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ABSTRACT
As an example for the potential use of multi- block chemometric methods to provide improved unsupervised characterization of 
compositionally complex materials through the integration of multi- modal spectrometric data sets, we analysed spectral data 
derived from five field instruments (one XRF, two NIR, and two FT- Raman), collected on 76 bedrock samples of diverse compo-
sition. These data were analysed by single-  and multi-  block latent variable models, based on principal component analysis (PCA) 
and partial least squares (PLS). For the single- block approach, PCA and PLS models were generated; whilst hierarchical partial 
least squares (HPLS) regression was applied for the multi- block modelling. We also tested whether dimensionality reduction 
resulted in a more computationally efficient muti- block HPLS model with enhanced model interpretability and geological char-
acterization power using the variable influence on projection (VIP) feature selection method.
The results showed differences in the characterization power of the five spectrometer data sets for the bedrock samples based 
on their mineral composition and geological properties; moreover, some spectroscopic techniques under- performed for distin-
guishing samples by composition. The multi- block HPLS and its VIP- strengthened model yielded a more complete unsupervised 
geological aggrupation of the samples in a single parsimonious model. We conclude that multi- block HPLS models are effective 
at combining multi- modal spectrometric data to provide a more comprehensive characterization of compositionally complex 
samples, and VIP can reduce HPLS model complexity, while increasing its data interpretability. These approaches have been ap-
plied here to a geological data set, but are amenable to a broad range of applications across chemical and biomedical disciplines.

1   |   Introduction

Grouping samples by their properties using multivariate latent 
models based on spectral data is usual in fields related to nat-
ural sciences and medicine [1–3]. In recent years, chemometric 
methods have become popular to integrate and analyse multi- 
modal data and numerous algorithms have been developed 
[4, 5]. However, the fusion of different types of spectral data 
sets (e.g., NIR, Raman, and XRF) in a unique and parsimonious 

multi- block model with the purpose of enhancing pattern rec-
ognition, characterization, and grouping of compositionally het-
erogeneous geological specimens has not been achieved. Some 
barriers to the adoption of these techniques lie in the high com-
putation power required, the necessary statistical and machine 
learning expertise, and the need for easy- to- interpret visual-
izations of the underlying patterns and structures connecting 
observations across data sets. In disciplines such as geology 
or archaeology, due to the explorative and discovery nature of 
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the sample collection during the field work, there is an inter-
est in using multivariate models (e.g., PLS) that do not require 
the inclusion of sample classes or compositional categories prior 
to statistical modelling, rather than their discriminant analysis 
versions (e.g., PLS- DA) that use class/categorical knowledge pro-
vided in advance. In this paper, we test a multi- block modelling 
approach based on partial least squares, combined with model 
dimensionality reduction using variable influence on projection 
(VIP), as a potential methodology for an improved unsupervised 
characterization based on the analysis of 76 bedrock specimens. 
We would like to emphasise that we aim to explore the possibili-
ties of PLS for achieving a natural grouping meeting in the mid-
dle of pattern recognition and formal classification in the fields 
of archaeology and geology with the ultimate purpose of testing 
whether PLS multi- block approaches can perform better than 
their single- block analogous approaches for geological sample 
grouping/characterization. It is out of the scope of this paper 
to perform a formal classification (e.g., using soft independent 
modelling of class analogy) or prediction. Therefore, to avoid 
confusion, we will not refer to any observed grouping of samples 
in the results of the models as ‘classification’, since the PLS mod-
els in this work do not return sample class labels, being the ap-
proach adopted in this paper a natural- /human-  interpretation 
of the score plots generated in the chemometric latent models. 
In addition, by definition, any regression model is ‘supervised’ 
due to the rotation in the hyperspace of the latent variables to 
maximize the covariance between the X and Y data matrices 
since this rotation uses as reference Y (thereby, Y ‘supervises’ 
the rotation); however, in this paper, we will use the terms ‘su-
pervised’ and ‘unsupervised’ in the sense of existence or absence 
of pre- defined classes [6] rather than an indication of existence 
or absence of adjustment of X to Y. So, the term ‘unsupervised’ is 
here used in the sense of using models that have not been set up 
with information about the classes/categories of samples in ad-
vance, i.e., to differentiate our PLS modeling approach without 
pre- defined classes from any other PLS discriminant approach 
with pre- defined classes (initial categorical information) in the 
model set- up (as it happens in PLS- DA).

There are three main types of bedrock: igneous/magmatic, sed-
imentary, and metamorphic. Frequently, bedrock matrices are 
heterogeneous, and sampling them may be challenging for most 
analytical techniques. In this study, data sets from five field 
instruments were used to investigate the use of multi- spectral 
approaches to the characterization of complex samples; more 
specifically, two near- infrared, two Fourier transform Raman, 
and one X- ray fluorescence data sets. X- ray fluorescence (XRF) 
[7] can be used to detect and quantify chemical elements from 
Mg (atomic number Z = 12) to U (Z = 92). XRF instrumentation 
can be made portable, battery driven, and therefore is often 
used in geological and archaeological field applications [8–10]. 
XRF spectra and elemental concentrations were measured in 76 
solid rock samples; and, additionally, two portable near infrared 
(NIR) and two portable FT- Raman instruments were used with 
the same samples. In the geological and archaeological fields, 
there is increasing interest in whether NIR [11] and FT- Raman 
[12] spectra can also be used to classify rock specimens, rather 
than just using XRF (which cannot detect, for example, carbon 
related samples), as well as whether a combination of the differ-
ent types of spectra (NIR, FT- Raman, and XRF) could lead to 
a better discrimination of geological specimens. Some authors 

have described the use of FT- Raman [13, 14] and NIR spectra 
[15, 16] for geological samples.

