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to missing important event-driven processes. With a 
changing climate where such event-driven processes 
are more likely to occur and have a greater impact, 
the adoption of high-frequency water quality moni-
toring is becoming more pressing. To prepare regu-
lators and environmental and hydrological agencies 
for these new challenges, this paper reviews interna-
tional best practice in high-frequency data provision. 
As a result, we summarise the added value of high-
frequency water quality monitoring, describe inter-
national best practices for sensors and analysers in 

Abstract The use of high-frequency water qual-
ity monitoring has increased over several decades. 
This has mostly been motivated by curiosity-driven 
research and has significantly improved our under-
standing of hydrochemical processes. Despite these 
scientific successes and the growth in sensor technol-
ogy, the large-scale uptake of high-frequency water 
quality monitoring by water managers is hampered 
by a lack of comprehensive practical guidelines. 
Low-frequency hydrochemical data are still routinely 
used to review environmental policies but are prone 
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the field, and evaluate the experience with high-fre-
quency data cleaning. We propose a decision work-
flow that includes considerations of monitoring data 
needs, sensor choice, maintenance and calibration, 
and structured data processing. The workflow fills an 
important knowledge-exchange gap between research 
and statutory surveillance for future high-frequency 
water quality sensor uptake by practitioners and 
agencies.

Keywords Water quality · High-frequency data · 
Sensors · Monitoring · Decision workflow

Introduction

Routine water quality monitoring for environmental 
objectives is embedded within statutory obligations in 
many countries. The monitoring can focus on individ-
ual parameters or a combination of chemical, biologi-
cal, or hydromorphological requirements (e.g. Van 
Kats et  al., 2022). The overarching European Union 
(EU) Water Framework Directive (WFD) (Carvalho 
et al., 2019), the United States (US) Clean Water Act 
(Keiser & Shapiro, 2019), the New Zealand Resource 
Management Act (Davis & Threlfall, 2006), the Aus-
tralian Water Act (Skinner & Langford, 2013), and 
the Great Barrier Reef Water Quality Improvement 
Plan (Queensland, 2018) are examples with prescrip-
tive water quality surveillance for environmental 

and ecological objectives. The temporal resolution 
of this surveillance monitoring varies from country 
to country and between parameter types (e.g. Jiang 
et  al., 2020; Sundermann et  al., 2015) but is typi-
cally based on low spatial and temporal resolution. 
Despite river systems being dynamic on annual, sea-
sonal, and even sub-daily temporal scales, a relatively 
low temporal resolution approach (e.g. four to twelve 
grab samples per year, per site in the EU) is practiced 
over many monitoring stations. With several years of 
monitoring following standardised field and labora-
tory procedures, these data are assumed sufficient for 
policy reviews and decisions under the Driver-Pres-
sure-State-Impact-Response (DPSIR) iterations (e.g. 
Borja et al., 2006; Lokhande & Tare, 2021; Lu et al., 
2019) when combined with other quality elements in 
statistical frameworks (Kelly et  al., 2021). However, 
recent research questions this assumption, whereby a 
much higher temporal data resolution is required to 
detect changes in water quality for policy objectives 
(McDowell et al., 2024).

This need for high-frequency water quality data 
can be accommodated by the current growth in in-situ 
high-frequency water quality monitoring technologies 
enabling sub-hourly temporal resolutions. One of the 
earlier developments was for proxy suspended sedi-
ment measurements using logged values of calibrated 
turbidity with solid-state back-scatter optical sensors 
(Evans et al., 1997; Glendell & Brazier, 2014; Stutter 
et  al., 2017). Since then, further developments have 

R. Turner 
Reef Catchments Science Partnership, School 
of the Environment, The University of Queensland, 
Brisbane, Queensland 4108, Australia
e-mail: ryan.turner@uq.edu.au

R. Turner 
Water Quality and Investigations, Queensland Department 
of Environment, Science and Innovation, Brisbane, 
Queensland 4102, Australia

P. E. Mellander 
Agricultural Catchments Programme, Department 
of Environment, Soils and Landuse, TEAGASC, 
Johnstown Castle, Ireland
e-mail: PerErik.Mellander@teagasc.ie

P. Thorburn 
CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, 
Queensland 4067, Australia
e-mail: peter.thorburn@csiro.au

R. Cassidy 
Environment and Marine Science Division, Agri-Food 
and Biosciences Institute (AFBI), Belfast, Northern Ireland
e-mail: rachel.cassidy@afbini.gov.uk

J. Appels 
microLAN BV, Biesbosweg 2, 5145PZ Waalwijk, 
the Netherlands
e-mail: joep.appels@microlan.nl

M. Rode (*) 
Department of Aquatic Ecosystem Analysis 
and Management, Helmholtz Centre for Environmental 
Research - UFZ, Magdeburg, Germany
e-mail: michael.rode@ufz.de

M. Rode 
Institute of Environmental Science and Geography, 
University of Potsdam, 14476 Potsdam, Germany



Environ Monit Assess         (2025) 197:353  Page 3 of 23   353 

Vol.: (0123456789)

included optical sensors for absorbance and fluores-
cence (Chapin et al., 2004; Pellerin et al., 2009; Jones 
et al., 2014; Jones et al., 2019), ion specific electrode 
(ISE) probes (O’Grady et al., 2022), and wet-chemis-
try auto-analysers deployed in situ that have capacity 
to measure macro-nutrients and other major cations, 
anions, and isotopes (Freyberg et  al., 2017; Jordan 
et al., 2007; Yu et al., 2021). The advances in process 
understanding in catchment hydrochemistry based on 
high-frequency water quality monitoring have been 
subsequently reviewed by Kirchner et  al. (2004), 
Rode et  al. (2016a), Pellerin et  al., (2016), Burns 
et al. (2019), and Bieroza et al. (2023). Reviews with 
a focus on lake and reservoir applications were pub-
lished by Meinson et  al. (2016),  and McBride & 
Rose (2018).

Beyond this curiosity-driven research, high-fre-
quency physico-chemical water quality datasets have 
been used to identify cases where low-frequency 
statutory data proved insufficient for adequate policy 
reviews and decision making in specific settings. For 
example, Wade et al. (2012) and Halliday et al. (2015) 
demonstrated that the time of day of sampling phys-
ico-chemical parameters (e.g. nutrients, pH, oxygen) 
showing day-night cycles is critical to ensuring that 
low-frequency data are not recording false-positive 
or false-negative assessments when compared against 
thresholds. Jung et al. (2020) also found a high degree 
of statistical bias in small (~ 10  km2) rural Irish catch-
ments when low-frequency (n = 10   year−1) phospho-
rus-P concentration data were related to ecological 
thresholds, compared with high-frequency (hourly) 
data. These points were also demonstrated in the UK 
(Itchen catchment, ~ 400  km2) by Fones et al. (2020). 
In addition, trend analyses based on low-frequency 
measurements can be biased as was suggested hypo-
thetically by Rozemeijer and Van der Velde (2014) 
and was observed in a practical case with a changed 
polder outlet pumping regime (from day to night 
pumping) by Van der Grift et al. (2016). These exam-
ples showed that, depending on the monitoring objec-
tive and the variability of the monitored water quality 
parameters, low-frequency statutory data can lead to 
misinterpretations of water quality status and trends.

