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A B S T R A C T

The agroforestry parklands in the Sudano-Sahelian zone are of critical importance for food se-
curity, but face several challenges in terms of changes in climate and land use. The ability to 
systematically monitor crop productivity in these systems is therefore of importance for both 
informing land management policies and studying long-term trends. This study, conducted in two 
different agroecological areas in southern and central Burkina Faso covering two climate-wise 
very contrasting years (2020–2021), is an initial step to designing a system based on satellite 
remote sensing that enables national-scale monitoring of crop productivity. In these two sites, we 
collected large field datasets of crop productivity (150 plots) for use in model training and 
validation. The main assessments focused on how to best process and combine remote sensing 
data sources, including time series from the Sentinel-1 and Sentinel-2 satellite systems, as well as 
soil properties, elevation and tree cover. Other key focuses were evaluating different regression 
modelling algorithms (multilinear and machine learning) and clarifying the potential benefits of 
performing the modelling in specific geographic regions and years or if the modelling can be 
generalized. Overall, the results show that accurate estimates of crop productivity are achievable 
using the proposed modelling framework, with encouragingly high R2 (0.49–0.82) and low root 
mean square errors (11.80–19.35%). Sentinel-2 was the most important data source, but our 
results also demonstrate the potential of Sentinel-1, which has the benefit of not being affected by 
clouds. Another encouraging aspect is that the results were stable both between the years, which 
differed significantly in terms of rainfall and crop productivity, and between the sites that are 
characterized by contrasting crop compositions. This study shows that the development of a 
national-level crop monitoring system in Burkina Faso or countries with similar environmental 
conditions is within reach.
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1. Introduction

The Sudano-Sahelian zone stretches from the Atlantic coast to the Red Sea, with the Sahel running as a dryland band north of the 
semi-arid Sudanian zone. This region faces severe challenges, including widespread poverty, population growth, high reliance on 
rainfed agriculture with relatively low output and armed conflicts. Erratic rainfall and high pressure of human activities on land use 
systems, such as cropland and grazing areas, make the population highly susceptible to short-term food scarcity and long-term 
environmental degradation. Recent climate projections for the region anticipate increasing temperatures and decreasing rain 
(Trisos et al., 2023), further aggravating the situation. Specifically, the livelihood of the people in the region is highly dependent on 
locally produced resources such as food, fodder, and fuel, which all are components of the net primary production (NPP). Estimates 
from Sahel show a 41% increase in the demand for NPP from 2000 to 2010 (Abdi et al., 2014) or an annual increase of 2.2%, with 
higher demand for food (20.4%) followed by fodder (16.7%) and fuel (5.5%). This reliance on the local supply of NPP is also pressured 
by a demographic trend of high population growth, putting additional demand on natural resources. From 2010 to 2022, the popu-
lation increased from 312 to 429 million (37% increase) in West Africa as a whole, while Burkina Faso increased from 16 to 22 million 
(40%) over the same period (UNISTAT, 2023).

Smallholder farming is the dominant livelihood strategy in the Sudano-Sahel and produces up to as much as 90% of the food 
consumed (Carletto et al., 2015; Morton, 2007; Samberg et al., 2016). Furthermore, agroforestry in parklands is the dominating 
agricultural practice (Bayala et al., 2014) and, consequently, the primary NPP source. Parklands are traditional land-use systems where 
trees, grass and crops coexist (Boffa, 1999). Specifically, farmers retain preferred trees in the fields because they positively impact soil 
quality and erosion along with non-timber forest products, including food and fodder. In addition, parklands supply other ecosystem 
services in terms of soil porosity, groundwater recharge and shade (Bayala et al., 2014; Ilstedt et al., 2016; Sinare and Gordon, 2015). 
However, the tree canopy cover in the fields is usually kept below 20% to limit the competition with crops for light, water and nutrients 
(Karlson et al., 2023).

Many countries dealing with food insecurity, including those in the Sudano-Sahelian zone, lack capacity for systematic monitoring 
their agricultural resources (Burke and Lobell, 2017; Carletto et al., 2015). The lack of crop statistics is especially prevalent for 
smallholder farms in Africa. Reliable and up-to-date statistics and forecasts on crop productivity represent key information to support 
effective agricultural management and decision-making controlling food availability (Bégué et al., 2020). While traditionally being the 
main method for acquiring such information, field surveys are time-consuming and labour intensive, as well as associated with high 
costs and considerable limitations in spatiotemporal coverage and reliability. However, geographical datasets with wide spatiotem-
poral coverage at the pixel or field scale can help understand causes of spatial variability in crop productivity and yield gaps related to 
management practices, such as fertilizer application, selection of crop types and varieties and modifications of the tree cover in the case 
of agroforestry systems, particularly in parkland systems (Bayala et al., 2015; Burke and Lobell, 2017; Karlson et al., 2023; Leroux 
et al., 2020). On regional and national scales, the availability of these datasets can uncover long-term trends in agricultural pro-
ductivity related to various causes, including changes in climate, soil characteristics, management practices and armed conflicts. Such 
information can also help identify areas to prioritize for land and soil rehabilitation (Lobell et al., 2009), and for the targeted dis-
tribution of food aid.

Satellite remote sensing represents an alternative for acquiring spatially distributed crop statistics with the benefits of covering 
large areas at high repeatability and low cost (Lobell, 2013). In fact, a large body of research stretching several decades back in time 
has demonstrated that satellite remote sensing can provide accurate estimates of crop productivity (Wu et al., 2023), especially in 
regions characterized by large monocrop fields, for example, the Great Plains in the United States (Weiss et al., 2020). However, such 
favourable conditions do not apply to smallholder landscapes common throughout the tropics, where the fields are usually small and 
irregular in shape, often planted with mixed crops characterized by different structural traits, phenology and contain trees (Burke and 
Lobell, 2017). An additional challenge is the extensive cloud cover during the growing season and the relatively low spatial resolution 
of the free-available data, which previously constrained the use of optical satellite systems, such as MODIS and Landsat. Developments 
in remote sensing systems have helped overcome many of these limitations, including the Sentinel-1 synthetic aperture radar (SAR) 
and Sentinel-2 optical systems becoming operational and providing high resolution data in both the spatial and temporal domains 
(Duncan et al., 2015). The Sentinel-2 system represented a game changer for crop productivity mapping, especially in African 
smallholder landscapes. This has been demonstrated in Tanzania and Kenya (Azzari et al., 2017; Burke and Lobell, 2017; Jin et al., 
2019), Burkina Faso (Karlson et al., 2020; Leroux et al., 2019), Senegal (Leroux et al., 2020) and Mali (Lambert et al., 2018; Lobell 
et al., 2020b). Less focus has been directed to the potential of Sentinel-1 to complement optical systems in the mapping of crop 
productivity, as well as the suitability of using image in-season composition methods, which are contributions of this work. Moreover, 
this work focused on a substantial field data collection, covering areas with different climates, growing conditions, and cropping 
systems.

For crop productivity estimations, remote sensing data can be used by applying different models, such as light use efficiency (LUE) 
models and empirical models. LUE models are based on the theory that plant productivity is a function of solar radiation absorbed by 
green leaves and the photosynthetic rate of the plant, which is controlled by environmental factors, in particular, availability of water 
and nutrients (Potter et al., 1993). On the other hand, empirical models rely on regression techniques for relating remotely sensed 
predictor variables to the target variable to be estimated. While the LUE modelling approach is attractive from a theoretical 
perspective, there are important challenges related to the acquisition of the required spatial datasets as well as model parameteri-
zation. Empirical modelling is less complex compared to LUE models in terms of input data requirements and parameterization. They 
can be developed using both traditional statistical regression analyses that assume a linear relationship between the predictors and the 
target variable, and more recent techniques, including machine learning and artificial intelligence (Morais et al., 2021). Traditional 
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statistical regressions are easily repeatable and capable of future prognoses. In contrast, a potential benefit of using machine learning 
for regression is the ability to characterize complex non-linear relationships in the data that may improve the predictive performance 
of the model. However, a higher demand for input data for model training may make it less suitable, especially in situations where the 
availability of field data is a limitation. Well-established machine learning algorithms, such as Random Forest and Support Vector 
Machine, and several other up-to-date methods have crossed over the barriers for accurately predicting crop productivity in different 
types of landscapes (Muruganantham et al., 2022). Moreover, empirical modelling approaches using temporally dense time-series data 
combining data from different sensors, e.g., optical and SAR, together with other spatial datasets on landscape characteristics, such as 
soil properties and elevation, may represent a powerful alternative to assess spatial-temporal dynamics of complex crop systems like 
the agroforestry parklands in Sudano-Sahel.

