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Abstract 

Bac kgr ound: Micr obiome-based disease pr ediction has significant potential as an earl y, noninv asi v e marker of m ultiple health con- 
ditions linked to dysbiosis of the human gut microbiota, thanks in part to decreasing sequencing and analysis costs. Microbiome 
health indices and other computational tools curr entl y pr oposed in the field often are based on a microbiome’s species richness and 

ar e completel y r eliant on taxonomic classification. A r esurgent inter est in a meta bolism-centric, ecological appr oach has led to an 

increased understanding of microbiome metabolic and phenotypic complexity, revealing substantial restrictions of taxonomy-reliant 
approaches. 

F indings: In this study, w e introduce a new metagenomic health index developed as an answer to recent developments in microbiome 
definitions, in an effort to distinguish between healthy and unhealthy micr obiomes, her e in focus, inflammator y bowel disease (IBD). 
The novelty of our approach is a shift from a traditional Linnean phylogenetic classification to war d a more holistic consideration of the 
metabolic functional potential underlining ecological interactions between species. Based on well-explored data cohorts, we compare 
our method and its performance with the most compr ehensi v e indices to date , the taxonom y-based Gut Microbiome Health Index 
( GMHI ), and the high-dimensional principal component analysis ( hiPCA ) methods, as well as to the standard taxon- and function- 
based Shannon entropy scoring. After demonstrating better performance on the initially targeted IBD cohorts, in comparison with 

other methods, we retrain our index on an additional 27 datasets obtained from different clinical conditions and validate our index’s 
ability to distinguish between healthy and disease states using a variety of complementary benchmarking appr oaches. Finall y, we 
demonstrate its superiority over the GMHI and the hiPCA on a longitudinal COVID-19 cohort and highlight the distinct robustness of 
our method to sequencing depth. 

Conclusions: Over all, w e emphasize the potential of this metagenomic approach and advocate a shift to war d functional approaches 
to better understand and assess microbiome health as well as pr ovide dir ections for futur e index enhancements. Our method, q2- 
predict-dysbiosis (Q2PD) , is fr eel y av aila b le ( https://github.com/Kizielins/q2- predict- dysbiosis ). 

Ke yw ords: microbiome, gut microbiome health, health index, dysbiosis, metagenomics 
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Introduction 

The pr e v alence of a r ange of diseases and conditions peripher- 
all y or dir ectl y linked to micr obiome health, suc h as inflamma- 
tory bo w el disease (IBD), diabetes, obesity, and e v en v arious can- 
cers, continue to increase globally, and substantial funds are cur- 
r entl y spent on diagnosis and treatment [ 1 , 2 ]. While a correla- 
tion between gut microbiome composition and human health is 
widel y ac knowledged [ 3 ], the accurate identification of microbial 
and host markers of disease states remains elusiv e. Accordingl y,
the ability to e v aluate patient health status based on a gut micro- 
biome snapshot would be of high clinical value. Stool-based meth- 
ods ar e pr omising because they can be collected noninv asiv el y 
and fr equentl y, and anal ysis time is short. Furthermor e, decr eas- 
ing costs of stool sample analysis via next-generation sequencing 
makes such microbiome characterization a strong competitor as 
a diagnostic tool [ 4 ]. 
Recei v ed: J uly 29, 2024. Revised: December 4, 2024. Accepted: February 5, 2025 
© The Author(s) 2025. Published by Oxford Uni v ersity Pr ess GigaScience. This is an
Attribution License ( https://cr eati v ecommons.org/licenses/by/4.0/ ), which permits 
the original work is pr operl y cited. 
Dysbiosis, defined as a perturbation of gut homeostasis, is be-
ie v ed to be accompanied by reduced microbiota diversity and
ncr eased pr e v alence of “harmful” bacteria in adults [ 5 , 6 ]. Eu-
iosis (opposite of dysbiosis) can be perturbed by a wide range
f factors, including infection, diet, exercise, antibiotics, stress,
r poor sleep [ 7 ]. The simplest interv entions curr entl y a pplied
or the pr e v ention or alle viation of mild micr obiome dysbioses
nclude dietary modification or prebiotics (often nondigestible 
ood types that promote the growth of beneficial microorgan- 
sms), ingested live bacteria or probiotics (beneficial bacteria 
suall y in ca psules), and lifestyle c hanges. Mor e se v er e cases
f gut dysbiosis, failing to respond to the above interventions,
ay qualify for fecal microbiota transplants (FMTs), which are 

ncr easingl y gaining tr action in clinics w orldwide [ 8 ]. Ho w e v er,
ost–microbiota and intra–microbiota interactions are both ex- 
r emel y complex and highly individual, and despite success with
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MTs , we ha ve as yet no real understanding of why or how they
ork. 
Ther e ar e a number of accepted a ppr oac hes used for the e v al-

ation of a given gut microbiome’s health status based on stool
omposition. Alpha diversity (Shannon entropy, for example) is a
r equent c hoice, as micr obiome ric hness was long belie v ed to be
 k e y dri v er of micr obiome health and r obustness [ 9 , 10 ]. Beta di-
ersity has also been applied in a number of longitudinal studies,
lbeit to a lesser degree and mainly to identify eubiotic samples
ased on a time-r esolv ed pr oximity to other healthy samples [ 11 ].
he most robust index to date, outperforming diversity indices,