Despite these potential misjudgements and stud-
ies showing the potential policy relevant benefits 
of increased data frequency (e.g. Skeffington et  al., 
2015), applications of high-frequency water qual-
ity monitoring are still dominated by research driven 

projects and ‘now-casting’ early warning systems 
using near real-time data for public health purposes 
(e.g. Gullick et al., 2003; Diehl et al., 2006; Valdivia-
Garcia et  al., 2016; Burnet et  al., 2019). There are 
fewer examples of changes to the way national water 
quality datasets are collected for DPSIR frameworks 
due to evident cost constraints. To aid knowledge 
exchange, the move from low-frequency grab sam-
pling strategies to those that increase data coverage 
to near real-time for statutory water quality monitor-
ing in river catchments requires a decision workflow. 
Vilmin et al. (2018), for example, propose a smarter 
way of optimising WFD physico-chemical sampling 
in rivers as a step up from low-frequency data. The 
approach considers location and applies spatio-tem-
poral interpolators to consider placement of auto-
mated and/or seasonal monitoring sites. Using the 
same reasoning, Jordan and Cassidy (2022) proposed 
an Options Matrix for considering different forms of 
physico-chemical sampling approaches from grab, 
passive, automated water sampling, and in situ using 
sensors and analysers.

Nevertheless, there are examples where national 
or state-wide investments in fully automated water 
quality data capture at sub-daily or hourly scales is 
linked directly to water policy reviews. In Ireland, 
for example, six monitoring stations in agricul-
tural catchments monitor P fractions, nitrate, tur-
bidity, and dissolved organic matter synchronously 
with hydrometeorological parameters, to support 
reviews on the EU Nitrates Directive (Mellander 
et  al., 2022). In England and Wales, the Environ-
ment Agency operates the Environmental Sensor 
Network of over two hundred sites using a combi-
nation of mostly solid-state sensor arrays (YSI & 
Loewenthal, 2008). In the US state of Iowa, Jones 
et  al. (2018) reported the use of sixty UV nitrate 
sensors on rivers draining into the Mississippi to 
assess the state’s contribution to the Gulf of Mexico 
nitrate load. In Australia, high-frequency monitor-
ing of nitrate and sediment in streams draining to 
the Great Barrier Reef is undertaken by the Queens-
land Government typically with optical absorption 
in  situ probes (Roberts et  al., 2023). This network 
is supplemented with a range of local water qual-
ity monitoring projects using similar equipment 
(Davis et  al., 2021; Vilas et  al., 2020). There has 
also been a push to supplement discrete water qual-
ity monitoring with real-time monitoring to reduce 
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uncertainty in load calculations and consideration 
for a framework for automated anomaly detection in 
real-time water quality data (Leigh et al., 2019a, b).

There is also fast growth in technology, including 
progress with miniaturised (microfluidic) wet-chem-
istry analysers, low-cost sensor networks (Mao et al., 
2019; Nightingale et al., 2019; Saez et al., 2021), and 
use of more advanced mobile stations (Meyer et  al., 
2019). At the same time, there are calls from the 
research community for the realignment of national 
water quality monitoring to include high-frequency 
data for environmental policy objectives (e.g. Vilmin 
et al., 2018; Jiang et al., 2020; Jennings et al., 2022; 
McDowell et al., 2024).

Despite all scientific and technological successes 
described and referenced above, the large-scale 
uptake of high-resolution water quality monitoring 
is hampered by a knowledge gap regarding practical 
aspects of implementing sensors and auto-analysers. 
The scientific literature does not provide compre-
hensive guidelines on equipment choice, deployment 
methods, maintenance, data processing practices, and 
sensor performance. This knowledge gap often pre-
cludes ‘turnkey’ solutions for environmental agen-
cies and others. An efficient uptake of high-frequency 
monitoring equipment would also benefit from con-
sensus and international standardisation (ISO, NEN) 
on how to integrate the technology in water quality 
monitoring networks. These challenges were the 
starting point for this paper where the literature does 
not currently provide a compendium of practice guid-
ance. The paper is not, therefore, a systematic review 
of the literature but rather a best-practice explica-
tion for knowledge-exchange amongst scientists and 
regulators.

With this background, using international experi-
ences, the aim of this study was to provide a decision 
workflow for high-frequency water quality monitor-
ing applications, including:

1. A consideration of the added value of high-fre-
quency water quality monitoring for practical 
water quality management (when and where to 
deploy sensors, for what purposes)

2. A description of field practices and considera-
tions (sensor choice, a robust field installation, 
adequate maintenance, evaluation)

3. Experiences with data processing and optimisa-
tion such as dealing with anomalies and data gaps

While the focus of most examples in this paper is 
on high-frequency monitoring of nutrients in dynamic 
streams, the principles in the three objectives are 
applicable to all those water quality parameters that 
can be monitored in-situ and at high-frequency in any 
natural water system (e.g. lakes, reservoirs, coastal 
waters).

Added value of high‑frequency sensor monitoring

The scientific added value of high-frequency water 
quality monitoring has been described before in sev-
eral overview papers (Kirchner et  al., 2004; Rode 
et  al., 2016a; Van Geer et  al., 2016; Meinson et  al., 
2016; McBride & Rose, 2018; Burns et  al. 2019; 
Bieroza et al., 2023). Kirchner et al. (2004) compared 
conventional low-frequency sampling with hearing 
1 note every minute or two from a Beethoven Sym-
phony, whereas high-frequency monitoring enables 
researchers to discover the full symphony of catch-
ment hydrochemical behaviour. A recent overview by 
Bieroza et  al. (2023) provides an up-to-date insight 
into recent successes of high-resolution water quality 
monitoring. In this section, we provide a short over-
view of added values of high-resolution monitoring in 
order to highlight its relevance and to set the stage for 
the decision workflow for sensor applications the next 
section.

Process understanding and model development

The additional value of high-frequency sensor moni-
toring compared to low-frequency grab sampling 
depends primarily on the variability of the measured 
variable. This variability can be driven by underly-
ing hydrometeorological events (transport) and bio-
geochemical (turnover) drivers or by quick changes 
in anthropogenic point or diffuse source inputs 
(Bieroza et al., 2023; Rode et al., 2016a, b; Van Geer 
et al., 2016). For example, short-term temporal vari-
ations in deep groundwater chemistry are limited 
which reduces the added value of sensor monitor-
ing. High-frequency solute variation in larger rivers 
is also damped compared to smaller streams (Hens-
ley et al., 2018). The added value of sensors is much 
higher in freely draining streams with short residence 
times. For example, capturing the highly dynamic 
hydrochemistry associated with rapid hydrological 
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responses in conduit systems (e.g. karst and urban 
areas) and mountainous regions requires high-fre-
quency water quality monitoring (e.g. Yue et  al., 
2023).

