2022), a cohort of Bovans White 
(n = 437) and Lohmann Selected Leghorn Classic (LSL, n = 436). 
Bovans White (n = 220) and LSL (n = 218) destined for furnished 
cages were contained in one of the tiers of an aviary to resemble 
rearing in a conventional rearing cage until 15 weeks of age. 
Bovans White (n = 217) and LSL (n = 218) destined for non-cage 
housing were reared in an aviary system with full access to all 
tiers. At 15 weeks of age, the pullets were transferred from the 
rearing facility to the poultry experimental facility at the Swedish 
Livestock Research Centre Lövsta (Uppsala, Sweden) and subse-
quently housed either in furnished 8-hen cages or in a one-tier 
floor housing system with 102 laying hens per group. Full details 
of housing and management are described in (Wall et al., 2022). 
The purebred lines, WL and RIR in the present study are the same 
as in (Dunn et al., 2021). Cohorts of 947 WL and 924 RIR hens from 
a pure breeding line of Lohmann white and brown commercial lay-
ers (Lohmann Breeders GmbH, Germany). The WL and RIR hens 
from eight hatches were assigned to two houses with cages 
equipped with perches (two birds per cage). 

Bone strength phenotypes 

The bone phenotypes were available from previous studies 
(Johnsson et al., 2022; Dunn et al., 2021), where hens of WL, RIR
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and hybrids were euthanised at 100, 68 and 100 weeks of age, 
respectively. Then, BWs were recorded, and the tibia bones were 
collected for further detailed post-mortem bone measurements. 
In the current study, we included only the measurements of tibia 
breaking strength measured by the same method in all cohorts 
through a three-point bending test using a material testing 
machine (JJ Lloyd LRX50, Sussex, UK) as described by Fleming 
et al. (Fleming et al., 1994). 

Genotyping 

A total of 2 744 hens: 437 Bovans White, 436 LSL, 947 WL and 
924 RIR were genotyped for 57 636 single nucleotide polymor-
phisms (SNPs) using the Illumina Infinium assay. The genotyping 
was performed by the SNP&SEQ Technology Platform (Uppsala 
University, Sweden). Sequences were aligned flanking the markers 
against the GRCg6a chicken reference genome (Warren et al., 2016) 
to determine the physical positions of the SNPs. A total of 17 358 
SNPs were removed because of being monomorphic or having a 
low call rate (< 0.90) or minor allele frequency (< 0.05). After all 
quality control checks, a total of 40 278 SNP markers were retained 
for further analysis. 

Genomic prediction 

We analysed the tibia strength of two white hybrids (Bovans 
and LSL) kept in two housing systems (cage and non-cage), and 
the pure breeding lines WL and RIR. The tibia strength of pure line 
and hybrid-housing combinations were treated as different but 
correlated traits, and designated with hybrid and housing codes 
(e.g., Bovans-cage stands for the white hybrid Bovans housed in 
cages). This resulted in six data classes of tibia strength: four 
classes (hybrid-housing combinations) from the hybrids’ data, 
and two classes from the pure lines WL and RIR data. The variabil-
ity of phenotypic data in hybrids and pure lines are summarised in 
Table 1. 

To obtain genomic predictions for each hybrid-housing combi-
nation of tibia strength, we investigated the following scenarios: 

1. predictions based on a single data class, i.e., each hybrid-
housing combination of tibia strength is analysed separately 
via single-trait Genomic Best Linear Unbiased Prediction 
(GBLUP). 

2. predictions based on combining data classes simultaneously 
within hybrids across housings, e.g., LSL-cage and LSL-non-
cage, via two-trait GBLUP. 

3. predictions based on combining data classes simultaneously 
across hybrids within housings via two-trait GBLUP. Combining 
data across hybrids from different breeding organisations (e.g., 
Bovans-cage and LSL-cage) is unlikely to happen in practice; 
however, it represents the extreme situation of combining data 
of different hybrids within the same breeding organisation. 
Table 1 
Variability in phenotypic data among hybrids and pure lines of laying hens. 