s the Gut Microbiome Health Index, or the GMHI [ 12 ], r ecentl y
enamed the Gut Microbiome Wellness Index ( GMWI ). An up-
ated version of this index has r ecentl y been published [ 13 ]. The
MHI is based on the ratio of 50 microbial species associated with
ealth y or unhealth y gut ecosystems and is reported to exceed
3% accuracy in determining disease state; thus, the authors sug-
est that gut taxonomic signatures can predict health status. An-
ther metagenomic gut health index expanding on the GMHI ap-
r oac h, high-dimensional principal component analysis ( hiPCA )
 14 ], was introduced as a monitoring framework for personalized
ealth purposes . T he personalized a ppr oac h is ac hie v ed by ana-

yzing the contribution of each bacterium to the index, which al-
ows for the identification of high-influence (ostensibly k e ystone)
pecies in different patient groups . T he hiPC A claim of better per-
ormance than the GMHI is attributed to the authors’ application
f additional transformation and clustering algorithms. Impor-
antl y, suc h studies ar e often defined by datasets limited in scope
o industrialized nations and thus a less than complete consider-
tion of diet–envir onment–micr obiome inter actions. 

Ho w e v er, a r ecentl y r e visited definition of the micr obiome
mphasizes the importance of not just the microbiota (a com-
unity of microorganisms) but the whole “theater of activity,”
 oA [ 15 ]. This T oA includes structural elements (proteins , lipids ,
ol ysacc harides), metabolites , and en vironmental conditions [ 16 ].
t is tightly bound to its corresponding ecological niche, and
he syner gistic r elations between species pr ovide all the neces-
ary, community-defining components. Based on this definition,
e maintain that an index constructed from taxonomy alone is
ardly sufficient to accurately capture biological phenomena oc-
urring within the gut environment—the k e y to understanding
ut dysbiosis. Instead, we hypothesize that to effectively deter-
ine health, (i) a metagenomic functional profile is r equir ed (mi-

robiome phenotype), and (ii) species interactions (e.g., measured
s co-occurrence) but not just presence should be considered. 

We introduce an approach that is based on identifiable metage-
omic features within ecosystems that extend beyond diver-
ity measures and basic taxonomic information. This function-
entrism is br oac hed in 2 ways: (i) dir ectl y by e v aluating the func-
ional potential within and between species and (ii) indir ectl y by
ssessing co-occurrence and synergism between bacterial species.
ur goal is not only to distinguish between healthy and diseased
ut also, importantly, to quantify the degree of dysbiosis in each
ample for the given cohort. We derive the health-describing fea-
ures based on an exploratory analysis of healthy samples from
he Human Microbiome Project 2 [ 17 ] and outperform Shannon
ntropy, the GMHI, and the hiPCA in healthy versus IBD and
bese classifications . T he robustness of our index is further vali-
ated by corr obor ativ el y classifying 2 additional IBD-focused co-
orts. By r etr aining the IBD-specific par ameters on an additional
et of 30 diverse cohorts encompassing a range of diseases, we
emonstrate the superior performance of our a ppr oac h. Our find-

ngs r e v eal that function- rather than taxonomy-based features
r e mor e informativ e for the accur ate classification of biological
amples. Additionally, our method effectiv el y identifies longitu-
inal microbiome changes in patients with COVID-19, which the
MHI and the hiPCA are unable to capture, and crucially, it is
istinctl y r obust to sequencing depth. Our method, q2-predict-
ysbiosis (Q2PD), is fr eel y av ailable [ 18 ]. 

esults 

igh pre v alence of “core functions” in health 

n order to de v elop a strategy to assess the degree of dysbiosis
n a given microbiome sample, we must define eubiosis (i.e., the
ealthy microbiome). We based our initial analysis (described in
he Methods section) on 384 medically determined healthy sam-
les from the HMP2 project and identified the most pr e v alent
pecies, regardless of abundance (Fig. 1 A). We observed that 50%
f species were present in less than 5% of samples, and hardly
ny species were shared by all individuals. On the other hand,
he pr e v alence of functions within the healthy population had an
pposite trend—50% of functions were already represented by at
east 40% of individuals (Fig. 1 B), a functional redundancy unac-
ounted for in the GMHI (or the hiPCA , which is based on it). These
esults convinced us further about the unsuitability of basing an
ndex pur el y on the pr esence of “cor e taxa” and encour a ged a shift
f focus to w ar d more prevalent functions instead. 

The addition of healthy samples from 2 validation cohorts
aintained the function distribution profile obtained solely with
MP2 samples (Fig. 1 C). In order to test whether the functions
er e univ ersal or cohort specific, we calculated separ atel y the
istributions for functions present in 1, 2, or all 3 cohorts. We
ound that all functions missing from at least 1 cohort were
resent in less than 10% of samples, which indicated the pres-
nce of high-pr e v alence functions in all 3 cohorts. Based on the
ncr eased occurr ence of certain functions in ov er 80% of samples
dotted line in Fig. 1 C), we defined them as “cor e functions” (r efer
o https:// gigadb.org/ dataset/ 102656 Supplementary Table S1 for
ull list). According to MetaCyc classification, 73.5% of “core func-
ions” were assigned as “Biosynthesis” pathwa ys , 18.8% “Degrada-
ion/Utilization/Assimilation,” and 7.6% “Generation of Precursor
etabolites and Energy.” In addition, a few of the above were addi-

ionally classified as “Superpathwa ys .” T he classification aligned
ell with a pr e viousl y r eported high pr e v alence of carbohydr ate
nd amino acid metabolism-related pathwa ys , potentially form-
ng the functional micr obiome cor e [ 19 ]. A detailed analysis of the
ore functions identified in our study, ho w ever, is out of the scope
f this article. 