High-frequency measurements can identify all 
fine-scale temporal variations in water quality and 
help to understand the underlying hydrological and 
biogeochemical processes (Rode et  al., 2016a). 
For example, transport-related concentration fluc-
tuations in streams are generally caused by quick 
changes in the contribution of flow pathways and 
contaminant fluxes during hydrological runoff events. 
Rapid changes of matter fluxes can also be caused 
by point sources, including combined sewage over-
flows (CSOs). In addition, event-related water qual-
ity fluctuations can be caused by in-stream sourcing 
when sediment bound compounds are remobilised 
(e.g. Hallberg et al., 2024; Van der Grift et al., 2016). 
Depending on the season, several biogeochemical 
processes in fluvial systems can also induce diurnal 
nutrient concentration variations.

The availability of high-frequency data also offers 
a new perspective on process-based model parametri-
sation. In addition, estimates of instream assimilation 
and denitrification help to constrain catchment nitro-
gen delivery and transport models. This also means 
that sensor networks can help to increase the reli-
ability of new water quality modelling approaches 
regarding the urgently needed assessment of climate 
change impacts on nutrient dynamics (Ghaffar et al., 
2023; Negri et  al., 2024; Yang et  al., 2018; Zhou 
et al., 2022).

It has to be pointed out that the use of high-
frequency measurements does not always improve 
model credibility. If the statistical variability of low- 
and high-frequency concentration data is not very 
different, the added value for constraining water 
quality models can be limited. For example, Phillips 
et  al. (2024) showed that the use of high-frequency 
phosphorus concentration data did not significantly 
improve the model performance of the HYPE model 
compared to the use of monthly measurement data 
in a case study for southern Ontario. They attributed 
their findings to similar levels of statistical variabil-
ity of the low- and high-frequency calibration data-
sets. Similar findings have been presented by Wood-
ward et al. (2017) for statistical nitrate modelling. In 
addition, high-frequency monitoring does not always 
reduce model prediction uncertainty compared to 

fortnightly measurement frequency (Jiang et  al., 
2019).

High-frequency data can play an important role in 
assessing the effects of climate change on water qual-
ity as the severity of floods and droughts are expected 
to increase and event-driven contaminant transport 
processes are more likely to occur and have a greater 
impact (Boyacioglu et  al., 2012; Baron et  al., 2013; 
Loecke et  al., 2017; Bieroza et  al., 2020; Warren 
et al., 2022). However, the responses and mechanisms 
of river water quality under more frequent and intense 
hydroclimatic extremes are not well understood 
(Bieroza et  al., 2019; Van Vliet et  al., 2023). The 
use of sensors can help examine chemical concentra-
tion–discharge relationships in individual storms and 
over longer time periods that may also detect evi-
dence of initial changes in response to climate change 
(Musolff et al., 2021; Fazekas et al., 2021). Moreover, 
high-frequency data can reveal insightful shifts on 
drought-induced seasonal patterns of in-stream nutri-
ent turnover (Yang et al., 2023).

For evaluating the added information value of 
high-frequency data sets, whether with regard to 
modeling or load estimates, a uniform data thin-
ning experiment with the high-frequency data is 
recommended (Phillips et  al. 2024). The variability 
of the data can be analysed using simple statistical 
variability measures or autocorrelation analysis (see 
also Sun et al., 2022). This could be informative for 
understanding system variability and could also be 
the basis for a cost–benefit analysis, where the cost 
relates to sample acquisition and the benefit lies in 
the quality of the model or load estimation. Once the 
model predictions become stationary independent of 
further data thinning, marginal benefits and costs for 
the specific monitoring targets can be determined and 
future monitoring costs can be optimised.

Compliance testing

The EU WFD requires that the good/moderate (G/M) 
boundaries for nutrients are compatible with good 
ecological status for sensitive biological quality ele-
ments (BQEs) (European Commission, 2000; Kelly 
et  al., 2021). These nutrient boundaries are derived 
from established relationships between selected bio-
logical indicators under the WFD (macrophytes, ben-
thic invertebrates, chlorophyll a, phytobenthos) and 
the average concentration of nitrogen and phosphorus 
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from traditional monitoring of nutrient concentrations 
during either the summer season (lakes) or entire 
year (rivers). Introduction of high-frequency nutrient 
monitoring will be a more accurate methodology for 
a statutory control of G/M boundaries in streams and 
rivers due to the capture of extreme events (Halliday 
et  al., 2015; Wade et  al., 2012). Current regulatory 
compliance testing is, however, still based on conven-
tional, standardised grab sampling monitoring tech-
nology. Within this legal framework, water managers 
may not need the extra temporal resolution for com-
pliance testing. On the contrary, open data policies 
may force them to report all measured water quality 
anomalies and to take action to remediate them.

Load estimates and proxies

Accurate load estimates are a pre-requisite to quantify 
the pressure on downstream receiving water systems 
and to evaluate load reduction measures. Traditional 
water quality monitoring programs rely on the anal-
ysis of grab samples that are typically collected at a 
frequency too low to fully characterise the dynam-
ics of nutrient concentrations and to obtain accurate 
and unbiased calculations of nutrient loads for differ-
ent periods of time (month, year) (Scholefield et al., 
2005; Leigh et al., 2019a, b). Flow-proportional sam-
pling using auto-samplers triggered by discharge data 
can produce more reliable load estimates. High-fre-
quency sensor monitoring can capture sub hourly var-
iations in solute concentrations and short load pulses 
that may be omitted or overlooked by traditional or 
flow-proportional periodic grab sampling (Horsburgh 
et al. 2010; McDowell et al., 2024).

For many compounds direct high-frequency meas-
urements are expensive, but data from relatively 
cheap and robust sensors for proxies such as electri-
cal conductivity (EC) or turbidity can improve load 
estimates. For example, using turbidity as a surro-
gate for suspended sediment concentration is widely 
accepted because a set of methods is available for 
generating well defined relationships between those 
variables (e.g. Glendell & Brazier, 2014; Stutter 
et  al., 2017; Wang & Steinschneider, 2022; Skarbø-
vik et al., 2023). In addition, turbidity can be used as 
a proxy for other compounds controlled by their par-
ticulate fraction such a total P (TP) or particulate P 
(PP) (e.g. Barcala et al., 2020; Villa et al., 2019). Fig-
ure 1 gives an example of the strong relation between 

turbidity and TP, which was later captured in a ran-
dom forest model enabling accurate load estimates 
(Barcala et al., 2023). Random forest also performed 
well in predicting high-frequency N and P concen-
trations from conductivity, dissolved oxygen, turbid-
ity, temperature, pH, chlorophyll, and flow rate in a 
study by Castrillo and García (2020). Another exam-
ple is the application of compounds such as fluores-
cent dissolved organic matter (fDOM) and spectral 
absorbance coefficient (SAC) as proxies for dissolved 
organic carbon (DOC) and thereby organic nutrients 
(Pellerin et  al., 2013). The relationships between 
hydrological variables and solute concentrations can 
also be captured in statistical or process-based mod-
els and applied to reduce the bias in load estimates. 
For example, Rozemeijer et  al. (2010) and Jomaa 
et al. (2018) significantly improved nitrate  (NO3) and 
TP load estimates using high-frequency discharge, 
groundwater level, and precipitation data. However, 
the major challenge using surrogates to derive param-
eters of interest is the large spatial and temporal vari-
ability of such relationships, which means that they 
cannot be directly applied to other streams or catch-
ments without prior calibration.