In this study, we evaluated the performance of statistical and machine learning modelling methods to estimate crop productivity in 
two agroforestry parkland regions in Burkina Faso using a multi-sensor approach. Comprehensive field data was collected in small-
holder agroforestry farm systems over two consecutive years (2020 and 2021) and two regions (Cassou and Saponé communes) in 
Burkina Faso. The main aim was to provide key insights into how a framework for national-scale crop productivity monitoring can be 
designed using remote sensing. To test our framework, we calibrated the models using predictor variables based on Sentinel-1 and 
Sentinel-2 time series over two growing seasons (2020 and 2021), as well as datasets representing different soil properties, tree canopy 
cover and elevations.

The key questions we wanted to address were. 

i) How do statistical and machine learning modelling methods perform in terms of estimating the crop productivity in two 
contrasting parkland areas?

ii) How can site-specific and annually trained models be applied to multiple years and sites without calibration?
iii) What is the most suitable period for acquiring satellite data and which is the preferable method for temporal composition during 

the growing season to estimate crop productivity?
iv) What is the contribution of the different remotely sensed predictor variables in the estimation of crop productivity?

Fig. 1. Map of the study areas in the Saponé and Cassou communes and locations of the field plots. Source of the background satellite images: World 
Imagery Metadata, Maxar (Vivid) image, 0.6 m of spatial resolution acquired in 2018–05-01 and 2022-03-11 for Saponé and Cassou, respectively. 
More information about the background satellite images can be found in: https://www.arcgis.com/home/item.html? 
id=10df2279f9684e4a9f6a7f08febac2a9.
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2. Material and methods

2.1. Study area

The study was conducted in two agroforestry parkland landscapes in the rural communes of Saponé (12◦04′48″ N, 1◦34′00″ W) and 
Cassou (11◦34′50″ N, 2◦02′57″ W), located in the central and southern parts of Burkina Faso (Fig. 1), respectively. Field data were 
collected at these sites in 2020 and 2021. Saponé and Cassou are smallholder landscapes dominated by rainfed fields interspersed by 
fallow areas used for grazing. The fields’ size varied, ranging from 1 to 10 ha (Paré et al., 2010). The main crops in Saponé are sorghum 
(Sorghum bicolor (L.) Moench), pearl millet (Pennisetum glaucum (L.) R. Br.) and legumes, primarily cowpea (Vigna unguiculata) (Karlson 
et al., 2020). In Cassou, sorghum and maize (Zea mays L.) are the main crops (Foli and Abdoulaye, 2016). Both Cassou and Saponé 
farmers rely on manual labour to work the land and on local organic nutrient sources, including compost and manure, to replenish soil 
fertility. Specifically, organic household waste is composted with dung from poultry, goats and sheep, and applied to the fields during 
land preparation. In addition, cattle manure is deposited in the fields when livestock graze on crop residues during the dry season.

Cassou belongs to the south-Sudanian ecological zone where rainfall is relatively high, ranging between 900 and 1200 mm 
annually. The rainy season is unimodal and usually lasts from May through September (Etongo et al., 2015). Saponé has a drier climate 
with a mean annual rainfall of 730 mm, but the inter-annual variability is high (Bayala et al., 2008). The rainy season in Saponé 
generally starts in June and ends in October. Rainfall conditions for both sites in 2020 and 2021 are described in Fig. 2. The 
between-site difference in climate is also reflected in the composition of the tree cover. In Saponé, mean tree canopy cover is around 
15% and the most common species include Vitellaria paradoxa, Parkia biglobosa and Lannea microcarpa (Karlson et al., 2015). The tree 
cover in Cassou is generally denser and more diverse in terms of species composition, with key tree species including Combretum sp., 
Deuterium microcarpum and Vitellaria paradoxa. The main soil types in both Cassou and Saponé are silt-clay cambisols, sandy lixisols, 
and loamy ferric luvisols (Bayala et al., 2002; Bazié et al., 2012) with very low nutrient contents. Furthermore, soil quality and fertility 
are degrading in both areas, representing a major challenge for the local farmers. An important reason for this is the reduced fallow 
periods resulting from high pressure on productive lands (Söderström et al., 2003).

2.2. Reference data

2.2.1. Crops
The reference data used in the modelling include crop-cuts collected in 20 × 20 m plots located within agricultural fields. These 

fields were selected considering a spectrum of soil characteristics, topographical features, prior crop rotations, accessibility to the area, 
as well as alignment with farmers regarding methodology and data utilization. The plots included fields with different crop combi-
nations, productivity levels and tree canopy cover, where agreements with the local landowners were organized. The centre and four 
corner point locations of the plots were geo-referenced using a Garmin Oregon 700 GPS device. In 2020, 79 plots were installed and 
monitored over the growing seasons in the Cassou and Saponé sites (Table 1). From these 79 plots, 61 (24 in Cassou and 37 in Saponé) 
were revisited in 2021 and 17 new plots (16 in Cassou and 1 in Saponé) were installed, totaling 71 plots in 2021. The new plot locations 
in 2021 were the result of farmers’ decision to change the crop system in the field or because of damages that had occurred in the plot 
between the years, as well as governmental restrictions related to security issues.

The sowing of the plots was carried out between mid-June and July at both sites. In Saponé, three different crops were cultivated in 
the sampled fields: sorghum, pearl millet and cowpea. The plots included fields with single crops (millet and sorghum) and mixed crops 
(millet + cowpea and sorghum + cowpea). In contrast, in Cassou, only single crop fields were sampled, including fields cultivated with 
maize and sorghum (Table 1).

We quantified aboveground biomass (AGB) of the crops in all plots after harvest (late October to early November). In each main 
plot, we randomly allocated 5 to 9 square subsamples (2 × 2 m; see the subsample scheme in Fig. A1 of Appendix A) and cut the 
aboveground material for biomass estimation. The material was then sent to the laboratory, separated by plant components, dried for 

Fig. 2. Annual rainfall distribution and temperature for 2020 and 2021 in Cassou and Saponé. Rainfall data from Agence Nationale de la 
météorologie du Burkina Faso and temperature data from https://en.tutiempo.net/.
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24 h in an oven at 60 ◦C, and weighed. The drying under controlled conditions was done to ensure more consistency and precision in 
the data, avoiding the fluctuations between harvests due to water content. The total AGB represents all dried plant components, 
including the grain. For maize, millet and sorghum, the plant components included ears, grain and straw, and for cowpea, the plant 
components are pods, grain and residues.

While most previous efforts of remote sensing-based crop production estimation have focused on the crop yield, we used AGB as the 
target variable for several reasons. Firstly, in this area and in this land use system, all crop components contribute to the livelihood, 
including as fodder and for soil enrichment. Secondly, remotely sensed vegetation indices are sensitive to crop properties such as 
density and chlorophyll content, both of which are more closely related to AGB than to the yield. Lastly, there is usually a strong 
relationship between AGB and grain yield, generally operationalized by the harvest index (Hay, 1995). This strong relationship has 
been demonstrated in Burkina Faso, including for millet and sorghum (R2 = 0.8; Karlson et al., 2020), which makes it possible to 
accurately predict yield from AGB using local knowledge about cropping practices and environmental conditions.

2.2.2. Tree cover
The plots were in fields with different tree cover densities, which may influence the ability to model crop productivity from the 

remote sensing data, especially in cases of mixed pixels (representing crops and trees) in optical data and surface roughness in SAR 
data. For example, Leroux et al. (2020) showed that their remote sensing-based model produced more accurate crop productivity 
estimates when including tree density as a predictor variable. Thus, we quantified the tree canopy cover within each plot through 
manual digitization using the base-map imagery from 2018 available in ArcGIS Pro 2.8 as reference in Saponé. In Cassou, the base-map 
imagery in ArcGIS Pro was deemed too old (years 2011–2013) and the tree cover digitization was instead done using high-resolution 
imagery available in Google Earth (year 2020) as reference. The tree canopy cover in the sampled fields ranged between circa 0 and 
15% in Cassou (mean = 5%, std = 7%) and between 0 and 28% (mean = 9%, std = 7%) in Saponé. The influence of tree cover on the 
crop production estimation was evaluated by including it as a predictor variable in the crop productivity models.

2.3. Satellite data and processing

The satellite remote sensing datasets comprised the Sentinel-1 and Sentinel-2 missions, two twin polar-orbiting satellite systems 
from the Copernicus Earth Observation program of the European Space Agency (ESA). The Sentinel-1 system has a dual-polarization C- 
band SAR instrument and consists of a two-satellite constellation (Sentinel-1A, launched in 2014; and Sentinel-1B; launched in 2016). 
Each Sentinel-1 scene provides a single (HH or VV) and dual polarization (HH and HV or VV and VH) at one of three spatial resolutions 
(10, 25, or 40 m), depending on the acquisition mode (IW: Interferometric Wide Swath; EW: Extra Wide Swath; or SM: Strip Map). The 
mission acquires images with a revisit time of 12 (one satellite) or 6 (two satellites) days at the equator.