Shannon entropy calculated on species and functions allo w ed
or good discrimination between healthy and unhealthy samples
n the HMP2 dataset (Fig. 2 A, top). Ho w e v er, the tr ends wer e un-
lear in the 2 validation cohorts (Fig. 2 A, middle and bottom), re-
ecting the need for more complex methodology, expanding be-
ond micr obiome ric hness, in order to classify datasets without
b vious separ ation. Div ersity anal yses r e v ealed that the num-
er of functions per sample remained similar or e v en incr eased
uring microbiome transitions from healthy state to dysbiosis in
MP2 ( https:// gigadb.org/ dataset/ 102656 Supplementary Fig. S1 ).
hile admittedly, this cannot be measured solely using metage-

omics data, the similarity could hypothetically be due to al-
er ed expr ession of genes usuall y silenced in the eubiotic state,
lthough this observation was not reproduced in the validation
ohorts . Next, we in v estigated the pr esence of “cor e functions” in
iffer ent gr oups, testing whether “cor e functions” ar e maintained

https://gigadb.org/dataset/102656
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf015#supplementary-data
https://gigadb.org/dataset/102656
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf015#supplementary-data
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Figure 1: Distributions of species (A) and functions (B) present in healthy samples from the HMP2; absolute values of species and function counts are 
shown as histograms (with scales on the right-hand side, with shaded cumulative sum in the background and an inverse of the cumulative sum 

r epr esented with a dashed line, with scales on the left-hand side). (C) Distribution of functions in healthy individuals from the HMP2 and 2 validation 
cohorts. 
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or replaced by others in dysbiotic , IBD samples . While the differ- 
ences were not significant in most cases, we noted a visibly higher 
percenta ge of “cor e functions” and a higher percenta ge of all “cor e 
functions” in healthy as compared to disease samples ( https:// 
gigadb.org/ dataset/ 102656 Supplementary Fig. S2 ). We carried out 
differ ential enric hment anal ysis using Linear discriminant anal- 
ysis Effect Size or LefSe [ 20 ], performed separ atel y for each co- 
hort, and identified 100 functions that wer e mor e abundant in 

healthy as compared to disease cohorts (Fig. 2 B, https://gigadb. 
org/ dataset/ 102656 Supplementary Fig. 2 ). Over 90% of functions 
enriched in healthy samples were “core functions,” while they 
constituted less than 5% of functions enriched in the unhealthy 
class of validation cohort 2 and HMP2 (Fig. 2 C). The LEfSe analy- 
sis on validation cohort 1 revealed only 10 significantly enriched 

functions (7 in health and 3 in disease), all of whic h wer e cor e . T his 
indicated a more heterogeneous functional landscape within this 
cohort. 

Species interactions and function contributions 

in health 

Corr obor ating r esults fr om past studies, we observ ed a decr ease 
in the species abundance in dysbiotic samples ( https://gigadb.org/ 
dataset/102656 Supplementary Fig. S3 , [ 21 , 22 ]). Having pr e viousl y 
noted an increase in the number of functions ( https://gigadb.org/ 
dataset/102656 Supplementary Fig. S1 ), we speculated that the re- 
maining species may contribute to core or new functions, forming 
new connections with one another. Due to the substantial number 
of initial connections to analyze (170 “core functions” and 1,490 
species present in at least 2 projects), we restricted the number of 
species to those most informative in the context of health/disease 
tate separation. We chose the Multi-Dimensional Feature Selec- 
ion (MDFS) algorithm, as it was the only feature selection method
ccounting for interfeature interactions that we wer e awar e of
t the time of manuscript submission [ 23 , 24 ]. This a ppr oac h r e-
uced the number of r ele v ant species to 587, allowing us to elim-

nate noise and focus on the most important interactions (see
ethods for more details about the feature selection procedure). 
We then used the SparCC algorithm, designed specifically 

or compositional data, to investigate correlations between the 
DFS-selected species in health and disease [ 25 ]. We did not ob-

erv e an y tr ends in the number of correlations or in the fraction
f positive correlations per group that would indicate differences 
etw een the tw o. Ho w e v er, we identified opposite r elationships of
ome species in different groups (Fig. 3 A). A number of species we
ound to be positiv el y corr elated in eubiosis and ar e gener all y con-
idered beneficial (e.g., Eubacterium rectale , Faecalibacterium praus- 
itzii , and a number of Bacteroides species), and those relation-
hips would be disrupted in dysbiotic groups. We observed that
he pr e v alence of the pairs positiv el y corr elated with health was
igher than in a number of disease-associated groups (Fig. 3 B).
ue to this, we included the co-occurrence of such species as an-
ther feature of interest to aid potentially in the determination of
icrobiome health. 
Based on our pr e vious r esults, we hypothesized that the con-

ributions of each species to functions would be r elativ el y sta-
le in the healthy state and less predictable in disease. To test
his, we compared the contributions of MDFS-identified species 
o “core functions” in different groups ( https:// gigadb.org/ dataset/ 
02656 Supplementary Fig. S4 ). We did not observe any differ-
nces between health and disease, despite a r elativ el y tight clus-
ering of the healthy groups. Ho w ever, w e found stronger results

https://gigadb.org/dataset/102656
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf015#supplementary-data
https://gigadb.org/dataset/102656
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf015#supplementary-data
https://gigadb.org/dataset/102656
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf015#supplementary-data
https://gigadb.org/dataset/102656
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf015#supplementary-data
https://gigadb.org/dataset/102656
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf015#supplementary-data
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Figure 2: (A) Shannon entropy scores for species and functions in healthy and unhealthy samples from the HMP2 and validation cohorts. (B) LEfSe 
differ ential enric hment anal ysis: ov erla p of enric hed pathways in health y and unhealth y individuals in the v alidation and HMP2 pr ojects. (C) Fr action 
of core functions among differentially enriched functions in healthy and unhealthy individuals in the validation and HMP2 cohorts. 
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hen exploring functional redundancy. While the av er a ge num-
er of species per function and the av er a ge number of functions
er species did not r eliabl y separ ate healthy fr om diseased pr o-
les ( https:// gigadb.org/ dataset/ 102656 Supplementary Fig. S5 ),
he latter a ppr oac h was mor e informativ e, as described in detail
elo w. This finding w as congruent with our earlier suspicions of an

