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Abstract
According to differences in life history and species niches, community assembly processes 
are predicted to differ between common and rare species. While neutral processes, in 
particular dispersal, should contribute strongly to assembly of rare species, environmental 
filtering (species sorting) should dominate the community assembly of common species. 
We analysed commonness and rarity by occurrence, abundance and geographic range 
among 82 fish species in 1871 European lakes and reservoirs. The common 25% (21 
species) were excluded, and structure and assembly processes of the 75% rare (61 spe-
cies) species occurring in 348 lakes were evaluated. General linear latent variable models 
indicated that environmental variables related to lake type (lakes vs. reservoirs), climate 
and ecosystem size predicted a large proportion of variance for both rare species pres-
ence/absence and abundance models, while spatial variables (co-occurrence in watersheds) 
contributed little to the models. To link community structure with assembly processes, the 
contribution of seven fish traits related to life history, feeding and habitat preference to 
predicting the geographic range of the rare species was analysed by boosted regression 
trees. Intermediate average fecundity and high maximum body length of species predicted 
smaller geographic range and hence a higher level of rarity, but the response curves of the 
variables were mostly non-linear and difficult to interpret. In contrast to our assumption, 
the results of the dominant assembly processes and predictors for rare species were very 
similar to those predicted for the common fish species in lakes at the continental scale.
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Introduction

Macroecology as a discipline investigates the relationship between patterns of species dis-
tributions and the underlying processes forming the respective communities (McGill 2019). 
As an example, geographic patterns in community composition can be caused by several 
processes, including dispersal, environmental filtering and species interactions (Stegen et al. 
2013; Chang and HilleRisLambers 2016). Another class of process contributing to forming 
local communities is contingency, for example evolutionary history, stochasticity or past 
glaciations that affect patterns of species occurrences. By adopting the terminology from 
evolutionary biology, a conceptual synthesis suggested that the community composition 
of species can be influenced by selection, drift, speciation and dispersal (Vellend 2010). 
Selection represents deterministic differences in fitness among species, drift represents sto-
chastic changes in species abundance, speciation creates new species, and dispersal is the 
movement of organisms across space. However, since these processes can usually not be 
observed directly in natural ecosystems, the relative importance of the processes has to be 
inferred from patterns of community composition along environmental, spatial and tempo-
ral gradients (Crisfield et al. 2024).

Many studies on community assembly processes focus on the occurrence and distribu-
tion of common species (Cottenie and De Meester 2003; Mehner et al. 2021a). These highly 
frequent species can be found in many locations, often have high local abundances and are 
easy to detect and capture by monitoring approaches, such that mapping their occurrences 
creates robust patterns (Gaston 2011). Accordingly, the spatial patterns of species richness 
are predominantly caused by common species (Lennon et al. 2004). In contrast, frequently, 
the majority of species in a given region can be considered rare, having low occurrence, 
narrow range and low local abundances (Magurran and Henderson 2003; Callaghan et al. 
2023). However, rare species make significant contributions to ecosystem functions and 
processes (Mouillot et al. 2013; Dee et al. 2019) and are often the focus of conservation 
activities (Eken et al. 2004) because they are particularly vulnerable to rapid declines or 
even extirpations in response to anthropogenic stressors. If rare species can be identified 
and classified properly (Maciel 2021), effective measures targeted at protecting these spe-
cies from extirpation can be introduced (Kunin and Gaston 1993; Prendergast et al. 1993; 
Pritt and Frimpong 2010).

A few studies have tested the link between the patterns of commonness and rarity of spe-
cies and the dominant processes contributing to community assembly. General hypotheses 
are that the occurrence of common species is driven by niche-based processes and high 
dispersal and colonisation rates, while rare species are more affected by neutral processes 
(stochastic drift of population parameters) and a limited colonisation potential due to the 
low number of propagules (Santoul et al. 2005; Siqueira et al. 2012; van Galen et al. 2023; 
Iop et al. 2024). Furthermore, large-scale spatial distribution often differs between rare and 
common species (Prendergast et al. 1993; Jetz and Rahbek 2002), presumably caused by a 
need for specialised habitats and an overall lower reproductive capacity or poorer dispersal 
abilities of rare species (Gaston and Lawton 1990; Kunin and Gaston 1993; Magurran and 
Henderson 2003; Lennon et al. 2004).

However, the definition of rarity is not straightforward. One of the most comprehensive 
classification schemes considering rarity as a multidimensional phenomenon was provided 
by Rabinowitz (1981), who distinguished between three rarity dimensions – local abun-
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dance, habitat specificity and geographic range – and classified species by combining the 
three dichotomised dimensions in eight possible groups. According to this scheme, only 
generalists with large local abundance and wide geographic range would be considered 
common, while the seven other combinations of the three dimensions would indicate vary-
ing forms of rarity. Although the scheme has been applied in several studies (Harnik et al. 
2012; Reed et al. 2020; Sykes et al. 2020), it has also been criticised because it classifies 
rarity based on patterns but does not elucidate the underlying processes generating these 
patterns (Crisfield et al. 2024). To overcome this limitation, a conceptual improvement of 
rarity dimensions has recently been suggested, which addresses several limitations of pre-
vious concepts (Crisfield et al. 2024). By considering the three rarity dimensions, local 
abundance, occupancy and geographic range, as patterns along an increasing spatial scale, 
inference of underlying processes is built on the link between the functional traits of species 
and community assembly processes. In particular, occupancy and range size are assumed 
to be reflected by traits related to movement and niche breadth (tolerance) (Crisfield et al. 
2024).

