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Abstract: The primary challenge is to design feedback controls that enable robots to
autonomously reach predetermined destinations while avoiding collisions with obstacles
and other robots. Various control algorithms, such as the control barrier function-based
quadratic programming (CBF-QP) controller, address collision avoidance problems. Control
barrier functions (CBFs) ensure forward invariance, which is critical for guaranteeing
safety in robotic collision avoidance within agricultural fields. The goal of this study is
to enhance the safety and mitigation of potential collisions in smart agriculture systems.
The entire system was simulated in the MATLAB/Simulink environment, and the results
demonstrated a 93% improvement in steady-state error over rapidly exploring random tree
(RRT). These findings indicate that the proposed controller is highly effective for collision
avoidance in smart agricultural systems.

Keywords: smart agriculture; control barrier function; wheeled mobile robot; autonomous
system; collision avoidance; quadratic programming; obstacle

1. Introduction
By monitoring speed, distance, and potential hazards, collision avoidance systems

(CASs) enable wheeled mobile robots (WMRs) to prevent collisions and reduce crash risks
in agricultural environments [1]. Multi-agent systems have recently gained significant
attention due to their broad applications in distributed robotics, mobile sensor networks,
air traffic management, and agricultural automation. These systems consist of multiple
interacting agents that collectively perform tasks more efficiently than individual complex
agents. However, their implementation often requires novel control strategies, particularly
in scenarios like formation control and collision avoidance [2].

Existing robot navigation methods frequently rely on navigation functions mathemati-
cal constructs derived from environmental geometry to design gradient-based control laws.
Other approaches draw inspiration from natural swarm behaviors observed in bird flocks,
fish schools, and bee colonies [3]. Control barrier functions (CBFs) offer additional advan-
tages by ensuring safety across diverse operational conditions through adaptable parameter
configurations [4]. Enhanced safety in agricultural fields not only minimizes accidents [5]
but also improves operational efficiency and cost savings by ensuring uninterrupted WMR
functionality [6].

Despite these advancements, existing research lacks a unified framework for evalu-
ating WMR performance in real-time optimization-based control systems. Furthermore,
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safety conditions often defined via the forward invariance of safe sets remain insufficiently
validated for agricultural WMR applications [7].

The aim of this study is to address the multi-agent collision avoidance problem within
a centralized framework, where each agent has continuous access to the positions of
all other group members. This approach is particularly relevant in agricultural settings,
where multiple wheeled mobile robots (WMRs) often operate simultaneously, necessitating
coordinated collision avoidance strategies. By leveraging control barrier functions (CBFs),
this study ensures that each WMR can navigate safely while avoiding both static obstacles
and other moving agents. This represents a significant improvement over traditional single-
agent navigation methods, as it enhances safety and efficiency in dynamic and complex
agricultural environments.

The novelty of this work lies in the application of control barrier function-based
quadratic programming (CBF-QP) for real-time, safety-critical collision avoidance in dy-
namic agricultural environments. While the use of control Lyapunov functions (CLFs) for
asymptotic stability in trajectory tracking is well established, the key innovation here is
the focus on safety-critical control through the integration of CBFs with QP. This approach
ensures forward invariance of safe sets, which is crucial for navigating unpredictable
agricultural environments where collision avoidance is essential [8].

The proposed CBF-QP framework provides a robust solution for enforcing safety
constraints in real time, enabling wheeled mobile robots (WMRs) to avoid collisions while
maintaining performance. Unlike traditional methods that primarily focus on stability and
trajectory tracking, CBFs offer a systematic way to ensure the system operates within safe
bounds, even in the presence of dynamic obstacles and disturbances. This is particularly
relevant in agricultural settings, where obstacles such as crops, other robots, or static
barriers are common.

By combining CBFs with QP, the proposed method represents a significant advance-
ment over traditional approaches, making it highly suitable for smart agricultural systems.
The integration of these techniques ensures both safety and efficiency, addressing the
unique challenges of real-time collision avoidance in dynamic environments.

The remainder of this work is structured as follows: Section 2 reviews the relevant
literature, while Section 3 details the WMR’s mathematical model and control design.
Sections 4 and 5 present the results/discussion and conclusions, respectively.

2. Literature Review
This paper addresses the multi-agent collision avoidance problem for a system of

wheeled mobile robots (WMRs). Assuming unicycle dynamics for the WMRs, the objective
is to design feedback control mechanisms that enable autonomous navigation to predefined
targets while avoiding collisions with obstacles and other agents [9]. To achieve this, this
study leverages two key control-theoretic frameworks: control barrier functions (CBFs) and
control Lyapunov functions (CLFs). CBFs ensure safety by enforcing the forward invariance
of a predefined safe set of states [10], while CLFs provide asymptotic stability guarantees
for trajectory tracking and goal convergence [11]. These frameworks form the foundation
for developing robust and adaptive control strategies in dynamic environments.

Control theory broadly aims to manipulate dynamic systems to achieve desired out-
puts through reference signals. Classical approaches often focus on linear time-invariant
(LTI) single-input single-output (SISO) systems, which are limited in their ability to handle
dynamic load variations, real-time fluctuations, and the complexity of multi-input multi-
output (MIMO) systems. While modern methods prioritize robustness, adaptability, and
MIMO system compatibility, they may lack the intuitive design principles of traditional
approaches, complicating system analysis and implementation [12]. This trade-off between
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classical and modern methods highlights the need for innovative solutions that balance
simplicity, adaptability, and computational efficiency.

For motion planning in cluttered environments, rapidly exploring random trees (RRTs),
a subclass of rapidly exploring dense trees (RDTs), offer probabilistic completeness and
efficient exploration of high-dimensional configuration spaces through stochastic sam-
pling [13]. Despite their advantages, such as computational simplicity and the ability to
expand into unexplored regions, standard RRTs suffer from limitations, including slow
convergence, inconsistent path quality, and inaccuracies in practical implementations [14].
These shortcomings underscore the need for more reliable and efficient motion planning
techniques, particularly in dynamic and unpredictable environments.

In multi-agent decision-making scenarios involving non-cooperative agents, game
theory provides valuable tools for analyzing strategic interactions and optimizing collective
outcomes [15]. While game theory enhances risk management and strategic reasoning, it is
not without limitations. Computational complexity, the oversight of psychological factors,
and idealized knowledge assumptions can hinder its practical applicability [16]. These
challenges highlight the importance of integrating game-theoretic approaches with other
control strategies to achieve more robust and realistic solutions.

