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Abstract

Background: Microbiome-based disease prediction has significant potential as an early, noninvasive marker of multiple health con-
ditions linked to dysbiosis of the human gut microbiota, thanks in part to decreasing sequencing and analysis costs. Microbiome
health indices and other computational tools currently proposed in the field often are based on a microbiome’s species richness and
are completely reliant on taxonomic classification. A resurgent interest in a metabolism-centric, ecological approach has led to an
increased understanding of microbiome metabolic and phenotypic complexity, revealing substantial restrictions of taxonomy-reliant
approaches.

Findings: In this study, we introduce a new metagenomic health index developed as an answer to recent developments in microbiome
definitions, in an effort to distinguish between healthy and unhealthy microbiomes, here in focus, inflammatory bowel disease (IBD).
The novelty of our approach is a shift from a traditional Linnean phylogenetic classification toward a more holistic consideration of the
metabolic functional potential underlining ecological interactions between species. Based on well-explored data cohorts, we compare
our method and its performance with the most comprehensive indices to date, the taxonomy-based Gut Microbiome Health Index
(GMHI), and the high-dimensional principal component analysis (hiPCA) methods, as well as to the standard taxon- and function-
based Shannon entropy scoring. After demonstrating better performance on the initially targeted IBD cohorts, in comparison with
other methods, we retrain our index on an additional 27 datasets obtained from different clinical conditions and validate our index’s
ability to distinguish between healthy and disease states using a variety of complementary benchmarking approaches. Finally, we
demonstrate its superiority over the GMHI and the hiPCA on a longitudinal COVID-19 cohort and highlight the distinct robustness of
our method to sequencing depth.

Conclusions: Overall, we emphasize the potential of this metagenomic approach and advocate a shift toward functional approaches
to better understand and assess microbiome health as well as provide directions for future index enhancements. Our method, q2-
predict-dysbiosis (Q2PD), is freely available (https://github.com/Kizielins/q2-predict-dysbiosis).
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Introduction

The prevalence of a range of diseases and conditions peripher-
ally or directly linked to microbiome health, such as inflamma-
tory bowel disease (IBD), diabetes, obesity, and even various can-
cers, continue to increase globally, and substantial funds are cur-
rently spent on diagnosis and treatment [1, 2]. While a correla-
tion between gut microbiome composition and human health is
widely acknowledged [3], the accurate identification of microbial
and host markers of disease states remains elusive. Accordingly,
the ability to evaluate patient health status based on a gut micro-
biome snapshot would be of high clinical value. Stool-based meth-
ods are promising because they can be collected noninvasively
and frequently, and analysis time is short. Furthermore, decreas-
ing costs of stool sample analysis via next-generation sequencing
makes such microbiome characterization a strong competitor as
a diagnostic tool [4].

Dysbiosis, defined as a perturbation of gut homeostasis, is be-
lieved to be accompanied by reduced microbiota diversity and
increased prevalence of “harmful” bacteria in adults [5, 6]. Eu-
biosis (opposite of dysbiosis) can be perturbed by a wide range
of factors, including infection, diet, exercise, antibiotics, stress,
or poor sleep [7]. The simplest interventions currently applied
for the prevention or alleviation of mild microbiome dysbioses
include dietary modification or prebiotics (often nondigestible
food types that promote the growth of beneficial microorgan-
isms), ingested live bacteria or probiotics (beneficial bacteria
usually in capsules), and lifestyle changes. More severe cases
of gut dysbiosis, failing to respond to the above interventions,
may qualify for fecal microbiota transplants (FMTs), which are
increasingly gaining traction in clinics worldwide [8]. However,
host-microbiota and intra-microbiota interactions are both ex-
tremely complex and highly individual, and despite success with
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FMTs, we have as yet no real understanding of why or how they
work.

There are a number of accepted approaches used for the eval-
uation of a given gut microbiome’s health status based on stool
composition. Alpha diversity (Shannon entropy, for example) is a
frequent choice, as microbiome richness was long believed to be
a key driver of microbiome health and robustness [9, 10]. Beta di-
versity has also been applied in a number of longitudinal studies,
albeit to a lesser degree and mainly to identify eubiotic samples
based on a time-resolved proximity to other healthy samples [11].
The most robust index to date, outperforming diversity indices,
is the Gut Microbiome Health Index, or the GMHI [12], recently
renamed the Gut Microbiome Wellness Index (GMWI). An up-
dated version of this index has recently been published [13]. The
GMHI is based on the ratio of 50 microbial species associated with
healthy or unhealthy gut ecosystems and is reported to exceed
73% accuracy in determining disease state; thus, the authors sug-
gest that gut taxonomic signatures can predict health status. An-
other metagenomic gut health index expanding on the GMHI ap-
proach, high-dimensional principal component analysis (hiPCA)
[14], was introduced as a monitoring framework for personalized
health purposes. The personalized approach is achieved by ana-
lyzing the contribution of each bacterium to the index, which al-
lows for the identification of high-influence (ostensibly keystone)
species in different patient groups. The hiPCA claim of better per-
formance than the GMHI is attributed to the authors’ application
of additional transformation and clustering algorithms. Impor-
tantly, such studies are often defined by datasets limited in scope
to industrialized nations and thus a less than complete consider-
ation of diet-environment-microbiome interactions.