The use of sensors to measure proxy parameters 
could help extend the number of monitored sites and 
improve estimations of nutrient concentrations and 
loads, especially since lower-cost, robust sensors for 
long-term field deployment are becoming more read-
ily available (Villa et al., 2019). However, some care 
is required with proxy data for trend analysis espe-
cially for monitoring mitigation actions when pro-
cesses governing the source or mobilisation of chemi-
cals are decoupled from the processes of transport 
and association. For example, reduction of fertiliser P 
at the field scale would not necessarily be associated 
with a change in turbidity which is itself a proxy for 
suspended sediment from field or riverbank/bed ero-
sion (Dupas et al., 2015).

Early warning and operational water management

As summarised in the introduction, high-frequency 
sensor measurements can be used for ‘now-casting’ 
to set alert warnings for operational water manage-
ment purposes. An example is the intensive continu-
ous monitoring in the river Rhine which focuses on 
early warning for downstream drinking water stations 
(Diehl et  al., 2006). Alerts for sewage or industrial 
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spills of contaminants due to overflows or accidents 
can be based either on direct measurements or prox-
ies for different inorganic and organic nutrient forms 
like organic pollutions. Whenever extreme values of 
a given state variable are reached, i.e. a rare event 
occurs, a high measurement frequency is required to 
capture the extreme conditions quantitatively (see for 
example the river Odra fish kill disaster; Sługocki & 
Czerniawski, 2023). This can be important for impact 
assessments, for instance on biological processes or 
communities in streams, rivers, lakes and reservoirs 
during critical situations under heat waves.

High-frequency water quality data monitor-
ing can also be applied for adaptive management 
of water infrastructure such as reservoir operation 
for drinking water. An example is the extensive 

real-time monitoring network at Rappbode Reser-
voir (Rinke et  al., 2013), Germany’s largest drink-
ing water reservoir. This reservoir has a bypass 
which is used whenever the inflow water quality 
is insufficient, in this case due to high content of 
humic substances monitored by UV (Ultraviolet) 
spectroscopy. The high-frequency monitoring helps 
to operate the bypass, and the archived time-series 
data helps to identify an optimal set of operation 
rules as outlined in Zhan et  al. (2022). Similarly, 
selective water withdrawal is profiting from proper 
monitoring, for example when specific depth layers 
with poor water quality are selectively taken out of 
the reservoir to protect raw water quality intake. The 
effectiveness of such strategies was demonstrated in 

Fig. 1  Continuous precipitation, TP, and turbidity data from a farm ditch in East-Netherlands showing the strong correlation 
between relatively cheap and easy to measure turbidity and relatively expensive TP measurements (adapted from Barcala et al., 2020)
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the example of metalimnetic algal blooms and their 
mitigation in a modelling study by Mi et al. (2022).

Effect evaluation

High-frequency monitoring can assist in more accu-
rate quantification of source contributions, such as the 
distinction between contributions from point sources, 
natural background sources, and agricultural sources 
of nutrients (Yu et  al., 2021), as well as contribu-
tions from different hydrological pathways (Campbell 
et al., 2015). Therefore, high-frequency sensor moni-
toring is also vital when testing the effect of imple-
menting a programme of measures as it can cap-
ture trends in, for example, P concentrations during 
extreme events (high flow) (Campbell et  al., 2015). 
Depending on the specific mitigation action, shal-
low flow routes are expected to respond first, while 
deeper groundwater contributions can stay unaffected 
for decades.

High-frequency water quality monitoring enables a 
quicker detection of trends and effects of mitigation 
measures compared to low-frequency grab sampling. 
Trend detection based on low-frequency water qual-
ity measurements can also be biased even with multi-
year monthly concentration data (McDowell et  al., 
2024; Rozemeijer & Van der Velde, 2014; Van der 
Grift et al., 2016). At a larger scale, the Water Frame-
work Directive (WFD) requires detection of down-
ward trends in contaminant concentrations (‘no dete-
rioration’ or ‘stand-still’).

Stakeholder engagement

By providing more accurate proof of pollution state 
or effects of mitigation, high-frequency sensor moni-
toring is also useful for stakeholder engagement to 
promote behavioural change. This can be further 
stimulated by making local real-time water quality 
data available online. This helps to link land manage-
ment and weather variability to water quality impact 
(Davis et al., 2021; Vilas et al., 2020). For example, 
stakeholder groups in five catchments in the Nor-
dic-Baltic region were asked about their opinion on 
sensor monitoring in the EU project NORDBALT-
ECOSAFE. To the question ‘Do you think that sen-
sors can be used to motivate and inform people in 
the river basin?’, 20–50% of the 6–16 stakeholders 
involved in the five catchments answered that many 

people would check online sensor data. Fifty to 70% 
of the stakeholders expected that at least some inter-
ested people would check online sensor data (NORD-
BALT-ECOSAFE, 2023).

Literature reports on the role of high-frequency 
water quality monitoring in stakeholder engagement 
and awareness raising are relatively scarce. Makris 
et  al. (2023) described a near real-time monitoring 
system of the β-d-glucuronidase activity (as proxy for 
E. coli and other pathogens) to inform citizens about 
bathing water quality in Breda city in the Nether-
lands, where recreational use of the urban waters is 
actively promoted. Another example is the 1622WQ 
platform visualising real-time nitrate concentrations 
in Queensland (Australia) to increase farmer aware-
ness of the impact of agriculture on water quality 
(Vilas et al., 2020).

Decision workflow for sensor applications

To fill a knowledge-exchange gap in water quality 
sensor use, Fig.  2 presents a decision workflow or 
‘cookbook’ for environmental agencies and catch-
ment managers that wish to enter the new era of high-
frequency sensor monitoring. The schedule informs 
the step-by-step choices that are to be made and will 
further be clarified in this section (data needs, sensor 
choice, installation, maintenance) and in the next sec-
tion (data processing).

Data needs

A first very important step in any monitoring network 
design following the ‘monitoring cycle’ (MacDon-
ald, 1994; Timmerman et al., 2000) is to consider the 

Fig. 2  Decision workflow for the implementation of water 
quality sensors by water quality authorities
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general monitoring objectives and data requirements. 
Specifically for sensor applications, this involves 
questions such as the following: (1) what is the added 
value of utilising high-frequency sensor measure-
ments? (2) at which spatial scales is high-frequency 
sensor monitoring most likely to add value beyond 
traditional monitoring? and (3) what are the costs 
compared to traditional grab measurements?