Artificial intelligence (AI) technologies further augment WMR autonomy by enabling
advanced perception, language processing, data analysis, and decision-making capabil-
ities [17]. Despite their benefits, such as reduced human error and 24/7 availability, AI-
driven systems face challenges, including algorithmic bias, high deployment costs, security
vulnerabilities, and limited adaptability in unstructured environments [18]. Addressing
these challenges is critical for realizing the full potential of AI in autonomous systems,
particularly in safety-critical applications like agriculture.

Among these approaches, control barrier functions (CBFs) are particularly critical
for ensuring WMR safety. CBFs provide a systematic framework to define and maintain
safe sets during operation, enabling collision avoidance, resilience to disturbances, and
adaptability in dynamic environments [19]. By integrating CBFs with Lyapunov-based
controllers, WMRs can achieve both safety and performance goals, making them well
suited for applications in smart agriculture.

When comparing control barrier function-based quadratic programming (CBF-QP)
and adaptive model predictive control (AMPC) for robotic systems, it is essential to evaluate
their strengths, weaknesses, and suitability for specific tasks. CBF-QP explicitly enforces
safety constraints, ensuring the system remains within a safe set, such as avoiding collisions.
It is particularly effective in dynamic environments with moving obstacles and offers
computational efficiency, making it suitable for real-time applications. Additionally, CBF-
QP can be combined with other control strategies, such as CLFs, to achieve both safety
and stability. However, CBF-QP may not always produce globally optimal trajectories,
especially in complex environments, and its effectiveness depends on the design of the
barrier functions, which can be challenging for highly nonlinear systems. Furthermore,
the QP solver may converge to local solutions, which might not be ideal for long-term
planning [12].

On the other hand, AMPC optimizes control inputs over a finite horizon, providing
globally optimal or near-optimal solutions for trajectory planning. It can adapt to changes
in system dynamics or environmental conditions, making it suitable for uncertain or
time-varying scenarios. AMPC also considers future states and constraints, enabling
better long-term planning compared to reactive methods like CBF-QP. However, AMPC’s
computational complexity can be a significant drawback, especially for systems with long
prediction horizons or high-dimensional states. Additionally, AMPC relies on accurate
system models, and inaccuracies can lead to suboptimal or unsafe control actions. The
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computational burden of AMPC may also limit its applicability in real-time systems with
strict timing requirements [14].

In summary, the choice between CBF-QP and AMPC depends on the specific re-
quirements of the application, such as the need for safety, optimality, and computational
efficiency. While CBF-QP excels in real-time safety-critical applications, AMPC is better
suited for scenarios requiring long-term planning and adaptability. A hybrid approach that
combines the strengths of both methods could offer a promising solution for complex and
dynamic environments, such as those encountered in smart agriculture [5].

3. Mathematical Models and Control Design
To visualize the simulation scenario in the MATLAB/Simulink environment, the

mathematical model of the wheeled mobile robot (WMR) is first defined in the code
compiler. Next, the system checks for the presence of an obstacle. If an obstacle is identified,
the distance to the obstacle is calculated. If no obstacle is detected, the system proceeds to
monitor the WMR’s status (Figure 1).
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If the distance to the obstacle is calculated, the system proceeds to compute the
objective function. Following this, the algorithm settings are configured, collision detection
is performed, and the data are stored in the memory cell. Subsequently, the system
calculates possible collision avoidance strategies and maps the solution for the collision
avoidance operation. This process yields an optimal path for the WMR.

If the terminal criteria are not met, the system recalculates the objective function. If the
terminal criteria are satisfied, the optimal strategy is evaluated, and the WMR continues
its motion. After this, the system checks the WMR’s monitoring status. If the WMR is not



Appl. Sci. 2025, 15, 2450 5 of 24

being monitored, the system verifies the continuation of the motion. If the WMR is being
monitored, the process restarts from the beginning and repeats.

The current work is motivated by the growing interest in autonomous wheeled mobile
robots, a topic that holds significant promise for both scientific research and practical
applications in agriculture. Research into the control of autonomous wheeled mobile
robotic platforms in unstructured, obstacle-filled environments is particularly relevant and
feasible [20]. For safe navigation in such challenging conditions, wheeled mobile robots
must be equipped with robust collision avoidance systems. These systems rely on sensors,
cameras, and advanced algorithms to detect obstacles and generate safe paths. Ensuring
reliable and consistent performance of these collision avoidance mechanisms is critical for
the safe operation of wheeled mobile robots.

In Figure 2, the wheeled mobile robot’s planned path to its goal is represented by
a solid red line. A potential collision with an obstacle is indicated by a dotted red line,
while the robot’s mobility and maneuvering area are depicted by a dotted rectangle. This
visualization highlights the importance of effective path planning and collision avoidance
in dynamic and complex environments.
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• Wheeled Robots: Typically used in relatively flat and even terrains such as orchards,
vineyards, or open fields. They are ideal for environments where the ground is stable
and free from large obstacles.

• Other Environments: In uneven, rocky, or muddy terrains (e.g., hilly areas or dense
forests), wheeled robots may struggle. In such cases, tracked robots or legged robots
might be more suitable due to their better stability and traction.

• Wheeled Robots: Generally, they offer high speed and efficiency on flat surfaces. They
are easier to control and require less energy compared to other types of robots.
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• Other Environments: In environments with dense vegetation or narrow pathways,
robots with higher maneuverability (e.g., drones or legged robots) might be preferred.
Drones can fly over obstacles, while legged robots can navigate through rough terrain.

• Wheeled Robots: Often used for tasks like planting, spraying, harvesting, and soil
analysis in open fields. They can carry heavy payloads and are suitable for repetitive
tasks over large areas.

• Other Environments: In environments requiring precise navigation or access to hard-
to-reach areas (e.g., treetops or steep slopes), drones or specialized robots might
be more effective. For example, drones can monitor crop health from above, while
climbing robots can inspect vertical structures.

In agricultural fields, the collision avoidance algorithm is depicted in Figure 3. The
algorithm works as follows: after starting up, it moves to the desired position and orienta-
tions. The wheeled mobile robot then enters drive mode, which activates the motors. Next,
it begins by sweeping, then detecting objects; then, a wheeled mobile robot controls its
speed and makes a decision; and last, it identifies and detects edges. Fault tolerance in the
system is implemented in the event of a malfunction, coordinating decision-making and
final determination. If not, the algorithm goes back to the beginning of the sweep process.
All the cycles were repeated.
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3.1. Mathematical Model

Problem formulation: The problem of multi-agent collision avoidance is presented,
developed, and evaluated in a centralized environment. All remaining members of the
group have constant access to each agent’s positions. A group of N WMRs traveling on the
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ground (the Euclidean plane) is taken into consideration; they may be distinguished by
the existence of (static) impediments. Specifically, a model resembling a unicycle with a
passive wheel describes each WMR [1,21].