We apply this recent concept to define rarity based on the dimensions of local abundance, 
occupancy and geographic range to study the rarity patterns of fish species in European 
lakes. We evaluate the patterns of community composition and species distribution in 1871 
lakes and define commonness or rarity of the species according to rankings along these three 
dimensions. Model-based inference on niche-based or dispersal-related assembly processes 
based on the distribution patterns of all fish species would reflect the processes driving the 
assembly of common species because of their strong numerical dominance in the dataset. 
Therefore, the subsequent analytical steps excluded the distribution data of the most com-
mon species and focused on local abundance, occupancy and geographic range of only 
the rare species. To infer processes from the patterns, we used multivariate latent variable 
models to identify environmental and spatial predictors for rare species occurrence and local 
abundance that would suggest environmental filtering and dispersal limitation. Finally, we 
evaluated the contribution of traits related to movement, tolerance and life history to the 
rank of geographic range and abundance patterns among common and rare fish species com-
bined. By this approach, we intend to link processes of community assembly to patterns of 
rarity and to compare, in the discussion, the patterns and drivers of rarity of fishes with those 
found for 19 common fish species in the same set of European lakes (Mehner et al. 2021a).

Materials and methods

Field sampling and abiotic predictors

We used a dataset of fish communities in 1943 European lakes and reservoirs accumulated 
from standardised fishing by multi-mesh gillnets used for ecological classification accord-
ing to the European Water Framework Directive (Brucet et al. 2013; Mehner et al. 2017). 
Details of background, methods and basic fish community structure have been summarised 
earlier (Argillier et al. 2013; Brucet et al. 2013; Mehner et al. 2017). The lakes were sampled 
between 1995 and 2012. If more than one survey was conducted in a lake, we used the most 
recent survey. In short, the fishing effort (number of nets per lake) was standardised accord-
ing to lake area and depth, and fishing was performed using 30 m long and 1.5 m high ben-
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thic multi-mesh gillnets with 12 mesh sizes in a geometric row between 5 mm and 55 mm 
(CEN 2015). The nets were placed at the lake bottom. In lakes with a maximum depth larger 
than 6 to 10 m, additional pelagic gillnets were used, being either 1.5 m, 3 m or 6 m high and 
with the same mesh sizes as the benthic ones (the 5 mm mesh section being omitted from the 
3 m and 6 m nets). The catch data were converted into a presence/absence (p/a) matrix per 
fish species and lake. Relative abundances per fish species and lake were expressed as catch 
per unit effort (CPUE, individuals per net and night). If both benthic and pelagic nets were 
applied in a lake, CPUE was the arithmetic average of catches from both habitats. Arithme-
tic averaging was applied to weight the abundances of pelagic species appropriately, which 
are often underestimated by the low fishing effort by pelagic in comparison with benthic 
gillnets (Alexander et al. 2015).

Complete information useful for the purpose of our study was available from a total 
of 1871 locations in 13 European countries, i.e. Denmark, Estonia, Finland, France, Ger-
many, Italy, Norway, Portugal, Republic of Ireland, Slovenia, Spain, Sweden and United 
Kingdom. Among these lakes, 1755 were natural and 116 were artificial (mostly reservoirs, 
some gravel pits, Fig. 1). Therefore, we included the lake type (natural or artificial) as a 
predictor in our analyses, to evaluate whether naturally assembled communities differ from 
those assembled by the artificial creation of lakes. We added another five environmental 
predictors, namely altitude (m above sea level), minimum and maximum annual air tem-
perature (°C) at the lake location, lake area (km²) and lake maximum depth (m) (overview 
Supplementary Information Table S1), taken from national databases. Air temperature was 
calculated using the Climatic Research Unit (CRU) model (New et al. 2002) based on tem-
perature records for the years before 2008, thus matching the period when the lakes were 
sampled. The model we applied had a spatial resolution of 10’ latitude and (or) longitude 
and considered elevational differences between stations (New et al. 2002). The dataset con-
tained only lakes with pH > 6 to exclude the potential effect of anthropogenically induced 
acidification on fish communities. Originally acidified lakes with current pH > 6 because of 
mitigation by regular liming were included because the first liming generally started 5–30 
years before the present fish sampling (Holmgren et al. 2016). Information on the produc-
tivity of lakes estimated as total phosphorus (TP) concentration (mg m− 3, obtained from at 
least four samples across the seasons per year) was available only for 1109 out of the 1871 
lakes (Supplementary Information Table S1). Accordingly, we did not include TP concentra-
tion as a predictor in the subsequent analyses.

Rarity ranking of species

We calculated three metrics of rarity for the fish species in the 1871 lakes. Rarity by occur-
rence was evaluated by counting the number of lakes in which a certain species was caught 
(Jeliazkov et al. 2022). We used this metric as an approximation to occupancy defined as 
the occupied proportion of habitat patches within a species’ range (Crisfield et al. 2024). 
This definition of occupancy based on observed species ranges creates problems for spe-
cies occurring only once since they would have an occupancy of 100% and a geographic 
range of zero. Because the real (instead of observed) ranges of all species are unknown, we 
consider the geographic extent covered by the sampled lakes as an identical range for all 
species; hence, the species occurrences in the set of 1871 lakes was considered an estimate 
of proportional occupancy. Rarity by abundance was calculated from the species-specific 
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CPUE per lake by summing CPUE per species per lake across all lakes. This approach gives 
the same ranking among species as when calculating the arithmetic average CPUE among 
all lakes in which the species was present. Rarity by geographic range was evaluated from 
the convex hull (km²) of decimal latitude and longitude of occurrence data per species by 
using the R-package ‘GeoRange’ version 0.1.0.  (   h t t p s : / / C R A N . R - p r o j e c t . o r g / p a c k a g e = G e 
o R a n g e     ) . In this way, the geographic range estimated per species is smaller than the geo-
graphic extent of the sampled lakes because it is based on observed occurrences.