nherent functional plasticity of microbiome structure, with mod-
lation of function altering connectivity in the interaction net-
ork, leading to a shift toward less abundant, noncore functions
pon perturbation of homeostasis. It also highlighted the chal-

enge of identifying dysbiosis based on singular featur es, whic h
er e ne v er statisticall y significant for all cohorts, and the utility
f m ultiple perspectiv es for micr obiome description, in order to
eaningfully classify them. 

https://gigadb.org/dataset/102656
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf015#supplementary-data
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Figure 3: (A) SparCC correlation strengths between species, restricted to pairs that were not negatively correlated in any healthy cohort. (B) Prevalence 
of the pairs in different cohorts. 
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Testing the accuracy of prediction for healthy 

and IBD individuals 

Our final set of health-defining micr obiome featur es included the 
following parameters (details of how each feature was calculated 

can be found in Table 1 ): 

i) the fraction of “core functions” found, 
ii) the proportion of “core functions” among all functions, 
iii) the proportion of co-occurrent species pairs in healthy sam- 
ples, and 

iv) the av er a ge number of functional “contributions” per 
species. 

n addition, we included 2 parameters derived from the GMHI
ethod—the number of “good” and “bad” GMHI species identi- 

ed in a sample, which would enable us to compare between ap-
r oac hes. We then fed these described parameters into a machine
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Table 1: P ar ameters of the Q2PD model 

Name Explanation Deriv a tion 

Fr ac_of_cor e_functions_found Fraction of “core functions” found Number of “core functions” in a 
sample/number of all “core functions” in our 
list 

Fr ac_of_cor e_functions_among_all Fraction of “core functions” among all 
functions 

Number of “core functions” in a 
sample/number of all functions in a sample 

Species_found_together Fraction of species pairs commonly occurring 
together in healthy samples 

SparCC correlation of species > 0.1, only 
nonnegativ e corr elations in healthy cohorts 

Func_contributions_per_species Av er a ge number of function contributions per 
species 

Number of all species to functions 
contributions based on stratified 
output/number of all species in a sample 

GMHI_good Number of “good” GMHI species List of health-associated GMHI species 
GMHI_bad Number of “bad” GMHI species List of disease-associated GMHI species 
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earning model. We opted for a random forest classification al-
orithm [ 26 ] due to its robustness to imbalanced data and inter-
retability and performed a leave-one-out cross-validation [ 26 ].
or the model tr aining, v alidation, and subsequent testing, we
sed taxonomic and functional pr ofiles fr om the cur ated Meta ge-
omics database [ 27 ] to ensure consistency and r epr oducibility

see Methods). 
Our index demonstrated the strongest statistically significant

eparation between healthy and Crohn’s disease or ulcerative col-
tis individuals across all methods e v aluated (Fig. 4 A). Alongside
iPCA, it was 1 of only 2 a ppr oac hes to ac hie v e a statisticall y sig-
ificant distinction in the Nielsen_2014 cohort. Ov er all, both our

ndex and hiPCA exhibited comparable levels of accuracy and AUC
cross the 3 cohorts, outperforming the other methods by a no-
able margin (Fig. 4 B). By contrast, the GMHI consistently delivered

ediocr e r esults, and Shannon entr opy onl y performed well a p-
lied to the HMP2 cohort, yielding low area under the curve (AUC)
cores (0.37–0.53) in all other cases. When index v alues wer e used
s features in the Boruta algorithm [ 28 ], with health status (0/1) as
he target variable, our index emerged with the highest mean and
ummed importance across all cohorts (Fig. 4 C) [ 28 ]. The above
ighlights the ability of our index to provide the most informa-
iv e scor es for health status pr ediction as compar ed to the other

ethods. 

eyond IBD 

hile only healthy and IBD individuals had erstwhile been in-
luded in the de v elopment and v alidation of our a ppr oac h, we
ondered about the applicability of the Q2PD to dysbiosis at-

ributed to other diseases. We extended our dataset to another
7 additional cohorts from various disease states, equating to 30
atasets used for method validation. We did not change any pa-
ameters of the Q2PD, which were originally determined based
n the healthy samples from the HMP2. Instead, we retrained the
odel with the new data and performed a leave-one-cohort-out
 ppr oac h to ensure a robust benchmark. The procedure placed
ur index at a disadv anta ged position, as some of the added
atasets had been used to de v elop and train the other methods,
nd our a ppr oac h was thus truly blind to outcome in these new
ases. 