All spectral data sets were derived from the 76 geological sam-
ples with a varying number of variables (measurements). The 
data consisted of 42 variables for XRF (element concentrations), 
603 and 1451 for two FT- Raman instruments (wavenumbers), 
and 128 and 1501 for two NIR instruments (wavelengths). After 
pre- processing of the raw data, the data sets provide an oppor-
tunity of testing different types of multivariate models and their 
interpretations. We show and compare, in terms of data inter-
pretation and geological characterization, the results of analys-
ing the five spectral data sets; firstly, separately by inspection of 
single- block PCA [17] and PLS [18, 19] models, and afterwards, 
combined by inspecting multi- block HPLS models [20]. A post- 
modelling VIP variable selection [21, 22] was carried out to 
reduce the dimensions of the hierarchical partial least squares 
(HPLS) regression model and improve its interpretability of the 
associations between spectroscopy type and geological sam-
ple group.

2   |   Materials and Methods

In this section, a description of the data sets and the instruments 
used to generate them is provided, as well as a brief explanation 
of the methodologies and algorithms employed for generating 
the multivariate and multi- block models.

2.1   |   Data Sets and Instrumentation

The multi- block data set consists of five spectral data matrices 
derived from the same 76 geological bedrock samples measured 
using five different instruments (Figure 1). These inorganic sam-
ples have relevance for geological and archaeological studies. All 
originated from Europe, mainly from Sweden. All samples were 
roughly palm size and classified by type by geologists. This col-
lection of samples is not meant to be a global selection but was 
collected as a didactical tool for archaeology- geology students. 
The selection of rocks covers all main types: igneous/magmatic, 
metamorphic, and sedimentary, being heterogeneous with re-
gard to structure and mineral composition, and have also un-
even surfaces. Of particular interest was the inclusion of various 
quartzes and quartzites as they were important materials in pre-
historic tool production [23]. Categorical information for each 
sample is provided in Tables S1- S2 of Supporting Information 1, 
which includes the general and the given sample names, general 
classification, the base mineral, additional mineral information, 
chemical composition, and the sampling location (site, province, 
and country).

A description of the contents and dimensions of the five data 
sets is given in Table  1. All used instrumentation was field- 
adapted and had contact probes and internal illumination. The 
first NIR spectrometer was an Analytical Spectral Device (ASD) 
LabSpec 4 (with range of 350:1:2500 nm, large wavelength range 
including UV and VIS, and high spectral resolution) with one 
Si and two cooled InGaAs arrays as detectors; whilst the sec-
ond NIR spectrometer was a compact VIAVI Micro- NIR (with 
range 908:6:1676 nm, wavelength range covering a specific part 
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of the NIR, and lower spectral resolution than the ASD LabSepc 
4) with a InGaAs array as detector. The third and fourth data 
sets were obtained from two Raman spectrometers: a Bruker 
BRAVO portable FT- Raman spectrometer (with laser ca 700 nm, 
and range 300:2:3200 cm−1) and a FT i- Raman field instrument 
(with a 1064 nm excitation laser, a range of 98:4:2507 cm−1, and 
fibre- optic probe). The fifth data set was produced by a XRF in-
strument (EDXRF, Energy Dispersive Thermo Scientific Niton 
XL5 Plus) again configured for field use, which provides elemen-
tal concentration data (from Mg to U), using a 5 W Ag anode 

X- Ray tube and Silicon drift detector (spot size: 8 nm); the in-
strument calibration for mining mode was used for quantifica-
tion. Whilst field instruments were used for all measurements, 
for this study the geological samples were measured under con-
trolled laboratory conditions in a dark room to minimize stray 
light. In addition, as the samples were not powders, but solid 
bedrock specimens, and all five instruments used probes of dif-
fering diameters (Figure S1 of Supporting Information 1), five 
replicate measurements were taken on each sample and the av-
erage of the replicates used for each specimen.

FIGURE 1    |    Pictures of the five spectrometers, i.e., (a) Micro- NIR, (b) ASD- NIR, (c) Bruker- Raman, (d) i- Raman, and (e) XRF; and (f) some rep-
resentative specimens.

TABLE 1    |    Description of the five raw data sets, including their original reference in the literature and applied preprocessing.