BW (Kg) Tibia st

Data classes Mean1 CV% Mean1 

Bovans-cage 1.93a 10.01 147.5d 

LSL-cage 1.87bc 11.2 152.79
Bovans-non-cage 1.91ab 10.41 212.83
LSL-non-cage 1.86c 9.73 208.52
WL 1.71d 7.3 225.14
RIR 1.91a 9.7 230.35

Abbreviations: Bovans = White Bovans hybrid; LSL = Lohmann Selected Leghorn Classic
1 Comparing means was based on Tukey’s all-pairwise comparisons with P-value < 0

means. 

3

4. predictions based on combining data classes simultaneously 
across hybrids and housings via four-trait GBLUP. 

5. predictions based on combining data as in scenario 4 plus WL, 
or RIR data simultaneously via five-trait GBLUP. 

6. predictions based on combining data as in scenario 4 plus WL 
and RIR data simultaneously via six-trait GBLUP. 

Scenarios 3 and 4 were designed to investigate how combining 
data within (or across) hybrids and housings is relevant for pre-
dicting the tibia strength of each hybrid-housing combination. Sce-
narios 5–6 were designed to investigate how combining the 
relatively large data of the breeding pure lines WL and/or RIR with 
these hybrid-housing combinations is relevant for predicting the 
tibia strength of each hybrid-housing combination. 

Single-trait and multitrait genomic best linear unbiased prediction 

We used a conventional genomic animal model: y = X b + Z 
u + e, where y is a vector of standardised trait measurement, X is 
a design matrix that relates measurements y to b vector of the con-
founding fixed effects, including feed (in hybrids), hatch (in WL 
and RIR), and the covariate BW (in hybrids, WL and RIR). Z is a 
design matrix that relates the measurements y to u vector of the 
random animal (or hen) effects. In single trait GBLUP, the random 
animal effects are obtained based on contributions from the geno-
mic relationship matrix G, and k variance component ratio (k = r2 

e / 
r2 

u), where r2 
u is the additive genetic variance and r2 

e is the residual 
variance. In multitrait GBLUP, the animal effects have additional con-
tributions through the genetic covariance structure with other traits, 
but the residual covariance between traits is assumed to be zero. 

The mixed model equations for single trait GBLUP: 

b 
u 

X X X  Z 
Z X  Z  Z kG 1 

1 
X y 
Z y

The mixed model equations for e.g., two-trait GBLUP: 

b1 

b2 

u1 

u2 

X1X1 0 X1 Z1 0 
0  X2X2 0 X2Z2 

Z1X1 0 Z1Z1 G 1 k1 G 1 r2 
e1 ru12 

0 Z2X2 G 1 r2 
e2 ru12 Z2Z2 G 1 k2 

1 

X1 y1 

X2 y2 

Z1 y1 

Z2 y 2

Where subscripts refer to trait 1 and trait 2, and r u12 is the additive 
genetic covariance between trait one and trait two. 

Estimation of genomic best linear unbiased prediction parameters 

The variances and covariances (and associated errors) were esti-
mated separately for each scenario, using the genomic restricted 
maximum likelihood (GREML) as implemented in AIREMLF90 
package (Misztal et al., 2022). The G genomic relationship matrix 
was constructed as described by VanRaden (VanRaden, 2008):
rength (Newton) n 

CV% correlation with BW 

22.11 0.33 220 
d 22.78 0.31 218 
bc 27.24 0.28 217 
c 22.49 0.33 218 
ab 32.78 0.13 947 
a 24.19 0.25 924 

 hybrid; WL = White Leghorn; RIR = Rhode Island Red. 
.05, groups with different (same) letters have statistically different (not different) 
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G W  W  
2pi 1 pi 

where W is a matrix of n genotyped 

individuals × m SNP markers and contains marker alleles coded 
as 0, 1, and 2 for common allele homozygous, heterozygous, and 
rare allele homozygous, respectively. Each column of W represents 
SNP for one genetic locus and was centred by subtracting the p e 
allele frequency from its elements. Elements of G are then scaled 
by the denominator 2pi 1 pi which represents the variability 
of the genotypic data. Centring and scaling of G are based on allele 
frequencies of genotypes available in each scenario. The heritabil-
ity estimates from multitrait scenarios were adjusted to reflect the 
corresponding population not the pooled populations as described 
in (Wientjes et al., 2017). The mixed model GBLUP equations were 
solved by iteration on data using preconditioned conjugate gradi-
ent iteration as implemented in BLUPF90 package (Misztal et al., 
2022). 