Despite the disability, and gr atifyingl y, the Q2PD ac hie v ed in
erms of performance the highest av er a ge accur acy and AUC
cross all datasets {(AUC = 0.61, accuracy = 0.58) > hiPCA (AUC
 0.58, accuracy = 0.57) > GMHI (AUC = 0.55, accuracy = 0.55)
 Shannon entropy on species (AUC = 0.52, accuracy = 0.53) >
hannon entropy on functions (AUC = 0.44, accuracy = 0.43)}
see Fig. 5 A). The consistently poor performance of both entropy-
ased measures suggested their highly limited utility as pr edictiv e

ndices. 
We observed that where Q2PD classified a particular cohort

etter than the other indices, it did so with a significantly greater
argin than when it lost to the other methods. Its av er a ge win-

ing AUC mar gin ov er the hiPCA, the second best classifier, was
.19 while the losing margin to the hiPCA was 0.09 when the hiPCA
ad the highest AUC. T he a v er a ge winning AUC mar gin of Q2PD
gainst the mean of the other indices was 0.20 and 0.11 if any
ther was better. In both cases, the t -test statistics for the differ-
nces between the means of the Q2PD’s winning AUC margins and
hat of the hiPCA or the av er a ge of others pr oduced P v alues of
.03 and 0.02, r espectiv el y, indicating a significant classification
mpr ov ement with our method in areas in which the remaining
ndices did not classify well. The impr ov ement was e v en mor e
triking when we excluded datasets that had been used for the
raining of either method. In this case, the winning margin of the
2PD was 0.22 while the losing margin to the mean of the other

ndices if any of them was better was 0.09. 
Our investigation into the accuracy and AUC of the indices

or each cohort revealed substantial variability in terms of the
lasses of cohort that each index was able to classify ( https://
igadb.org/ dataset/ 102656 Supplementary Fig. S6 ). We observed
hat while some cohorts such as Liss_2016 could be classified well
ith function-based indices (Q2PD and Shannon entropy on func-

ions), other cohorts such as Gupta_2019 were slightly better sep-
rated with taxonomy-based indices (hiPCA, GMHI, and Shannon
ntropy on species). An exploration of the importance of feature(s)
ssociated with the model training on each dataset alone revealed
 large amount of diversity, suggesting different kinds of infor-
ation used to classify different cohorts (Fig. 5 B). Inter estingl y,
hen trained on the level of individual cohorts, a random for-

st would pick the “GMHI_bad” as its most informative parame-
er (scoring the lo w est rank in 9 cases) and the “GMHI_good” as
he worst (appearing at the bottom of the ranking 6 times). The
mportance of the function-based features would vary depending
n the dataset, with “Contributions_per_species” winning and los-
ng twice and the other two being consistently in the middle of the
anking. 

Having observed a discrepanc y betw een the superior Q2PD
erformance and the greatest importance of the “GMHI_bad”
ar ameter, we inv estigated this further by testing whic h types

https://gigadb.org/dataset/102656
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf015#supplementary-data
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Figure 4: (A) Q2PD, GMHI, hiPCA, and Shannon entropy (on species and functions) scor es for healthy and IBD (CD: Cr ohn’s disease; UC: 
ulcer ativ e colitis) individuals. (B) Accuracy and AUC values for each index, per IBD cohort. ShF: Shannon entropy on functions; ShT: Shannon entropy 
on taxa. (C) Av er a ge (top) and summed (bottom) importance of each index in the context of IBD prediction, determined by Boruta. 
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end, we designed a ranking method based on the number of 
times each index achieved the highest AUC for the most co- 
horts for each disease. Overall, Q2PD outperformed the other 
indices for 6 diseases (ather oscler otic cardiov ascular disease,
colon cancer, infection, metabolic disease, sc hizophr enia, and fe- 
cal microbiota transplant: donor versus patient classification). 
This w as follo w ed b y hiPC A for 5 (Behçet’s disease , IBD, type 
2 diabetes, c hr onic fatigue and cirrhosis), Shannon entr opy on 

taxa for 2 (Parkinson’s disease and acute diarrhea), and GMHI 
for 1 (a cohort with mixed diseases). From this, we also cal- 
culated an av er a ge r ank for eac h method for all the diseases 
abo ve , and yet again, Q2PD ranked best (average ranking = 

2.39), follo w ed b y hiPCA (2.71), Shannon entrop y on taxa (3.14),
GMHI (3.32), and Shannon entropy on functions (3.57). The poor 
performance of the GMHI indicated a diminished role of the 
“GMHI_bad” parameter when combining all datasets and implied 

a better generalization of the health status using function-based 

parameters. 
n
2PD robustness to longitudinal alter a tions and 

equencing depth 

o construct a final model, we trained the r andom for est classi-
er on the complete set of 30 cohorts. We then took adv anta ge of
 longitudinal COVID-19 dataset that had been sequenced both 

hallowly and deeply, and was “unseen” by any methods, in or- 
er to e v aluate performance of Q2PD acr oss sequencing depths.
he set consisted of 3 groups—COVID-19 patients who, during the
ourse of the tr eatment, wer e either (i) tr ansferr ed to the intensive
are unit (ICU) or (ii) r ecov er ed (noICU), and (iii) controls (healthy
ospital staff). For e v ery individual, 2 time points were selected—
1,” which was collected upon hospital admission or, in the case of
taff, early in the pandemic, and “2,” which was the final sample
aken fr om eac h individual. As expected, sequencing data with
ewer than 300,000 reads per sample fell short in accur atel y clas-
ifying individuals, primarily because the limited read depth did 

ot provide sufficient cov er a ge for compr ehensiv e functional an-
otation (Fig. 6 A). 
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Figure 5 (A) Av er a ge accur acy and AUC values for each cohort. (B) Average importance ranks of features for each cohort. A lo w er rank indicates greater 
importance. Cells with black borders indicate variables identified as informative by the Boruta algorithm. The AUCs were produced as a part of the 
feature importance analysis when training on individual cohorts and therefore do not align with the AUCs produced by the Q2PD. Only datasets with 
AUCs > 0.5 are shown. 
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Sur prisingl y, despite its earlier described successes at classi-