We ranked the 82 species (see results) in the three rarity matrices (occurrence, abun-
dance, range) by giving the most common species the highest ranks, such that rare species 
had low ranks. We then summed the ranks per species across the three matrices and ranked 
the 82 species to obtain a combined rarity rank. The 21 (25% of 82 species) species with 
the highest rank sums were considered common (Magurran 2004), while the remaining 61 

Fig. 1 Map of Europe with an overview of the geographic location of the 1871 sampled natural lakes 
(quadrat, n = 1755) and reservoirs (dots, n = 116) and the number of rare fish species per location (occur-
rence in n = 348 locations) indicated by the colour scale
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species (75%) were considered rare in the subsequent analyses (Siqueira et al. 2012; Iop 
et al. 2024). More strict boundaries to define rare species have been applied and discussed 
(e.g., the 25% least frequent species) (Gaston and Lawton 1990); however, the frequency 
distribution of species occurrences (see results) indicates that of the 21 least frequent spe-
cies in our dataset each occurred in only one or two lakes, and hence these patterns would 
be inappropriate for the intended inference of underlying community assembly processes.

Exploring environmental and spatial effects by latent variable models

We created matrices of occurrence and abundance for the 61 rare species and excluded the 
1523 lakes in which only common species were found. We analysed the effect of the six 
environmental predictors on the occurrence and abundance of the 61 rare species in the 
remaining 348 lakes (290 natural lakes, 98 artificial lakes, mainly reservoirs, Supplemen-
tary Information Table S1) by multivariate generalized linear latent variable models (gllvm) 
using the R-package ‘gllvm’, which is based on a maximum likelihood framework (Niku 
et al. 2019). The five continuous predictors were centred and scaled. Our previous work on 
abiotic predictors indicated that (log)linear relationships properly describe the effects on 
fish communities (Mehner et al. 2005, 2007, 2016); hence, we did not include unimodal 
(quadratic) terms. For the occurrence data, we applied a binomial distribution with three 
latent variables and Laplace approximation. For the abundance data, we used tweedie dis-
tributions with power = 1.4 and two latent variables by applying the enhanced variation 
approximation method. The number of latent variables and the underlying distributions 
including the power exponent of tweedie distributions were optimised by testing several 
models and by checking convergence, Akaike Information Criteria (AIC) and residual diag-
nostics among the model results.

To account for the effects of spatial distribution of lakes within watersheds and thus to 
address potential dispersal limitation, we assumed that communities of rare species in lakes 
within the same river basin were more similar than rare fish communities in lakes from dif-
ferent river basins, reflecting stronger dispersal within than among river basins. We recorded 
the river basins to which the lakes belong based on the geographical coordinates of lakes 
and river basins. These data were obtained from Catchment Characterization and Modelling 
(CCM) data version 2.1 provided by EU Joint Research Centre (JRC,  h t t p : /  / c c m .  j r c . e c  . e u 
r  o p a . e  u / p h p  / i n d e x  . p h p  ? a c t i o n = v i e w % 2 6 i d = 2 3). The spatial correlation within river basins 
for the gllvm was accounted for by adding random row effects per river basin to the model, 
analogous to a random intercept in mixed models. This approach was similar to the methods 
we applied when studying the common fish species in European lakes (Mehner et al. 2021a).

For both occurrence and abundance matrices, we created four hierarchical gllv models. 
For basic comparison, we ran a model without environmental or spatial predictors, equiva-
lent to an unconstrained ordination. Then we added either environmental or spatial predic-
tors separately to the unconstrained ordination. The fourth model was run by combining 
spatial and environmental predictors. The most parsimonious model was selected according 
to the lowest Akaike Information Criterion (AIC). Furthermore, we compared the reduction 
in trace of the residual covariance matrix of the models with predictors relative to the trace 
of the unconstrained ordination models to evaluate the amount of variation accounted for by 
the environmental and spatial predictors (‘gllvm’ vignette,  h t t p s :  / / c r a  n . r - p r  o j e c  t . o r g  / w e b /  p 
a c k a g  e s / g  l l v m /  v i g n e  t t e s / v  i g n e  t t e 1 . h t m l). We plotted the residual diagnostics of the finally 
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selected models (residuals against linear predictors of fitted values, a Normal Q-Q plot of 
residuals with a simulated point-wise 95% confidence interval envelope, residuals against 
row index and column index and scale-location plot) to inspect how appropriately the mod-
els fit the datasets. Plots of environmental model coefficients were created to check which 
predictor had a significant positive or negative effect on the 61 rare fish species. All analyses 
were conducted in R version 4.2.2 (R Development Core Team 2022).

Effect of fish traits on rarity dimensions

We compiled information on maximum fish length (log10, in cm), maximum fecundity 
(log10 number of eggs per female), age at maturity (years) and average trophic level (lev-
els 2–5 reflecting the position in the trophic pyramid, with high levels indicative of top 
predators) from FishBase (Froese and Pauly 2022) by the ‘rfishbase’ package (Boettiger 
et al. 2012). If more than one value was available, arithmetic averages were calculated. 
We added habitat preference for either estuaries or rivers and streams as binary variables 
(1 = preferred, 0 = non-preferred) to find out whether the geographical range of species was 
related to preference of freshwater habitats other than lakes. Finally, we added the native 
status for the 82 species, coding non-native = 1 for all species alien (but not translocated) to 
the countries included, with coding = 0 otherwise (Trochine et al. 2018). These seven traits 
refer to tolerance (habitat specificity, trophic level, native status), movement (size) and life 
history (fecundity, age at maturity) and are assumed to link processes that form rarity with 
rarity patterns (Crisfield et al. 2024).