However, a recently revisited definition of the microbiome
emphasizes the importance of not just the microbiota (a com-
munity of microorganisms) but the whole “theater of activity,”
ToA [15]. This ToA includes structural elements (proteins, lipids,
polysaccharides), metabolites, and environmental conditions [16].
It is tightly bound to its corresponding ecological niche, and
the synergistic relations between species provide all the neces-
sary, community-defining components. Based on this definition,
we maintain that an index constructed from taxonomy alone is
hardly sufficient to accurately capture biological phenomena oc-
curring within the gut environment—the key to understanding
gut dysbiosis. Instead, we hypothesize that to effectively deter-
mine health, (i) a metagenomic functional profile is required (mi-
crobiome phenotype), and (ii) species interactions (e.g., measured
as co-occurrence) but not just presence should be considered.

We introduce an approach thatis based on identifiable metage-
nomic features within ecosystems that extend beyond diver-
sity measures and basic taxonomic information. This function-
centrism is broached in 2 ways: (i) directly by evaluating the func-
tional potential within and between species and (ii) indirectly by
assessing co-occurrence and synergism between bacterial species.
Our goal is not only to distinguish between healthy and diseased
but also, importantly, to quantify the degree of dysbiosis in each
sample for the given cohort. We derive the health-describing fea-
tures based on an exploratory analysis of healthy samples from
the Human Microbiome Project 2 [17] and outperform Shannon
entropy, the GMHI, and the hiPCA in healthy versus IBD and
obese classifications. The robustness of our index is further vali-
dated by corroboratively classifying 2 additional IBD-focused co-
horts. By retraining the IBD-specific parameters on an additional
set of 30 diverse cohorts encompassing a range of diseases, we
demonstrate the superior performance of our approach. Our find-
ings reveal that function- rather than taxonomy-based features

are more informative for the accurate classification of biological
samples. Additionally, our method effectively identifies longitu-
dinal microbiome changes in patients with COVID-19, which the
GMHI and the hiPCA are unable to capture, and crucially, it is
distinctly robust to sequencing depth. Our method, q2-predict-
dysbiosis (Q2PD), is freely available [18].

Results

High prevalence of “core functions” in health

In order to develop a strategy to assess the degree of dysbiosis
in a given microbiome sample, we must define eubiosis (i.e., the
healthy microbiome). We based our initial analysis (described in
the Methods section) on 384 medically determined healthy sam-
ples from the HMP2 project and identified the most prevalent
species, regardless of abundance (Fig. 1A). We observed that 50%
of species were present in less than 5% of samples, and hardly
any species were shared by all individuals. On the other hand,
the prevalence of functions within the healthy population had an
opposite trend—50% of functions were already represented by at
least 40% of individuals (Fig. 1B), a functional redundancy unac-
counted for in the GMHI (or the hiPCA, which is based on it). These
results convinced us further about the unsuitability of basing an
index purely on the presence of “core taxa” and encouraged a shift
of focus toward more prevalent functions instead.

The addition of healthy samples from 2 validation cohorts
maintained the function distribution profile obtained solely with
HMP2 samples (Fig. 1C). In order to test whether the functions
were universal or cohort specific, we calculated separately the
distributions for functions present in 1, 2, or all 3 cohorts. We
found that all functions missing from at least 1 cohort were
present in less than 10% of samples, which indicated the pres-
ence of high-prevalence functions in all 3 cohorts. Based on the
increased occurrence of certain functions in over 80% of samples
(dotted line in Fig. 1C), we defined them as “core functions” (refer
to https://gigadb.org/dataset/102656 Supplementary Table S1 for
full list). According to MetaCyc classification, 73.5% of “core func-
tions” were assigned as “Biosynthesis” pathways, 18.8% “Degrada-
tion/Utilization/Assimilation,” and 7.6% “Generation of Precursor
Metabolites and Energy.” In addition, a few of the above were addi-
tionally classified as “Superpathways.” The classification aligned
well with a previously reported high prevalence of carbohydrate
and amino acid metabolism-related pathways, potentially form-
ing the functional microbiome core [19]. A detailed analysis of the
core functions identified in our study, however, is out of the scope
of this article.