cation, Q2PD was not able to distinguish between healthy and
OVID-19 individuals sequenced deeply classifying ICU patients
s healthy (Fig. 6 B). Curious about the reasons for this , we in ves-
igated feature importance and discov er ed that the 2 taxonomic
arameters “GMHI_good” and “GMHI_bad” both had negative val-
es . T his was indicative of the detrimental influence of taxonomy-
ased features on the performance of the model. As suspected,
 etr aining the Q2PD without them led to the expected, correct
redictions (Fig. 6 C), suggesting that this dataset could be classi-
ed based on functional information alone. We further validated
his when we performed classification using the taxonomy-based
MHI (Fig. 6 D) and the hiPCA (Fig. 7 E), whic h was inaccur ate for
MHI and opposite for hiPCA. 
Q2PD performed poorly on the shallow COVID-19 dataset,

hich led us to ask where the threshold lay for sequencing depth
eliability. In order to investigate method robustness to depth,
e applied various degrees of rarefaction to deeply sequenced
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Figure 6: (A) Q2PD predictions on the shallow COVID-19 cohort. (B) Q2PD predictions on the deep COVID-19 cohort. (C) Q2PD predictions on the deep 
COVID-19 cohort with the taxonomic parameters excluded. GMHI (D) and hiPCA (E) predictions on the deep COVID-19 cohort. 
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control samples, expecting to see similar pr ediction scor es despite 
variable sequencing depth. Because the performance of the hiPCA 

(second best classifier after the Q2PD ov er all) on the COVID-19 co- 
hort w as w orse than that of the GMHI , we decided to use the latter 
as our benchmark. 

The scores produced by the Q2PD wer e r obust and consistent 
regardless of sequencing depth, whereas for GMHI , they increased 

with degree of rarefaction (Fig. 7 A, B). Furthermore, the GMHI clas- 
sification a ppear ed to be onl y r ele v ant for a for eboding depth of 2 
million reads (score > 0), as the healthy samples were defined as 
unhealthy at greater sequencing depth (score < 0). Our index cor- 
r ectl y identified healthy samples at any sequencing depth (scores 
wer e al wa ys abo v e thr eshold). 

We plotted the values for each feature separately and found 

that at low sequencing depths, certain species (Fig. 7 C, D) or “core 
functions” (Fig. 7 E, F) were undetectable . T he “Fraction of core fea- 
tures among other features” and the “Function contributions per 
species” were those most dependent on cov er a ge, whic h was an- 
ticipated due to their dependence on low-abundance functions 
(Fig. 7 E–H). Inter estingl y, the numbers of “good” and “bad” species 
dentified at any sequencing depth cov er ed onl y 32% of the com-
lete GMHI list (2 and 14 versus 7 and 43 for good and bad species,
 espectiv el y). In line with the underlying theme of our work and
n a gr eement with all other presented data, this overlap argues
tr ongl y a gainst indices that ar e based solel y on taxonomy. 

iscussion 

 connection between the human gut microbiome and gut health
s now well established, and a number of a ppr oac hes hav e been
mplo y ed in an effort to identify gut dysbiosis from sequence-
ased analysis of stool samples . T hose methods are based on tax-
nomy and r el y either on measures of microbiome richness (al-
ha/beta diversity) or on the presence or absence of so-called
good” and “bad” bacteria, with the health-indexes GMHI [ 12 ] 
nd hiPCA [ 14 ] pr oposed formall y. Hampering suc h a ppr oac hes,
o w e v er, ar e ecological considerations of metabolic or functional
 edundancies inher ent within complex en vironments . Currently,
 edefining the micr obiome to include inferred functionality is
olstered by recent studies that highlight the importance of 
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Figure 7: Robustness of health predictions to sequencing cov er a ge. GMHI (A) and Q2PD (B) scores for deeply sequenced healthy samples from the 
COVID-19 cohort, r ar efied to corr esponding depths . T he horizontal lines r epr esent health thr esholds r ele v ant to the corr esponding methods. 
Taxonomic GMHI -inspired Q2PD features (C, D) remain relatively stable above the coverage of 5 million reads. Functional and species 
inter action-r elated featur es ar e m uc h mor e sensitiv e (E–H). 
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nter actions between micr obiome components and functional as-
ects thereof. To address the inadequacy of the dogmatic Lin-
éan (taxonomy-based) a ppr oac h for e v aluating c hange in micr o-
iomes, we de v eloped a novel method that incor por ates function

n bioinformatics-based assessment of microbiome dysbioses. We
how that features based on microbiome functions and interac-
ions define a healthy microbiome more accurately. There exists a
et of “core functions,” which are consistently identified as present
n healthy gut microbiomes and disappear in the advent of dys-
iosis. We compare our results to the hiPCA, the GMHI, and 2
hannon entr opy measur es (calculated on either species or on
unctions). Our index outperforms the other methods not only in
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the originally targeted IBD classification but also when applied 

to a range of other diseases. Finally, it is robust to sequencing 
de pth, unlik e the GMHI , despite being based on sequencing depth–
sensitiv e par ameters. 

While we here present the index Q2PD, we acknowledge that 
c hallenges r emain prior to e v entual clinical deployment as the 
method’s robustness for diseases other than IBD and obesity is im- 
pr ov ed. One of the most fascinating r esults fr om this work, a part 
from the model itself, was the finding that different parameters 
wer e of v arying importance acr oss differ ent diseases and cohorts.
This finding could have practical implications in the clinic, as it 
could indicate the directionality of the microbiome–disease con- 
nections . By this , we mean specifically that diseases originating 
in the gut (e.g., IBD) are usually associated with taxonomic shifts 
and thus better classified with taxonomy-based indices while dis- 
eases originating else wher e ma y ha ve (functional) effects on the 
gut and thus better identified with function-oriented methods. It 
should be noted, though, that the etiology of many diseases (i.e.,
whether they originate in the gut or not) remains unknown. 