To infer whether these traits predict range size (Crisfield et al. 2024), the rank of all com-
mon and rare species with respect to the convex hull area of geographical range was used 
as the response variable in boosted regression trees (BRTs), while the seven variables char-
acterising trait variability of fish species were used as predictors. Boosted regression trees 
are robust to combinations of categorical and continuous data and interactions between vari-
ables, and they are not affected by the distribution of the data (De’ath 2007). The approach 
of Elith et al. (2008) and the stepwise procedure provided in the tutorial by Elith & Leath-
wick ( h t t p s :  / / r s p  a t i a l .  o r g /  r a s t e  r / s d m  / 9 _ s d m  _ b r t  . h t m l) in combination with the r-packages 
‘gbm’ (Ridgeway 2006) and ‘dismo’ (http://rspatial.org/sdm/) were employed to find the 
optimal number of trees. Tree complexity was set at three with learning rates of 0.001, and 
with the bag fraction set at 0.75, meaning that each individual tree was constructed using 
75% of the data (Elith et al. 2008). Several other combinations of bag fraction, learning rate 
and tree complexity were tested, but they had a poorer performance than the ones combined 
here. Partial dependence plots of fitted function versus observed values for variables sig-
nificantly predicting the response variables were prepared, seeking to present the influence 
uniquely attributable to a single predictor. This procedure was repeated with the rank of 82 
fish species abundances as response variable.

Graphical outputs of results was created by the R packages ‘ggplot 2’ (Wickham 2016), 
‘corrplot 0.92’ (Wei and Simko 2021) and ‘rnaturalearth 0.3.1’ (Massicotte and South 2023) 
in R version 4.2.2 (R Development Core Team 2022).
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Results

In total, we found 85 fish species or genera in the 1871 lakes. We excluded cyprinid hybrids 
and removed a few entries where only genus level was mentioned (Abramis spp., Cottus 
spp.), the total dataset thus encompassing 82 species (Supplementary Information Table 
S2). Salmo trutta included both potamodromous and anadromous forms of brown trout. 
Coregonus lavaretus was used as a replacement species to combine all lacustrine whitefish 
species of the Baltic and North Sea basins, in part because of unclear taxonomy (Kottelat 
and Freyhof 2007; Mehner et al. 2018), which often leads to incorrect or incomplete spe-
cies determination in fish surveys. Fish grouped as Arctic charr (Salvelinus alpinus) may, in 
some Alpine lakes, correctly be determined as Alpine charr (Salvelinus umbla), but in the 
vast majority of lakes included here, occurrence of Alpine charr can be excluded. Alosa fal-
lax from the Irish Loch Leane is named either as subspecies Alosa fallax killarnensis or as 
Alosa killarnensis; we use A. killarnensis in all graphical output here.

Among the 82 species, only six, i.e. Eurasian perch (Perca fluviatilis), roach (Rutilus 
rutilus), pike (Esox lucius), ruffe (Gymnocephalus cernuus), bream (Abramis brama) and 
rudd (Scardinius erythrophthalmus), occurred in > 25% of the lakes (Supplementary Infor-
mation Figs. S3a). 21 species (25% of the 82 species) were considered common by occur-
rence, and hence the other 61 (75%) species were considered rare. The range of occurrence 
for each rare species was one to a maximum of 44 lakes, suggesting that none of the 61 rare 
species occurred in more than 2.3% of the 1871 lakes.

Species with common occurrence also had the highest overall abundance (Supplemen-
tary Information Figs. S3b). The most abundant species, perch, had a mean abundance 
sum of 124,600 individuals per net and night (catch per unit effort per lake summed over 
all 1871 lakes), while the 61 rare species had sums of abundances (numbers per net and 
night) < ~ 200. The geographical range, expressed as convex hull (CH, km²) of occurrences 
in the 1871 lakes, grouped almost the same 21 species (25%) as common (Supplementary 
Information Figs. S3c) as found for commonness by occurrence and by abundance (Supple-
mentary Information Figs. S3a, b). The 61 rare species had CH-values < 1.7 × 106 km², while 
brown trout (Salmo trutta) was the species with the largest CH = 4.7 × 106 km². Accordingly, 
the ranks of the 82 species in the three matrices of commonness or rarity were strongly 
correlated to each other (Spearman rank correlation, all P < 0.001; Occurrence-Abundance 
r = 0.86; Occurrence-Geographical Range: r = 0.96; Abundance-Geographical Range: 
r = 0.78). After summing the rank numbers per species from the three matrices (Fig. 2), we 
identified 21 common (rank sum > 182) and 61 rare species with rank sums < 182. These 
61 species formed the matrices of rare species for the subsequent calculations. The 61 rare 
species occurred only in 348 of 1871 lakes (19%), with the numbers of rare species per lake 
varying between 1 and 8 (Fig. 1). The lakes with rare species were more evenly distributed 
over the sampled area than the lakes of the full dataset, which were dominantly located in 
Sweden (Fig. 1). However, there was a tendency for higher numbers of rare species in lakes 
of the southern part of the continent.

The 348 lakes with rare species were distributed among 135 European watersheds. Only 
a few watersheds contained more than 10 lakes, i.e. Rivers Elbe (n = 31), Loire (n = 21), 
Rhone (n = 22), Ebro (n = 18), Neva (n = 11) and Dalälven (n = 18). In contrast, in 89 water-
sheds only one lake was present.
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The hierarchical generalized latent variable models for rare species occurrence and abun-
dance in the 348 lakes showed similar patterns. The most parsimonious models according 
to the lowest AIC were the one including only environmental predictors, while the contribu-
tion of spatial predictors alone and with environmental predictors resulted in poorer per-
formance (Table 1). For the occurrence models, the trace of the residual correlation matrix 
was lowest for the models with environmental predictors only (Table 1), predicting 62% of 
the variation relative to the unconstrained ordination without predictors (1-300/797). For 
rare species abundance, the reduction of trace relative to the unconstrained model was like-