.
Xi = cos(θi)vi.
Yi = sin(θi)vi.

θi = ωi

(1)

where (Xi, Yi) ∈ R2 is the location of the middle point between the two activated wheels
on the Euclidean plane, along the axle that connects them, i = 1, . . . , N; θi is the orientation
of the ith robot; vi is longitudinal velocity, and ωi is angular velocity.

(
X∗

i , Y∗
i
)
∈ R2. For

every agent, find the control inputs for its center of mass, vi, and ωi in such a way that
the ith agent is guided to the intended location while avoiding collisions with both static
barriers and other team members (Figure 4).
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Take into consideration the scenario where single-integrator dynamics describes each
virtual [1] agent’s motion.

.
xi = ui (2)

The boundary of the region in the multi-agent collision avoidance problem for WMRs
is a fundamental concept that defines the safe operational space for the robots. It ensures
that the WMRs maintain a minimum distance from obstacles and other agents, thereby
avoiding collisions. The boundary is enforced using control barrier functions (CBFs), which
guarantee forward invariance of the safe set. This approach is particularly important
in dynamic and unpredictable environments, such as agricultural fields, where collision
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avoidance is critical for the safe and efficient operation of WMRs. Therefore, the boundary
of the region would be

∂Pj =
{

x ∈ R2 :
∥∥x − pj

∥∥2Ej − p2
j = 0

}
(3)

where pj > 0, and Ej = ET
j > 0. Initial deployment without obstacle collisions: the agents’

starting locations satisfy ∥∥∥xi(0)− x f (0)
∥∥∥ > ri + rj (4)

Initial deployment of agents without collisions: the agents’ starting locations satisfy∥∥∥x∗i − pc
j

∥∥∥2
>
(

ri + pj(∅
∗)
)

(5)

Desired deployment without obstacles colliding: the agents’ intended positions fulfill∥∥∥x∗i − x∗j
∥∥∥ > ri + rj (6)

Desired deployment of agents without collisions: each agent’s target placements meet

li ∩
(
∪j=1,...,m∂pj

)
= ∅ (7)

A multi-agent system with N > 1 WMRs presents significant challenges, including
scalability, coordination, and adaptability to dynamic environments. By leveraging control
barrier functions (CBFs) and control Lyapunov functions (CLFs), the system can achieve
collision-free navigation while ensuring stability and goal convergence.

Consequently, take into consideration a multi-agent system with dynamics that con-
sists of N > 1.

pi

(∼
x
)
=
[

pi
kj

]T
+ γi I (8)

where pi
kj ∈ R2N×2N , k = 1, . . . , N, and γi > 0 is a constant parameter:

pi
ii (x̌) =

[√
∝i +βs

i gs
i (x̌) + βd

i gd
i (x̌)I

]
(9)

The statical equation becomes

gs
i (x̌) =

m

∑
j=1

1(∥∥∥ ˇ(xi + x∗i − pj)
∥∥∥2

Ej − p2
i

)c (10)

The dynamics equation becomes

gd
i (x̌) =

N

∑
j=1,j ̸=i

1(∥∥∥ ˇ(xi + x∗i )− (x̌j + x∗j )
∥∥∥2

− r2
i

)c (11)

For c ≥ 1, and pi
kj = 0 for k ̸= i, and j ̸= i. Let Ri = RT

i ∈ R2N×2N . Ω ⊆ R2N × R2N the
dynamics strategies for the WMRs involve the use of control barrier functions (CBFs) and
control Lyapunov functions (CLFs) to ensure collision avoidance and stability. The control
inputs vi and ωi are computed using a quadratic programming (QP) framework, which
minimizes a cost function while satisfying safety constraints. The Hamilton–Jacobi–Isaacs
(HJI) variational inequality is used to ensure safety in the presence of disturbances, and
the optimal control policy is determined to maximize the value function. These strategies
enable the WMRs to navigate safely and efficiently in dynamic and complex environments.
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The dynamics strategies would be

ui = −x̌i

(√
αi+βs

i gs
i (ξ)+βd

i gd
i (ξ) + γi

)
−

N

∑
j=1

Ni
ij
(
x̌j − ξ j

)
(12)

The derivative of the dynamic’s strategies along i direction would be

.
ξi = −k

N

∑
i=1

 x̌T
i x̌i

2
√

αi+βs
i gs

i (ξ)+βd
i gd

i (ξ)

(
βs

i
∂gs

i (ξ)
T

∂ξ
+ βd

i
∂gd

i (ξ)
T

∂ξ

)
− Ri(x̌ − ξ)

 (13)

The derivative of the dynamic’s strategies along j direction would be

.
ξ j = −k

N

∑
j=1

 x̌T
j x̌j

2
(√

αj + βs
j g

s
j (ξ) + βd

j gd
j (ξ)

)
βs

j

∂gs
j (ξ)

T

∂ξ
+ βd

j

∂gd
j (ξ)

∂ξ

+ Ri(x̌ − ξ)

 (14)

The state equation for WMRs in collision avoidance describes the evolution of the
system’s state over time, incorporating the dynamics of the WMRs and the constraints
imposed by collision avoidance. The state equation is derived using unicycle dynamics
and incorporates control barrier functions (CBFs) to enforce safety constraints. The control
inputs vi and ωi are computed using a quadratic programming (QP) framework, which
minimizes a cost function while satisfying the CBF constraints. This approach ensures that
the WMRs navigate safely and efficiently in dynamic and complex environments, avoiding
collisions with obstacles and other WMRs.

Then, the state equation becomes[ .
x1

i
.
x2

i

]
= −x̌i

(√
αi + βs

i gs
i (ξ) + βd

i gd
i (ξ) + γi

)
−

N

∑
j=1

Ni
ij
(
x̌j − ξ j

)
(15)

Velocity and angular velocity states equation becomes[
Vi

ωi

]
=

[
cos(θi) sin(θi)

− 1
a sin(θi)

1
a cos(θi)

][
k(x1

i − Xi − aicos(θi) +
.
x1

i )

k(x2
i − Yi − aisin(θi) +

.
x2

i )

]
(16)

The coordinates of the center of mass of each robot may be written as

Pi = (Xi + aicos(θi) + Yi + aisin(θi)) (17)

The equations describe the dynamics of each agent’s center of mass when the afore-
mentioned relation is differentiated with regard to time.