rar 

Accuracy and bias of genomic predictions 

The genomic estimated breeding values (GEBV) for tibia 
strength, from each scenario, were evaluated in terms of accuracy 
and bias. A five-fold cross−validation was applied on each scenario. 
We re-ran each scenario 5 times with reduced data (validation 
runs), where phenotypes but not genotypes were set to be missing 
in 20% of individuals in each of the hybrid-housing combinations. 
The individuals with missing phenotypes (validation individuals) 
were randomly selected without replacement, resulting in five dif-
ferent sets corresponding to five validation runs. The validation 
individuals did not change across scenarios, so the results of vali-
dations (accuracy and bias) are comparable across scenarios. For 
validation individuals, the correlations between GEBV from the 
validation run and the tibia strength phenotype adjusted for BW 
were calculated. These values, referred to as GEBV accuracies, were 
then averaged over the five validation runs and divided by the 
square root of the corresponding heritability. The SD of accuracies 
from the five validation runs was weighted by square root of five, 
as the standard error of GEBV accuracy. 

For validation individuals, the phenotypes adjusted for BW 
were regressed on the genomic prediction from the corresponding 
validation run. The regression intercept (b0) and coefficient (b1) 
were averaged over the five validation runs and interpreted as 
the prediction bias (mean and dispersion bias, respectively). The 
ideal unbiased prediction is supposed to have a value of zero for 
b0 and 1 for b1. The validation procedures were designed to accom-
modate different magnitudes of genetic correlation between pure 
lines and hybrids, considering the data availability in the current 
study. In cases of weak genetic correlation between pure lines 
and hybrids, hybrid data are crucial. In the ideal case, one would 
validate the GEBVs of pure line birds with data from their hybrid 
offspring. However, data on the offspring of pure lines were not 
available. Instead, we validated the GEBVs of hybrids for hybrid 
traits, and the GEBVs of pure line birds against pure line pheno-
type. In cases of strong genetic correlation between pure lines 
and hybrids, pure line data are more informative about hybrid phe-
notype, so that the value of hybrid data declines. This applies when 
pure lines and hybrids are housed similarly, and there is no hetero-
sis for bone traits. 
Patterns of linkage disequilibrium across populations and principal 
component analysis of genotypes 

Genotypes from classes of tibia strength were assumed to rep-
resent separate populations, resulting in six populations: four 
hybrids (Bovans-cage, LSL-cage, Bovans-non-cage, LSL-non-cage) 
plus WL and RIR pure line breeding populations. The genotypes 
4

were split by chromosomes, to calculate LD within each chromo-
some and for SNP pairwise with distances less than 250 kilobase 
pair. The resulting values of pairwise LD for each chromosome 
were joined from the six populations into one file, to calculate cor-
relations of pairwise LD (per chromosome) across the six popula-
tions. The values of pairwise LD across the six populations were 
weighted (multiplied by the number of SNPs pairwise in the 
respective chromosome, then divided by the number of SNPs pair-
wise in all chromosomes) and then summed over all chromosomes. 
We used the linkage disequilibrium statistics: r PAB PA PB 

PA PB Pa Pb 
0 5 where is the frequenc a is the first/second 

allele at certain locus and s the first/second allele at another 
locus. is the frequency of genotypes (haplotype) that have alle-
les nd n two different loci, and estimated by the maximum 
likelihood algorithms, as implemented in PLINK software 
(v1.90b6.24). Principal component analysis was used to cluster 
individuals with similar genotypes. Genotypes of hybrids (Bovans 
and LSL) and pure lines (RIR and WL) were all combined and fitted 
by the ‘‘pca” function in PLINK software. The resulted files of eigen-
values and eigenvectors were then visualised using R package 
‘‘ggplot2”. 