Instrument and 
manufacturer Variables obtained Data matrix Variables used Lit ref. Preprocessing

ASD LabSpec4- 
Malvern Panalytical

Wavelengths
350:1:2500 nm

76 x 1501 1000–2500 nm [24] SNV + MC

Bruker BRAVO 
FT- Raman

Dual laser 785 and 
852 nm, Wavenumbers 

300:2:3200 cm−1

76 x 1451 All MSC + MC

FT iRaman- Metrohm Laser 1064 nm,
Wavenumbers
92:4:2507 cm−1

76 x 603 All MSC + MC

VIAVI MicroNIR Wavelengths
908:6:1676 nm

76 x 128 1000–1676 nm [25, 26] SNV + MC

EDXRF Thermo 
Scientific Niton XL5 
Plus

Quantified elemental 
concentrations

42

76 x 42 16 (Bal, Mg, Al, Si, P, S, Cl, K, 
Ca, Ti, Mn, Fe, Zn, As, Ba, Pb)

Pareto + MC

SNV stands for standard normal variate, MC for mean- centering, and MSC for multiplicative scatter correction. A column showing the finally used for data analysis 
wavelengths, wavenumbers, and elements (ordered by atomic number), is also included.
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2.2   |   Data Pre- Processing Strategy

Figures  S2–S6 of Supporting Information 1 show the raw 
and the pre- processed spectral data sets. All pre- processing 
was done with in- house MATLAB code (version R2023a, The 
MathWorks, Natick, MA, USA), except the multiplicative scatter 
correction that was done using R (version 4.3.1, R Core Team, 
Vienna, Austria). All visualizations shown in Figures  S2–S6 
were obtained using in- house MATLAB code.

The raw XRF data set initially contained 42 variables. All vari-
able names correspond to elements of the periodic table but Bal 
(the Balance variable) that represents all elements below Mg 
(i.e., with Z < 12) that were considered non- determined matter by 
the XRF instrument. Three XRF variables (Hf, Re, and Ta) had 
their values non- detected (ND values) for all samples, so these 
variables (elements) were discarded. For the rest of the XRF vari-
ables, where the element was not detectable null concentrations 
were imputed rather than the limit of detection (LOD). The im-
puted data set was mean- centred and Pareto- scaled.

The ASD- NIR and Micro- NIR data matrices were standard nor-
mal variate (SNV) transformed [27] to remove the multiplicative 
interferences of scatter and particle size, and afterwards, mean- 
centred. Sample 68 was removed from the Micro- NIR data set 
since the instrument could not produce any measurement due to 
the very dark colour of the specimen. This paper aims to evalu-
ate NIR and FT- Raman spectroscopy, with XRF as response, for 
use in multivariate models for distinguishing geological samples 
without any other supportive information or data; therefore, UV 
and VIS wavelengths (ca. < 1,000 nm) of the acquired NIR spec-
tra were removed before starting the data analysis.

Both FT- Raman data sets were treated for non- linear scatter- 
effects by means of multiplicative scatter correction (MSC) [28], 

and afterwards, mean- centred. Some samples of the Bruker-  and i-  
Raman data sets (sample 03, and samples 35, and 37, respectively) 
were identified as outliers by direct spectra inspection. Afterwards, 
the FT- Raman data were inspected by PCA score plots resulting 
in the identification of samples 53 and 73 for Bruker- Raman, and 
samples 26, 39, 42, and 62 for i- Raman, as outliers.

2.3   |   Elemental and Mineral Composition 
Description

The characteristics and composition of the rock specimens are 
summarised in Tables S1 and S2. Their basic geology (magmatic, 
metamorphic, or sedimentary) and their basic mineral compo-
sition give them unique properties that can be differentiated in 
the latent structures of multivariate latent variable models (e.g., 
in the principal components of PCA models). To visualize these 
differences in the elemental composition and properties of the 
samples, a PCA model of the XRF data was generated as out-
lined below. The selected visualization to show the different 
composition and properties of the samples was a biplot, where 
both scores and loadings of the PCA model can be inspected and 
interpreted. The combination of scores and loadings in the same 
visual representation makes it possible to discriminate the clus-
ters of samples that are similar, as well as the elements related to 
each cluster (i.e., to each group of samples with similar composi-
tion and geological properties), see Figure 2.

2.4   |   Multivariate and Multi- Block Statistical 
Methods

Single- block and multi- block models based on partial least 
squares are constructed in this paper. The results of the single- 
block and multi- block multivariate latent models will be shown 

FIGURE 2    |    Biplot of a PCA model of the XRF data. The legend shows the colour used for each type of sample in relation to its base mineral. The 
X bottom axis and the Y left axis provide the score values for the first and third principal components (PC1 and PC3). The X superior axis and the Y 
right axis provide the loading values for PC1 and PC3 respectively. Points represent the samples, and arrows represent the variables (elements); only 
the most informative variables (Bal, Si, P, Ca, Fe, Mg, and Al) have been labelled, the rest (arrows for S, Cl, K, Ti, Mn, Zn, As, Ba, and Pb, located at 
the coordinates centre of the loadings) have not been labelled for better readability of the figure.
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as statistics of the models and visualizations of the scores (ta) 
and loadings (pa) obtained for each latent structure (model com-
ponent, a). The PCA model of the XRF data was computed and 
visualized using R (version 4.3.1). The PLS and HPLS models 
were calculated using MATLAB (version R2023a), and their vi-
sualizations were obtained utilizing either R (version 4.3.1) or 
MATLAB (version R2023a). VIP was calculated and visualized 
using MATLAB (version R2023a).