The potential added value of high-frequency water 
quality monitoring for water quality managers (as 
outlined in the previous section) can be made more 
specific within the framework of the monitoring cycle 
in which the data requirements follow from the moni-
toring objectives. The added value also depends on 
the variability of the solute(s) to be monitored. In 
general, systems with greater temporal variability in 
solute concentrations require higher frequency sam-
pling for accurate status, load, and trend assessments. 
Therefore, the advantage of high-frequency monitor-
ing is significant in dynamic, regional catchments 
compared to large water bodies with long residence 
times.

Figure  3 provides a scheme with the general 
benefits of short-term (1–5  years) and long-term 
(> 5  years) high-frequency water quality monitoring 
in a dynamic catchment. Short-term monitoring stud-
ies using conventional low-frequency (e.g. monthly) 
sampling (the lower-left quadrant in Fig.  3) will in 
many cases only enable uncertain status assessments 

of the mean conditions (see e.g. McDowell et  al., 
2024). Using high-frequency monitoring for a short 
period (upper-left quadrant in Fig.  3) can deliver a 
more certain status assessment, but can also provide 
process identification and quantification, evaluation 
of effects of measures, and now-casting applications 
for operational water quality management. In long-
term monitoring studies, conventional monitoring 
(lower-right quadrant) can deliver trend assessments 
for mean to low flow conditions with a relatively 
high uncertainty, although large-scale networks can 
achieve acceptable reliability by including large num-
bers of monitoring locations (space-for-time compro-
mise). However, long-term high-frequency monitor-
ing (upper-right quadrant) can deliver accurate trend 
assessments, changes in processes, evaluation of 
effectiveness of measures, and insights in, for exam-
ple, effects of climate change and climate extremes on 
water quality.

The costs of applying high-frequency water qual-
ity monitoring depend on the parameter and the type 
of equipment chosen, but some guidance about what 
to include in cost estimates from current applica-
tions is given in Table  1. Despite the considerable 
costs of high-frequency water quality monitoring, 
the benefits towards water quality management and 
societies are expected to exceed the costs in many 
application cases. However, general cost-benefits 
analyses are hard to make because both the costs 

Fig. 3  Overview of the 
added values of utilising 
high-frequency sensors 
compared to traditional low-
frequency grab sampling 
for short- and long-term 
applications
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and the benefits are case-specific. The benefits of 
high-frequency monitoring (as outlined in the sec-
tion ‘Added value of high-frequency sensor monitor-
ing’) are also hard to quantify, as is also the case for 
conventional water quality monitoring. The gained 
knowledge on transport processes, nutrient loads, and 
mitigation effects feeds into all modeling, monitor-
ing, and mitigation aspects of water quality manage-
ment. This prevents costs of implementing the wrong 
mitigation measures at the wrong locations. Early 

warning towards drinking water intake sites based 
on high-frequency monitoring (Diehl et  al., 2006) 
prevents costs for extra water purification. Increas-
ing stakeholder involvement through real-time water 
quality data may help achieving water quality policy 
targets more effectively. Seifert-Dähnn et  al. (2021) 
performed a cost-benefits analysis of high-frequency 
water quality monitoring for lakes. They reported the 
prevention of human health impacts and reputational 
damages as the most important benefits, although 

Table 1  Overview of the different cost elements to be considered when applying high-frequency monitoring equipment for nutrients 
(costs estimated by the author group)

a UV sensors are based on ultraviolet (UV) light absorption
b ISEs are ion selective electrodes
c Wet chemical are auto-analysers using reagents

Cost element Details and suggestions for costing and applica-
tions

Typical costs (in 2024)

Cost of acquiring a sensor One time cost depending on sensor type UV  sensora  (NO3): 10–20 k€
ISEb  (NO3): 5–10 k€
Wet  chemicalc (TP): 50–100 k€

Depreciation period Number of years until replacement UV  sensora (Nitrate): 5–10 years
ISEb (Nitrate): 0.5–5 years
Wet  chemicalc: 10–15 years

Cost for establishing a high-frequency water 
quality station

Typical installation costs depend on deploy-
ment method but involves typically: power 
supply; material for installation such as e.g. 
construction costs for sensor deployment 
directly in the stream or in a cabin of some 
kind. Wet chemical sensors will always have 
to be installed in a cabin

Power supply: 3–6 k€
UV  sensora in-stream: 2–3 k€
ISEb in-stream: 1–2 k€
Cabin: 10–20 k€
Dataloggers and data transfer 

(telemetry): 2–5 kEUR

Annual operating expenses Annual cost for power, wipers, ISE-tips, mem-
branes, chemicals, etc

UV  sensora: < 0.5 k€ per year
ISEb: 0.5–2 k€ per year
Wet  chemicalc: 2–5 k€ per year

Annual cost for maintenance and calibration Maintenance depends heavily on sensor type 
but might include regular manual cleaning of 
sensors (e.g. monthly intervals), calibration of 
sensor (in-situ zero point offset test), change 
of membranes, supply of new chemicals and 
water samples analysed at laboratory (e.g. 
monthly) the latter being normal part of grab 
sampling programs

UV  sensora: 2–5 k€ per year
ISEb: 10–20 k€ per year
Wet  chemicalc: 3–6 k€ per year

Costs for establishing database for sensor data 
and making data available

Might utilise existing database to be further 
developed to include high-frequency data 
(e.g. data capture at a frequency between 
1–30 min)

10–20 k€

Cost for cleaning of sensor data (anomaly 
detection and gap filling)

Might use existing publicly available software 
for cleaning and gap filling

10–20 k€

Cost for data interpretation and/or decision sup-
port systems

Depends on the complexity of the hydrochemis-
try at the field site and collected data, the use 
of external data (e.g. weather data) supporting 
the interpretation or decision making, and the 
level of automation

10–100 k€
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they did not always outweigh installation and opera-
tion costs (Seifert-Dähnn et  al., 2021). Estimating 
and evaluating the added value and the (cost-)effec-
tiveness of high-frequency water quality monitoring 
beyond conventional monitoring is recommended for 
all applications.

Sensor choice

In general, the sensor choice (second step in the work-
flow in Fig.  2) involves considering different types 
and brands and how their characteristics fit with the 
monitoring requirements and available resources. The 
interest in high-frequency monitoring has increased in 
recent years and choices must be made in both sensor 
type (measuring method) and sensor brand. For nutri-
ents, four general sensor types are available: ultravio-
let (UV) sensors, ion selective electrodes (ISEs), wet-
chemical auto-analysers, and microfluidic sensors 
(Table  2). Although auto-analysers and microfluidic 
sensors have a laboratory-like sample treatment and 
analytical procedure, we include them here as they 
are applied in  situ for high-frequency water quality 
monitoring. As indicated in Table 2, TP and TN (total 
nitrogen) can only be analysed with a wet-chemistry 
auto-analyser including particulate matter destruction 
by adding acids and/or heating.