P y, A/ 
B b i/ 

PAB 

A a B i 
Results 

On the phenotypic level (Table 1), tibia strength tends to be 
higher in pure lines (RIR and WL) than in hybrids. The tibia 
strength of hybrids was higher in non-cage than in cage housing. 
While WL is lighter than RIR and hybrids, WL tibia strength was 
similar to RIR and higher than most of hybrids. The phenotypic cor-
relation between tibia strength and BW ranged from 0.13 to 0.33. 
The first and second principal components accounted for ∼57% of 
the variability in the genotype data of all pure lines and hybrids 
(Fig. 1). Bovans and LSL hybrids were clustered together, while 
the pure lines WL and RIR clustered separately. The first principal 
component suggested that hybrids were closer to WL than to RIR 
pure lines. However, on the second principal component, hybrids 
were closer to RIR than to WL pure lines. The patterns of LD in 
the same hybrids but housed in different systems (cage or non-
cage) were similar, with a high correlation of 0.84–0.87 (Table 2). 
In different hybrids (Bovans or LSL) that were housed on the same 
or different housing systems, the LD patterns were similar, with 
correlation coefficients of ∼0.55, and increased to ∼0.60 when 
the LD analysis based on hybrids genotypes only (details not 
shown). Patterns of LD in the hybrids were ∼0.30 correlated (sim-
ilar) to the WL’s LD patterns and only 0.07 to the RIR’s LD patterns. 
Genetic parameter estimates 

The estimated heritability and genetic correlations tended to be 
less noisy in scenarios with larger data size (Table 3). The heritabil-
ity estimates from multitrait scenarios were adjusted to reflect the 
corresponding population not the pooled populations as described 
in (Wientjes et al., 2017). The estimates of tibia strength heritabil-
ity ranged from 0.11 to 0.66 for pure lines and hybrids. The esti-
mates of genetic correlation between cage and non-cage 
environments were consistently moderate to high positive. The 
estimates of tibia strength genetic correlation between Bovans 
and LSL were high within the non-cage environment, but low in 
the cage environment. Estimates of genetic correlations of WL 
were stronger with LSL-cage (0.64) and Bovans-non-cage (−0.23) 
than with Bovans-cage and LSL-non-cage. Estimates of genetic cor-
relations of RIR were stronger with LSL-housing combinations 
(0.65–0.85) than with Bovans-housing combinations (0.10–0.75). 
However, generally, estimates of correlations were uncertain.
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Fig. 1. Principal components of genotypes in hybrids and pure lines of laying hens. Scatterplot of the first and second principal components, showing the variance explained. 
Abbreviations: Bovans = White Bovans hybrid; LSL = Lohmann Selected Leghorn Classic hybrid; WL = White Leghorn; RIR = Rhode Island Red. 

Table 2 
Correlations1 between patterns of linkage disequilibrium2 across populations of laying hens. 

Populations Bovans-cage LSL- cage Bovans-non-cage LSL- non-cage WL RIR 

Bovans-cage 
LSL-cage 0.55 
Bovans-non-cage 0.84 0.54 
LSL-non-cage 0.55 0.87 0.54 
WL 0.25 0.30 0.26 0.30 
RIR 0.07 0.07 0.07 0.07 0.09 

Abbreviations: Bovans = White Bovans hybrid; LSL = Lohmann Selected Leghorn Classic hybrid; WL = White Leghorn; RIR = Rhode Island Red. 
1 number of observations used to calculate correlations is 52 790. 
2 measured by statistic r for single nucleotide polymorphism pairwise with distances less than 250 kb. 
Accuracy and bias of genomic predictions for tibia strength 