Shannon entropy calculated on species and functions allowed
for good discrimination between healthy and unhealthy samples
in the HMP2 dataset (Fig. 2A, top). However, the trends were un-
clear in the 2 validation cohorts (Fig. 2A, middle and bottom), re-
flecting the need for more complex methodology, expanding be-
yond microbiome richness, in order to classify datasets without
obvious separation. Diversity analyses revealed that the num-
ber of functions per sample remained similar or even increased
during microbiome transitions from healthy state to dysbiosis in
HMP?2 (https://gigadb.org/dataset/102656 Supplementary Fig. S1).
While admittedly, this cannot be measured solely using metage-
nomics data, the similarity could hypothetically be due to al-
tered expression of genes usually silenced in the eubiotic state,
although this observation was not reproduced in the validation
cohorts. Next, we investigated the presence of “core functions” in
different groups, testing whether “core functions” are maintained
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Figure 1: Distributions of species (A) and functions (B) present in healthy samples from the HMP2; absolute values of species and function counts are
shown as histograms (with scales on the right-hand side, with shaded cumulative sum in the background and an inverse of the cumulative sum
represented with a dashed line, with scales on the left-hand side). (C) Distribution of functions in healthy individuals from the HMP2 and 2 validation

cohorts.

or replaced by others in dysbiotic, IBD samples. While the differ-
ences were not significant in most cases, we noted a visibly higher
percentage of “core functions” and a higher percentage of all “core
functions” in healthy as compared to disease samples (https://
gigadb.org/dataset/102656 Supplementary Fig. S2). We carried out
differential enrichment analysis using Linear discriminant anal-
ysis Effect Size or LefSe [20], performed separately for each co-
hort, and identified 100 functions that were more abundant in
healthy as compared to disease cohorts (Fig. 2B, https://gigadb.
org/dataset/102656 Supplementary Fig. 2). Over 90% of functions
enriched in healthy samples were “core functions,” while they
constituted less than 5% of functions enriched in the unhealthy
class of validation cohort 2 and HMP? (Fig. 2C). The LEfSe analy-
sis on validation cohort 1 revealed only 10 significantly enriched
functions (7 in health and 3 in disease), all of which were core. This
indicated a more heterogeneous functional landscape within this
cohort.

Species interactions and function contributions
in health

Corroborating results from past studies, we observed a decrease
in the species abundance in dysbiotic samples (https://gigadb.org/
dataset/102656 Supplementary Fig. S3, [21, 22]). Having previously
noted an increase in the number of functions (https://gigadb.org/
dataset/102656 Supplementary Fig. S1), we speculated that the re-
maining species may contribute to core or new functions, forming
new connections with one another. Due to the substantial number
of initial connections to analyze (170 “core functions” and 1,490
species present in at least 2 projects), we restricted the number of
species to those most informative in the context of health/disease

state separation. We chose the Multi-Dimensional Feature Selec-
tion (MDFS) algorithm, as it was the only feature selection method
accounting for interfeature interactions that we were aware of
at the time of manuscript submission [23, 24]. This approach re-
duced the number of relevant species to 587, allowing us to elim-
inate noise and focus on the most important interactions (see
Methods for more details about the feature selection procedure).

We then used the SparCC algorithm, designed specifically
for compositional data, to investigate correlations between the
MDFS-selected species in health and disease [25]. We did not ob-
serve any trends in the number of correlations or in the fraction
of positive correlations per group that would indicate differences
between the two. However, we identified opposite relationships of
some species in different groups (Fig. 3A). A number of species we
found to be positively correlated in eubiosis and are generally con-
sidered beneficial (e.g., Eubacterium rectale, Faecalibacterium praus-
nitzii, and a number of Bacteroides species), and those relation-
ships would be disrupted in dysbiotic groups. We observed that
the prevalence of the pairs positively correlated with health was
higher than in a number of disease-associated groups (Fig. 3B).
Due to this, we included the co-occurrence of such species as an-
other feature of interest to aid potentially in the determination of
microbiome health.

Based on our previous results, we hypothesized that the con-
tributions of each species to functions would be relatively sta-
ble in the healthy state and less predictable in disease. To test
this, we compared the contributions of MDFS-identified species
to “core functions” in different groups (https://gigadb.org/dataset/
102656 Supplementary Fig. S4). We did not observe any differ-
ences between health and disease, despite a relatively tight clus-
tering of the healthy groups. However, we found stronger results
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when exploring functional redundancy. While the average num-
ber of species per function and the average number of functions
per species did not reliably separate healthy from diseased pro-
files (https://gigadb.org/dataset/102656 Supplementary Fig. S5),
the latter approach was more informative, as described in detail
below. This finding was congruent with our earlier suspicions of an
inherent functional plasticity of microbiome structure, with mod-

ulation of function altering connectivity in the interaction net-
work, leading to a shift toward less abundant, noncore functions
upon perturbation of homeostasis. It also highlighted the chal-
lenge of identifying dysbiosis based on singular features, which
were never statistically significant for all cohorts, and the utility
of multiple perspectives for microbiome description, in order to
meaningfully classify them.
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Figure 3: (A) SparCC correlation strengths between species, restricted to pairs that were not negatively correlated in any healthy cohort. (B) Prevalence

of the pairs in different cohorts.