Table 1 Overview of generalized linear latent variables models (gllvm) predicting the occurrence or abun-
dance of 61 rare fish species in 348 European lakes. For both datasets, unconstrained models without pre-
dictors are compared with models including six environmental predictors only, including spatial predictors 
(common occurrence in watersheds) only or combining environmental and spatial predictors. AIC = Akaike 
information criterion, trace = trace of the residual covariance matrix, logll = log likelihood, resdf = residual 
degrees of freedom
Model AIC Trace logLL ResDF
Occurrence
No predictors 4742 730 -2129 20,987
Environmental 4444 274 -1615 20,621
Spatial 4745 1166 -2131 20,986
Environmental + spatial 4446 277 -1615 20,620
Abundance
No predictors 5479 6244 -2497 20,985
Environmental 4813 527 -1798 20,619
Spatial 5488 5479 -2500 20,984
Environmental + spatial 4996 1297 -1888 20,618

Fig. 2 Frequency distributions for 82 fish species in 1871 European lakes, indicating the rank sum ob-
tained from the three frequency distributions of occurrence, abundance and range (Supplementary Infor-
mation Figs. S3). Species with high rank sums are common according to all three metrics. The vertical 
line separates the 25% common species (n = 21, left) from the 75% (n = 61, right) rare species, according 
to the rank sums
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wise highest for the model including only environmental predictors (1-555/6244 = 91.1%). 
Accordingly, we show only the results of the models with environmental predictors.

The model fit was appropriate for both occurrence and abundance models, as indicated 
by the residual diagnostic plots (Supplementary Information Figs. S4, S5). Among the six 
environmental predictors for rare species occurrences, lake type (lake vs. reservoir) was the 
strongest one by significantly predicting the occurrence of 41 of the 61 rare species (Fig. 3). 
Altitude (significant for 20 species), minimum (20 species) and maximum (17 species) tem-
perature and lake maximum depth (15 species) were likewise partially important (Fig. 3), 
while lake area (10 species) was only marginally important. The same six environmental 
predictors were significant for the abundances of a substantially larger number of species 
(Fig. 4) as those found in the occurrence patterns (Fig. 3) and had similar rank of impor-
tance. Lake type was significant for 55 species, followed by maximum (55 species) and 
minimum temperature (49 species) and altitude (47 species), while maximum lake depth (35 
species) and lake area (40 species) were slightly less important (Fig. 4).

The boosted regression model (number of trees = 10,000, interaction depth = 1, learning 
rate = 0.001, bag fraction = 0.75, tree complexity = 3, Poisson error distribution) included all 
seven fish traits to predict the rank of geographical range size (convex hull) among the total 
of 82 fish species (Supplementary Information Fig. S6). The overall model performance 
with respect to reduction of deviance by adding predictors was 70.7%, calculated from 
residual deviance (rd = 4.14) and total deviance (td = 14.1) as 1-(rd/td) (Yu et al. 2020). Fish 
fecundity was the most dominant predictor (31.5%) for species range, followed by maxi-
mum length (26.8%) and trophic level (21.3%). The other four predictors contributed < 10% 
(Fig. 5). Intermediate fecundity, large size, and low trophic level decreased the rank of the 
species (equivalent to smaller geographic range and higher rarity) (Fig. 5). However, the 
response curves to continuous predictors were, in part, non-linear and did not provide clear 
tendencies of the effect directions (Fig. 5). When running identical boosted regressions trees 
with the rank of species-specific abundances (Supplementary Information Fig. S3 b), the 
reduction of deviance by the seven predictors relative to a null model was marginal (< 1%), 
even with wide variations in the parameter of the gbm.step function.

Discussion

We aimed at inferring the processes driving the rarity of fish species from their distribution 
and abundance patterns in 1871 European lakes. We found strong correspondence between 
occurrence, abundance and geographic range of 82 fish species, suggesting that these three 
axes of rarity are driven by similar processes, with little among-species variability. The 
occurrence and abundance of the 61 rare species (75% of total richness) in 348 lakes and 
reservoirs were primarily predicted by the lake type (natural vs. artificial) and by climatic 
variables, in particular by altitude and minimum and maximum temperature at lake loca-
tion. We did not find strong evidence for the effect of dispersal limitation being a driving 
process because models including random terms for spatial similarity (occurrence in the 
same watersheds) did not perform better than models with environmental predictors only. 
The geographic range of all species was primarily related to life history traits, but many 
responses were non-linear and therefore not easy to interpret. In contrast, we did not find 
any trait that predicted the rank of average abundance of fish species in the lakes. In com-
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Fig. 3 Coefficient plot ± 95% confidence intervals of a generalized linear latent variables model to predict 
the occurrence of 61 rare fish species in 348 European lakes from six environmental predictors (lake 
type with natural lakes as reference, altitude, lake area, lake maximum depth, minimum temperature, 
maximum temperature). The order of species follows the strength of positive and negative predictions by 
the predictor. Black crosses and horizontal lines indicate significant predictions, while grey crosses with 
horizontal lines crossing the zero vertical line indicate insignificant predictors
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Fig. 4 Coefficient plot ± 95% confidence intervals of a generalized linear latent variables model to predict 
the abundance (catch per unit effort, individuals per net and night) of 61 rare fish species in 348 European 
lakes from six environmental predictors (lake type with natural lakes as reference, altitude, lake area, 
lake maximum depth, minimum temperature, maximum temperature). The order of species follows the 
strength of positive and negative predictions by the predictor. Black crosses and horizontal lines indicate 
significant predictions, while grey crosses with horizontal lines crossing the zero vertical line indicate 
insignificant predictions
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bination with our earlier analyses of the community assembly processes of common fish 
species (Mehner et al. 2021a), we suggest that the drivers of commonness and rarity of fish 
species in European lakes at continental scale are largely similar and primarily determin-
istic. Historical contingencies such as glaciations may interact with contemporary effects 
from environmental filtering.