The Sentinel-2 mission is also a twin-satellite constellation (Sentinel-2, launched in 2015; and Sentinel-2B, launched in 2017). Both 
satellites carry the Multi Spectral Instrument (MSI) sensor that collects 13 spectral bands covering visible to shortwave infrared (SWIR) 
wavelengths. The revisit time of Sentinel-2 is 10 (one satellite) or 5 (two satellites) days at the equator. The spectral bands have a 
spatial resolution of 10 m (blue, green, red and near infrared wavelengths), 20 m (four red edge bands and two SWIR bands), or 60 m 
(aerosol, water vapour and cirrus bands).

Time series of Sentinel-1 C-band SAR data and Sentinel-2 multispectral images were acquired in the years 2020 and 2021 over the 
two sites, between the months of June and November. This period covers the growing season of the crops at the two sites. The satellite 
data were accessed and processed in the Google Earth Engine (GEE) cloud computing platform (Gorelick et al., 2017), using python API 
and the “geemap” package (Wu, 2020). In GEE, the available Sentinel-1 scenes have already been pre-processed for thermal noise 
removal, radiometric calibration and terrain correction using Shuttle Radar Topography Mission (SRTM) 30 digital elevation model 
(DEM) and tools from the Sentinel-1 Toolbox provided by ESA (S1TBX - ESA Sentinel-1 Toolbox, http://step.esa.int). However, despite 
the pre-processed corrections, border artefacts, speckle noise and topographic effects may remain and can compromise their usage. 
Here we used the VV and VH polarization bands from the IW acquisition mode in ascending orbit direction, with 10 m spatial reso-
lution. The border noise was removed based on the incidence angle and backscattering values of neighbouring pixels in the border 
region (Hird et al., 2017; Stasolla and Neyt, 2018). For the speckle noise removal, we applied the Refined Lee filter to each individual 
scene independently (Lee et al., 1999). We further mitigated topographic effects by radiometric terrain normalization using a 
simplified angular-based correction approach (Hoekman and Reiche, 2015) according to the volume and surface scattering models 
implemented in GEE by Vollrath et al. (2020), using SRTM DEM to represent surface elevation. The border noise correction, speckle 
filtering and radiometric terrain normalization removal was performed using the comprehensive GEE framework proposed by Mullissa 

Table 1 
Number of field plots by commune and crop type for the years 2020 and 2021.

Commune Crop Num. Plots 2020 Num. Plots 2021

Cassou Maize 18 16
​ Sorghum 23 21
Saponé Millet 9 7
​ Millet-cowpea 10 10
​ Sorghum 10 7
​ Sorghum-cowpea 9 10
Total ​ 79 71
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et al. (2021) that is available at https://github.com/adugnag/gee_s1_ard (Accessed on September 14, 2022).
For the Sentinel-2 data, we used the Level-2A product available in the GEE data catalog, which is atmospherically corrected with 

the Sen2Cor processor (Main-Knorn et al., 2017). One limitation of the Sentinel-2 images during growing periods is the high occur-
rence of clouds. To deal with that without unnecessarily losing the high temporal resolution of these data by defining a cloud per-
centage threshold for the whole scenes, we masked out the clouds and shadows pixels by using a function (s2cloudness) based on the 
cloud probability band from Sentinel-2 available in GEE. In this function, clouds are identified using the Sentinel-2 cloud probability 
band and shadows are defined by the cloud projection intersection with low-reflectance near-infrared (NIR) pixels. We masked out the 
clouds and shadows of each image in the time-series during the growing period (June–November) in both years using a cloud 
probability threshold of 40% (values greater than the threshold are considered clouds). We also used 1 km of maximum distance from 
cloud edges to search for cloud shadows, a NIR reflectance threshold of 0.15 (lower reflectance values than this threshold are 
considered as potential cloud shadow), and a buffer distance of 100 m to expand the edge of the identified cloud object. We chose these 
parameters after several iterative tests over the two sites during the study period. A detailed description of this function is available on 
the GEE developer’s community webpage (https://developers.google.com/earth-engine/tutorials/community/sentinel-2- 
s2cloudless). Following cloud and cloud shadow masking, we selected the bands in the visible (B2, B3 and B4), red edge (B5, B6, 
B7), NIR (B8) and SWIR (B11 and B12) spectral regions, which are particularly sensitive to vegetation properties. The bands with 20 m 
spatial resolution (B5, B6, B7, B8A, B11, B12) were resampled to 10 m using the nearest neighbor interpolation method.

We used satellite-based products of soil properties and elevation as additional information sources to characterize the sites and, 
consequently, potentially improve the crop AGB estimation. Soil properties were extracted from the iSDASoil digital soil map (https:// 
isda-africa.com/isdasoil), which provides soil information for over 20 different physical and chemical properties for the African 
continent with 30 m spatial resolution based on comprehensive compilations of soil samples and modelling with Earth observation 
data (Hengl et al., 2021; Miller et al., 2021). Specifically, we used the sand, clay and silt mean content (% unit) and the mean organic 

Table 2 
Vegetation indices used for crop biomass estimation in Cassou and Saponé.

Vegetation Index (VI) Equationa Reference

Sentinel-1
Polarization Ratio (PR) σ0

VH
σ0

VV
Blaes et al. (2006)

Normalized Difference Polarization Index (NDPI) σ0
VV − σ0

VH
σ0

VV + σ0
VH

(Cao et al., 2008; Nasirzadehdizaji et al., 2019)

Radar Vegetation Index (RVI) 4*σ0
VH

σ0
VV + σ0

VH

(Kim and Zyl, 2009; Nasirzadehdizaji et al., 2019)

Normalized Product Polarization Index (NPI) σ0
VV*σ0

VH
σ0

VV + σ0
VH

Adapted from Li et al. (2012)

Dual Polarization SAR Vegetation Index (DPSVI)
σ0

VH*

⎡

⎣

(
σ0

VVmax
*σ0

VH − σ0
VV*σ0

VH + σ0
VH

2
)

+
(

σ0
VVmax

*σ0
VV − σ0

VH*σ0
VV + σ0

VV
2
)

⎤

⎦

̅̅̅
2

√
*σ0

VV

Periasamy (2018)

Dual Polarization SAR Vegetation Index m (DPSVIm) σ0
VV

2
+ σ0

VV*σ0
VH̅̅̅

2
√ dos Santos et al. (2021)

Sentinel-2
Normalized Difference Vegetation Index (NDVI) B8 − B4

B8 + B4 Rouse et al. (1974)

Enhanced Vegetation Index (EVI) g*(B8 − B4)
B8 + C1*B4 − C2*B2 + L Huete et al. (1997)

Soil Adjusted Vegetation Index (SAVI) B8 − B4
B8 + B4 + L

(1 + L) Huete (1988)

Soil Adjusted Vegetation Index 2 (SAVI2) B8
B4 + b/a

Major et al. (1990)

Modified Soil-Adjusted Vegetation Index (MSAVI) 2*B8 + 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2*B8 + 1)2
− 8*(B8 − B4)

√

2
Qi et al. (1994)

Triangular Vegetation Index (TVI) 120*(B8 − B3) − 200*(B4 − B3)
2 Broge and Leblanc (2001)

Red Edge NDVI 1 (RENDVI1) B8 − B5
B8 + B5 Forkuor et al. (2018)

Red Edge NDVI 2 (RENDVI2) B6 − B4
B6 + B4 Forkuor et al. (2018)

Normalized Multi-band Drought Index (NMDI) B8 − (B11 − B12)
B8 + (B11 − B12) Wang and Qu (2007)

a Terms of the equation are explained, as follows: σ0
VV is the VV backscattering coefficient (in linear power units). σ0

VH is the VH backscattering 
coefficient (in linear power units). σ0

VVmax 
is the maximum value of the VV backscatter coefficient over the study region (in linear power units). B8: NIR 

band; B4: Red band; B2: Blue band; g: adjusted gain factor (g = 2.5); C1 and C2: factors for atmosphere effect correction (C1 = 6 and C2 = 7.5); L: 
factor for soil effect correction (L = 1); a: soil line slope; b: soil line intercept; B3: Green band; B5: Red-edge 1 band; B6: Red-edge 2 band; B11: SWIR 1 
band; and B12: SWIR 2 band.
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carbon maps (g/kg), all representing 0–20 cm of soil depth. We selected these soil properties for being less prone to change over short 
time intervals and spatial scales. Detailed information about the methodology and accuracy assessment of the iSDASoil data is pro-
vided in Hengl et al. (2021). Elevation data were obtained from the Copernicus Digital Elevation Model (GLO-30), available with 30 m 
spatial resolution (https://doi.org/10.5270/ESA-c5d3d65). The iSDAsoil and GLO-30 datasets were both acquired through GEE data 
collection, followed by resampling to 10 m using the nearest neighbor interpolation method to allow integration with the Sentinel 
time-series. The elevation and soil maps showing the variations of these properties over the two communes are presented in Fig. A2 of 
Appendix A.