Testing the accuracy of prediction for healthy
and IBD individuals

Our final set of health-defining microbiome features included the
following parameters (details of how each feature was calculated
can be found in Table 1):

i) the fraction of “core functions” found,
ii) the proportion of “core functions” among all functions,

ili) the proportion of co-occurrent species pairs in healthy sam-
ples, and

iv) the average number of functional “contributions” per
species.

In addition, we included 2 parameters derived from the GMHI
method—the number of “good” and “bad” GMHI species identi-
fied in a sample, which would enable us to compare between ap-
proaches. We then fed these described parameters into a machine
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Table 1: Parameters of the Q2PD model

Name

Explanation

Derivation

Frac_of_core_functions_found

Frac_of_core_functions_among_all
functions
Species_found_together

Func_contributions_per_species

species
GMHI_good Number of “good” GMHI species
GMHI_bad Number of “bad” GMHI species

Fraction of “core functions” found

Fraction of “core functions” among all

Fraction of species pairs commonly occurring
together in healthy samples
Average number of function contributions per

Number of “core functions”in a
sample/number of all “core functions” in our
list

Number of “core functions” in a
sample/number of all functions in a sample
SparCC correlation of species >0.1, only
nonnegative correlations in healthy cohorts
Number of all species to functions
contributions based on stratified
output/number of all species in a sample
List of health-associated GMHI species

List of disease-associated GMHI species

learning model. We opted for a random forest classification al-
gorithm [26] due to its robustness to imbalanced data and inter-
pretability and performed a leave-one-out cross-validation [26].
For the model training, validation, and subsequent testing, we
used taxonomic and functional profiles from the curated Metage-
nomics database [27] to ensure consistency and reproducibility
(see Methods).

Our index demonstrated the strongest statistically significant
separation between healthy and Crohn’s disease or ulcerative col-
itis individuals across all methods evaluated (Fig. 4A). Alongside
hiPCA, it was 1 of only 2 approaches to achieve a statistically sig-
nificant distinction in the Nielsen_2014 cohort. Overall, both our
index and hiPCA exhibited comparable levels of accuracy and AUC
across the 3 cohorts, outperforming the other methods by a no-
table margin (Fig. 4B). By contrast, the GMHI consistently delivered
mediocre results, and Shannon entropy only performed well ap-
plied to the HMP2 cohort, yielding low area under the curve (AUC)
scores (0.37-0.53) in all other cases. When index values were used
as features in the Boruta algorithm [28], with health status (0/1) as
the target variable, our index emerged with the highest mean and
summed importance across all cohorts (Fig. 4C) [28]. The above
highlights the ability of our index to provide the most informa-
tive scores for health status prediction as compared to the other
methods.

Beyond IBD

While only healthy and IBD individuals had erstwhile been in-
cluded in the development and validation of our approach, we
wondered about the applicability of the Q2PD to dysbiosis at-
tributed to other diseases. We extended our dataset to another
27 additional cohorts from various disease states, equating to 30
datasets used for method validation. We did not change any pa-
rameters of the Q2PD, which were originally determined based
on the healthy samples from the HMP2. Instead, we retrained the
model with the new data and performed a leave-one-cohort-out
approach to ensure a robust benchmark. The procedure placed
our index at a disadvantaged position, as some of the added
datasets had been used to develop and train the other methods,
and our approach was thus truly blind to outcome in these new
cases.

Despite the disability, and gratifyingly, the Q2PD achieved in
terms of performance the highest average accuracy and AUC
across all datasets {(AUC = 0.61, accuracy = 0.58) > hiPCA (AUC
= 0.58, accuracy = 0.57) > GMHI (AUC = 0.55, accuracy = 0.55)
> Shannon entropy on species (AUC = 0.52, accuracy = 0.53) >

Shannon entropy on functions (AUC = 0.44, accuracy = 0.43)}
(see Fig. 5A). The consistently poor performance of both entropy-
based measures suggested their highly limited utility as predictive
indices.