.
pi =

[
cos(θi) −aisin(θi)

sin(θi) aicos(θi)

]
≜ Ti(θi)

[
vi

ωi

]
(18)

3.2. Control Design

Problem formulation: Constructing a control barrier function (CBF) that recovers the
entire forward invariance part of the safe set is difficult. However, constructing a CBF that
only recovers a subset of the safe set is shown in Figure 5.
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Define the zero-superlevel set of the handcrafted control barrier function (HCBF)
as x̌ =

{
x
∣∣∣ȟ(x) ≥ 0

}
⊆ x; without loss of generality, it can assume the relationship

h(x) = ȟ(x) + ∆h(x). Based on preference (uper f ) algorithms (CBF-QP), as shown in
Figure 6, the algorithms are transferred to the wheeled mobile robot system (plant) if
both model prediction control and learned CBF-QP are safe. The system then relays the
feedback back to the reference and performs a rollout check using CBF-QP. The control
algorithms evaluated whether the feedback signal was safe to roll out to the preferred
setting based on the feedback signals [23]. The wheeled mobile robot’s signals would be
sent to a model-based rollout with a data buffer and input preference. Wheeled mobile
robot signals are sent, checked for unsafe rollout using CBF-QP, and then sent to the data
buffer. Data buffer would be used for model-based rollout with input preference [24].

Let us look at a state trajectory of the time-invariant, continuous-time controlled
system with a disturbance.{ .

X(s) = f (X(s), u(s), d(s), s ∈ [t, t′]
x(t) = x

(19)

where t and x are the initial time and state. u ∈ U ⊂ Rm is control inputs, d ∈ D ⊂ Rω

is disturbance, where U and D are compact and convex sets. f : Rn × U × D → Rn is
Lipschitz continuous in the state and bounded. The zero-superlevel set of a bounded
Lipschitz continuous function l : Rn → R .

L = {x : l(x) ≥ 0} (20)
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The Equation (20) where safety target function. The safety control’s goal is to ensure
that the trajectory stays in L for s ∈ [t, 0], in the event of the worst disturbance, resolved by
the use of Hamilton–Jacobi (HJ) reachability analysis. The cost function could be

J(x, t, u(.), d(.)) := min
s∈[t,0]

l(X(s)) (21)

At some point throughout the time span, the trajectory violated the safety requirement
(obtaining a negative value of l), making it unsafe. In the worst scenario, the disturbance
would act to reduce J as much as possible, while the goal of the safety control is to make J
as large as feasible. This allows for us to define the value function V : Rn (−∞, 0] → R as

V(x, t) := min
ξd∈E[t,0]

max
u∈U[t,0]

J(x, t, u(.), ξd[u](.)) (22)

The viscosity solution to the subsequent Hamilton–Jacobi–Isaacs variational inequality
(HJI-VI) is represented by the value function V (x, t).

0 = min

{
l(x)− V(x, t)

DtV(x, t) + maxmin DxV(x, t). f (x, u, d)

}
(23)

This indicates that by applying the HJI-VI at each location in the state space, V (x, t)
may be directly calculated using dynamic programming backwards in time. The optimal
policy π∗V (x, t) : Rn × (−∞, 0] → U is determined in a different way:{

V(x, t) < l(x)
π∗V(x, t) = argmax

u∈U
min
d∈D

DxV(x, t). f (x, u, d) (24)

kv(x, t) =
{

u ∈ U : DtV(x, t) + min
d∈D

DxV(x, t). f (x, u, d) ≥ 0 (25)

For any optimal:
.
l(x(t)) =

.
V(x(t), t) ≥ 0 (26)
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For a reference control signal, such a perfect control policy is frequently too tight to
serve as a safety filter. To address this, the reachability community frequently uses the
so-called least-restrictive control law, which states that the safe optimal control should
be used only when V (x(s), s) is near zero. Suppose that C is a zero-superlevel set of a
function that differentiates continuously B : Rn → R . Take into consideration a Lipschitz
continuous, disturbance-free controlled system.

f = f (X(s), u(s)). If an expanded class exists, then B is a control barrier function for
the system k∞.

max
u∈U

DxB(x). f (x, u) ≥ − ∝ (B(x)) (27)

C is any Lipschitz continuous controller, and the zero-superlevel π : C → U , such that
π(x) ∈ kB(x)

kB(x) := {u ∈ U : DxB(x). f (x, u) ≥ − ∝ (B(x))} (28)

will make C a forward invariant set. Stated differently, C is control invariant. In order to
reduce the norm of the difference between u and the reference control ure f , a controller based
on online optimization can use a condition. A control barrier function-based quadratic
program (CBF-QP), which may be utilized as an online safety filter for any reference control
signal, can be created for control-affine systems.

3.3. Validation of the Control Algorithms (Prove)

Assume that the closed-loop system’s equilibrium points are the outcome of applying
the control law.

ε = {0}
⋃

εint
⋃

ε∂c (29)

where 0ϵRn is the origin of the state space and

εint =

{
x ∈ Ω

cl f
cb f

\{0}
∣∣∣∣ f (x) = pγ(v(x))G(x)∇v(x)

}
(30)

ε∂c =

x ∈ Ωcl f
cb f

⋂
∂c

∣∣∣∣∣∣∣∣N

 f (x)T

∇v(x)TG(x)
∇h(x)TG(x)


T
\{0} ̸= ∅

 (31)

where G(x) = g(x)g(x)T , εint is the set of interior equilibria, and ε∂c is the set of boundary
equilibria. CLF denotes the active constraints, and CBF the inactive constraints. Ω cl f

cb f
are the active states for both CLF and CBF. The interplay between the CLF and CBF
constraints is crucial in collision avoidance. The system must ensure stability (via CLF)
while avoiding collisions (via CBF), especially in dynamic environments with moving
obstacles and other WMRs. The distinction between interior equilibria and boundary
equilibria helps in understanding the system’s behavior under different conditions. Interior
equilibria represent safe and stable states, while boundary equilibria represent critical states
where the system is at risk of violating safety constraints.

Ω
cl f
cb f

=

{
x ∈ Rn :

x ∈ Rn : L f V + γ(V) ≥ 0,

LgVLghT
(

L f V + γ(V)
)
<
(

L f h + α(h)
)(

p−1 +
∣∣∣∣LgV

∣∣∣∣)
}

(32)

The concepts of interior equilibria, boundary equilibria, and states where both CLF
and CBF are active are central to the design of control strategies for collision avoidance in
WMRs. These concepts help in balancing the competing objectives of stability (via CLF)
and safety (via CBF), ensuring that the system operates safely and efficiently in dynamic
environments. The mathematical formulations provide a framework for designing control
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inputs that achieve these objectives, making them essential for real-world applications like
smart agriculture and autonomous navigation.