Combining data across hybrids slightly increased the accuracy 
of hybrid GEBV. Compared to the single-trait accuracy, combining 
data across hybrids slightly increased GEBV accuracy (1–8 units) 
for LSL-cage, Bovans-non-cage and LSL-non-cage. These results 
indicate that using information from related hybrids can slightly 
increase the GEBV accuracy. Including purebred information 
increased the accuracy of hybrid GEBV. When data of hybrid-
housing combinations and pure lines were analysed simultane-
ously, there was a gain in the accuracy of hybrid GEBV, 3–6 points 
above the accuracy from combining only hybrid information, and 
3–14 points above the single trait accuracy. These results indicate 
the purebred data could be relevant to the predictions of hybrids. 
Including the hybrid data makes the GEBV accuracy of pure lines 
5

much worse compared to using only purebred data. Combining 
data of pure lines WL and RIR resulted in 9–12 units increase in 
the GEBV accuracy compared to single trait GEBV of pure lines. 

The estimated genetic correlation between BW and tibia 
strength is moderate (Supplementary Table S1). When we used a 
bivariate GBLUP, treating BW and tibia strength within-line as cor-
related genetic traits, the GEBV accuracy increased for hybrids and 
pure lines (Table 4). For hybrids, the increase in GEBV accuracy was 
1 to 40 units above the accuracy from combining hybrids and pure 
lines data. For pure lines, the increase in GEBV accuracy was 4 units 
above the single trait accuracy. The raw values of GEBV accuracy 
without dividing by the square root of heritability are shown in 
Supplementary Table S2. Within each of the hybrids and pure lines, 
the standard error of GEBV accuracy is low (Table 4), indicating a 
low variability of accuracies from the five validation runs. There
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able 3 
stimates of heritability (on the diagonal) and genetic correlation (off-diagonal) ± SE for tibia strength in laying hens under each scenario. 

T 
E 

Scenario Tibia strength traits 

Single trait 
6 models, 1 trait in each 

Bovans-cage LSL-cage Bovans-non-cage LSL-non-cage WL RIR 

0.56 ± 0.24 0.11 ± 0.30 0.47 ± 0.28 0.49 ± 0.26 0.22 ± 0.04 0.49 ± 0.05 
Within hybrids across housings Bovans-cage Bovans-non-cage LSL-cage LSL-non-cage 
2 models, 2 traits in each Bovans-cage 0.60 ± 0.23 LSL-cage 0.18 ± 0.29 

Bovans-non-cage 0.78 ± 1.10 0.42 ± 0.28 LSL-non-cage 0.88 ± 1.58 0.50 ± 0.25 
Across hybrids within housings Bovans-cage LSL-cage Bovans-non-cage LSL-non-cage 
2 models, 2 traits in each Bovans-cage 0.58 ± 0.24 Bovans-non-cage 0.45 ± 0.16 

LSL-cage −0.015 ± 1.6 0.11 ± 0.31 LSL-non-cage 0.99 ± 0.22 0.54 ± 0.17 
Across hybrids across housings Bovans-cage LSL-cage Bovans-non-cage LSL-non-cage 
1 model of 4 traits Bovans-cage 0.59 ± 0.21 

LSL-cage −0.02 ± 1.3 0.23 ± 0.18 
Bovans-non-cage 0.66 ± 0.89 0.57 ± 1.4 0.46 ± 0.15 
LSL-non-cage 0.32 ± 0.45 0.79 ± 0.92 0.90 ± 0.19 0.59 ± 0.16 

Across hybrids across housings + WL Bovans-cage LSL-cage Bovans-non-cage LSL-non-cage WL 
1 model of 5 traits Bovans-cage 0.64 ± 0.16 

LSL-cage 0.03 ± 0.60 0.39 ± 0.16 
Bovans-non-cage 0.61 ± 0.69 0.26 ± 0.48 0.51 ± 0.13 
LSL-non-cage 0.29 ± 0.52 0.65 ± 0.38 0.84 ± 0.15 0.66 ± 0.16 
WL 0.04 ± 1.52 0.69 ± 0.38 −0.27 ± 0.29 0.05 ± 0.30 0.18 ± 0.06 

Across hybrids across housings + RIR Bovans-cage LSL-cage Bovans-non-cage LSL-non-cage RIR 
1 model of 5 traits Bovans-cage 0.47 ± 0.16 