We observed that where Q2PD classified a particular cohort
better than the other indices, it did so with a significantly greater
margin than when it lost to the other methods. Its average win-
ning AUC margin over the hiPCA, the second best classifier, was
0.19 while the losing margin to the hiPCA was 0.09 when the hiPCA
had the highest AUC. The average winning AUC margin of Q2PD
against the mean of the other indices was 0.20 and 0.11 if any
other was better. In both cases, the t-test statistics for the differ-
ences between the means of the Q2PD’s winning AUC margins and
that of the hiPCA or the average of others produced P values of
0.03 and 0.02, respectively, indicating a significant classification
improvement with our method in areas in which the remaining
indices did not classify well. The improvement was even more
striking when we excluded datasets that had been used for the
training of either method. In this case, the winning margin of the
Q2PD was 0.22 while the losing margin to the mean of the other
indices if any of them was better was 0.09.

Our investigation into the accuracy and AUC of the indices
for each cohort revealed substantial variability in terms of the
classes of cohort that each index was able to classify (https://
gigadb.org/dataset/102656 Supplementary Fig. S6). We observed
that while some cohorts such as Liss_2016 could be classified well
with function-based indices (Q2PD and Shannon entropy on func-
tions), other cohorts such as Gupta_2019 were slightly better sep-
arated with taxonomy-based indices (hiPCA, GMHI, and Shannon
entropy on species). An exploration of the importance of feature(s)
associated with the model training on each dataset alone revealed
a large amount of diversity, suggesting different kinds of infor-
mation used to classify different cohorts (Fig. 5B). Interestingly,
when trained on the level of individual cohorts, a random for-
est would pick the “GMHI_bad” as its most informative parame-
ter (scoring the lowest rank in 9 cases) and the “GMHI_good” as
the worst (appearing at the bottom of the ranking 6 times). The
importance of the function-based features would vary depending
on the dataset, with “Contributions_per_species” winning and los-
ing twice and the other two being consistently in the middle of the
ranking.

Having observed a discrepancy between the superior Q2PD
performance and the greatest importance of the “GMHI_bad”
parameter, we investigated this further by testing which types
of diseases were best suited for each index to utilize. To this
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Figure 4: (A) Q2PD, GMHI, hiPCA, and Shannon entropy (on species and functions) scores for healthy and IBD (CD: Crohn’s disease; UC:
ulcerative colitis) individuals. (B) Accuracy and AUC values for each index, per IBD cohort. ShF: Shannon entropy on functions; ShT: Shannon entropy
on taxa. (C) Average (top) and summed (bottom) importance of each index in the context of IBD prediction, determined by Boruta.

end, we designed a ranking method based on the number of
times each index achieved the highest AUC for the most co-
horts for each disease. Overall, Q2PD outperformed the other
indices for 6 diseases (atherosclerotic cardiovascular disease,
colon cancer, infection, metabolic disease, schizophrenia, and fe-
cal microbiota transplant: donor versus patient classification).
This was followed by hiPCA for 5 (Behget's disease, IBD, type
2 diabetes, chronic fatigue and cirrhosis), Shannon entropy on
taxa for 2 (Parkinson’s disease and acute diarrhea), and GMHI
for 1 (a cohort with mixed diseases). From this, we also cal-
culated an average rank for each method for all the diseases
above, and yet again, Q2PD ranked best (average ranking =
2.39), followed by hiPCA (2.71), Shannon entropy on taxa (3.14),
GMHI (3.32), and Shannon entropy on functions (3.57). The poor
performance of the GMHI indicated a diminished role of the
“GMHI_bad” parameter when combining all datasets and implied
a better generalization of the health status using function-based
parameters.

Q2PD robustness to longitudinal alterations and
sequencing depth

To construct a final model, we trained the random forest classi-
fier on the complete set of 30 cohorts. We then took advantage of
a longitudinal COVID-19 dataset that had been sequenced both
shallowly and deeply, and was “unseen” by any methods, in or-
der to evaluate performance of Q2PD across sequencing depths.
The set consisted of 3 groups—COVID-19 patients who, during the
course of the treatment, were either (i) transferred to the intensive
care unit (ICU) or (ii) recovered (noICU), and (iii) controls (healthy
hospital staff). For every individual, 2 time points were selected—
“1,” which was collected upon hospital admission or, in the case of
staff, early in the pandemic, and “2,” which was the final sample
taken from each individual. As expected, sequencing data with
fewer than 300,000 reads per sample fell short in accurately clas-
sifying individuals, primarily because the limited read depth did
not provide sufficient coverage for comprehensive functional an-
notation (Fig. 6A).
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Surprisingly, despite its earlier described successes at classi-
fication, Q2PD was not able to distinguish between healthy and
COVID-19 individuals sequenced deeply classifying ICU patients
as healthy (Fig. 6B). Curious about the reasons for this, we inves-
tigated feature importance and discovered that the 2 taxonomic
parameters “GMHI_good” and “GMHI_bad” both had negative val-
ues. This was indicative of the detrimental influence of taxonomy-
based features on the performance of the model. As suspected,
retraining the Q2PD without them led to the expected, correct

predictions (Fig. 6C), suggesting that this dataset could be classi-
fied based on functional information alone. We further validated
this when we performed classification using the taxonomy-based
GMHI (Fig. 6D) and the hiPCA (Fig. 7E), which was inaccurate for
GMHI and opposite for hiPCA.