Ωcl f
cb f =

 x ∈ Rn : LgVLghT
( L f h+α(h)

L f V+γ(V)

)
≤
∣∣∣∣Lgh

∣∣∣∣2,

LgVLghT ≥
( L f h+α(h)

L f V+γ(V)

)(∣∣∣∣LgV
∣∣∣∣2 + p−1

)
 (33)

The Lagrangian associated with the control law provides a mathematical framework
for deriving optimal control inputs that ensure both stability (via CLF) and safety (via CBF)
in collision avoidance for WMRs. By minimizing the control effort while satisfying the CLF
and CBF constraints, the Lagrangian enables the system to achieve efficient, stable, and safe
navigation in dynamic environments. The Karush–Kuhn–Tucker (KKT) conditions ensure
that the optimal solution is both feasible and efficient, making the Lagrangian a powerful
tool for control design in complex systems.

L =
1
2
||u||2 + 1

2
pω2 + λ1

(
L f V + LgVu + γ(V)− ω

)
− λ2

(
L f V + Lghu + α(h)

)
(34)

The KKT conditions becomes

∂L
∂u

= u + λ1LgV − λ2Lgh = 0 (35)

∂L
∂ω

= pω − λ1 = 0 (36)

λ1

(
L f V + LgVu + γ(V)− ω

)
= 0 (37)

λ2

(
L f V + Lghu + α(h)

)
= 0 (38)

With λ1, λ2 ≥ 0, it must now differentiate between four distinct scenarios based on
when each constraint is activated.

Case 1. Both restrictions are passive in this instance, meaning L f V + LgVu + γ(V)− ω < 0,
L f V + Lghu + α(h) > 0, and λ1 = λ2 = 0. From Karush–Kuhn–Tucker (KKT) condi-
tions, k(x) = 0, ω(x) = 0. However, since γ(V) < 0, this solution is never applicable in
this situation.

Case 2. Only the CLF constraint is in effect in this instance, which means L f V + LgVu + γ(V) = δ,
L f V + LghTu + α(h) > 0, and λ1 ≥ 0, λ2 = 0; then, the solution:

k(x) = −
L f V + γ(V)

p−1 +
∣∣∣∣LgV

∣∣∣∣2 LgVT (39)

CBF is inactive; then, from the equilibrium points:

fcl(x) = f (x)−
L f V + γ(V)

p−1 +
∣∣∣∣LgV

∣∣∣∣2 G∇V = 0 (40)

There are two possible solutions from Equation (40):

(i). f (x) = 0, and G(x)∇V(x) = 0 for some x ∈ Ω cl f
cb f ;

(ii). f (x) = G(x)∇V(x); then, the Equation (40) becomes:

k(x) = pγ(V), x ∈ Ω
cl f
cb f

(41)

Such that the equilibrium points could be
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f (x) = pγ(V)G∇V (42)

Equation (42) provides set of interior equilibria.

Case 3. CBF constraint is active, L f V + LgVu + γ(V) − δ < 0, L f h + Lghu + α(h) = 0,
λ1 = 0, λ2 ≥ 0. Then, the KKT condition becomes:

k(x) = −
∣∣∣∣Lgh

∣∣∣∣−2
(

L f h + α(h)
)

LghT (43)

CLF is inactive; then:

Ωcl f
cb f =

{
xϵRn : L f h + α(h) ≤ 0,

LgVLghT
(

L f h + α(h)
)
>
(

L f V + γ(V)
)∣∣∣∣Lgh

∣∣∣∣2
}

(44)

At the equilibrium points fcl(x) = 0; then:

fcl(x) = f (x)−
∣∣∣∣Lgh

∣∣∣∣−2
(

L f h + α(h)
)

G∇h = 0 (45)

The solutions of Equation (45):

(i) f (x) = 0, and G(x)∇V(x) = 0 for some x ∈ Ωcl f
cb f .

(ii). f (x) = kG(x)∇V(x); then, Equation (45) becomes α(h) = 0, f orx ∈ ∂∁.

Case 4. When both constraints are active, then L f V + LgVTu + γ(V)− δ = 0, L f h + LghTu +

α(h) = 0, λ1, λ2 ≥ 0; then, the KKT equation becomes[
p−1 +

∣∣∣∣LgV
∣∣∣∣2 −LgVLghT

LgVLghT −
∣∣∣∣Lgh

∣∣∣∣2
][

λ1

λ2

]
=

[
L f V + γ(V)

L f h + α(h)

]
(46)

The determinant of the matrix on the left-side of (46):

∆ =
(

LgVLghT
)2

−
(

p−1 +
∣∣∣∣LgV

∣∣∣∣2)(∣∣∣∣Lgh
∣∣∣∣2) (47)

Consider two cases:

(i). ∆ = 0 ; then, the matrix on the left side of the Equation (47) loses rank when Lgh = 0. Then,
the solution Lgh + α(h) = 0. The KKT equation becomes equal as Equation (39).

(ii). ∆ < 0; then, KKT equation becomes

k(x) = −λ1LgVT + λ2LghT (48)

λ values are obtained as λ1 = 1
∆

((
L f h + α(h)

)
LgVLghT −

(
L f V + γ(V)

)∣∣∣∣Lgh
∣∣∣∣2)

λ2 = 1
∆

((
L f h + α(h)

)(∣∣∣∣LgV
∣∣∣∣2 + p−1

)
−
(

L f V + γ(V)
)

LgVLghT
) (49)

When ∆ = 0 or ∆ > 0, then the solution becomes

Ωcl f
cb f =

 xϵRn : LgVLghT
( L f h+α(h)

L f V+λ(V)

)
≤
∣∣∣∣Lgh

∣∣∣∣2,

LgVLghT ≥
( L f h+α(h)

L f V+λ(V)

)(∣∣∣∣Lgh
∣∣∣∣2 + p−1

)
 (50)

The equilibrium conditions become

fcl(x) = f (x)− λ1G∇V + λ2G∇h = 0 (51)
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The following fundamental criteria for the occurrence of a valid solution can be inferred from
Equation (51).

(i). f (x) = 0, for all x ∈ Rn, and ∇V(x)||∇h(x) ;
(ii). ∇h = 0 or ∇h ∈ N(G), and f (x)||G(x)∇V(x) ;
(iii). ∇V = 0 , or ∇V ∈ N(G), and f (x)||G(x)∇h(x) ;
(iv). ∇V(x)||∇h(x), f (x)||G(x)∇h(x) .