2.4. Satellite-based predictor variables

Overall, 33 predictor variables from five different sources (Sentinel-1, Sentinel-2, soil properties, elevation and tree canopy cover) 
were selected to be included in the crop AGB modelling. These include 15 vegetation indices (VIs) calculated from Sentinel-1 and 
Sentinel-2 time series as predictor variables in the crop AGB modelling (Table 2). These VIs were selected according to their previous 
usage in vegetation assessment and potential relevance to quantify crop AGB at different spatiotemporal scales, particularly in African 
regions (Ibrahim et al., 2021; Jin et al., 2019; Karlson et al., 2020; Lambert et al., 2018). For Sentinel-1 indices, the polarization 
ratio-based index (PR), the Normalize Difference Polarization Ratio (NDPR) and the Normalization Polarization Index (NPI) were used 
based on their potential to maximize the sensitivity to vegetation targets (Nasirzadehdizaji et al., 2019; Veloso et al., 2017; Vreug-
denhil et al., 2018), as well as the Radar Vegetation Index (RVI), intended to assess vegetation growth by characterizing volume 
scattering (Kim et al., 2012). We also used the Dual Polarization SAR Vegetation Index (DPSVI), proposed to be sensitive to the physical 
scattering of ground targets by integrating co- and cross-polarized parameters (Periasamy, 2018). Lastly, we used the DPSVIm, which is 
a simple adaptation of the DPSVI to deal with seasonality of more dense vegetation (dos Santos et al., 2021). All Sentinel-1 VIs were 
calculated within GEE.

For Sentinel-2 VIs we included the Normalized Difference Vegetation Index (NDVI), which is one of the most widely used VIs for 
vegetation analysis based on the normalized difference between the NIR and red bands (Rouse et al., 1974). Further, we included the 
Enhanced Vegetation Index (EVI), which is a modified version of NDVI in which factors to correct for soil and atmospheric effects have 
been added (Huete et al., 1997). We also included the Soil Adjusted Vegetation Index (SAVI) and two of its adapted versions (SAVI2 
and Modified Soil-Adjusted Vegetation Index; MSAVI) since they all were designed to reduce effects from soil conditions (Huete, 1988; 
Qi et al., 1994). We also included the Triangular Vegetation Index (TVI), which adds the influence of the leaf pigments using the green 
band (Broge and Leblanc, 2001). Furthermore, we included two VIs based on red edge (RE) bands (RENDVI1 and RENDVI2; Forkuor 
et al., 2018), as well as the Normalized Multi-band Drought Index (NMDI), which uses the reflectance behaviour of the SWIR bands to 
enhance the sensitivity to soil and vegetation moisture (Wang and Qu, 2007). Sentinel-2 VIs were computed using the “eeMont” python 
package available in GEE (Montero, 2021), with the exception of RENDVI1 and RENDVI2.

We also included the individual bands from Sentinel-2 (B2, B3, B4, B5, B6, B7, B8, B8A, B11 and B12) and the incidence angle (the 
incident radar beam according to the surface), the vertical transmit-vertical receive polarization (VV) and the vertical transmit- 
horizontal receive polarization (VH) information from Sentinel-1. The VV and VH were considered as backscattering coefficients in 
linear power units, respectively, σ0

VV and σ0
VH. Soil properties at 20 cm depth (sand, clay, silt, and organic carbon), elevation and tree 

canopy cover (%) were also included as predictor variables for their potential to account for spatial variability in crop growth 
conditions.

The predictor variables based on Sentinel-1 and Sentinel-2 were computed for each available date in the period of analysis (June to 
November 2020 and 2021). However, due to the extensive cloud cover, there were several occurrences of missing information from 
masked pixels. To overcome this lack of data, we calculated temporal statistical compositions for each month (June, July, August, 
September, October and November) and the growing season (all available images between June and November). For this approach, we 
performed a comparison of the predictive potential between the mean, median and maximum statistical compositions. Pixel values of 
the predictor variables were extracted according to the delineation of the field plots, i.e., 2 × 2 pixels. Since satellite-based predictor 
variables presented different levels of magnitude, we standardized them by max–min procedure (ranging between 0 and 1) for further 
calibrating the models (Shahhosseini et al., 2021).

2.5. Modelling approaches and scenarios

To identify the most effective modelling framework for estimating crop AGB, we tested two main modelling techniques: multiple 
linear regression (MLR) and three machine learning (ML) algorithms. MLR was based on the parametric Ordinary Least Squares (OLS) 
technique and for the ML approach, we tested the performance of the nonlinear methods Multivariate Adaptive Regression Splines 
(MARS) and Support Vector Machine (SVM), as well as the tree-based algorithm Random Forest (RF). These ML methods were chosen 
due to their wide usage, well-documented availability, and good suitability to estimate AGB of several vegetation types in different 
edaphic-climatic regions (Morais et al., 2021). It is important to mention that these modelling methods (MLR and ML) are not meant to 
be exhaustive, but a starting point covering simple to complex methods.

2.5.1. Multilinear regression models
MLR is a widely used statistical method for attributing linear relationships of predictor variables (X1, X2, …, Xk) to perform pre-

dictive analysis of the response variable (Y). Due to its simplicity and common use, it has been the standard procedure used for 
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quantitative agricultural applications of remote sensing for the last decades (e.g., Monteiro et al., 2022; Olson and Olson, 1986). 
Considering all the satellite-based predictor variables to define the best MLR model, we used the backward stepwise method, which is a 
feature selection method based on a p-value threshold (Kuhn and Johnson, 2019). MLR models take the general form of Eq. (1): 

Y = β0 + β1X1 + β2X2 + … + βkXk + ε (1) 

where, Y is the response variable, X1, X2, … Xk are predictors variables, β0, β1, β02 … βk are parameters, and ε is the error component. 
Based on this general equation, the backward stepwise regression method uses a sequence of steps to allow potential predictor var-
iables (features) to leave the regression model one-at-a-time. In the first step, it considers a model that contains all the predictor 
variables, and then gradually eliminates them to maintain the best model with the highest coefficient of determination (R2) and 
minimise the mean squared deviation from the regression model while maintaining the significant variables. Finally, this procedure 
converges to a subset of predictor variables used in the model.

Because of the potential of high correlation between some predictor variables, we considered MLR models as a combination of 
variables grouped by, as follow (Eq. (2)): 

Biomassk = f(S2Band, S2Index, S1, Soil, Elev,Tree%) (2) 

where, Biomassk is the AGB of crops in the field plot (sample), S2Band is a band from Sentinel-2 (10 possible variables), S2Index is an index 
from Sentinel-2 (9 possible variables), S1 is a band or index from Sentinel-1 (9 possible variables), Soil is soil-related data (4 possible 
variables), Elev is the elevation data (1 variable) and Tree% is the tree cover data. Then we applied the backward stepwise regression 
method for each model resulting from the possible combination of these groups of predictor variables, totaling 3240 models (10× 9×

9× 4× 1). For this approach, we used the method “leapBackward” through the “caret” package (Kuhn, 2008) available in the R 
software package (R Development Core Team, 2020).

2.5.2. Machine learning
The ML algorithms chosen here, MARS, RF and SVM, each follow different procedures. A common constraint for some ML methods 

is the negative effect of including irrelevant predictor variables in the model (Kuhn and Johnson, 2019). To overcome this effect, before 
calibrating each ML model, we performed a feature selection procedure to use just the most important case-specific predictor variables 
nested for each group of analysis. To do so, we applied the Recursive Feature Elimination algorithm (Guyon et al., 2002) from the 
“caret” package in R software using the RF function with a 10-fold cross validation process repeated five times.

MARS is a flexible modelling algorithm for high-dimensional data (Friedman, 1991). It verifies nonlinear relationships in the data 
by assessing piecewise functions and selecting the most significant basis functions from the model. It can identify additive contri-
butions of different multivariable interactions. MARS was implemented using the “caret” package (Kuhn, 2008), and applying the 
“gcvEarth” method from the “earth” package (Milborrow et al., 2024).

RF is one of the most popular machine learning algorithms. It is a decision tree model based on the ensemble learning of multiple 
random trees that can be used for both regression and classification problems (Breiman, 2001). For regression problems, the algorithm 
outputs the average of all trees built. For RF implementation, we used the “ranger” method available in the “ranger” package (Wright 
and Ziegler, 2017) also from “caret” package.

SVM is designed to find an optimal hyperplane that maximizes the distance between observations (samples or classes) for forming 
groups with similar characteristics (Cortes and Vapnik, 1995). It is a widely used and robust nonlinear ML algorithm. SVM was also 
implemented using the “caret” package, where a radial basis kernel was adopted by using the “svmRadial” method from the “kernlab” 
package (Karatzoglou et al., 2004).