Q2PD performed poorly on the shallow COVID-19 dataset,
which led us to ask where the threshold lay for sequencing depth
reliability. In order to investigate method robustness to depth,
we applied various degrees of rarefaction to deeply sequenced
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Figure 6: (A) Q2PD predictions on the shallow COVID-19 cohort. (B) Q2PD predictions on the deep COVID-19 cohort. (C) Q2PD predictions on the deep
COVID-19 cohort with the taxonomic parameters excluded. GMHI (D) and hiPCA (E) predictions on the deep COVID-19 cohort.

control samples, expecting to see similar prediction scores despite
variable sequencing depth. Because the performance of the hiPCA
(second best classifier after the Q2PD overall) on the COVID-19 co-
hort was worse than that of the GMHI, we decided to use the latter
as our benchmark.

The scores produced by the Q2PD were robust and consistent
regardless of sequencing depth, whereas for GMHI, they increased
with degree of rarefaction (Fig. 7A, B). Furthermore, the GMHI clas-
sification appeared to be only relevant for a foreboding depth of 2
million reads (score >0), as the healthy samples were defined as
unhealthy at greater sequencing depth (score <0). Our index cor-
rectly identified healthy samples at any sequencing depth (scores
were always above threshold).

We plotted the values for each feature separately and found
that at low sequencing depths, certain species (Fig. 7C, D) or “core
functions” (Fig. 7E, F) were undetectable. The “Fraction of core fea-
tures among other features” and the “Function contributions per
species” were those most dependent on coverage, which was an-
ticipated due to their dependence on low-abundance functions
(Fig. 7E-H). Interestingly, the numbers of “good” and “bad” species

identified at any sequencing depth covered only 32% of the com-
plete GMHI list (2 and 14 versus 7 and 43 for good and bad species,
respectively). In line with the underlying theme of our work and
in agreement with all other presented data, this overlap argues
strongly against indices that are based solely on taxonomy.

Discussion

A connection between the human gut microbiome and gut health
is now well established, and a number of approaches have been
employed in an effort to identify gut dysbiosis from sequence-
based analysis of stool samples. Those methods are based on tax-
onomy and rely either on measures of microbiome richness (al-
pha/beta diversity) or on the presence or absence of so-called
“good” and “bad” bacteria, with the health-indexes GMHI [12]
and hiPCA [14] proposed formally. Hampering such approaches,
however, are ecological considerations of metabolic or functional
redundancies inherent within complex environments. Currently,
redefining the microbiome to include inferred functionality is
bolstered by recent studies that highlight the importance of
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interactions between microbiome components and functional as-
pects thereof. To address the inadequacy of the dogmatic Lin-
néan (taxonomy-based) approach for evaluating change in micro-
biomes, we developed a novel method that incorporates function
in bioinformatics-based assessment of microbiome dysbioses. We
show that features based on microbiome functions and interac-

tions define a healthy microbiome more accurately. There exists a
set of “core functions,” which are consistently identified as present
in healthy gut microbiomes and disappear in the advent of dys-
biosis. We compare our results to the hiPCA, the GMHI, and 2
Shannon entropy measures (calculated on either species or on
functions). Our index outperforms the other methods not only in
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the originally targeted IBD classification but also when applied
to a range of other diseases. Finally, it is robust to sequencing
depth, unlike the GMHI, despite being based on sequencing depth-
sensitive parameters.

While we here present the index Q2PD, we acknowledge that
challenges remain prior to eventual clinical deployment as the
method’s robustness for diseases other than IBD and obesity is im-
proved. One of the most fascinating results from this work, apart
from the model itself, was the finding that different parameters
were of varying importance across different diseases and cohorts.
This finding could have practical implications in the clinic, as it
could indicate the directionality of the microbiome-disease con-
nections. By this, we mean specifically that diseases originating
in the gut (e.g., IBD) are usually associated with taxonomic shifts
and thus better classified with taxonomy-based indices while dis-
eases originating elsewhere may have (functional) effects on the
gut and thus better identified with function-oriented methods. It
should be noted, though, that the etiology of many diseases (i.e.,
whether they originate in the gut or not) remains unknown.