These solutions satisfy the equilibrium points.

4. Results and Discussion
In agricultural environments, collision avoidance for wheeled mobile robots (WMRs)

relies on situational awareness and visual cues to navigate through complex and dynamic
conditions. As illustrated in Figure 7, the WMRs successfully avoid collisions by dynam-
ically maneuvering around obstacles, demonstrating the effectiveness of the proposed
control algorithms.
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Figure 7. Wheeled mobile robotic collision avoidance at single obstacle.

The graphical representation of the agricultural area provides a clear visualization
of the system’s operation. Black circles denote potential barriers or obstacles, while red
lines represent the trajectories generated by the control algorithms guiding the WMRs. To
enhance clarity, both the vertical and horizontal axes are labeled in meters, providing a
precise spatial context for the WMRs’ movements.

Initially, the WMR follows a straight path toward its destination. However, upon
detecting an obstacle, it dynamically adjusts its trajectory, opting for an efficient shortcut
to avoid collisions while maintaining its course. The obstacles are strategically positioned
across the first and second quadrants, while the WMRs operate primarily in the third
quadrant, as indicated by the negative values on the axes. This spatial arrangement
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highlights the system’s ability to navigate complex environments, even when obstacles are
distributed across multiple regions.

The ability of the WMRs to dynamically adapt their paths in real time underscores
the robustness of the proposed control algorithms. By leveraging situational awareness
and visual cues, the system ensures efficient and collision-free navigation, making it
highly suitable for agricultural applications where dynamic obstacles and confined spaces
are common.

Wheeled mobile robots (WMRs) are designed to navigate agricultural environments
without halting upon encountering obstacles or impacts. Instead, they dynamically adjust
their trajectories to continue moving toward their intended positions. This capability
requires WMRs to maintain appropriate stability and possess the ability to traverse obstacles
effectively, as depicted in Figure 8. The position and velocity of the WMRs exhibit nonlinear
characteristics during navigation, particularly when avoiding obstacles or recovering from
disturbances, until they ultimately reach their destination.
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When a WMR experiences an impact, it may undergo temporary instability. However,
the system’s states are quickly stabilized through the instantaneous activation of control
barrier mechanisms. The control algorithms expend a specific amount of energy to restore
the system to its initial conditions. A positive control effort is applied to drive the states back
to their desired values, while a negative control effort dissipates excess energy, ensuring
the system remains stable and efficient.

Initially, the control barriers are reduced, occasionally reverting to their initial condi-
tions, before gradually increasing until equilibrium is achieved. Over time, both the control
barriers and the control effort decline, but at different rates: the control barriers decrease
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moderately, while the control effort diminishes rapidly. This differential reduction ensures
that the system maintains stability and safety while minimizing energy consumption.

Control barrier functions (CBFs) are essential mathematical tools in control theory,
designed to enforce safety requirements during system operation. Analogous to how
Lyapunov functions ensure stability, CBFs provide a systematic framework to guarantee
that a system operates within predefined safe bounds. By integrating CBFs into control
algorithms, robotic systems achieve enhanced safety and autonomy, particularly in dynamic
and unpredictable environments such as agricultural fields.

When a double-wheeled mobile robot (DWMR) encounters an impact, it actively
employs collision avoidance strategies, as illustrated in Figure 9. In this scenario, the
environment is characterized by asymmetry, with two obstacles strategically positioned
within the agricultural area. The black circles represent potential obstructions, while the red
line depicts the trajectory of the DWMR, guided by advanced control algorithms. Both the
horizontal and vertical axes are clearly labeled, providing a precise spatial representation
of the scenario and highlighting the robot’s ability to navigate complex environments.
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The development and integration of control barrier functions (CBFs) have revolu-
tionized the implementation of safety constraints in robotic systems. Unlike traditional
methods, which often rely on overly conservative constraints, CBFs enable a less restrictive
and more flexible approach to ensuring safety. This adaptability is particularly crucial in
dynamic environments, where the system must respond to unpredictable changes while
maintaining robust safety guarantees. By enforcing specific state constraints, CBFs ensure
that the system operates within predefined safe bounds, significantly reducing the risk of
collisions even in highly nonlinear and uncertain scenarios.

The effectiveness of CBFs lies in their ability to provide real-time safety guarantees
without compromising the system’s performance. For instance, in the case of the DWMR,
the control algorithms dynamically adjust the robot’s trajectory to avoid obstacles while
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minimizing deviations from the desired path. This is achieved by continuously evalu-
ating the system’s state and applying corrective actions to satisfy the CBF constraints.
The result is a highly adaptive and resilient system capable of operating safely in com-
plex and asymmetric environments, such as agricultural fields with uneven terrain and
dynamic obstacles.

Moreover, the use of CBFs enhances the scalability of multi-robot systems, where
multiple DWMRs must navigate shared spaces without interfering with one another. By
ensuring that each robot adheres to its safety constraints, CBFs enable efficient coordination
and collision-free operation, even in densely populated environments. This capability is
particularly valuable in agricultural applications, where multiple robots may be deployed
simultaneously to perform tasks such as planting, harvesting, or monitoring.

In summary, the integration of CBFs into the control framework of DWMRs represents
a significant advancement in robotic safety and autonomy. By providing a flexible and
robust mechanism for enforcing safety constraints, CBFs enable robots to navigate dynamic
and asymmetric environments with confidence, significantly reducing the risk of collisions
and enhancing overall system performance. This approach not only improves the reliability
of robotic systems in agriculture but also paves the way for their broader adoption in other
safety-critical applications.

Figure 10 presents the simulation results of a wheeled mobile robot (WMR) navigating
a scenario with double obstacles. The results reveal distinct recovery patterns for the WMR’s
velocity and position states: the velocity state exhibits a nonlinear recovery, while the
position state is restored linearly. As depicted in Figure 9, the control effort demonstrates a
rapid decline for velocity regulation but decreases more gradually for position stabilization.
This difference highlights the varying energy requirements for controlling different states
of the system. Notably, the controller barrier gains exhibit significant variations, with the
first barrier requiring substantial energy to restore the WMR to its initial position and
velocity. This underscores the dynamic nature of the control system and its ability to adapt
to complex scenarios.