All the models were developed through a grid search approach to optimize tuning parameters with different combinations of 
values. For MARS, the tuning parameter “degree” (product degree) was evaluated with values ranging from 1 to 2. For RF, the model 
was built with 500 trees and the tuning parameters included “mtry” (randomly selection of predictor; ranging from 1 to the total 
number of predictor variables), “splitrule” (splitting rule; either “variance” or “extratrees”), and “min.node.size” (minimal node size; 
set to 5). For SVM, the parameters tuned were “C” (cost; with a sequence of 20 values ranging from 1 to 2) and “sigma” (spanning from 
0.0 to 0.05 in increments of by 0.01).

Table 3 
Modelling scenarios used to evaluate the framework for crop productivity monitoring.

Scenario Type Description

1 General model Saponé and Cassou sites for year 2020
2 General model Saponé and Cassou sites for year 2021
3 General model Saponé and Cassou sites for both years 2020 and 2021
4 Site-specific model Saponé site for year 2020
5 Site-specific model Saponé site for year 2021
6 Site-specific model Cassou site for year 2020
7 Site-specific model Cassou site for year 2021
8 Site-specific model Saponé site for both years 2020 and 2021
9 Site-specific model Cassou site for both years 2020 and 2021
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2.5.3. Modelling scenarios
We used several scenarios when performing the AGB modelling to compare prediction performance and address advantages, 

limitations and generalization potential of the framework. Specifically, modelling was first done using only field data from the in-
dividual sites, hereafter referred to as “site-specific” models. We also created models where the field data from two sites were com-
bined, and these are referred to as “general” models. Site-specific and general models were created both for the individual years (2020 
and 2021) and when field data from both years were aggregated. Overall, this amounted to nine modelling scenarios, including three 
general and six site-specific models (Table 3). Another important analysis in this modelling framework was to identify the most suitable 
period for extracting satellite predictor variables over the growing period, i.e., the month or season when the correlation between 
satellite and crop AGB is the strongest. Thus, we compared the performance of the AGB estimation using the predictor variables 
grouped by statistics composition of the period (single months and season) for each modelling scenario.

2.6. Evaluation and estimation of the crop production

Fig. 3 illustrates the summary flowchart of the modelling framework used for estimating the crop AGB of the agroforestry parklands 
(Sections 2.2 to 2.6). Models for crop AGB estimation were calibrated using the satellite-based predictor variables and modelling 

Fig. 3. Flowchart of the main steps used to build and evaluate the performance of the modelling to estimate biomass.

J. Oliveira et al.                                                                                                                                                                                                        Remote Sensing Applications: Society and Environment 37 (2025) 101494 

9 



approaches described above (Sections 2.4 and 2.5). Given the limited reference sample size (field data; Table 1), we used a 10-fold 
cross validation (10-fold CV) procedure repeated five times for model calibration and calculation of accuracy metrics. This 
approach was chosen for its relatively low computational cost across varying the number of observations in the modelling scenarios, 
while the methodology remains feasible for future updates with larger datasets.

The performance of the models was evaluated according to a number of accuracy metrics, including the coefficients of determi-
nation (R2), the root mean square error (RMSE, ton ha− 1; Eq. (3)), relative root mean squared error (relRMSE, %; Eq. (4)) and mean 
absolute error (MAE, ton/ha; Eq. (5)). 

RMSE
(
ton ha1)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1

(Ŷ i − Yi)

N

√
√
√
√ (3) 

Where, Ŷ i is the estimated crop AGB at sample i, Yi is the observed crop AGB at sample i, and N is the total number of samples. 

relRMSE(%)=100 ×
RMSE

(max Yobs − min Yobs)
(4) 

Where, max Yi and min Yi are the maximum and minimum observed crop AGB, respectively, and N is the total number of samples. 

MAE
(
ton ha1)=

1
N

∑N

i=1
|Ŷ i − Yi| (5) 

Where, Ŷ i is the estimated crop AGB at sample i, Yi is the observed crop AGB at sample i, and N is the total number of samples.
The relative importance of predictor variables to the respective AGB models was also quantified to gain further insights into the 

modelling process. We used the “varImp” function of the “caret” package in R, which calculates the variable importance of the training 
dataset according to the specific methods of each modelling algorithm.

The best modelling approach in each scenario was then used to estimate the spatial crop productivity for Saponé and Cassou in 
2020 and 2021. A cropland mask based on Potapov et al. (2022) was used to create the maps at the commune level.

3. Results

3.1. Field data summary

Crop cuts from the field plots in Cassou and Saponé provided input to the AGB modelling and Fig. 4 shows the range of the total AGB 
at the sites and in the two years. The plots in Cassou generally had higher mean AGB compared to Saponé for all crop types. It is also 
apparent that the growing conditions differed between the two years, with higher crop AGB in 2020 compared to 2021. The mean AGB 
was around 50% lower in 2021 for both sites and most crop types. The only exception was the sorghum plots in Cassou, with a 
reduction in AGB of around 80% in 2021. A reason for this inter-annual variability in AGB can be explained by the one-month delay in 
the onset of the rainy season in 2021 (Fig. 2). Tables A1 and A2 (Appendix A) show detailed statistics of the crop AGB for both sites in 
2020 and 2021, respectively.

After revising the field campaign protocols and data exploration, and talking with field experts in Burkina Faso, we decided to 
remove 12 plots from our crop-cut dataset, which were considered outliers according to their AGB values; more precisely, the plots 
with AGB placed on the first and third quartile of the frequency distribution. In the end, 72 and 66 plots were used in the modelling and 

Fig. 4. Boxplots of the distribution of the observed aboveground biomass for the years 2020 and 2021 in Saponé and Cassou communes. The dots 
represent outlier values that were removed prior to the modelling.
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analysis in 2020 and 2021, respectively. Even though we recognise that not always observations out of statistical quartiles should be 
removed from the analysis, our case demonstrated that these values could be related to errors in data tabulation.

3.2. Sentinel-1 and 2 observations

Sentinel-1 and Sentinel-2 predictor variables extracted for the dates available over the two years show the variability over the sites, 
including growth stages and crop systems. Fig. 5 shows an example of the NDVI (Sentinel-2) and PR (Sentinel-1) values and their 
variation over this period. For Sentinel-2, the cloud cover was more extensive in August, so this month was excluded from the 
modelling analysis. Also, according to the NDVI, it is possible to identify the growth peak of the vegetation around September–October. 
PR values showed higher variations between the plots all over the growth period and more available images in Cassou than in Saponé.

Working with monthly and seasonal mean, maximum and median compositions was an alternative to overcome the lack of satellite 
data, as well as evaluate the influence of the different growth stages on the total AGB. The NDVI and PR compositions illustrate an 
example of spectral and backscattering changes between sites, crops, months and years (Fig. 6). The NDVI shows the general trend over 
the years, with higher values in September and October, similar as in Fig. 5. Also, PR compositions show higher variability between 

Fig. 5. Normalized Difference Vegetation Index (NDVI) and Polarization Ratio (PR) average (grey circles) and standard deviation values (grey 
vertical bars) acquired from, respectively, Sentinel-2 and Sentinel-1 satellites for the plots in Cassou and Saponé communes over the two growing 
seasons in 2020 and 2021.
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plots, but with a slight trend of peak values around September–October. Comparatively to Fig. 5, using time-series compositions 
(Fig. 6) showed potential to fill missing information when estimating crop AGB.

3.3. Performance of the different modelling scenarios

The modelling was done using nine different scenarios (Table 3) based on how the field data were used, including general models 
where the field data from both sites were combined and site-specific models. Models were also developed using field data from each 
year separately, and when both years were combined. The results from these nine modelling scenarios are presented in Table 4 and 

Fig. 6. Normalized Difference Vegetation Index (NDVI) and Polarization Ratio (PR) monthly and seasonal compositions (maximum, mean and 
median) acquired from, respectively, Sentinel-2 and Sentinel-1 satellites for the plots in Cassou and Saponé communes over the two growing seasons 
in 2020 and 2021.
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they show that the accuracy of the models is high overall, but with important differences. Specifically, R2 and relRMSE ranges from 
0.49 to 0.82 and 11.80–19.35%, respectively, when considering the best model alternative in each scenario. Another clear observation 
in Table 4 is that September is the preferable composition period in most of the scenarios and models. For the site-specific models, 
using October as the composition period produced the most accurate AGB estimates in 2020 in both Cassou and Saponé. However, the 
difference to using the September composition in these two cases is marginal in both sites. Lastly, performance of the composition 
methods differed widely between the year and modelling scenarios, with the mean and median compositions being the most common 
outcomes in the models. Fig. A3 in Appendix A shows examples of predicted vs. observed scatterplots for the training and validation 
datasets.