Clearly, a deeper understanding of how the identified function-
and interaction-based microbiome features respond to variations
in sequencing depth and quality is required. Our initial test did
find that longitudinal data provide more insight into personalized
“core features” of a microbiome, and this may be indicative of in-
dividual deviations from the normal. Thus, tracking microbiome
changes in individuals over time may facilitate the early identi-
fication of microbiome trajectories or alterations that could help
determine risk for certain conditions or diseases, potentiating per-
sonalized clinical intervention.

A caveat to this type of study is the infancy of certain fields, in
particular, the availability of functional annotation software. Cur-
rently, the only widely accepted functional annotation software
is HUMANN (any version), which requires data to be processed in
a particular way. In future work, we plan to explore other possi-
bilities and ultimately migrate to other inputs (such as mifaser)
as well as toward a more universal solution, such as gene con-
tent [29]. Only then can recent developments in augmented func-
tional annotation be efficiently utilized, as we already have shown
in other applications [30-32].

We are also considering the introduction of a multiomics ap-
proach to improve our predictions, combining metagenomics,
metabolomics, and proteomics data. With decreasing costs for
each of the above, predicting patient health status based on all
3 -omics methods might be a reasonable option that improves ac-
curacy and prediction in the not-too-distant future. It would also
allow us to quantitatively estimate the functions directly, instead
of basing our analyses on the functional potential evaluated based
on metagenomics data. As a primer for our current efforts, the in-
tegration of multiple levels could be performed using the afore-
mentioned MDFS, by investigating relationships between the lay-
ers, or using more advanced network-based approaches such has
ViLoN [33].

In conclusion, we highlight the performance and high accuracy
obtained by Q2PD, based only on a limited number of highly rel-
evant parameters. Despite its development to separate samples
derived from healthy versus IBD individuals, its broad applica-
bility was proven to accurately distinguish between healthy pa-
tients and individuals with other disease states and conditions.
Motivated by this success, we are convinced that our approach
and methodology provide a better mechanistic understanding of
the human gut microbiome and its health, one based on resource
competition and interactions based on fundamental ecological
principles that ultimately define microbial community structure.
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Methods

Defining metagenomic parameters associated
with health

The raw shotgun sequencing fastq files for the HMP2 and the 2 IBD
validation cohorts used to derive metagenomic health-associated
parameters were processed with Trim Galore 0.6.10 (RRID:SCR_
011847) [34] to ensure sufficient read quality. The taxonomic pro-
files were calculated with MetaPhlAn 4.0.6 (RRID:SCR_004915)
[35] and functional profiles with HUMAnNN 3.7 [36]. Species se-
lection was performed using MultiDimentional Feature Selection,
or the MDFS (23, 24], with a Benjamini-Hochberg P value correc-
tion in a 2-dimensional mode. Selection was performed per co-
hort (healthy vs. each of the nonhealthy groups in separate MDFS
runs), and the final list of species was the union of the MDFS re-
sults for all cohorts (corrected P < 0.05). Metagenomic table for-
matting and alpha diversity plots were done using QIIME 2 [37]
and SparCC correlations with the SCNIC plugin [38]. Plots were
made using custom Python scripts. Any statistical tests were cal-
culated with the independent t-test, unless stated otherwise.

IBD index

Random forest is a classification and regression method [26]. The
algorithm uses an ensemble of CART trees [39], in which each tree
is built using different bootstrap samples of data and different
random subsets of variables at each stage of the tree construction.
It is a robust and versatile algorithm that works well on different
types of data [40].

Metagenomic features passed to the random forest were con-
structed based on healthy samples from the HMP2 and 2 vali-
dation cohorts (Val_1 and Val_2). The features are presented in
Table 1.

The importance of the features was assessed using a permuta-
tion approach and 5-fold cross-validation.

From this step on, we used the manually curated samples from
the curatedMetagenomicsRepository to ensure consistent sam-
ple processing (MetaPhlAn [35] and HUMANN [36]; specifically, we
used the MetaCyc functional annotations), as well as to provide
an additional layer of validation of our approach. Our manual cu-
ration excluded a sample for the following reasons: incomplete
metadata, use of antibiotics or other similar drugs, repeats from
the same patients, young age (newborns), or healthy samples not
being fully healthy (high body mass index, chronic conditions).
During filtering, we set the following thresholds: species abun-
dance >0.1%, pathway coverage >20%, and function abundance
>0.01%—with any features below that changed to 0.

During random forest training, healthy individuals were la-
beled as “1” and those with the IBD as “0.” A leave-one-out cross-
validation procedure was applied to predict health scores for each
sample to avoid model overfitting or the need to split the data
into training and testing sets. The final health score is the output
of the random forest’s predict_proba method, which expresses the
probability of each sample belonging to the healthy (or unhealthy)
group.