Methodological caveats

We used the three axes of rarity recently suggested by Crisfield et al. (2024), i.e. occupancy, 
abundance and geographic range of 82 fish species. Fish surveys to evaluate the ecological 
integrity of lakes by their fish communities for the European Water Framework Directive 
(Argillier et al. 2013; Ritterbusch et al. 2022) have been conducted in a highly standardised 
way among the countries included in this study. Despite some biases with respect to size and 
species selectivity of the gillnets used in the fishing surveys (Diekmann et al. 2005; Prcha-
lova et al. 2009; Smejkal et al. 2015), occurrence and abundances matrices of species in the 
1871 lakes can be considered as reliable for among-lake comparisons. Some uncertainty 
with respect to local occurrences is introduced by the fact that Anguilliformes (eel-like 
fishes) and small, strictly littoral species are often not representatively caught by gillnets, 
but their occurrence in the lake can be demonstrated by e.g. electrofishing (Diekmann et al. 
2005; Smejkal et al. 2015). Electrofishing has not been applied in all countries, and the spe-
cies list per lake is therefore only based on gillnet catches.

However, because of a completely different focus, the design of the fishing surveys 
according to the European Water Framework Directive does not match the conceptual guide-
lines for sampling rare species (Jeliazkov et al. 2022). Accordingly, we had to adapt suitable 

Fig. 5 Partial dependence plots showing the response of the rank of geographical range (based on con-
vex hulls in km²) among 82 fish species in European lakes to seven fish traits related to life history and 
ecology as fitted by boosted regression trees, namely log10 maximum length (mm), log10 fish fecundity 
(number of eggs), age at maturity (years), primary occurrence in streams (binary with 1 = presence, 0 = ab-
sence), fish trophic level (2–5), primary occurrence in estuaries (binary with 1 = presence, 0 = absence) 
and native status (1 = non-native, 0 = native). Higher levels of fitted functions indicate higher rank and 
hence greater convex hull areas of the respective species, suggesting a lower level of rarity with respect 
to geographical range. The lines per trait show proportional deviations in response to the trait above or 
below the average rank (zero) if the other traits are kept constant. For example, trophic level in the range 
of 3.0 to 3.5 increases the average rank (= 41) of convex hull by about 20% if all other traits are constant
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metrics for rarity from the available fishing survey data. We estimated occupancy by count-
ing the occurrence of species in all 1871 lakes. This is not a perfect solution because the 
approach assumes that all species have identical geographic ranges. Alternatively, counting 
occurrences within the observed geographic range per species would have strongly biased 
the dataset because then many species occurring in a few lakes only would have achieved 
100% occupancy if the lakes formed exact spatial polygons on the map. It was tempting to 
consider European bioregions (Abell et al. 2008) as potential ranges for the species domi-
nantly occurring in only one of the regions. However, integrating occupancy as percent-
age of sites with the species present among regions would be possible only if lakes within 
the bioregions had been sampled in a systematic and stratified way, accounting for differ-
ing areas of the bioregions. Therefore, the definition of rarity by proportional occupancy 
recently suggested by Crisfield et al. (2024) requires datasets that are currently not yet freely 
accessible for fish species in European lakes.

The geographic range per species was calculated applying the occurrence data, and 
strong correlations among the rarity dimensions were found. This suggests that slightly 
variable rankings in one dimension would have a minor effect on the combined rank, and 
hence the list of rare species is likely very robust. To combine the three dimensions of rarity 
for defining rare species, we used the rank sums from the three matrices and defined com-
mon species as those belonging to the 25% quartile of the summed ranks, while the other 
75% of the species were considered rare (Siqueira et al. 2012; Iop et al. 2024). Modifying 
this threshold would have reduced the total number of species considered rare. For example, 
using only the lower 25% quartile of rarity dimensions (21 species) to define species as rare 
(Gaston and Lawton 1990) would have led to an occurrence matrix with an extreme over-
dominance of zeroes because each of the 25% rarest species were observed only in one or 
two lakes. Even expanding the inclusion of species to the 50% threshold would still limit 
the occupancy of rare species to a maximum of 10 among the 1871 lakes (0.53%), with little 
power to infer any process from these sketchy patterns. Therefore, we considered all 61 spe-
cies outside of the 25% quartile of the common species rare, still resulting in only 348 lakes 
with occurrence of any rare species and with occurrences per species that did not exceed 44 
lakes. The remaining 1523 lakes without rare species were occupied by at least one of the 
21 common species, which reflects the extreme dominance of a few common freshwater fish 
species in European lakes (Mehner et al. 2007; Argillier et al. 2013; Brucet et al. 2013; Mar-
tinsen et al. 2023). Admittedly, the list of the 61 rare species in lakes at the continental scale 
of Europe given here can only provide coarse information on the abundance and geographic 
range of species of low occurrence. Intercontinental comparisons of rare species’ records 
to support conservation actions would require sampling surveys specifically designed to 
capture commonness and rarity of fishes (Jeliazkov et al. 2022), ideally based on entire 
watersheds (see discussion below). However, the fish species determined as rare according 
to the three rarity dimensions can be used to infer potentially similar environmental predic-
tors and assembly processes.