The use of control barrier function (CBF)-based algorithms represents a significant
advancement over conventional approaches, offering efficient, real-time obstacle avoidance
capabilities. These algorithms are particularly advantageous in dynamic environments,
where traditional methods often struggle to maintain safety and performance. By integrat-
ing CBFs into control systems, the WMR achieves globally asymptotically stable tracking,
ensuring reliable and safe trajectories even in the presence of external disturbances. This
stability is critical for applications in unpredictable environments, such as agricultural
fields, where obstacles and terrain conditions can change rapidly.

Moreover, CBFs have demonstrated considerable potential in hybrid system verifica-
tion, a critical aspect of ensuring that robotic systems adhere to predefined safety standards
throughout their operation. Hybrid systems, which combine continuous and discrete
dynamics, are inherently complex and challenging to verify. However, CBFs provide a
systematic framework for enforcing safety constraints across both types of dynamics, en-
suring that the system remains within safe operational bounds at all times. This capability
is particularly valuable in safety-critical applications, where even minor deviations from
safe behavior can lead to catastrophic outcomes.

The ability of CBF-based algorithms to handle nonlinearities and disturbances makes
them highly suitable for real-world applications. For instance, in the case of the WMR
navigating double obstacles, the nonlinear recovery of velocity and the linear restoration of
position demonstrate the system’s robustness and adaptability. The rapid decline in control
effort for velocity regulation, coupled with the gradual reduction for position stabilization,
reflects the efficient allocation of energy to achieve optimal performance. Additionally, the
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variations in controller barrier gains highlight the system’s ability to dynamically adjust its
control strategies based on the specific requirements of the scenario.
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Table 1 highlights the significant performance improvements achieved by the control
barrier function quadratic programming (CBF-QP) approach compared to the rapidly
exploring random tree (RRT) method for wheeled mobile robots (WMRs). For WMR
position, the CBF-QP approach demonstrates improvements of 11% in settling time, 34% in
rise time, and 75% in steady-state error. Similarly, for WMR velocity, the improvements are
even more pronounced, with 27% in settling time, 37% in rise time, and 99% in steady-state
error. Furthermore, the control gain metrics show substantial enhancements, with 50% in
settling time, 59% in rise time, and 93% in steady-state error when using CBF-QP over RRT.
These results underscore the superior efficiency and precision of the CBF-QP approach in
optimizing the performance of WMRs.

Control barrier functions (CBFs) are widely recognized for their ability to ensure
obstacle avoidance and stabilize dynamic systems by defining rigorous safety constraints
in motion planning. CBFs operate within a quadratic programming framework, where
they enforce safety by ensuring that the system remains within predefined safe limits. This
approach is particularly effective in dynamic environments, where real-time adaptability
and safety are paramount. By integrating CBFs into control algorithms, robotic systems
can navigate complex scenarios while maintaining robust safety guarantees, even in the
presence of disturbances or unexpected obstacles.
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Table 1. Comparisons of CBF and RRT.

Specification
of WMR

WMR with CBF-QP WMR with Rapidly Exploring
Random Tree (RRT) [26] % Change in CBF-QP over RRT

Settling
Time (s)

Rise
Time (s) Error Settling

Time (s)
Rise Time

(s) Error Settling
Time (s)

Rise Time
(s) Error

Position (m) 0.98 0.67 0.005 1.1 1.02 0.02 11% 34% 75%

Velocity (m/s) 0.88 0.66 0.003 1.2 1.05 0.5 27% 37% 99%

Control gain (J) 10 9 0.05 20 22 0.7 50% 59% 93%

In contrast, RRTs are sampling-based motion planning algorithms that excel in explor-
ing and identifying feasible paths in high-dimensional and complex environments. RRTs
are designed to efficiently discover collision-free paths by randomly sampling the config-
uration space and incrementally building a tree of possible trajectories. While RRTs are
highly effective for path planning in static or known environments, they lack the inherent
ability to enforce real-time safety constraints, making them less suitable for dynamic or
uncertain scenarios.

The key distinction between CBF-QP and RRT lies in their primary objectives. CBF-QP
prioritizes safety and stability by rigorously enforcing constraints that ensure the system
operates within safe bounds. This makes it particularly well suited for autonomous systems
operating in dynamic environments, where safety is a critical concern. On the other hand,
RRT focuses on path discovery and exploration, making it ideal for applications where the
primary challenge is navigating complex, high-dimensional spaces.

The performance improvements demonstrated by CBF-QP, as shown in Table 1, high-
light its advantages over RRT in terms of settling time, rise time, and steady-state error.
These metrics reflect the system’s ability to achieve faster and more accurate responses
while maintaining stability and safety. The significant reduction in steady-state error, in par-
ticular, underscores the precision of the CBF-QP approach in achieving desired trajectories
and avoiding deviations caused by external disturbances.

Generally, the CBF-QP approach offers a robust and efficient solution for enhancing
the performance of WMRs in dynamic environments. By leveraging the strengths of CBFs
in enforcing safety constraints and quadratic programming in optimizing control inputs,
this approach outperforms traditional methods like RRT in critical performance metrics.
While RRT remains a powerful tool for path planning in complex environments, CBF-QP
provides a more comprehensive framework for ensuring safety and stability in real-time
applications, making it a preferred choice for autonomous systems operating in dynamic
and uncertain settings.

Table 2 highlights the significant performance improvements achieved by the control
barrier function quadratic programming (CBF-QP) approach compared to adaptive model
predictive control (AMPC) for wheeled mobile robots (WMRs). The results demonstrate
substantial enhancements across key metrics: the WMR’s position and velocity improved
by 42% and 54%, respectively, while the control effort gain saw a remarkable improvement
of 90%. Furthermore, the rise time for position improved by 58%, for velocity by 61%, and
for control effort gain by 92%. Additionally, the steady-state error for position improved
by 98%, for velocity by 99%, and for control effort gain by 94% when using CBF-QP
over AMPC. These improvements underscore the superior efficiency and precision of the
CBF-QP approach in optimizing the performance of WMRs.
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Table 2. Comparisons of CBF and adaptive model productive control (AMPC).

Specification
of WMR

WMR with CBF-QP WMR with Adaptive Model
Productive Control (AMPC) [22]

% Change in CBF-QP over Adaptive
Model Productive Control (AMPC)

Settling
Time (s)

Rise
Time (s) Error Settling

Time (s)
Rise Time

(s) Error Settling
Time (s)

Rise Time
(s) Error

Position (m) 0.98 0.67 0.005 1.7 1.6 0.4 42% 58% 98%

Velocity (m/s) 0.88 0.66 0.003 1.9 1.7 0.3 54% 61% 99%

Control gain (J) 10 9 0.05 100 110 0.9 90% 92% 94%

The exceptional performance of CBF-QP can be attributed to its suitability for real-
time, safety-critical applications, such as obstacle avoidance in dynamic environments.
By leveraging control barrier functions (CBFs), the CBF-QP approach enforces rigorous
safety constraints, ensuring that the system operates within predefined safe limits. This
is particularly advantageous in scenarios where real-time adaptability and safety are
paramount, such as agricultural fields or autonomous navigation in unpredictable terrains.
The ability of CBF-QP to provide real-time safety guarantees while minimizing control effort
makes it an ideal choice for applications requiring robust and efficient collision avoidance.