The sensor choice follows from the desired accu-
racy, the field situation, and available resources 
(finance, power supply, technicians, space, location, 
maintenance requirements). In general, the ISE has 
a lower stability and higher maintenance demand 
compared to the UV and auto-analyser. In addition, 

ISEs may pick up electronical interference from other 
nearby sensors leading to inaccuracies and instabil-
ity. The deployment method is also important; for 
example, a UV sensor placed directly in a stream will 
probably be outperformed by a UV sensor in a bet-
ter protected and controlled bank-side analyser sys-
tem. ISEs are generally cheaper, smaller, and have a 
lower power consumption compared to UV sensors 
and auto-analysers. Auto-analysers require protec-
tive housing and have a high power consumption 
and their application is most realistic on larger, per-
manent monitoring sites where data quality is impor-
tant. Auto-analysers often have flushing routines after 
each measurement and programmed cleaning and 
calibration routines at e.g. daily intervals. Therefore, 
lower maintenance frequencies are usually allowed, 
although the auto-analyser maintenance can be more 
complex and labour intensive compared to ISE and 
UV sensor maintenance.

Independent inter-manufacturer sensor tests are 
rare in the literature and new sensor type releases 
make them quickly incomplete. Characteristics about 
performance in sensor documentation usually come 
from manufacturers’ tests in very stable conditions. 
In practice, frequent field calibrations are always 
required as each site has its unique circumstances 
which may affect sensor performance. Independent 
user experiences often give a more reliable picture of 
sensor quality and user friendliness. Sensors clearly 
differ in quality and construction, which might lead to 
higher overall maintenance and calibration costs over 
time. Some experiences with sensor comparisons are 
summarised in the following paragraphs.

Table 2  Characteristics of sensor types for nutrients

a Maintenance efforts depend on the sampling conditions, e.g. in highly turbid and eutrophic streams more fouling (formation of 
deposits caused by biological, chemical and/or physical processes) on the equipment will occur

Characteristics UV ISE Auto-analyser Microfluidic

Nutrients Nitrate Nitrate, ammonium Nitrate, ammonium, total nitrogen, 
phosphate, total phosphorus

Nitrate, 
ammonium, 
phosphate

Price Moderate Cheap Expensive Moderate
Size Moderate Small Large Moderate
Stability Moderate Unstable Stable Stable
Accuracy High Moderate High High
Power consumption Moderate Low High Moderate
Detection range Large Small Large Large
Maintenance  effortsa Low High Moderate Moderate
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Pellerin et  al. (2013) tested four different UV 
nitrate sensors (HACH Nitratax, Satlantic SUNA, 
S::CAN spectrolyzer, and TriOS ProPS). Their 
advice is to consider the concentration ranges for 
nitrate and matrix elements (like DOC and sus-
pended matter) together with logistical constraints. 
The UV nitrate sensors from individual manufac-
turers differed in several important ways that affect 
their ability to accurately measure in-situ nitrate 
concentrations in different systems.

Hooijboer et al. (2021) compared seven different 
nitrate sensors (six UV sensors and one auto-ana-
lyser) in the Meuse river water and found that the 
differences between the sensors are mainly deter-
mined by their initial calibration. While the abso-
lute measurement values differed between sensors, 
the temporal variation is measured equally well. 
These findings suggest that low-frequency labora-
tory measurements are still valuable at sensor loca-
tions to detect the potential off-set and correct the 
sensor values.

Beyond nutrients, sensors for turbidity were 
compared by Rymszewicz et  al. (2017) and fluo-
rometers for measuring dissolved organic matter 
were evaluated by Downing et al. (2012).

Installation

As a third step in the workflow (Fig. 2), a considera-
tion of installation aspects such as equipment housing 
and power supply is needed (Table 3). In general, the 
two main types of configurations used for high-fre-
quency water-quality monitoring locations are bank-
side or in-stream. In a bank-side setup, a flow-through 
monitoring system has a pump that delivers water 
from the measuring point in the stream to the sensors 
housed in a shelter (e.g. Wagner et  al., 2006). This 
can be performed by a flow-through cell around the 
sensor or a reservoir in which the sensors are placed. 
In in-stream setups, the sensors are placed directly at 
the measuring point in the aquatic environment (Wag-
ner et al., 2006).

The conditions in bank-side setups are more con-
trolled and less sensitive to weather extremes. How-
ever, power consumption is higher and pumps and 
pipes or tubes can clog. A bank-side setup is espe-
cially preferable if the availability of water is small, 
such as in ephemeral drainage ditches. Within the 
flow-through cell, the sensor can be protected from, 
for example, drying out, frost, high temperatures and 
disturbance by wildlife. However, pumping and pump 
tubing may affect sediment-bound constituents or 
gases in solution such as oxygen.

Table 3  Summary of sensor installation aspects (translated from Van Herpen et al., 2022 (in Dutch))

Element Option Pros Cons

Powering Mains power Reliable also with large power consumption 
(wiper or compressed air cleaning, pump-
ing, climate control)

Not much availability in remote fields; time 
and cost for new connections

Battery + solar panel Stand alone Lower power supply in winter, theft-sensitive
Only battery pack Works without sun Not sustainable, replacement efforts

Housing In situ, no housing Fairly simple Fragile
In situ, perforated tube Simple protection against litter More stagnant water, growth of plants around
Flow-through cell Controlled circumstances More energy consumption
Flow-through reservoir Controlled circumstances, filtration possible Large housing needed, more energy con-

sumption
Cleaning None/by hand Can be performed very carefully Labor intensive

Wiper Easy to install May cause damage to lens
Compressed air No damage, elegant way of cleaning More hardware needed, more power con-

sumption
Positioning Floating Always the same measuring depth relative to 

water surface
More complex Installation with floater, may 

get stuck, not possible in shallow water
Fixed level Easier to install, may run dry above water 

level
Measurements at different depths relative to 

water surface
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In-stream monitoring is easier to install, uses less 
power, but circumstances are less controlled. There 
are several ways of installing in-stream monitor-
ing systems. The design of infrastructure used for 
deploying water quality sensors (e.g. housing, sensor 
depth (Erwin et al., 2021)) can affect the data quality. 
Despite this, sensor infrastructure design has not been 
well discussed in the literature (Hensley et al., 2021). 
Hensley et  al. (2021) found minimal differences 
between two ways of installing an in-stream monitor-
ing system: one with a monopod inside the stream bed 
and one hanging from an overhead cable. For an in-
stream monitoring system one has the choice between 
a fixed level or a floating sensor. Floating systems 
can be useful in systems with varying water levels 
and can prevent sensors from running dry above the 
water level. In addition, a floating system may corre-
spond better with conventional grab sampling at fixed 
depths below the water table. Additional considera-
tions for in-stream monitoring include protecting the 
sensors from being washed away in high flow events 
or becoming dry during periods of low flow (both 
extremes are becoming more frequent with climate 
change). Fouling on the equipment (formation of 
deposits caused by biological, chemical, and/or physi-
cal processes) can cause drift and necessitates easy 
access to the sensors for regular cleaning and calibra-
tion. Finally, in publicly accessible locations, physical 
measures to protect sensors from vandalism will need 
to be considered. In this situation, often installation 
of notices explaining the purpose of the equipment to 
the public may be an effective means to reduce this 
risk.