3   |   Results

3.1   |   Sample Characterization by XRF 
and Principal Component Analysis

Figure 2 illustrates the differences in elemental composition and 
properties of the 76 bedrock samples in a biplot of a PCA model 
originated from the XRF data set. The first principal component 
explained a 31.8% of variation, the second a 25.1%, the third 
a 15.8%, the fourth a 11.2%, and the fifth a 9.0%. The biplot of 
Figure 2 shows the relationships between samples (grouping of 
bedrock specimens), between variables (XRF elements, repre-
sented by black arrows), and between samples (specimens) and 
variables (elements). The sample points were coloured by base 
mineral, i.e., apatite, calcium- carbonate, carbon, hematite, mag-
netite, silicate, silicate with aluminium (Al), and silicate- carbon 
(which also contains Al). The black loading arrows point to the 
direction in which certain groups of samples separate from the 
others according to their elemental composition. Pie charts of the 
elemental composition for each one of the 76 bedrock specimens 
are available in Supporting Information 2; a few of them were 
inserted next to certain groups of samples in Figure 2 to provide 
a clearer view of their elemental composition. For instance, the 
biplot showed that hematite and magnetite specimens, compo-
sitionally rich in iron (Fe), clustered on the bottom- right corner 
of the biplot where the Fe variable was also located; whilst the 
apatite samples, enriched with calcium (Ca) and phosphorus 
(P), were clustered on the top of the biplot. It is worth noting 
that the inclusion of pie charts in the study provides additional 
external validation to the PCA model pattern recognition gener-
ated from the XRF data. As it can be seen in Figure 2, the PCA 
model identified Ca, Si, Bal (all elements with Z < 12) and Fe as 
the more informative variables for unsupervised sample char-
acterization. The first principal component (PC1) separated the 
specimens that contain mainly Bal and Si from the specimens 
that contain mainly Fe and Mg. Apatite samples have positive 
high score values for PC3; whilst hematite, magnetite and car-
bon samples have negative score values. The calcium- carbonate 
samples are located in the middle of the apatite and carbon clus-
ters. We would like to clarify that the biplot of PC1 and PC2 was 
inspected and also showed group separation; however, the use of 
PC1 and PC3 for the biplot seemed to show a few groups slightly 
clearer. In addition, the use of PC1 and PC3 for Figure 2 was also 
preferred because the spatial distribution of the scores in the plot 
made easier the insertion of the pie charts in the figure.

3.2   |   Single- Block PLS Models

Individual PLS models of the NIR and FT- Raman data sets, using 
the XRF data as response matrix, were generated. All models were 

leave- one- out cross- validated, and the number of optimal model 
components for each model was determined based on the values 
of root mean square error (RMSE) per latent variable and the total 
amount of variation explained by the model. Model cross- validation 
ensured a proper extraction of latent structures for obtainment 
of informative scores for further analysis; i.e., model validation 
helped to achieve model stability towards known and unknown 
sources of variation [29]. The PLS models were built using a re-
duced Y- block consisting of 16 (out of 42) XRF elemental variables; 
the 16 elements were selected based on their relative abundance 
in the Earth's crust and their relevance for environmental science. 
Sample 68 was excluded from the Micro- NIR PLS model because 
of having all its measurements missing as its dark colour made 
measurement with the Micro- NIR spectrometer impossible. In the 
FT- Raman PLS models, based on outliers' inspection, samples 03, 
53, and 73 were excluded from the Bruker- Raman model; and sam-
ples 26, 35, 37, 39, 42, and 62 from the i- Raman model.

A 11- component ASD- NIR PLS model and a 7- component 
Micro- NIR PLS model were computed. The ASD- NIR and the 
Micro- NIR PLS models explained a 99.4% and a 99.7% of the 
total X- variation respectively. Tables  S3 and S4 in Supporting 
Information 1 provide the values of RMSE and X-  and Y-  ex-
plained variation of the ASD- NIR and Micro- NIR PLS models 
for each model component, as well as the cumulated total ex-
plained variation from first to last latent variable extraction. 
Figure  3 represents the scores of the first two latent variables 
for the ASD- NIR and the Micro- NIR PLS models, the sam-
ple points were coloured by base mineral and given a specific 
shape according to their basic geology. For ASD- NIR, Figure 3a 
showed a clear cluster of magmatic silicates (blue circles) with 
low LV1 score values, whilst metamorphic carbon specimens 
(brown crosses) were clustered with high LV1 score values. 
Hematites (pink circles) were clearly grouped showing different 
mineral and geological properties. Silicate- carbon and calcium- 
carbonate samples were also clearly clustered, but not separated 
since their mineral and geological properties are more similar 
to the rest of samples than in the hematite samples case. Almost 
all specimens with both metamorphic and sedimentary proper-
ties (squared crosses) were clustered. However, apatites did not 
group as expected from their geological and mineral properties, 
and the magnetite sample was clearly separated from the hema-
tite samples despite similar elemental composition.

Micro- NIR (Figure  3b) also showed clustering for almost all 
magmatic silicate samples, and for all calcium- carbonate and 
carbon samples. However, this was not the case for the apa-
tite and hematite specimens; furthermore, the first five model 
components (LV1–LV5) were inspected in the Micro- NIR PLS 
model, and none of them separated apatite and hematite sam-
ples. We would like to emphasize that although the score plots 
were visualized for all components of all the models of this 
paper, only the figures related to LV1 and LV2 are shown for the 
sake of succinctness. Besides, the first two components were the 
most relevant ones for sample clustering. The models' outputs 
not shown here (such as scatter plots of scores, loadings, and 
biplots; as well as some relevant statistics) are available in the 
repository of Supporting Information 2.