LSL-cage 0.09 ± 0.76 0.16 ± 0.13 
Bovans-non-cage 0.58 ± 0.23 0.68 ± 0.60 0.37 ± 0.11 
LSL-non-cage 0.28 ± 0.31 0.83 ± 0.45 0.93 ± 0.05 0.50 ± 0.08 
RIR −0.07 ± 0.33 0.80 ± 0.44 0.75 ± 0.12 0.93 ± 0.05 0.37 ± 0.05 

Across hybrids across housings + WL + RIR Bovans-cage LSL-cage Bovans-non-cage LSL-non-cage WL RIR 
1 model of 6 traits Bovans-cage 0.50 ± 0.13 

LSL-cage 0.15 ± 0.35 0.28 ± 0.12 
Bovans-non-cage 0.57 ± 0.19 0.27 ± 0.28 0.40 ± 0.10 
LSL-non-cage 0.31 ± 0.25 0.59 ± 0.21 0.86 ± 0.06 0.54 ± 0.08 
WL 0.02 ± 0.29 0.64 ± 0.21 −0.23 ± 0.19 0.11 ± 0.19 0.16 ± 0.06 
RIR 0.10 ± 0.29 0.65 ± 0.23 0.57 ± 0.15 0.85 ± 0.07 0.49 ± 0.17 0.39 ± 0.04 

Across WL and RIR WL RIR 
1 model of 2 traits WL 0.16 ± 0.03 

RIR 0.89 ± 0.02 0.39 ± 0.03 

bbreviations: Bovans = White Bovans hybrid; LSL = Lohmann Selected Leghorn Classic hybrid; WL = White Leghorn; RIR = Rhode Island Red.A



able 5
Dispersion bias (b1) of GEBVs (from cross-validation) ± SE for tibia strength in pure lines and hybrids of laying hens, evaluated under single- and multitrait scenarios, including a scenario with BW and within-line tibia strength as
orrelated genetic traits.

Scenarios

Single-trait Multitrait n

Tibia
Strength
Classes

Within hybrid
across housing

Across hybrid
within housing

Across hybrid
across housing

Across hybrid
across housing
+ WL

Across hybrid
across housing
+ RIR

Across hybrid
across housing
+ WL + RIR

Across WL
and
RIR

Bivariate of
tibia strength + BW

Bovans-cage 1.12 ± 0.29 0.86 ± 0.28 1.12 ± 0.26 0.94 ± 0.26 0.96 ± 0.31 0.97 ± 0.29 0.97 ± 0.28 0.97 ± 0.22 218
LSL-cage 1.21 ± 1.61 0.64 ± 0.47 1.26 ± 1.59 0.67 ± 0.39 0.78 ± 0.33 0.68 ± 0.32 0.77 ± 0.31 1.02 ± 0.07 213
Bovans-non-cage 1.35 ± 0.18 0.95 ± 0.26 1.32 ± 0.31 1.06 ± 0.24 1.09 ± 0.17 1.09 ± 0.19 1.09 ± 0.16 1.07 ± 0.25 197
LSL-non-cage 1.08 ± 0.67 1.13 ± 0.74 1.15 ± 0.61 1.18 ± 0.65 1.19 ± 0.67 1.09 ± 0.57 1.06 ± 0.57 1.06 ± 0.19 214
WL 1.01 ± 0.1 0.21 ± 0.19 0.14 ± 0.2 1.02 ± 0.09 1.01 ± 0.08 947
RIR 1.05 ± 0.07 −3.59 ± 0.53 3.84 ± 0.46 1.27 ± 0.09 1.06 ± 0.06 924

Abbreviations: GEBVs = Genomic estimated breeding values; Bovans = White Bovans hybrid; LSL = Lohmann Selected Leghorn Classic hybrid; WL = White Leghorn; RIR = Rhode Island Red.
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able 4 
Accuracy of GEBVs (from cross-validation) ± SE for tibia strength in pure lines and hybrids of laying hens, analysed under single- and multitrait scenarios, including a scenario with BW and within-line tibia strength as correlated genetic 
raits. 