A bottleneck for sensor installation can be the 
power consumption of the equipment. Monitoring 
stations are often situated in remote places in rural 
landscapes where mains electricity is not always 
available. For systems using solar or wind power, suf-
ficient battery power should be available even dur-
ing dark and/or wind-free days. This may limit the 
application of energy-intensive auto-analysers and 
bank-side setups where pumping and climate control 
require additional power.

Following sampling theory (e.g. Wu & Thomp-
son, 2020), the statistical distribution of the meas-
urements (the samples) should correspond with the 
statistical distribution of the real system (the popu-
lation). Therefore, the desired minimal water quality 
monitoring frequency depends on the concentration 

variability. The concentration variability at new field 
sites is usually not known beforehand, but high fre-
quency monitoring equipment using, for example, 
sub-hourly to hourly intervals typically captures 
the full variability and usually oversamples in time. 
Depending on the equipment used, it can therefore 
be useful to optimise the monitoring frequency based 
on the first high-frequency data collected at a new 
site. ISE and UV sensors can measure continuously 
without much higher consumption of energy or other 
resources compared to lower frequencies. Results 
from these sensors are typically stored at ten-minute 
intervals, capturing potential sub-hourly water quality 
dynamics while not producing too large data files for 
storage and/or online data transfer. For auto-analys-
ers and microfluidic sensors, the minimal frequency 
depends on the duration of the analytical procedure. 
This can involve pretreatment of the sample (filtra-
tion, homogenisation, heating), adding and mixing of 
reagents, and the chemical reaction time. Although 
sub-hourly frequencies are usually possible, lower 
frequencies could be considered in order to reduce the 
amount of resources (reagents, energy, maintenance) 
needed. In this case, we recommend starting up the 
monitoring at new sites at the maximum frequency 
possible. After the first months, the gathered data can 
be used to evaluate whether a lower frequency could 
also fulfill the monitoring objectives.

Maintenance

The crucial fourth step in the workflow (Fig. 2) con-
siders the usually frequent maintenance (cleaning and 
calibration) needed by high-frequency sensor moni-
toring systems. Fouling is one of the main causes of 
inaccuracies of sensor measurements (drift). Required 
maintenance varies in space and time as it depends 
on local conditions. For example, iron concentration, 
redox-situation, salinity of the water, carbonate pre-
cipitation, and biological activity can all cause foul-
ing issues. Automatic cleaning systems are an essen-
tial requirement as they reduce manual maintenance 
and increase the accuracy and stability of optical 
and other electronic sensors. Automatic cleaning for 
UV sensors can be either performed by a mechanical 
wiper or with compressed air. Auto-analysers often 
have automated cleaning and calibration routines. 
ISE sensors usually work with membranes which 
are prone to fouling and hard to clean automatically 
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unless part of multi-parameter systems with dedicated 
wiping routines. Monitoring of sensor data in near 
real-time and automated anomaly detection can help 
to optimise the maintenance timing and efforts. Con-
ventional lab measurements at sensor sites are impor-
tant to validate and correct sensor data. An impor-
tant consideration in maintenance and data quality 
of all high-frequency water quality sensor systems is 
the need for trained technical personnel. A common 
misconception is that automated water quality sens-
ing equipment is ‘plug-and-play’, and this can lead to 
poorly resolved equipment performance, data quality, 
and data quantity.

Data processing

As a final step in the decision workflow (Fig. 2), we 
highlight the need for adequate data processing. This 
section first describes different common types of 
anomalies in raw water quality sensor data and then 
evaluates recent advances in automated procedures 
for quality control and data cleaning. Automated 
data processing is needed as large sensor networks 
generate large amounts of data making manual data 
processing too time consuming. In addition, real-
time anomaly detection routines can provide alerts to 
technicians for required maintenance. Real-time data 
processing can also improve live online data visuali-
sations, such as in the Australian 1622WQ app (Vilas 
et al., 2020). Finally, standardised water quality sen-
sor data optimisation routines can deliver more reli-
able data for process interpretation, modeling, and 
decision making.

Types of anomalies in water quality sensor data

Data validation and correction of high-frequency 
water quality data is highly complex because erratic 
measurements are hard to distinguish from real con-
centration variability. The highly variable and hard to 
predict solute concentrations in water make high-fre-
quency water quality data validation much more com-
plex as compared to other types of hydrological data 
(groundwater levels, surface water discharge). Com-
mon anomalies, together with their usual causes and 
their typical sensor types, are summarised in Fig. 4. 
Peaks (or lows) occur in UV and ISE sensors because 
of short disturbances or electronic instabilities. 

Auto-analysers are less sensitive to these disturbances 
because of the more controlled conditions and the 
pre-treatment of the samples. Flatlines are observed 
because of sensor or data transfer malfunctions. Noise 
is most typical when the measured concentrations are 
low in relation to the range of the sensor and can be 
caused by sensor instabilities and/or varying distur-
bances such as turbidity or DOC concentrations.

Drift in sensor data is usually caused by fouling for 
which ISE are especially sensitive. Wipers or air pres-
sure cleaners reduce fouling in most optical sensors 
but are not effective on ISE membranes. Drift can 
also occur in UV sensors due to aging of the lamps, 
which can be minimised by periodic recalibration. 
After a period of drift, cleaning and calibration events 
often produce jumps in the sensor time series. As a 
last feature in Fig. 4, data gaps are common in water 
quality sensor time series due to sensor or data trans-
fer failure or after removing anomalous data.

To be able to check for potential offsets, most 
high-frequency water quality stations are also still 
conventionally sampled and analysed in a laboratory. 
This is both useful for validation of the sensor data 
and for the monitoring of a broader range of water 
quality parameters. In most cases, the strength of con-
ventional snapshot sampling lies in the accuracy of 
the measured values, while the strength of sensor data 
lies in capturing the temporal dynamics. Combining 
these strengths would produce optimal time series 
but, beyond use in validation studies (e.g. Jordan & 
Cassidy, 2011), no procedures or examples for this 
are reported yet in water quality literature.

Available data processing tools

Techniques for automatic anomaly detection, smooth-
ing, and noise correction are widely available, but 
are not yet widely applied to water quality data. 
High-frequency water quality monitoring has long 
been applied at a limited scale and data processing 
has typically been (and often still is) done manually 
by individuals who do not report their procedures. 
In this section, we provide an overview of published 
and openly available data processing procedures and 
routines applied for optimising high-frequency water 
quality datasets. To keep this overview concise, we 
have excluded data processing applications for other 
types of high-frequency data (e.g. hydrological data) 
and for low-frequency water quality data.
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A limited number of research groups has recently 
published their water quality sensor data processing 
procedures and routines (Hawkins, 2021; Jones et al., 
2022; Schmidt et  al., 2023; Talagala et  al., 2019; 
Veen et  al., 2024; Zhang & Thorburn, 2022). The 
National Ecological Observatory Network also pub-
lishes their algorithms used for automated detection 
of anomalies including range, steps, spikes, and gaps 
(Sturtevant et  al., 2022). For each of these groups, 
this effort was motivated by the wider scale use of 

water quality sensors which made visual data inspec-
tions and manual corrections too laborious and too 
hard to reproduce. These data processing procedures 
were also made public to share the knowledge and to 
aid transparency towards stakeholders.