The differences in performance between the four algorithms used for building the models were marginal, especially when 
comparing MLR, RF and SVM (Fig. 7). On the other hand, MARS produced the least accurate AGB estimates in 7 out the 9 modelling 
scenarios. The differences between the algorithms can also be demonstrated when calculating the average R2 and relRMSE of the most 
accurate models for MARS (R2 = 0.65; relRMSE = 18.43%), MLR (R2 = 0.70; relRMSE = 16.33), RF (R2 = 0.71; relRMSE = 15.76) and 
SVM (R2 = 0.70; relRMSE = 16.0). Fig. 7 further details the differences in model performance when using different composition 
periods, as well as variability in R2 introduced by the three composition methods and modelling algorithms (indicated by the error 
bars). A key observation is that using September as the composition period consistently produces the most accurate AGB estimates, but 
that the differences often are small in several modelling scenarios, especially in relation to using the October composition. The per-
formance improvement using the September composition was slightly larger in 2021 compared to 2020. In addition, the error bars in 
Fig. 7 show that September produced more stable results in terms of R2, with lower variability introduced by the different modelling 
algorithms and composition methods.

Table 4 
Most accurate combinations of modelling algorithms, composition period and method for the nine modelling scenario. MARS - Multivariate Adaptive 
Regression Splines, MLR – Multi Linear Regression, RF – Random Forest, SVM – Support Vector Machine.

Scenario Model type Site Year Algorithm Best month Composition R2 RMSE (tons/ha) relRMSE (%) MAE (tons/ha)

1 General Both 2020 MARS September Median 0.64 1.83 16.54 1.39
MLR September Median 0.76 1.42 12.79 1.12
RF September Max 0.75 1.44 13.04 1.11
SVM September Median 0.72 1.51 13.64 1.24

2 General Both 2021 MARS September Max 0.76 0.59 12.07 0.43
MLR September Mean 0.63 0.69 13.93 0.54
RF September Max 0.68 0.69 14.00 0.52
SVM September Median 0.70 0.58 11.80 0.44

3 General Both Both MARS September Mean 0.69 1.28 15.12 0.97
MLR September Mean 0.64 1.36 16.00 1.08
RF September Mean 0.74 1.13 13.37 0.87
SVM September Mean 0.76 1.10 12.93 0.79

4 Site-specific Saponé 2020 MARS September Mean 0.67 0.55 24.88 0.47
MLR September Mean 0.72 0.43 19.52 0.37
RF October Mean 0.72 0.40 18.17 0.35
SVM September Mean 0.68 0.43 19.41 0.35

5 Site-specific 2021 MARS September Max 0.66 0.45 34.24 0.38
MLR September Median 0.75 0.27 20.46 0.23
RF September Max 0.82 0.31 19.35 0.26
SVM September Max 0.77 0.31 22.91 0.25

6 Site-specific Cassou 2020 MARS September Median 0.53 2.13 20.40 1.77
MLR October Median 0.57 1.75 16.87 1.43
RF September Median 0.55 1.78 17.81 1.60
SVM September Median 0.55 1.85 17.83 1.60

7 Site-specific 2021 MARS September Mean 0.71 0.77 15.76 0.61
MLR September Max 0.80 0.71 14.62 0.59
RF September Mean 0.76 0.72 14.85 0.54
SVM September Mean 0.77 0.70 14.31 0.58

8 Site-specific Saponé Both MARS October Median 0.32 0.73 26.13 0.55
MLR October Median 0.47 0.51 18.34 0.40
RF September Max 0.47 0.53 19.03 0.44
SVM September Max 0.49 0.51 18.61 0.42

9 Site-specific Cassou Both MARS September Median 0.63 1.57 18.72 1.29
MLR September Mean 0.70 1.47 17.41 1.16
RF September Mean 0.69 1.40 16.69 1.38
SVM September Mean 0.72 1.30 15.51 1.04
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3.4. Variable importance

After the model selection, we quantified the importance of predictor variables in the respective AGB models for both the MLR and 
ML approaches (Table 5 and Fig. 8, respectively). Significant differences in predictor variable importance were observed between the 
approaches and scenarios. For example, in the most generalized scenario (both years and sites; scenario 3 in Table 4) and the MLR 
approach, the Sentinel-2 individual red-edge band (B5) and the soil brightness compensated VI (SAVI) were selected as important 
variables, together with soil organic carbon and tree cover (Table 5); demonstrating the influence of the landscape components (crop 
vegetation, soil and trees) to the crop AGB. When considering the most accurate ML approach, more predictor variables were ranked as 
important, from both Sentinel 1 and 2, as well as soil-related predictors, elevation and tree cover. However, Sentinel-2 variables were 
more critical, top-ranked by the individual red-edge band (B5) (Fig. 8).

In general, Sentinel-2 predictor variables were important in most scenarios and approaches. However, the addition of Sentinel-1 
variables was also relevant in several scenarios, as well as the tree cover, soil and elevation data sources. These results indicate the 
potential of using satellite and ancillary raster datasets when considering crop monitoring at the national level.

Fig. 7. Graph showing variations in model fit (R2) in the nine scenarios when using different modelling algorithms based on different composition 
periods. The bars present the averaged value of the three composition methods (max, mean, median), whereas the error bars show the stan-
dard deviation.

Table 5 
Predictor variables selected by the multilinear regression (MLR) approach for each scenario (site and year).

Scenario Site and period (and number of selected predictor variables) Predictor ranking

1 Both sites 2020 (4) B5, EVI, VH, silt
2 Both sites 2021 (3) B5, RENDVI1, TC
3 Both sites combined years (4) B5, SAVI, SOC, TC
4 Saponé 2020 (3) PR, clay, elevation
5 Saponé 2021 (3) B3, MSAVI, TC
6 Cassou 2020 (2) B6, TVI
7 Cassou 2021 (4) B8, RENDVI1, SOC, TC
8 Saponé combined years (4) EVI, NL, clay, elevation
9 Cassou combined years (3) B5, NMDI, TC
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Fig. 8. Variable Importance of the predictor variables for the best machine learning (ML) approaches in the modelling scenarios (RF, SVM, SVM, RF, 
SVM, RF, RF, SVM and SVM, respectively, for the left to right subplots sequentially from upper to bottom part).
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3.5. Spatial crop productivity

The spatial crop productivity can then be estimated based on these most accurate AGB models and scenarios. For example, the 
spatial differences in annual crop AGB for 2020 and 2021 can be seen in Fig. 9, where commune-level maps were derived using the 
MLR described in Table 4 for 2020 and 2021 (Scenarios 1 and 2). MLR was selected for mapping considering its accuracy and simplicity 
compared to the other methods. The regression equations for the most accurate MLR models in each modelling scenario are available in 
Table A3 of Appendix A. The maps in Fig. 9 highlight the lower crop production in 2021 compared to 2020, more so in Cassou 
compared to Saponé. The proportion of cropland was 43% (50820 ha) in Cassou and around 48% (32326 ha) in Saponé. In terms of 
crop AGB, in Cassou, this amounts to a total of 269350 tons in 2020 (mean = 5.3 tons/ha) and 116888 tons in 2021 (mean = 2.6 tons/ 
ha). For Saponé, the crop AGB totaled 62712 tons in 2020 (mean = 1.9 tons/ha) and 46226 tons in 2021 (mean 1.4 tons/ha).

4. Discussion

4.1. Interannual and between-site variability in crop productivity

The field data used for calibrating remote sensing models in smallholder production systems is primarily collected either through 
household surveys or crop-cuts of plots. While crop-cuts provide more reliable data, an obvious tradeoff must be made between quality 
and quantity. Here, we used a nested plot approach with crop-cuts done in subsections of the main plots to capture spatial variability in 
crop productivity while limiting workload. Previous research has shown that this approach to field data collection is as effective as 
whole-plot crop-cuts to calibrate remote sensing-based models (Lobell et al., 2020a). The number of plots used (79 in 2020 and 71 in 
2021) was a compromise between capturing variability of rainfalls, sites, soil properties, crop type and productivity, as well as labor 
costs and is within the range of earlier studies conducted in agroforestry systems in West African countries (Lambert et al., 2018; 
Leroux et al., 2019, 2020).

A strength of our study is that field data were collected at two contrasting sites (soil types, vegetation, cropping system and rainfall) 
covering two years. In an ideal situation, field data should have been collected in the drier parts of northern Burkina Faso to capture 
national coverage. This was the original plan, but unfortunately, we had to refrain from it due to severe security problems. The two 
sites we could work on differed in both the crop types and crop combinations, as well as in the growth conditions and crop productivity. 