Clearly, a deeper understanding of how the identified function- 
and interaction-based microbiome features respond to variations 
in sequencing depth and quality is r equir ed. Our initial test did 

find that longitudinal data provide more insight into personalized 

“cor e featur es” of a micr obiome , and this ma y be indicative of in- 
dividual de viations fr om the normal. T hus , tr ac king micr obiome 
changes in individuals over time may facilitate the early identi- 
fication of micr obiome tr ajectories or alterations that could help 

determine risk for certain conditions or diseases, potentiating per- 
sonalized clinical intervention. 

A caveat to this type of study is the infancy of certain fields, in 

particular, the availability of functional annotation software. Cur- 
r entl y, the onl y widel y accepted functional annotation softwar e 
is HUMAnN (an y v ersion), whic h r equir es data to be processed in 

a particular way. In future w ork, w e plan to explore other possi- 
bilities and ultimately migrate to other inputs (such as mifaser) 
as well as toward a more universal solution, such as gene con- 
tent [ 29 ]. Only then can recent developments in augmented func- 
tional annotation be efficiently utilized, as we already have shown 

in other applications [ 30–32 ]. 
We are also considering the introduction of a multiomics ap- 

pr oac h to impr ov e our predictions, combining metagenomics,
metabolomics, and proteomics data. With decreasing costs for 
each of the abo ve , predicting patient health status based on all 
3 -omics methods might be a reasonable option that impr ov es ac- 
cur acy and pr ediction in the not-too-distant futur e. It would also 
allow us to quantitativ el y estimate the functions dir ectl y, instead 

of basing our analyses on the functional potential e v aluated based 

on metagenomics data. As a primer for our current efforts, the in- 
tegr ation of m ultiple le v els could be performed using the afore- 
mentioned MDFS, by inv estigating r elationships between the lay- 
ers, or using mor e adv anced network-based a ppr oac hes suc h has 
ViLoN [ 33 ]. 

In conclusion, we highlight the performance and high accuracy 
obtained by Q2PD, based only on a limited number of highly rel- 
e v ant par ameters. Despite its de v elopment to separ ate samples 
deriv ed fr om healthy v ersus IBD individuals, its br oad a pplica- 
bility was pr ov en to accur atel y distinguish between healthy pa- 
tients and individuals with other disease states and conditions.
Motivated by this success, we are convinced that our approach 

and methodology provide a better mechanistic understanding of 
the human gut microbiome and its health, one based on resource 
competition and interactions based on fundamental ecological 
principles that ultimately define microbial community structure. 
ethods 

efining metagenomic parameters associated 

ith health 

 he ra w shotgun sequencing fastq files for the HMP2 and the 2 IBD
alidation cohorts used to derive metagenomic health-associated 

ar ameters wer e pr ocessed with Trim Galore 0.6.10 ( RRID:SCR _
11847 ) [ 34 ] to ensure sufficient read quality. The taxonomic pro-
les were calculated with MetaPhlAn 4.0.6 ( RRID:SCR _ 004915 )
 35 ] and functional profiles with HUMAnN 3.7 [ 36 ]. Species se-
ection was performed using MultiDimentional Feature Selection,
r the MDFS [ 23 , 24 ], with a Benjamini–Hoc hber g P v alue corr ec-
ion in a 2-dimensional mode. Selection was performed per co-
ort (healthy vs. each of the nonhealthy groups in separate MDFS
uns), and the final list of species was the union of the MDFS re-
ults for all cohorts (corrected P < 0.05). Metagenomic table for-
atting and alpha diversity plots were done using QIIME 2 [ 37 ]

nd SparCC correlations with the SCNIC plugin [ 38 ]. Plots were
ade using custom Python scripts. Any statistical tests were cal-

ulated with the independent t -test, unless stated otherwise. 

BD index 

andom forest is a classification and r egr ession method [ 26 ]. The
lgorithm uses an ensemble of CART trees [ 39 ], in which each tree
s built using different bootstrap samples of data and different
andom subsets of variables at each stage of the tree construction.
t is a robust and versatile algorithm that w orks w ell on different
ypes of data [ 40 ]. 

Meta genomic featur es passed to the r andom for est wer e con-
tructed based on healthy samples from the HMP2 and 2 vali-
ation cohorts (Val_1 and Val_2). The features are presented in
able 1 . 

The importance of the features was assessed using a permuta-
ion a ppr oac h and 5-fold cr oss-v alidation. 

From this step on, we used the manually curated samples from
he cur atedMeta genomicsRepository to ensur e consistent sam- 
le processing (MetaPhlAn [ 35 ] and HUMAnN [ 36 ]; specifically, we
sed the MetaCyc functional annotations), as well as to provide
n additional layer of validation of our a ppr oac h. Our manual cu-
ation excluded a sample for the following reasons: incomplete 

etadata, use of antibiotics or other similar drugs, repeats from
he same patients, young age (newborns), or healthy samples not
eing fully healthy (high body mass index, c hr onic conditions).
uring filtering, we set the following thresholds: species abun- 
ance ≥0.1%, pathway cov er a ge ≥20%, and function abundance
0.01%—with any features below that changed to 0. 
During random forest training, healthy individuals were la- 

eled as “1” and those with the IBD as “0.” A leave-one-out cross-
 alidation pr ocedur e was a pplied to pr edict health scor es for eac h
ample to avoid model overfitting or the need to split the data
nto training and testing sets . T he final health score is the output
f the random forest’s predict_proba method, which expresses the 
robability of each sample belonging to the healthy (or unhealthy)
roup. 