Similar to NIR, a 15- component Bruker- Raman PLS model 
and a 7- component i- Raman PLS model were computed. The 
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Bruker-  and the i-  Raman PLS models explained a 87.8% and 
a 97.4% of the total X- variation respectively. The score plots 
for the first two model components (LV1 and LV2) are shown 
in Figure 4 (and the loading plots for LV1 and LV2 are shown 
in Figure  S7 of Supporting Information 1). Tables of RMSE 
and explained variation for X and Y of each PLS model are 
provided in Supporting Information 1 Tables  S5 and S6, the 
tables provide the statistics for each model component and 
the cumulated total explained variation from first to last la-
tent variable extraction. The scores represented in Figure 4a 
showed that Bruker- Raman clusters magmatic silicates bet-
ter than i- Raman (Figure  4b); however, i- Raman seems to 
capture the similarities between the two apatites better (re-
sulting in a more defined cluster). Calcium- carbonate and 
sedimentary silicate- carbon samples were well classified by 
both FT- Raman techniques. Interestingly, unlike ASD-  and 
Micro-  NIR, only Bruker- Raman was able to differentiate be-
tween metamorphic carbon specimens with very high content 
(ca. 96%) of Bal (samples 68 and 71) and metamorphic carbon 
specimens with not so abundant amounts of Bal (ca. 72%) and 
significant but minor presence of other elements; Figure  S8 
(Supporting Information 1) shows the elemental composition 
of the specimens of the metamorphic carbon group.

A variable importance on projection (VIP) [21] assessment was 
performed for each PLS model (all VIP plots are available in 
Supporting Information 2) to determine which were the most 
important wavelength and wavenumber variables for sample 

characterization. As example, we show the VIP plot for the 
Bruker- Raman PLS model (that uses the XRF data as response) in 
Figure S9, Supporting Information 1. The wavenumber variables 
with VIP > 1 a.u. (i.e., above the threshold red line of Figure S9) 
are the most contributing variables for unsupervised character-
ization of the specimens. The biplot shown in Figure  S10 is a 
visualization of the associations between the geological samples 
and some of the most relevant variables (wavenumbers) for the 
characterization of the Bruker- Raman data using partial least 
squares regression. The biplot clearly shows that LV4 explained 
the slates (giving them high scoring, which located them on the 
top of the plot) and the variables that helped to explain the slates 
were ca. 402–412 cm−1. The calcium- carbonates were explained 
in the range of 1,086–1,098 cm−1, and LV4 separated them from 
the rest by giving them very negative score values. LV2 sepa-
rated (giving low scores) the apatite (together with the quartz 
feldspar), see left side of the biplot (Figure S10), which was dis-
tinguished by the first wavenumbers of the Bruker- Raman spec-
tra. Figures S9 and S10 show evidence that VIP highlights the 
most important regions of the spectrum for the characterization 
and grouping of geological samples.

3.3   |   Multi- Block HPLS Model Using NIR, 
FT- Raman and XRF Data

To evaluate whether the two NIR and two FT- Raman data sets 
could support each other to yield a latent model with better 

FIGURE 3    |    PLS scores for LV1 and LV2 for the (a) ASD- NIR and (b) Micro- NIR models. Samples are represented by points coloured according 
to base mineral and shaped according to basic geology. Magmatic specimens are represented by circles, metamorphic by crosses, metamorphic/mag-
matic by circled crosses, sedimentary by squares, and metamorphic/sedimentary by squared crosses.
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interpretability and higher characterization/grouping power, a 
multi- spectra HPLS model (i.e., including NIR, FT- Raman and 
XRF) was built using as super X- matrix the 38 X- scores of four 
sub- level individual (single- block) PLS models, with only 66 of 
the 76 samples (i.e., excluding the outliers 03, 26, 35, 37, 39, 42, 
53, 62, 68, and 73), and as super Y- matrix the corresponding Y- 
scores (with the purpose of summarizing the overall structure 
of the XRF data). Since the scores obtained from the PLS mod-
els came from different spectrometers, they were scaled prior 
to multi- block modelling. The HPLS model was leave- one- out 
cross- validated, and 14 latent structures (model components) 
were extracted. The number of optimal model components was 
determined according to RMSE and explained variation values 
for each latent variable. The HPLS model explained a 73.1% 
of the total X- variation and an 85.4% of the total Y- variation. 
Table S7 shows the RMSE values and the X-  and Y-  explained 
variation, which comes from both the NIR and FT- Raman spec-
tra (so, the multi- block model fuses the information contained 
in the latent structures of the four spectra, i.e., the two NIR and 
the two FT- Raman), for each HPLS model component. As a sen-
sitivity analysis, the HPLS modelling was repeated using the 
scores of sub- level individual (single- block) PCA models to de-
termine whether a better grouping could be achieved; the results 
(Figure S11 in Supporting Information 1) were not significantly 
better than using the scores of sub- level individual PLS models.