In contrast, AMPC is better suited for applications that prioritize optimal long-term
planning and adaptability to changing conditions. AMPC optimizes control inputs over a
finite horizon, providing globally optimal or near-optimal solutions for trajectory planning.
This makes it highly effective in scenarios where computational resources are available, and
the primary challenge is to achieve optimal performance over extended periods. However,
the computational complexity of AMPC can be a limiting factor in real-time applications,
particularly those with strict timing requirements or limited processing capabilities.

The choice between CBF-QP and AMPC ultimately depends on the specific require-
ments of the application. For safety-critical tasks in dynamic environments, such as obstacle
avoidance or real-time navigation, CBF-QP offers a more efficient and reliable solution. On
the other hand, for applications requiring long-term planning and adaptability to changing
conditions, AMPC provides a robust framework for achieving optimal performance. In
some cases, a hybrid approach that combines the strengths of both methods could be highly
beneficial. For instance, integrating CBF-QP for real-time safety enforcement with AMPC
for long-term trajectory optimization could yield a comprehensive solution that addresses
both safety and optimality.

The performance improvements demonstrated by CBF-QP, as highlighted in Table 2,
reflect its ability to achieve faster response times, higher precision, and reduced energy
consumption compared to AMPC. These advantages are particularly critical in applications
where real-time decision-making and safety are paramount. By providing a systematic
framework for enforcing safety constraints and optimizing control inputs, CBF-QP enhances
the reliability and efficiency of WMRs in dynamic and complex environments.

In summary, the CBF-QP approach offers a robust and efficient solution for enhancing
the performance of WMRs in safety-critical applications, while AMPC excels in scenarios
requiring long-term planning and adaptability. The choice between these methods should
be guided by the specific requirements of the application, such as the need for real-time
safety, computational efficiency, or optimal performance. In some cases, a hybrid approach
that leverages the strengths of both CBF-QP and AMPC could provide a comprehensive
solution, enabling WMRs to operate safely and efficiently in a wide range of environments.
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5. Conclusions
This paper presents a collision avoidance system for smart agriculture using a Control

barrier function (CBF)-based approach. The system enables wheeled mobile robots (WMRs)
to navigate agricultural fields safely by monitoring speed, distance, and potential hazards,
thereby reducing the risk of collisions. Collision avoidance systems (CASs) are critical in
agricultural environments, where the presence of static obstacles, dynamic conditions, and
multiple agents necessitates robust safety mechanisms. By automatically applying braking
mechanisms when collisions become unavoidable, these systems minimize the impact of
accidents, reducing injuries, damage to WMRs, and crop losses.

This study focuses on enhancing the safety and collision mitigation capabilities of
smart agriculture systems through the integration of a CBF-based controller into the WMR
framework. The multi-agent collision avoidance problem is addressed within a central-
ized framework, where each agent has continuous access to the positions of all other
group members. This setup considers a set of N WMRs operating on the Euclidean plane,
navigating around static obstacles. Each WMR is modeled as a unicycle with a passive
wheel, a common representation for mobile robots due to its simplicity and applicability to
real-world scenarios.

Designing a CBF that ensures the full forward invariance of the safe set is a challenging
task. However, constructing a CBF that partially recovers the safe set is more feasible and
practical for real-world applications. The control algorithms utilize feedback signals to
determine whether it is safe to execute desired control actions. These signals are analyzed
for safety using CBF quadratic programming (CBF-QP) and then sent to a data buffer for
model-based rollout with input selection. This approach ensures that the system operates
within safe bounds while maintaining efficiency and responsiveness.

In agricultural environments, collision avoidance relies on WMRs leveraging visual sig-
nals and situational awareness to navigate through single and double conflicting conditions.
Initially, the control barriers are reduced and periodically adjusted to initial conditions
before gradually increasing until equilibrium is achieved. Over time, both the control
barriers and the control effort decrease, but at different rates: the control barriers decrease
moderately, while the control effort diminishes rapidly. This differential reduction ensures
that the system maintains stability and safety while minimizing energy consumption.

Control barrier functions (CBFs) are mathematical tools in control theory that enforce
safety requirements during system operation, analogous to how Lyapunov functions ensure
stability. By providing a systematic framework to guarantee that a system operates within
predefined safe bounds, CBFs significantly enhance the safety and autonomy of robotic
systems. This is particularly important in dynamic and unpredictable environments, such
as agricultural fields, where obstacles and terrain conditions can change rapidly.

Performance comparisons demonstrate that the CBF-QP approach outperforms both
rapidly exploring random trees (RRT) and adaptive model predictive control (AMPC). For
WMR position, CBF-QP improves settling time by 11%, rise time by 34%, and steady-state
error by 75%. For WMR velocity, the improvements are even more pronounced, with 27% in
settling time, 37% in rise time, and 99% in steady-state error. Compared to AMPC, CBF-QP
achieves a 98% improvement in steady-state error for position, 99% for velocity, and 94%
for control effort gain. These results highlight the superior efficiency and precision of the
CBF-QP approach, making it well suited for collision avoidance in smart agriculture.

The authors recommend further exploration of a hybrid approach that integrates CBF
with RRT (CBF-RRT) to enhance motion planning. This combination leverages the safety
guarantees of CBFs with the efficient exploration capabilities of RRTs, aiming to generate
stable, collision-free trajectories. Such a hybrid approach could address the limitations of
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individual methods, providing a comprehensive solution for safe and efficient navigation
in complex environments.

Generally, this study demonstrates the effectiveness of the CBF-based approach in
improving the safety and performance of WMRs in smart agriculture. By integrating CBFs
into the control framework, the system achieves robust collision avoidance, enhanced
stability, and efficient energy utilization. The proposed method outperforms traditional
approaches like RRT and AMPC, making it a promising solution for real-world agricul-
tural applications. The potential for a CBF-RRT hybrid approach further underscores the
versatility and adaptability of this framework, paving the way for future advancements in
robotic autonomy and safety.
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