Fig. 9. Examples of commune-level maps of annual crop AGB from both sites in 2020 and 2021 based on the most accurate Multi Linear Regression 
(MLR) models (Table 4 and Table A3 in Appendix A) and a cropland mask (Potapov et al., 2022). These models were trained using the general 
models based on combined field data from both sites (Scenarios 1 and 2). The histograms show the frequency distribution of pixel-level AGB 
(tons/ha) estimated by the MLR models.
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The crop productivity was higher in Cassou in both years, which was expected due to higher rainfall, higher soil fertility and the 
dominance of maize. This was especially seen in 2020 when the mean AGB was around 5 tons/ha compared to 1.5 tons/ha in Saponé. 
The between-site differences were less pronounced in 2021, with mean crop AGB around 2 tons/ha in Cassou and 1 ton/ha in Saponé. 
The main reason for the lower crop productivity in 2021 was the delay in the rain onset (ca one month) and drought periods that 
negatively affected the crop growth. The start date and rainfall distribution over the rainy season are key-factors for failure in the 
Sudano-Sahel region (Oguntunde et al., 2014; Sivakumar, 1988).

Moreover, the focus here was especially on total AGB, since in the smallholder production system in Burkina Faso all parts of the 
plant are used. Sorghum, cowpea and maize grains are used for human consumption, while the tops and crop residues (stalks and 
leaves) are used for animal feed. In some cases, the residues are used as cooking fuel (Yaméogo et al., 2014). The relationship between 
AGB and grain yield was strong overall in both sites and in both years, with R2 ranging between 0.7 and 0.8.

4.2. Combined use of Sentinel-1 and Sentinel-2 for estimating single and mixed crop AGB

The combined use of SAR (Sentinel-1) and optical (Sentinel-2) time series for crop productivity modelling is a main contribution of 
this work. It has not been researched in this type of agricultural system earlier where woody perennial species are grown with annual 
crops. This aspect, together with potential differences in growing conditions (soil and climate), crop types and combinations, cropping 
practices, differences in input data for model training, as well as methods for modelling and accuracy assessment, makes it not a 
straightforward task to make cross-study comparisons. In addition, previous studies have mainly estimated crop yield, whereas we 
used crop AGB as the target variable. Furthermore, most previous studies have focused on single crop fields, which is an easier case to 
model with remote sensing data than mixed crop fields with differences in canopy architecture and phenology. With that being said, 
the results achieved here are promising with relatively high R2 (0.49–0.82) and low relRMSE (11.80–19.35%), and stability between 
the two years. For example, Lambert et al. (2018) achieved an R2 of 0.48–0.8 and RMSE of 0.5–1.0 ton/ha (based on the full field 
dataset) for fields with maize, millet and sorghum in Mali, which is quite similar to our results. But Lambert et al. (2018) required a 
prior classification of the crop types in the field, which can add a layer of uncertainty to the analysis. Also in Mali, but focusing 
specifically on sorghum, Lobell et al. (2020b) reported a correlation coefficient (R2) of 0.48 between crop-cuts and satellite estimates 
and an RMSE of 0.3 ton/ha (full field dataset). Two other studies worth mentioning in this context are those by Leroux et al. (2020, 
2019) that, similar to us, used cross validation in the accuracy assessments. In their 2019 study, the focus was on maize fields in 
Burkina Faso with results of R2 of 0.59 and relRMSE of 25.9% when including drought indices and surface soil moisture as predictor 
variables in the model, in addition to those derived from 250 m MODIS data. Comparable results were reported for estimation of millet 
productivity in Senegal using Sentinel-2 data and tree density as an additional predictor variable in the model, with R2 of 0.7 and 
relRMSE of 28% (Leroux et al., 2020).

Studies that have included mixed crop fields in the analysis are fewer in number, with two exceptions. Burke and Lobell (2017)
evaluated the influence of mixed crop fields on model performance compared to single crop fields but did not find a significant effect on 
the explained variance (R2 = 0.39; full field dataset). Similar conclusions were also drawn in our previous study in Saponé, Burkina 
Faso (2017–2018; Karlson et al., 2020). Model performance in Karlson et al. (2020), however, was considerably poorer than what was 
achieved in the present study, with R2 between 0.4 and 0.8 and relRMSE between 31 and 66%. The improved performance provides an 
indication of the potential benefits that can be achieved when including SAR-based predictors, as well as other data sources (e.g., soil, 
elevation and tree cover) in the crop productivity modelling.

Besides the potential of using Sentinel-1 and 2 products for crop ABG estimations, some drawbacks and pre-processing re-
quirements still need attention. Sentinel-1 and 2 indices used in our approach may not be directly linked to dry AGB, especially 
compared to their correlation with wet vegetation characteristics, such as pigment and moisture content. Therefore, caution is required 
when using them without supplementary ancillary data. Our modelling framework includes additional predictable variables, such as 
soil properties, elevation and tree cover, along with multi-temporal data, which may help capture environmental variations, moisture 
dynamics, and phenological factors that influence satellite signals. This study focuses on smallholder production systems in Burkina 
Faso, where all post-harvest parts of the plants are used, as discussed in the previous section, which reinforces the importance of 
assessing the dry AGB. Furthermore, the correlation between wet and dry AGB supports the transferability of these satellite data 
sources for estimating dry AGB. Previous studies have also investigated dry AGB and grain yield using satellite data (e.g., Hosseini 
et al., 2019; Karlson et al., 2020; Leroux et al., 2019), which supports our findings.

In terms of pre-processing requirements, for Sentinel-2, clouds were especially crucial in our study region because the rainy season 
overlaps with the growing season. We used a cloud mask function (s2cloudness) to remove the cloudy and shadowed pixels. This 
approach has shown good performance in agricultural areas (Gao et al., 2024) but relies on defining thresholds, such as for cloud 
probability. In our case, these values (e.g., 40% for cloud probability) were defined after a visual inspection, which may not be 
replicable to other areas and, therefore, requires a re-analysis when changing locations. Sentinel-1, on the other hand, requires more 
comprehensive pre-processing, which can limit its use by non-experts. The vegetation structure influences SAR data, and trees in the 
plots could have affected the signal. However, it was not the case in the plots we used in this study since the tree coverage was low (on 
average 4.3%) and relatively similar between crop types and sites, even considering that we did not use the same plots both years. 
However, this issue needs further evaluations when applied on broader scales.

4.3. Insights from the modelling framework and mapping crop productivity

We evaluated several scenarios in which models were trained using different subsets of the field data to gain insights to guide the 
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design of a potential national system for monitoring crop productivity. The comparison between site-specific and general models (both 
sites combined) indicates the prospective benefits of using an agroecological stratification that reflects regional differences in growing 
conditions and crop types in the modelling framework, but the results are not conclusive. Such an approach has, for example, shown 
promise for cropland classification in Mali (Vintrou et al., 2012) because it counteracts regional variability in climate conditions and 
crop phenology. The small differences in prediction accuracy between the site-specific and general models in terms of the proportion of 
variance explained for both scenarios and years suggest that the agricultural systems at our two sites are relatively similar at the spatial 
scale observed by the satellite systems we used despite some differences in crop types and combination in the fields. Even though 
intercropping of cereals (millet or sorghum) and cowpea was practiced in a substantial portion of the fields in Saponé, this did not 
negatively affect the accuracy of the AGB predictions, as has been seen in previous research (Li et al., 2022; Lobell et al., 2020a). This 
can be explained by the relatively low contribution of cowpea (10–20%) to overall plot AGB and that cowpea is a low growing crop 
obscured by the cereal canopy from the perspective of the satellite sensor.

The monthly and seasonal compositions started in June since this was generally when the growing season starts and is, therefore, 
relevant for crop establishment and resilience. Moreover, satellite data shortage or misfunctioning could happen and evaluating the 
relation of early season data to the total ABG could be beneficial. However, there is still a long period for plant growth, and the weather 
and management conditions would impact the final ABG biomass, suggesting that June is probably not the best month to be indi-
vidually considered when evaluating monthly satellite information to estimate crop AGB, which was shown in our results.

The fact that September was the composition period that generated the most accurate results for both site-specific and general 
models shows that the timing of crop maturity occurs during similar time windows at both sites. While most comparable studies 
conducted in the Sudano-Sahel have used the whole growing season as composition period (Karlson et al., 2020; Lambert et al., 2018; 
Leroux et al., 2020; Lobell et al., 2020b), our results suggest that improvements in prediction accuracy may be achieved if a narrower 
time window (e.g., a month) is used. However, the possibility of employing such a narrow time window when using optical satellite 
data (e.g., Sentinel-2) will depend on cloud cover conditions, which can vary from year to year and, by extension, the size of the area to 
be mapped. We speculate that the reason for September being the best month for doing the composition is that it is the period when the 
chlorophyll content of the crops is highest, just before the time when the crops start to ripen. Focusing on this smaller time window 
provides a more precise representation of this phenological stage compared to the full growing season composition that can be 
influenced by less suitable satellite observations.