The 14 super- scores and super- loadings obtained after running 
the HPLS model were inspected. Figure  5 shows the HPLS 

super- scores plot for the first two model components (LV1 and 
LV2), that come from the X-  and Y-  scores of the four indi-
vidual, single- block PLS models (ASD- NIR vs. XRF, Micro- 
NIR vs. XRF, Bruker- Raman vs. XRF, i- Raman vs. XRF). The 
HPLS super- loadings scatter plot for LV1 and LV2 is shown in 
Figure S12a. The multi- block approach yielded a cleaner group-
ing of the samples according to base mineral and basic geol-
ogy than the score plots previously inspected for each original 
single- block PLS model (Figures 3 and 4). The HPLS model, 
where both NIR and FT- Raman variances complemented each 
other, provided a complete characterization of the geological 
samples in one unique model. Magmatic silicates, hematites, 
calcium- carbonates, and metamorphic carbon specimens 
were clearly grouped in Figure 5. Due to the removal of sam-
ple 68, the ability of the model to separate the two types of 
carbon samples could not be assessed. Sedimentary and mag-
matic bedrocks formed more concentrated clusters than met-
amorphic, and LV1 separated non- silicate samples (apatites, 
calcium- carbonates, hematites, magnetites) from the three 
groups of silicates. LV2 separated hematites (that contain more 
than 64% of Fe, see Figure S13) from apatites (Figure S14) and 
calcium- carbonates (Figure S15), with high content of Ca, and 
without Fe (except the apatite sample 65 that, due to its 7.7% 
of Fe, was assigned lower LV2 scores than the other samples 
in the same group). The carbon samples (Figure S8), interest-
ingly, also separated according to their elemental composi-
tion; having sample 70 (the only one that contains Fe) lower 
LV2 score values than samples 70 and 76. Therefore, even if 

FIGURE 4    |    PLS scores for LV1 and LV2 for the (a) Bruker- Raman and (b) i- Raman models. Samples are represented by points with colour accord-
ing to base mineral and shape according to basic geology. Magmatic specimens are represented by circles, metamorphic by crosses, metamorphic/
magmatic by circled crosses, sedimentary by squares, and metamorphic/sedimentary by squared crosses.
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there may be more chemical interactions that could be dis-
cover by looking at this and other score plots provided by the 
HPLS model, it seems reasonable to think that LV1 explains 
the content of Si in the samples, and LV2 explains the content 
of Fe in them. This interpretation is supported by the fact that 
Si and Fe are two of the strongest responses in the multi- block 
model. It is worth noting that the score values of LV2 also in-
crease when Ca content increases in the samples.

3.4   |   Dimensionally Reduced VIP- HPLS Model

The variable importance on projection (VIP) method was 
used to select the most relevant PLS score- variables from the 
first HPLS model. VIP selected 14 out of the 38 PLS scores 
(X- variables of the HPLS model) as important for the multi- 
block model (the 14 score- variables are named in the Y- axis 
of Figure 6). Variables that had a VIP value higher than 1 a.u. 

FIGURE 5    |    Super- scores plot of a 14- component HPLS model using 38 PLS scores from the four individual PLS models. The first model compo-
nent (LV1) is represented in the X- axis, and the second (LV2) in the Y- axis. The legends indicate the colour for each base mineral category, and the 
shape for each basic geology type.

FIGURE 6    |    Variable influence on projection (VIP) bar plot for the HPLS model generated from the 38 PLS score- variables of the four individual 
PLS models. The 38 score- variables are indicated as features in the Y- axis, and the corresponding VIP values are indicated in the X- axis. A red vertical 
line marks the threshold for importance at VIP = 1. The colours of the bars indicate which data set each feature (score- variable) comes from (ASD- 
NIR in red, Micro- NIR in yellow, Bruker- Raman in dark blue, and i- Raman in light blue).
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(red vertical line in Figure 6) were identified as important for 
model interpretation and sample characterization/grouping.

A new HPLS model was generated using only the 14 PLS score- 
variables selected by VIP from the first HPLS model. This 
second model was significantly stronger than the first HPLS 
model explaining all (100%) the X- variation of the NIR and 
FT- Raman data, however it explained slightly less Y- variation 
(68.7%) of the XRF data. The explained variation (total and 
per model component) of the HPLS model dimensionally re-
duced by VIP is shown in Table S8 of Supporting Information 
1. From the inspection of the first two super- scores of the 
VIP- reduced HPLS model, it was noticed that they explained 
more variation (19.6% and 17.0%) than their analogous model 
components in the first HPLS model (which explained 8.4% 
and 7.7%). Figure 7 shows the super- scores for LV1 and LV2 of 
the VIP- reduced HPLS model (the corresponding loadings are 
shown in Figure  S12b, Supporting Information 1). In terms 
of sample grouping according to base mineral and basic geol-
ogy, the results were similar to the first HPLS; however, the 
VIP- reduced model separated the magmatic silicates with Al 
(represented by grey circles in Figure 7) from the ones without 
Al (blue circles) better than the first HPLS model (Figure 5). 
Besides, less variables (14 PLS scores instead of 38) explained 
more NIR and FT- Raman spectral variation, in a stronger and 
a more parsimonious VIP- refined HPLS model.

In terms of model interpretation and model ability to explain 
the variance coming from the different spectroscopic tech-
niques, a summary of the number of model components (a.k.a. 
latent variables, LV), percentage of explained X- variation 
(R2X), and percentage of explained Y- variation (R2Y), for each 
model is shown in Table 2. Both NIR PLS models explained 
more than 99% of the total variation contained in the NIR 
spectra. For FT- Raman, the i- Raman PLS model explained 
more total variation (97.4%) contained in the spectra than the 
Bruker- PLS model (87.8%). For the multi- block HPLS mod-
els, the reduction of dimensionality by applying VIP variable 
selection highly impacted the interpretability of the model. 