Hawkins (2021), Jones et al. (2022), and Schmidt 
et al. (2023) all report a common order of data pro-
cessing starting with (1) basic data preprocessing 
(e.g. time step harmonisation, data format checks), 
followed by (2) straight forward quality control (e.g. 

Fig. 4  Common types of anomalies in water quality sensor data
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missing, impossible, out-of-range values, flatlines), 
(3) more complex quality control (anomaly detection, 
drift detection), and finally (4) gap filling routines.

A sophisticated framework for detecting outliers in 
water quality sensor data was published by Talagala 
et  al. (2019) and is implemented in the R-package 
oddwater. This method focuses on abrupt changes in 
value, including sudden spikes, isolated drops, and 
level shifts within the time series. After basic pre-
processing steps, eight unsupervised outlier scoring 
techniques were combined. This approach was also 
made available in the comprehensive python tool 
SaQC (System for automated Quality Control) pub-
lished by Schmidt et  al. (2023). SaQC also includes 
other multivariate outlier detection options, based on 
k-nearest neighbours (kNNs) and the STRAY (Search 
and TRace AnomalY) algorithms. Another promising 
anomaly detection method based on a wavelet-ANN 
(artificial neural network) model was applied to high-
frequency river nutrient concentration data by Shi 
et al. (2018).

The Python package Pyhydroqc (Jones et al., 2022) 
also provides anomaly detection options for sensor 
data, including anomaly detection using dynamic 
thresholds or one step ahead predictions using long 
short-term memory (LSTM) and Autoregressive inte-
grated moving average (ARIMA) algorithms. Pyhy-
droqc (Jones et  al., 2022) also includes functional-
ity for linear drift correction, while SaQC (Schmidt 
et al., 2023) has options for correction of both linear 
and exponential drift. These tools do not incorporate 
conventional snapshot sample data for corrections of 
drift or off-set.

Several options exist for filling in data gaps in 
water quality sensor time series. Pyhydroqc (Jones 
et al., 2022) for example uses the LSTM and ARIMA 
algorithms for making a forecast and backcast of 
the missing data, which are then cross-faded into a 
combined prediction. An overview of other univari-
ate missing data imputation techniques applied to 
water quality sensor data is published by Zhang and 
Thorburn (2022). In their comparison study, SSIM 
(sequence-to-sequence imputation model, Zhang 
et  al. (2019)) and Dual SSIM (Zhang & Thorburn, 
2021) performed best for filling in relatively short 
(six datapoints) gaps.

When longer data gaps occur, multivariate gap 
filling procedures can be more efficient, valorising 
time series of simultaneously measured parameters 

like discharge, precipitation, electrical conductiv-
ity (EC), and turbidity. Examples of multivariate 
options for gap filling are LLS impute and PCA 
impute (Curceac et  al., 2021). LSS impute first 
selects the best predictor variables based on Pear-
son, Spearman, and Kendall correlation coefficients. 
Subsequently, the missing values are predicted 
based on regression with these predictors. PCA 
impute also uses relations between multiple vari-
ables and is based on principal component analysis 
(PCA). The application of PCA models to impute 
missing values is also implemented in the missMDA 
R package (Josse & Husson, 2016). Barcala et  al. 
(2023) explored several machine learning options 
for multivariate gap filling and found that random 
forest algorithms (Breiman, 2001) performed best 
in filling in relatively long (several weeks) data 
gaps in nitrate and TP time series. Random forest 
as well as Markov switching auto-regressive models 
(Spezia et al., 2021, 2023) are considered promising 
techniques for high-resolution water quality data 
processing.

Data storage

Reliable procedures for data storage are crucial in 
water quality sensor applications. For purposes of 
transparency and reproducibility, raw data should 
always be stored, although some data optimisa-
tion already takes place within sensor software. The 
Nitratax UV  NO3 sensor (Hach), for example, com-
bines three measurements into a single output to 
reduce scatter. Raw data can be flagged in the data-
base using quality control codes indicating the reason 
for flagging and/or the level of reliability. When opti-
mised data series are produced, these can be stored 
separately. In practice, this is often done in steps, for 
example producing bronze (raw data), silver (basic 
optimisation), and gold (maximally optimised) data 
layers.

Storage of water quality sensor data should align 
with the FAIR guiding principles for data manage-
ment, meeting principles of findability, accessibility, 
interoperability, and reusability (Wilkinson et  al., 
2016). Several national and international data stor-
age standards exist for water quality measurements, 
although adjustments are usually needed to allow for 
storage of water quality sensor data.
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Data interpretation and application

After cleaning (and storage), the monitoring data are 
ready for further interpretation and application which 
often involves further processing steps such as visual-
isations, statistical analyses, modelling, and decision 
support systems. Here, the monitoring cycle loops 
back to the original monitoring objectives (MacDon-
ald, 1994; Timmerman et  al., 2000). That is to say 
asking if the collected data are sufficient for answer-
ing the original research questions? If not, the moni-
toring strategy needs reconsideration.

Data interpretation and application procedures are 
highly case specific and depend on the hydrochemi-
cal complexity of the research site and the objectives 
of the high-frequency monitoring application. Rode 
et  al. (2016a) and Bieroza et  al. (2023) provided 
examples of sensor data interpretation and applica-
tions with a focus on process understanding. In many 
cases, meteorological data and discharge data are 
used. For example, concentration-discharge relation-
ships for storm events based on high-frequency data 
can help understanding solute transport processes 
(e.g. Lloyd et al., 2016).

Conclusions

This paper was motivated by the desire to allow those 
new to the use of water quality sensors to benefit 
from the current international best practices in sen-
sor applications, troubleshooting, and data process-
ing. The deployment of high-frequency water quality 
monitoring sensor/analyser equipment is increasing 
and is expected to increase further in the future as 
regulatory monitoring becomes more important and 
climate change is expected to emphasise the rel-
evance of extreme events for water quality. As out-
lined in this paper, water quality sensors have added 
value both for understanding pollutant transport and 
biochemical turnover processes and for operational 
water quality management such as compliance test-
ing, load estimates, early warning, mitigation effect 
evaluation, and stakeholder engagement. However, 
current limitations of high-resolution water qual-
ity monitoring technology include the limited num-
ber of parameters, the vulnerability of the equip-
ment for harsh outdoor conditions, and the costs for 
purchase, installation, and maintenance. The lack 

of international standardisation (NEN, ISO) and the 
challenges of handling and cleaning large volume of 
data captured from sensor networks may also hamper 
the uptake of high-frequency monitoring by water 
managers. Future work should focus on the develop-
ment of low-cost, robust sensors to extend the range 
of water quality parameters, together with software 
that can facilitate the processing and interpretation of 
large data sets. Consensus and international standard-
isation on how to apply high-frequency water quality 
monitoring technology can also accelerate an efficient 
uptake in water quality management and is proposed 
as a priority.
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