Prediction of rarity by environment and spatial factors

The latent variable models on occurrence and abundance patterns of the 61 rare species 
defined similar predictors. Above all, lake type (natural vs. artificial) was the main predictor 
of the occurrence and abundance of rare species. However, the coefficients per species sug-
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gested that the response was not uniform. The occurrence and abundance of some species 
were positively predicted by lake type = artificial (mainly reservoirs; for example, the gen-
era Luciobarbus, Pseudochondrostoma, Barbus or Squalius); however, other species were 
positively predicted by lake type = natural (for example, the genera Coregonus, Salmo and 
Salvelinus). Similarly, climatic variables such as minimum or maximum air temperature and 
altitude of lake location as proxies of lake thermal conditions had almost equal amounts of 
significant positive or negative predictions, suggesting that rare species cannot be defined 
by a certain thermal guild. Rarity was found both among stenotherm coldwater species, such 
as the genera Coregonus, Salmo and Salvelinus, and species of the warmwater guild, for 
instance many carp-like Cypriniformes. We can also exclude that rarity was caused by the 
size of the lake ecosystem. Neither lake area nor maximum depth were strong predictors of 
the abundance or occurrence of many rare species, and the significant coefficients were also 
a mix of positive and negative ones, suggesting again that there was no unique effect of eco-
system size on rarity. Accordingly, we can exclude richness and sampling effects (richness 
increases with lake area and hence more rare species can be expected and caught in larger 
lakes) on the rarity of fish species in lakes. The dominant environmental predictors found 
here correspond to those identified in previous studies on large-scale drivers of fish occur-
rences and abundances in lakes in Europe and North America (Jeppesen et al. 2000; Mehner 
et al. 2007; Brucet et al. 2013; MacDougall et al. 2018; Kadoya et al. 2024).

The spatial distribution and aggregation of lakes in European watersheds appeared to 
have only a marginal effect on the occurrence or abundance of rare species. We used ran-
dom intercepts in the generalized linear models to test for greater similarity in rare species 
community composition within than among watersheds. Neither AIC nor the reduction in 
trace of the models suggested that spatial information was an important contributor to pre-
diction of rare species abundance or occurrence. An alternative approach to account for 
spatial similarity is a geographic distance matrix among lakes. By using Euclidean distance 
matrices, areal dispersal would be assumed, which is not appropriate for fishes (Beisner et 
al. 2006; De Bie et al. 2012; Mehner et al. 2014). Waterway distances via hydraulic con-
nections among lakes would be the superior approach, but such maps are not yet available 
at European spatial scale. Furthermore, with a few exceptions, the number of lakes per 
watershed was relatively low, which may have limited statistical inference on the com-
parison of within- and among-watershed similarities, i.e. we may have underestimated the 
effects of potential dispersal limitation on the rarity of fish species in lakes. Future develop-
ments in satellite-based geographic data extraction and algorithm development may provide 
maps allowing calculation of waterway-based distance matrices among lakes (Domisch et 
al. 2024).

In the present study, the reduction in trace of the gllvm was already substantial between 
the unconstrained model and the model including only environmental predictors, suggest-
ing that spatial effects or effects from predictors not accounted for contributed only weakly 
to the prediction of rare species presence/absence and abundance patterns. Accordingly, 
we did not interpret the residual covariance matrices of the models, which summarize 
effects from drivers unaccounted for and potential species-interaction effects (Blanchet et 
al. 2020; Münkemüller et al. 2020). In contrast, in our previous study on common fish 
species (Mehner et al. 2021a), the biomasses and mean sizes of the six most common fish 
species in European lakes showed some meaningful and interpretable covariance patterns 
with respect to predator-prey interactions (Mehner et al. 2021a). Therefore, abundance or 
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occurrence of rare species in the lakes studied here may have been affected by co-occurring 
common species. However, we excluded the numerically strongly dominant common spe-
cies by purpose, to ensure that the models predict the environmental and spatial drivers of 
only the rare species occurrence and abundance. Accordingly, we cannot draw conclusions 
on potential structuring effects from negative interspecific interactions by common on rare 
species in the lakes.

Inferring assembly processes by species traits

To link the patterns of commonness or rarity of all 82 fish species with processes of com-
munity assembly (Crisfield et al. 2024), we tried to predict species geographic ranges by 
seven fish traits. We found strong predictors of geographic range related to the life history 
of the fish species, i.e. maximum size, fecundity and age at maturity. However, there was 
no consistent pattern showing rarity to be linked to a certain life history type. Higher rar-
ity by smaller geographic range was connected with large size, intermediate fecundity and 
early age at maturity, a trait combination that does not correspond to any life history type 
in the triangular continuum of freshwater fish species (Winemiller and Rose 1992). It is 
more likely that these predictors of rarity by geographic range include many different fish 
species that are either small, fecund and have low age at maturity (such as genera Gobio, 
Phoxinus, Barbatula, Cobitis) or those that are large and grow slowly (such as some spe-
cies of the genera Leuciscus or Luciobarbus), which would indicate that life history traits 
act independently from each other in predicting geographic range. In contrast, several other 
studies have found a strong correspondence between life history and rare species range 
size, occupancy or abundance (Böhning-Gaese et al. 2006; Laube et al. 2013; Heino and 
Grönroos 2014; Heino and Tolonen 2018). We also tested whether non-native fish species 
were disproportionally frequently represented among the rare species because they might 
still be at the beginning of spread and colonisation and thus potentially rare with respect 
to occupancy, range and abundance. However, the number of non-native fish species in 
European lakes at the time of the surveys has still been low, and many of these non-native 
species occurred in a few lakes only (Trochine et al. 2018). Therefore, native status was 
found to be just one among several traits that correlates weakly with rarity. Accordingly, the 
hypothesised strong link between rarity patterns and underlying processes realised through 
certain functional traits (Crisfield et al. 2024) could not be found in our analyses. However, 
the information on traits for the species included in our study was not complete, with sub-
stantial gaps, in particular, for some rare species (Supplementary Table S2), and the BRT 
results may accordingly be partly biased towards the traits of the more common species.