The HPLS and the VIP- refined HPLS models were both built 
with the same number of components; hence, they are fully 
comparable. The first HPLS explained a 73.1% of NIR and FT- 
Raman spectral variation using 38 variables (PLS scores); how-
ever, the VIP- refined HPLS model explained all (100%) of the 
NIR and FT- Raman spectral variation contained in the multi- 
modal spectral data using only 14 variables, which represents 
a 26.9% of increase for model interpretability. This increase 
may likely explain the slightly better characterization/group-
ing of the samples obtained by the VIP- refined HPLS model. 
An easy comparison of the clustering ability of the single- 
block and the multi- block PLS- based approaches is offered 
by Figures S16–S18 of Supporting Information 1, where some 
geological groups of specimens have been manually indicated 
in score plots for the PLS, the HPLS, and the VIP- HPLS cases; 
showing how the characterization/grouping of the geological 
specimens becomes more informative and precise when the 
multi- block HPLS model is used rather than a single- block 
PLS model, and afterwards, more detailed clusters (e.g., clus-
ters discriminating types of silicates) are obtained when using 
the VIP method to generate a refined HPLS model.

FIGURE 7    |    Super- scores plot of a 14- component HPLS model using only 14 PLS scores from the four individual PLS models (ASD- NIR vs. XRF, 
Micro- NIR vs. XRF, Bruker- Raman vs. XRF, i- Raman vs. XRF). The first model component (LV1) is represented in the X- axis, and the second (LV2) 
in the Y- axis. The legends indicate the colour of each base mineral category, and the shape of each basic geology type.

TABLE 2    |    Total number of model components (LV), percentage of 
explained X- variation (R2X), and percentage of explained Y- variation 
(R2Y) for the single- block PLS models and the multi- block HPLS models.

Model LV R2X R2Y

ASD- NIR PLS 11 99.4 52.5

Micro- NIR PLS 7 99.7 23.7

Bruker- Raman PLS 15 87.8 77.3

i- Raman PLS 7 97.4 43.1

HPLS 14 73.1 85.4

VIP- refined HPLS 14 100.0 68.7
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4   |   Discussion

In this paper we investigated the potential use of multi- block 
chemometric methods to provide improved unsupervised char-
acterization of compositionally complex materials through the 
integration of multi- modal spectrometric data using geologi-
cal samples, with elemental composition determined by XRF, 
as an exemplar data set. The single- block modelling approach 
was based on partial least squares regression, the multi- block 
approach on hierarchical PLS modelling, and the multi- block 
dimensionality reduction for enhanced characterization/
grouping on variable influence on projection feature selection.

4.1   |   PLS Model Performance for Characterization 
of Samples in Single- Spectral Data

Partial least squares projections to latent structures  [18, 19] is 
commonly used for data interpretation, multivariate calibration, 
prediction of a response matrix Y from a descriptive matrix X, pat-
tern recognition, and discriminant analysis. A PLS model decom-
poses the data matrices in their latent structures (latent variables, 
a.k.a. model components) that explain the different properties or 
sets of information (variance) of the data. Each LV is calculated 
as the product of the scores (t) and transposed loadings (p') for 
each model component a, i.e., LVa = ta pa'. These latent variables 
are interpreted by generating multi- dimensional visualizations 
and inspecting their associated statistics. For our spectrometric 
data, this inspection led to the conclusion that each of the four 
spectroscopic techniques (ASD- NIR, Micro- NIR, Bruker- Raman 
and i- Raman) was able to characterize/group certain, but not all, 
geological samples types. In this paper, we have aimed to an unsu-
pervised sample characterization/grouping, based on the fact that 
a PLS regression can be carried out with or without pre- defined 
classes (categories), as explained in the Introduction. PLS can be 
used for supervised classification, known as partial least squares 
discriminant analysis (PLS- DA), which requires the classes to be 
pre- defined; and then, these classes are used for separating the 
samples in a multi- dimensional space. On the other hand, PLS can 
be run without pre- defined classes (which in this paper is named 
“unsupervised” in terms of sample grouping), i.e., without any 
previous knowledge of the existent classes in the data; therefore, 
these PLS models perform a totally data- driven characterization/
grouping of the samples, which is preferred in fields such as geol-
ogy or archaeology. It is also important to highlight that in order 
to have an adequate sample characterization in the hierarchical 
modelling context of this paper, several model validation strategies 
were followed [29]. In this paper, we used the PLS models also to 
assess the performance of the different spectroscopic techniques 
for examining and grouping geological samples. And, in addition, 
we found evidence that variable influence on projection (VIP) ap-
plied on PLS models highlights the most important regions of a 
spectrum for unsupervised characterization of geological samples.