The GMHI scor es wer e calculated with the QIIME 2 q2-health-
ndex plugin [ 41 ], and the hiPCA [ 14 ] predictions were obtained
y substituting the original test file with our test samples due to
 lack of instructions about how to do it better (this could poten-
iall y r esult in an ov erla p of the tr ain and test samples, possibl y
alsel y incr easing the hiPCA ’s accuracy). The Shannon entropies
er e calculated separ atel y on taxonomic and functional profiles

or each sample using custom Python scripts. 

https://scicrunch.org/resolver/RRID:SCR_011847
https://scicrunch.org/resolver/RRID:SCR_004915
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The GMHI was the only parameter with a predefined threshold
or health. In the case of the other methods, the optimal threshold
ould be defined using the Youden’s J statistic calculated on the

raining data. 
The r ele v ance of eac h index in the context of IBD pr edictions

as calculated using Boruta [ 28 ]. The Boruta algorithm is a wr a p-
er around the random forest classifier. It works in the following
ay: a dataset is extended by adding a r andoml y perm uted copy
f each original variable—a so-called shadow variable. A predic-
ive model for the decision variable is then built using the random
orest algorithm. The importance of each variable is estimated us-
ng a permutation test. Boruta collects the information about the
mportance and then compares the importance score of each orig-
nal variable with the maximal importance achieved by a shadow
ariable. 

The pr ocedur e is r epeated m ultiple times, and a statistical test
s performed. The v ariables ar e e v entuall y assigned to 3 classes:
onfirmed (better than random), Rejected (no better than ran-
om), and Tentative (those that could not be assigned to the
onfirmed or the Tentative class). The utility of the variable is a
ood indicator of the information importance carried by the vari-
ble and also in situations where the synergistic interactions are
mportant. 

In the Boruta section of our analysis, the predictions of each
ndex were passed as parameters, and the health labels (0/1) were
sed as decision vectors. Index importances were redefined as
anks—with the highest importance marked as rank “1.”

ndex testing: expanding to other diseases 

or the purpose of testing, the index was r etr ained on the com-
lete set of 30 datasets. Ho w e v er, no par ameters wer e modified. To
nsur e a r eliable benc hmark, a leav e-one-cohort-out pr ocedur e
ith a 5-fold cr oss-v alidation was performed. The accuracy and
UC statistics were defined separately for each test cohort based
n the validation set (which was a subset of the training dataset).

The performance of our index was e v aluated by calculating its
inning margin over hiPCA, the second best index, and the mean
f the other methods. Specifically, for each test dataset, the AUC of
he hiPCA or the mean AUC of the other methods was subtracted
r om the AUC pr oduced by the Q2PD. The winning margin was
efined as a mean of the AUC differ ences, separ atel y for cases
hen Q2PD won and when not. 
Importance of the features contributing to the Q2PD score was

 v aluated by training a random forest model separately for each
ohort and using a feature permutation approach. The impor-
ances wer e c hanged to r anks, with the highest r anks (lo w est val-
es) r epr esenting the gr eatest importance. 

inal index and application to the COVID-19 

ataset 
he final index was trained on the complete set of 30 cohorts using
-fold cr oss-v alidation. The health thr eshold was defined based
n a mean of thresholds defined on training data for each iteration
f the leave-one-cohort-out approach and was set at 0.38 (which
as very similar for all iterations). 
To e v aluate the indices in the context of the r obustness to

equencing depth, healthy deeply sequenced samples from the
OVID-19 dataset were rarefied to different sequencing depths us-

ng seqtk 1.4 [ 42 ]. 
vailability of Supporting Source Code and 

equirements 

roject name: q2-predict-dysbiosis 
r oject homepa ge: https:// github.com/ Kizielins/ q2-predict- 
ysbiosis 
perating system(s): Platform independent 
r ogr amming langua ge: Python 

ther r equir ements: scikit-learn v ersion ≥ 1.1.3 
icense: MIT License 
RID:SCR _ 026038 
io.tools ID: q2-predict-dysbiosis 

dditional Files 

upplementary Fig. S1. Number of observed functions per sam-
le, separated by health group and project. 
upplementary Fig. S2. Comparison of core functions in health
nd disease. (a) Ov erla p of LEfSe differ entiall y enric hed pathways
n healthy versus unhealthy samples in the validation and HMP2
ohorts. (b) Ov erla p of LEfSe differ entiall y enric hed pathways in
nhealthy versus healthy samples in the validation and HMP2 co-
orts. (c) Fraction of seen core functions among all annotated core
unctions. (d) Fraction of seen core functions among all functions
een in a sample. 
upplementary Fig. S3. Number of observed species per sample,
eparated by health group and project. 
upplementary Fig. S4. Top species contributions to core func-
ions, based on the stratified output of HUMAnN. For every cohort,
he sum of the contributions for all samples was calculated, and
ontributions with the greatest summed abundances are shown.
he final values have been normalized to values between 0 and 1
o compare the strength of the correlations between the groups. 
upplementary Fig. S5. Functional redundancy. (a) Av er a ge num-
er of species per function in a sample. (b) Av er a ge number of
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upplementary Fig. S6. Accur acy and AUC scor es ac hie v ed by
ac h index, separ atel y for eac h cohort. 
upplementary Table S1. “Core functions”: functions present in at

east 80% of healthy individuals from the HMP2 and 2 validation
ohorts. 
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