Ultimately, it is also obvious that the list of rare species encompassed a rather large 
number of species for which lakes are not the most preferred ecosystem type. The list of 
rare fish species includes oligohaline (hence primarily marine) species occasionally found 
in coastal brackish lakes such as goby (Pomatoschistus minutus), sprat (Sprattus sprattus) 
and mullets (genera Chelon and Mugil). Other species that are usually considered riverine, 
such as the genera Luciobarbus, Pseudochondrostoma, Barbus and Squalius, often occurred 
in reservoirs originating from dammed rivers, in particular, on the Iberian Peninsula. The 
strong effect of the dammed rivers on the reservoir fauna is obvious from the geographic 
map of rare species distribution and from the importance of lake type (natural vs. artificial) 
as a predictor in the latent variable models. Therefore, these originally riverine species have 
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rare occurrences in lentic waters (reservoirs), while they may be more common in their pre-
ferred lotic habitats. Many southern European species also have a small geographic distri-
bution due to their paleohistoric evolution and isolation, and colonisation of newly formed 
lentic habitats and population build-up are slow. Similar causes of rarity in lakes were found 
also for several cold-water riverine salmonids such as salmon (Salmo salar) and grayling 
(Thymallus thymallus). These were often caught in lakes connected to rivers but are not part 
of the typical lake fish fauna because they reproduce only in lotic systems. Accordingly, the 
reasoning that the rarity of many fish species in our dataset was caused by the fact that they 
do not reproduce in the habitat in which they were caught resembles the earlier distinction 
between diffusive and suffusive rarity (Schoener 1987). Species with reproduction outside 
of lakes, including anadromous and catadromous migrants, may be considered as the dif-
fusive part of rarity in the lake fish fauna.

Similarity in community assembly processes between rare and common species

According to the results of this and our previous study (Mehner et al. 2021a), we did not find 
strong evidence that the dominant community assembly processes differed between com-
mon and rare species. Several other studies have hypothesised that commonness is caused 
by deterministic processes like environmental filtering, while rarity is predominantly caused 
by neutral processes, in particular those related to dispersal and spatial arrangement of loca-
tions (Siqueira et al. 2012; Iop et al. 2024). In contrast, we found strong correspondence 
of processes inferred from patterns between common and rare fish species, suggesting that 
the fish community assembly in European lakes is primarily driven by environmental filter-
ing. A similar conclusion on the dominance of environmental drivers for the community 
assembly of fishes in Canadian, Japanese and Swedish lakes, mediated by spatial processes 
and species interactions at lake level, was drawn from joint species distribution models 
(Kadoya et al. 2024). Large-scale (i.e., continental) studies often demonstrate strong effects 
of climatic variables on species occurrences or size, while locally important processes, for 
example anthropogenic stressors or the effect of species interactions, emerge only from spa-
tially restricted analyses (Brucet et al. 2013; Emmrich et al. 2014). Therefore, it would not 
be justified to develop general conservation actions for rare fish species in European lakes, 
as based on our study, without conducting more detailed species-specific analyses for the 
lakes, in which a certain rare species occurs.

It should be considered that historical contingency, a stochastic process, may also have 
contributed to the overall fish distribution patterns. Large parts of northern and central 
Europe were glaciated repeatedly during the last about 2.6 million years, and the last retreat 
of the ice shield dates back only 12,000 to 15,000 years. These climatic effects led to a 
major depauperation of the European fish fauna (Lèvêque et al. 2008) with the consequence 
that the overall richness is lower here than in comparable areas nearer to glacial refuges 
(Griffiths 2006) such as Mediterranean basins (Casal-López and Doadrio 2018) or on other 
continents (Tonn et al. 1990). Furthermore, few eurytopic species such as Eurasian perch, 
pike, roach, rudd, ruffe and bream dominate in numerous lakes, while many rare species 
have limited distribution ranges, which may still reflect the effects of the last glaciation 
and the subsequent constrained recolonisation from few refugial areas (Hewitt 1999). A 
particular phenomenon is also a few (often endemic) species pairs or species flocks with 
narrow distribution ranges in the order Salmoniformes (salmon-like fishes) or Clupeiformes 
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(herring-like fishes) including trout (Salmo), whitefish (Coregonus), charr (Salvelinus) and 
shad (Alosa), originating from incipient speciation after the last glaciation (Kottelat and 
Freyhof 2007; Hendry 2009; Blain et al. 2023; Tiddy et al. 2024). Speciation is another sto-
chastic process contributing to community assembly, and the emergence of endemic species 
suggests that local fish richness in postglacial lakes may increase substantially after a suffi-
cient passage of time. These incipient species can be considered truly rare in European lakes 
because they occur in only few locations and appear in relatively low abundances even at 
these few localities. These species match all definitions of rarity by Rabinowitz (1981) and 
correspond to the suffusive rarity (Schoener 1987). If rarity of occurrence is used to develop 
conservation actions for lake fish species, lakes with locally endemic salmonids are the 
most likely candidates for strong protection measures to prevent loss of unique biodiversity 
(Mehner et al. 2021b; Ferguson and Prodohl 2022).

Conclusions

We demonstrate here that the vast majority of fish species in European lakes can be con-
sidered rare, while only very few common species dominate the communities. The major 
determinants of rare species occurrences and abundances at the European scale are climatic 
factors, but stochastic processes such as historical contingencies may substantially contrib-
ute to the patterns. Furthermore, many rare species were found to not being typical lake-
dwelling species, but occurring occasionally in lakes because there is connectivity among 
lakes, rivers and estuaries. A dataset unifying occurrence and abundance data on freshwater 
fishes in lakes and rivers in Europe, based on a hydraulic connectivity grid including poten-
tial migration barriers (for an example with intermediate spatial resolution, see  h t t p s :  / / a m 
b  e r . i n t  e r n a  t i o n a  l / e u r  o p e a n -  b a r r  i e r - a t l a s /), would be a substantial step towards  u n d e r s t a n d 
i n g fish community assembly mechanisms. General conservation actions for rare species 
in lakes cannot be developed based on this European dataset, but lakes with postglacial 
incipient fish speciation events can be suggested for explicit conservation surveillance of 
populations of endemic species.
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