4.2   |   Multi- Block HPLS Models for Sample 
Characterization in Integrated Multi- Spectral Data

We hypothesised that multi- block approaches would allow 
better discriminate of compositionally complex materials 

through the integration of multi- modal spectrometric data. 
For testing this in our multi- modal spectrometric data, a hi-
erarchical multi- block approach based on the PLS formalism 
was adopted. Hierarchical partial least squares (HPLS) [20] is 
a muti- block modelling technique that generates latent models 
of the original data matrices (sub- level modelling) and applies 
the PLS algorithm to the resulting scores (super- level model-
ling). In this paper, the generation of the HPLS models started 
by generating sub- level individual PLS models, all of them 
with the same samples, for each NIR or FT- Raman data set 
(block) using the XRF data as response block. The scores from 
these individual PLS models were then used as super- variables 
to form super- matrices that became the imputed X and Y data 
matrices in the HPLS model. The outputs of the HPLS model 
were super- scores and super- loadings able to explain the rela-
tions of the geological specimens and group them based on 
the information provided by both NIR and FT- Raman spec-
tral data, rather than using only the information of one single 
type of spectroscopy. This yielded a holistic sample grouping, 
where the limitations of the individual NIR/Raman PLS mod-
els to cluster certain groups were overcome. Besides, it made 
the interpretation of the clusters easier and parsimonious 
providing a more complete characterization, yet not perfect, 
in one single model integrating NIR and Raman variances. 
This HPLS approach also allowed for an assessment, through 
the inspection of loadings and scores, of which spectroscopic 
techniques are more suitable for identifying and classifying 
different geological samples.

4.3   |   Variable Influence on Projection (VIP) 
for Achieving Improved Sample Characterization in 
Multi- Spectral HPLS Models

Multi- block models based on the partial least squares al-
gorithms (such as PLS, PLS- DA, O2PLS, OnPLS, etc.) often 
benefit from variable/feature selection methods, such as VIP 
[21, 30] or MB- VIOP [22], to enhance their interpretability 
and/or classification power. To improve the sample charac-
terization of our geological samples, the variable influence on 
projection (VIP) method was used to select the most import-
ant variables to explain and cluster the bedrock specimens. 
VIP is a variable selection method that works with both PLS 
and HPLS models since they have the same statistical princi-
ples. A feature- reduced second HPLS model was built using 
only the PLS scores (used as X super- variables of the HPLS 
model) that were assessed as important by the VIP algorithm 
(i.e., with VIP value > 1 a.u.). This second HPLS model was to 
evaluate whether the same (or better) characterization/group-
ing could be obtained with a multiblock model using only a 
reduced number of VIP selected PLS scores (i.e., using less X 
super- variables). We found that the HPLS model built with 
the VIP- selected PLS scores (i.e., with lower dimensionality) 
achieved a better unsupervised sample characterization than 
the original HPLS model, without any disadvantage when 
compared to the original model. Due to have lower dimen-
sions, the VIP- refined HPLS model is computationally more 
efficient than the original HPLS model, with more easily in-
terpretable loading plots thanks to the reduced number of 
features.
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4.4   |   Multi- Disciplinar Applicability 
of Multi- Block HPLS and VIP- HPLS Models 
for Sample Characterization

When comparing the single- block and the multi- block strat-
egies, the HPLS models, where both NIR and FT- Raman 
variances complement each other, provided a more complete 
clustering of the geological specimens. Multi- block modelling 
showed advantages for building more parsimonious models, 
which made them easier to interpret; as well as more com-
putationally efficient, potentially allowing the adoption of 
this approach to multi- modal spectrometric data sets across 
numerous scientific disciplines. In addition to the component- 
wise dimensionality reduction achieved by the extraction 
of the latent structures contained in our compositionally 
complex multi- modal data, a post- modelling VIP feature- 
wise dimensionality reduction was carried out, reducing the 
roughly 3700 original measured wavelengths and wavenum-
bers (variables used in the four single- block PLS models) to 
14 input variables (PLS scores of the sub- level individual 
models) used in the VIP- simplified HPLS model. Therefore, 
simplicity and efficiency were achieved without any loss of 
information.

Spectroscopic techniques have some limitations due to sample 
incompatibility with the instrument, size, shape and colour, or 
the analytical approach. Some of these challenges can be over-
come by using other non- destructive techniques, such as hy-
perspectral imaging [31, 32], with the adoption of chemometric 
methods, based on projections and latent structures  [29, 33]. 
However, hyperspectral instruments are less available and so 
there remains merit in combining different types of spectros-
copy from more widely used instruments (e.g., NIR, FT- Raman, 
and XRF) with multi- block chemometric methods as an afford-
able and efficient alternative.

In conclusion, here we analysed five multi- modal spectromet-
ric data sets (originated by two NIR, two FT- Raman, and one 
XRF instruments) with PLS and HPLS models and found that 
the combination of NIR and FT- Raman spectra, using XRF data 
as response, in HPLS multi- block models resulted in a good 
unsupervised (i.e., in this paper's context, without any need 
to pre- define sample classes or categories) characterization/
grouping of the samples. This PLS multi- modal chemometric 
approach had the advantage of providing a single, parsimoni-
ous, and more efficient multi- block model (HPLS), rather than 
several (and not so efficient) single- block models (PLS). The 
second main finding confirmed that reducing the multi- block 
HPLS model dimensions by applying the variable influence on 
projection (VIP) method improved the model interpretation, as 
well as the characterization of certain groups of samples, such as 
the silicates. We would like to emphasise that the methodology 
evaluated in this paper applied to geological and archaeological 
data, is also compatible with any type of multivariate data across 
a broad range of fields, such as environmental chemistry, phys-
ics, omics, medicine, or artificial intelligence, where integration 
of multi- modal data presents the opportunity to improve sam-
ple characterisation/grouping (as within this study), and to help 
uncover causal relationships between environmental source/
chemicals and biological responses.
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