Another key aspect of the modelling framework design is the selection of a modelling algorithm (Lu, 2006; Morais et al., 2021). 
While the performance of an algorithm in terms of prediction accuracy and stability are obviously key criteria, other aspects also need 
to be considered, including input data requirements and computation efficiency. We evaluated the performance of four algorithms that 
are among the most common in the literature focusing on crop productivity estimation from remote sensing data (Jeong et al., 2016; 
van Klompenburg et al., 2020). More advanced methods, such as deep learning, are available and could be an important topic for 
future research on crop productivity estimation in agroforestry landscapes using remote sensing (Joshi et al., 2023; Muruganantham 
et al., 2022). Overall, our results demonstrate that the estimation performance in terms of accuracy of the algorithms does not differ 
substantially, except for MARS that was ranked at the bottom in several modelling scenarios. On the other hand, MLR, RF and SVM 
produced consistently high estimation accuracies for most modelling scenarios. A key benefit of MLR is that it is simple and produces 
model equations that can be observed and easily implemented, given that required input data are available. These equations can also 
be used to better understand the relationships between predictors and crop productivity, as well as give indications on how the model 
can be improved.

Assessments of predictor variable importance provide insight into the modelling process and can guide choices about which input 
data sources to include, as well as those that are redundant (Wei et al., 2015). This can make the modelling more efficient by limiting 
unnecessary data handling and processing, as well as facilitating the construction of parsimonious models. For the MLR, SAR-based 
predictors contributed to models developed for 2020 and in the combined years-scenarios. A reasonable explanation is that SAR 
predictors better captured crop structure in 2020 when AGB was considerably higher compared to 2021 (McNairn and Shang, 2016). 
Thus, including SAR predictors in the modelling can compensate for the potential saturation of vegetation indices based on optical data 
that can occur when crop AGB is high (Aklilu Tesfaye and Gessesse Awoke, 2021). While the use of SAR data for crop AGB modelling 
has been limited in Africa and non-existent in West African parkland landscapes (Parag et al., 2024), our results show that this is an 
interesting area for further investigation.

Optical predictors, including red-edge wavelengths from Sentinel-2, provide important contributions in most of the modelling 
scenarios for both MLR and ML. Red-edge wavelengths are known to be sensitive to the chlorophyll content of leaves and canopy 
(Clevers and Kooistra, 2012; Dash and Curran, 2004) and have been successfully applied in crop productivity modelling focused on 
agroforestry parklands with millet and sorghum previously (Karlson et al., 2020; Lobell et al., 2020b).

Moreover, the contribution of predictor variables characterizing soil properties and tree cover was not consistent in our results. Soil 
properties, such as soil carbon, should have a positive influence on crop productivity (Ma et al., 2023), but the quality of the ISDASoil 
data may be insufficient in this geographical area and at this spatial scale. In addition, the inclusion of tree cover as a predictor in crop 
productivity modelling in agroforestry parklands has been shown to improve the performance previously (Leroux et al., 2020), and our 
results confirm that the inclusion can be beneficial, with the prerequisite concerning the availability of a high-resolution tree cover 
product. Many legacy tree cover products have performed relatively poorly in areas with open tree cover, such as parkland landscapes 
(Heiskanen, 2008; Herrmann et al., 2013). Recent potentially improved products include the updated version of Hansen et al. (2013)
and Brandt et al. (2022). Lastly, elevation was an important predictor in models, possibly due to some topographic variability and the 
fact that the high-yielding fields are located where runoff concentrates. The effect of topography in crop productivity modelling should 
be investigated in more detail, preferably by computing terrain indices from high-quality DEM for inclusion as predictor variables. 
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Overall, our results regarding predictor variable importance suggest that all data sources used in this study should be considered in the 
modelling process and be subject to the variable selection process to create optimal conditions for achieving high accuracy crop AGB 
estimates.

4.4. Potential ways forward

This study has provided key insights about several important aspects related to the development of a framework for estimating and 
monitoring crop productivity in agroforestry parklands, including how different datasets should be managed and processed and how to 
develop models that provide accurate estimates at the pixel scale. There are, however, things that need further attention, both in terms 
of practical considerations and scientific progress.

Firstly, one prerequisite for such a framework is the availability of field data over the years, preferably collected in a way that 
characterizes geographical variations in crop productivity and crop types (Lobell et al., 2020a). The pooling of resources for creating 
open-access databases of both old and new field data collected during different initiatives includes scientific projects and other public 
and private agricultural initiatives (Bégué et al., 2020). Another way to achieve this could be with crowdsourcing, where local farmers 
are trained in the collection and reporting of crop-cut data (Wu et al., 2023). The use of crowdsourcing has been proven successful for 
related tasks, including farmers collecting vast amounts of labeled data for training and validating crop classification models (Wang 
et al., 2020; Yu et al., 2023). The required tools, including custom-build applications and GPS can relatively easily be disseminated 
through smartphone technology, which is growing rapidly in Africa (Ezeoha et al., 2019). Farmers could support wet biomass esti-
mations, and the dry biomass could be extrapolated by using water content ratios already available for the different crops. However, 
the challenges associated with making farmers adopt the technology and gaining sufficient knowledge should not be understated. Such 
an initiative will probably require that farmers are incentivized economically. However, the overall costs would likely be manageable 
considering the value of the resulting product for both monitoring and scientific applications. The costs obviously will be related to the 
number of field plots that are included in the effort. This need does not consider a high number of plots per se but the acquisition of 
field data that represents the variability of the region over contrasting geographical zones and variations in the weather conditions and 
length of the growing season over the years. Recent research has shown that the number of plots required to enable accurate crop 
productivity modelling over large areas is smaller than what is usually assumed. For example, Lobell et al. (2020b) showed that a 
fraction as small as 5% of field data plots (30 out of their original 595 plots) was sufficient to achieve accurate crop productivity 
estimates in Mali. Lobell et al. (2020a) provide similar conclusions for a study conducted in Uganda.

Secondly, there is a practical consideration with the high computational demands for processing remote sensing data when 
applying this framework in large areas. We used the Google Earth Engine (Gorelick et al., 2017), which is an excellent platform for 
cloud computing. However, to overcome processing restrictions inherent in the platform, we suggest including a tiling procedure in the 
framework where data processing is done in subsections of the focus area, where the size of the tiles needs to be determined practically.

A final practical consideration is the availability of a cropland mask that is updated annually. While we used the global land cover 
product by Potapov et al. (2022), optional datasets for deriving annual cropland masks include the Dynamic World land cover product 
(Brown et al., 2022) that provides near real-time land cover maps, as well as the cropland product of Digital Earth Africa. It is also 
worth noting that the development of Earth observation satellites is rapid and that new data options are soon to be operational. One 
interesting example is the NASA-ISRO SAR mission (NISAR), which will deliver L-band and S-band SAR data at a spatial resolution 
between 3 and 10 m depending on acquisition mode (Torbick et al., 2022). NIRSAR could represent an important complement to the 
Sentinel systems with potential benefits in terms of modelling performance improvements.

5. Conclusions

This study demonstrates the feasibility of accurate AGB estimation in the complex agroforestry parklands in Burkina Faso, utilizing 
primarily Sentinel-1 and Sentinel-2 time series imagery. The evaluation of different modelling scenarios, including site-specific and 
general models, offers important considerations for the design of a consistent crop productivity monitoring system. The findings 
contribute to developing effective and scalable frameworks for accurate and timely crop productivity assessment, which is crucial for 
informed decision-making in agriculture and food security, as well as for scientific enquiry.

The results suggest that an agroecological stratification of the area in focus, i.e., in different strata reflecting regional differences in 
growing conditions, could enhance modelling accuracy and generalization. The modelling algorithms emphasize the comparable and 
better performance of multilinear regression (MLR), as well as the RF and SVM machine learning algorithms, which outperformed the 
MARS algorithm. MLR could represent a more straightforward alternative for further practical applications and a transparent eval-
uation of the importance of predictor variables and their contribution to the models. The combination of SAR and optical data con-
tributes to estimating crop productivity and its spatial variability in agroforestry landscapes with both single and mixed crop systems, 
providing promising results with stable performance both across geographical regions and between years.

The exploration of the predictor variables importance also offers valuable insights. In addition to the importance of those derived 
from Sentinel-1 and Sentinel-2 time series, including other data sources in the modelling process, needs further exploration, with 
variable results for the different modelling scenarios, sites and years. Given this, our recommendation is to include the data sources 
tested here (soil, elevation and tree cover) in the modelling process and let the variable selection procedure make the decision about 
inclusion.

The potential ways forward include the use of crowdsourcing for field data collection, addressing computational challenges 
through tiling procedures or data cube initiatives, and considering the availability of an updated cropland mask. The ongoing 
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development of Earth observation satellites presents possibilities for enhancing performance and expanding the scope of crop pro-
ductivity estimation.
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