T 

t 

Scenarios 

Single-trait Multitrait n 

Tibia 
Strength 
Classes 

Within hybrid 
across housing 

Across hybrid 
within housing 

Across hybrid 
across housing 

Across hybrid 
across housing 
+  W  L

Across hybrid 
across housing 
+ RIR 

Across hybrid 
across housing 
+ WL + RIR 

Across WL 
and 
RIR 

Bivariate of 
tibia strength + BW 

Bovans-cage 0.29 ± 0.06 0.27 ± 0.07 0.29 ± 0.06 0.29 ± 0.06 0.26 ± 0.07 0.32 ± 0.07 0.31 ± 0.07 0.42 ± 0.08 218 
LSL-cage 0.18 ± 0.08 0.19 ± 0.05 0.18 ± 0.08 0.19 ± 0.05 0.22 ± 0.06 0.23 ± 0.04 0.25 ± 0.05 0.65 ± 0.04 213 
Bovans-non-cage 0.31 ± 0.03 0.29 ± 0.05 0.37 ± 0.05 0.35 ± 0.04 0.35 ± 0.03 0.41 ± 0.04 0.40 ± 0.03 0.43 ± 0.07 197 
LSL-non-cage 0.23 ± 0.1 0.25 ± 0.13 0.29 ± 0.09 0.31 ± 0.12 0.30 ± 0.13 0.37 ± 0.12 0.34 ± 0.13 0.56 ± 0.06 214 
WL 0.51 ± 0.02 0.07 ± 0.03 0.05 ± 0.03 0.63 ± 0.02 0.55 ± 0.02 947 
RIR 0.69 ± 0.03 −0.46 ± 0.04 0.42 ± 0.03 0.78 ± 0.03 0.73 ± 0.02 924 

Abbreviations: GEBVs = Genomic estimated breeding values; Bovans = White Bovans hybrid; LSL = Lohmann Selected Leghorn Classic hybrid; WL = White Leghorn; RIR = Rhode Island Red.
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was no evidence of upward bias of the GEBV, but a few scenarios 
showed a downward bias (Tables 5–6). All b0 (mean bias) tend to 
be zero or even negative, and b1 (dispersion bias) are close to one.
Discussion 

In the current study, we aimed to obtain GEBV for tibia strength 
based on different sources of information, using data from two 
types of commercial layers housed in two housing systems and 
two pure lines. Hybrid data slightly improved the GEBV accuracy 
of other hybrids, but not that of pure lines. Pure line data also 
improved the GEBV accuracy of hybrids above that of combining 
hybrid information. Combining data from two pure lines improved 
the GEBV accuracy of both. Combining data across hybrids from 
different breeding organisations may be unlikely to happen in 
practice, but it resembles the situation of combining data of differ-
ent hybrids within the same breeding organisation. In this section, 
we will discuss: 1) Similarity in the genetic architecture of bone 
strength and linkage disequilibrium between populations, 2) 
implications for GEBV of bone quality, 3) the modelling of BW 4) 
limitations of the current study. 

Patterns of linkage disequilibrium across populations 

The principal component and linkage disequilibrium analyses 
are consistent with what is known about layer breeds. The breed-
ing lines that give rise to the white hybrids share common ances-
tors going back to poultry breed formation, whereas brown layers 
like the Rhode Island Red are further separated. The similar pat-
terns of LD across the white hybrid populations indicate similar 
genetic make-up, suggesting the potential success of genomic pre-
diction across these populations. Surprisingly, the two white 
hybrids from different breeding companies had LD phase persis-
tency around ∼0.55–0.60 correlation, higher than with the pure 
white line. These can be compared to correlations around 0.9 (Fu 
et al., 2015) and 0.95 between related lines of broilers [41] and 
0.8 for the same dairy cattle breed in different countries (de Roos 
et al., 2008). As bone phenotypes involve invasive or imaging tech-
niques and the extensive genotyping of hybrids is unlikely, the ref-
erence population for hybrid bone traits is expected to be small to 
medium sized. However, as long as they are related, i.e. small but 
related reference populations, then combining them into a joint 
reference population could improve the genomic GEBV accuracy 
(Marjanovic et al., 2021; Wientjes, 2016; Zhou et al., 2014). 