The GMHI scores were calculated with the QIIME 2 q2-health-
index plugin [41], and the hiPCA [14] predictions were obtained
by substituting the original test file with our test samples due to
a lack of instructions about how to do it better (this could poten-
tially result in an overlap of the train and test samples, possibly
falsely increasing the hiPCA’s accuracy). The Shannon entropies
were calculated separately on taxonomic and functional profiles
for each sample using custom Python scripts.
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The GMHI was the only parameter with a predefined threshold
for health. In the case of the other methods, the optimal threshold
would be defined using the Youden's J statistic calculated on the
training data.

The relevance of each index in the context of IBD predictions
was calculated using Boruta [28]. The Boruta algorithm is a wrap-
per around the random forest classifier. It works in the following
way: a dataset is extended by adding a randomly permuted copy
of each original variable—a so-called shadow variable. A predic-
tive model for the decision variable is then built using the random
forest algorithm. The importance of each variable is estimated us-
ing a permutation test. Boruta collects the information about the
importance and then compares the importance score of each orig-
inal variable with the maximal importance achieved by a shadow
variable.

The procedure is repeated multiple times, and a statistical test
is performed. The variables are eventually assigned to 3 classes:
Confirmed (better than random), Rejected (no better than ran-
dom), and Tentative (those that could not be assigned to the
Confirmed or the Tentative class). The utility of the variable is a
good indicator of the information importance carried by the vari-
able and also in situations where the synergistic interactions are
important.

In the Boruta section of our analysis, the predictions of each
index were passed as parameters, and the health labels (0/1) were
used as decision vectors. Index importances were redefined as
ranks—with the highest importance marked as rank “1.”

Index testing: expanding to other diseases

For the purpose of testing, the index was retrained on the com-
plete set of 30 datasets. However, no parameters were modified. To
ensure a reliable benchmark, a leave-one-cohort-out procedure
with a 5-fold cross-validation was performed. The accuracy and
AUC statistics were defined separately for each test cohort based
on the validation set (which was a subset of the training dataset).

The performance of our index was evaluated by calculating its
winning margin over hiPCA, the second best index, and the mean
of the other methods. Specifically, for each test dataset, the AUC of
the hiPCA or the mean AUC of the other methods was subtracted
from the AUC produced by the Q2PD. The winning margin was
defined as a mean of the AUC differences, separately for cases
when Q2PD won and when not.

Importance of the features contributing to the Q2PD score was
evaluated by training a random forest model separately for each
cohort and using a feature permutation approach. The impor-
tances were changed to ranks, with the highest ranks (lowest val-
ues) representing the greatest importance.

Final index and application to the COVID-19
dataset

The finalindex was trained on the complete set of 30 cohorts using
5-fold cross-validation. The health threshold was defined based
on a mean of thresholds defined on training data for eachiteration
of the leave-one-cohort-out approach and was set at 0.38 (which
was very similar for all iterations).

To evaluate the indices in the context of the robustness to
sequencing depth, healthy deeply sequenced samples from the
COVID-19 dataset were rarefied to different sequencing depths us-
ing seqtk 1.4 [42].

Availability of Supporting Source Code and
Requirements

Project name: g2-predict-dysbiosis

Project  homepage: https://github.com/Kizielins/q2-predict-
dysbiosis

Operating system(s): Platform independent

Programming language: Python

Other requirements: scikit-learn version > 1.1.3

License: MIT License

RRID:SCR_026038

bio.tools ID: g2-predict-dysbiosis

Additional Files

Supplementary Fig. S1. Number of observed functions per sam-
ple, separated by health group and project.

Supplementary Fig. S2. Comparison of core functions in health
and disease. (a) Overlap of LEfSe differentially enriched pathways
in healthy versus unhealthy samples in the validation and HMP2
cohorts. (b) Overlap of LEfSe differentially enriched pathways in
unhealthy versus healthy samples in the validation and HMP2 co-
horts. (c) Fraction of seen core functions among all annotated core
functions. (d) Fraction of seen core functions among all functions
seen in a sample.

Supplementary Fig. S3. Number of observed species per sample,
separated by health group and project.

Supplementary Fig. S4. Top species contributions to core func-
tions, based on the stratified output of HUMAnN. For every cohort,
the sum of the contributions for all samples was calculated, and
contributions with the greatest summed abundances are shown.
The final values have been normalized to values between 0 and 1
to compare the strength of the correlations between the groups.
Supplementary Fig. S5. Functional redundancy. (a) Average num-
ber of species per function in a sample. (b) Average number of
functions per species.

Supplementary Fig. S6. Accuracy and AUC scores achieved by
each index, separately for each cohort.

Supplementary Table S1. “Core functions”: functions presentin at
least 80% of healthy individuals from the HMP2 and 2 validation
cohorts.
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