Implications for genomic prediction of bone quality 

The goal of genomic prediction is to get accurate GEBV of pure 
lines for hybrid traits, and doing so may require data from hybrid 
birds. Several strategies have been suggested (reviewed by 
Duenk et al. (2021)), using a reference population consisting of 
pure breeding lines, commercial hybrids, or both. In the absence 
of strong heterosis and genotype-by-environment or genotype-
by-genotype interaction for bone quality, selection within pure line 
is a sensible baseline strategy. In that case, the genetic correlation 
between breeding lines and hybrids approaches one, and there is 
no need to collect information about hybrids. Otherwise, there 
may be a need to collect phenotypes from hybrids, as shown from 
previous simulations (González-Diéguez et al., 2020; See et al., 
2020). 

It is an open question that cannot be answered with the present 
data on how accurate the marker effects estimated from hybrid 
GEBVs would be for predicting pure line birds for hybrid perfor-
mance. However, we hypothesise that different hybrids and pure 
lines can be pooled in a combined reference population with the



M. Sallam, H. Wall, P.W. Wilson et al. Animal 19 (2025) 101452
help of multitrait analysis. The gains in this study were limited, but 
so were the population sizes. Perhaps the hybrids are not geneti-
cally close enough to the pure lines in the current study, to give 
a notable improvement when combining data. A previous study 
indicated that combining large datasets of related lines may result 
in only slight or no improvement in GEBV accuracy (Calus et al., 
2014; Simeone et al., 2012). The sample size is also limited. For 
these reasons, it is a challenge to estimate genetic correlations 
between the pure lines and the hybrids, consequently, pure line 
data may introduce noise to the predictions. 
Modelling of BW 

There are two conceptually different approaches to handle the 
known relationship between bone−breaking strength and BW in 
genomic prediction. BW has a weak to moderate genetic correla-
tion with bone traits (Dunn et al., 2021; Bishop et al., 2000), consis-
tent with the current findings. In genetic mapping studies, 
modelling BW as a fixed covariate may be useful to identify genes 
associated with bone mineralisation separate from genes of BW 
(Sallam et al., 2023; Johnsson et al., 2022; Raymond et al., 2018; 
Schreiweis et al., 2005). In the context of poultry breeding, it per-
haps makes more sense to model tibia strength unadjusted, while 
also estimating breeding values for BW in a multitrait model. 
Genomic breeding values for BW and tibia strength can be then 
included in a selection index with appropriate weights. The GEBV 
accuracy for unadjusted tibia strength and BW within lines in mul-
titrait models had higher accuracy than for adjusted BW. Genome-
wide association studies in these hybrids have (Johnsson et al., 
2022) identified major loci for BW, and these large segregating 
effects may make accounting for BW more important in the 
hybrids than within pure lines. 
Limitation of the current study 

Hybrids have small data size in the current study and are not 
the direct grand-offspring of the current pure lines. Therefore, 
the reported estimates of genetic correlations between hybrids 
and pure lines are noisy and may deviate from those within breed-
ing companies with direct pedigree links. The current estimates of 
genetic correlations between pure lines and hybrids are not strong, 
in agreement with the literature reviewed by Calus et al. (Calus 
et al., 2023). The current estimates of genetic correlation also sug-
gest that genes of tibia strength differ between either cage and 
non-cage housings, or hybrids and pure lines. However, the uncer-
tainty is too great to draw any definite conclusions. Finally, this 
study is based on post-mortem phenotyping. Measuring tibia on 
live birds (Sallam et al., 2024; Wilson et al., 2022) instead may help 
to obtain easier phenotyping of the selection candidates. 
Conclusions 

The results suggest that genomic prediction of bone quality in 
laying hens is possible, and that there is some potential for sharing 
of information between closely related pure lines and hybrids. The 
maximum GEBV accuracy obtained for tibia strength ranged from 
0.42 to 0.65 for hybrids and from 0.63 to 0.78 for pure lines. 
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