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Abstract: This study reviews research from 2010 to 2023 on the integration of airborne
laser scanning (ALS) metrics with satellite and ground-based data for forest monitoring,
highlighting the potential of the combined use of ALS and optical remote sensing data
in improving the accuracy and the frequency. Following an in-depth screening process,
42 peer-reviewed scientific manuscripts were selected and comprehensively analyzed,
identifying how the integration among different sources of information facilitate frequent,
large-scale updates, crucial for monitoring forest ecosystems dynamics and changes, aiding
in supporting sustainable management and climate smart forestry. The results showed
how ALS metrics—especially those related to height and intensity—improved estimates
precision of forest volume, biomass, biodiversity, and structural attributes, even in dense
vegetation, with an R2 up to 0.97. Furthermore, ALS data were particularly effective for
monitoring urban forest variables (R2 0.83–0.92), and for species classification (overall
accuracy up to 95%), especially when integrated with multispectral and hyperspectral
imagery. However, our review also identified existing challenges in predicting biodiversity
variables, highlighting the need for continued methodological improvements. Importantly,
while some studies revealed great potential, novel applications aiming at improving ALS-
derived information in spatial and temporal coverage through the integration of optical
satellite data were still very few, revealing a critical research gap. Finally, the ALS studies’
distribution was extremely biased. Further research is needed to fully explore its potential
for global forest monitoring, particularly in regions like the tropics, where its impact could
be significant for ecosystem management and conservation.

Keywords: airborne laser scanner; biodiversity; remote sensing; sustainable forest
management

1. Introduction
Forests cover one-third of the Earth’s land surface, absorb significant anthropogenic

carbon emissions, and play a critical role in mitigating climate change [1]. Along with their
contribution to the carbon cycle [2], the ecosystem services provided by forests encompass
a full spectrum of provisioning [3,4], regulating [5], and cultural [6] services. However,
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forests are vulnerable to climate change impacts, especially due to the recent intensification
in disturbance regimes [7]. Thus, the demand for spatially explicit, up-to-date, and reliable
forest data has been growing over recent decades, in order to fulfill the need for regional
and global monitoring systems aimed at tracking changes—both due to natural and an-
thropogenic activities—in forest ecosystems [8,9]. At the national level, National Forest
Inventories (NFIs) represent the official source of forest statistics [10], mostly relying on
in situ data [11,12]. Despite their significant role in forest assessment, ground-based data
alone presents several drawbacks in large-scale forest ecosystem monitoring due to their
high operational costs (both in terms of time and money), the need for standardization and
harmonization [13], infrequent and scattered updates [14], and data access restrictions [15].
Here, forest assessment based on open remotely sensed data—recently enhanced by the
increased availability of cloud computing environments [16]—overcomes these issues,
allowing for the prediction of forest attributes over large temporal and spatial scales [17,18]
in a cost-effective way. Yet, despite several satellite missions providing reliable surface re-
flectance data [19,20] and playing a pivotal role in forest ecosystem monitoring, optical data
alone still presents some limitations, such as (i) the spectral reflectance saturation in densely
vegetated areas [21], and (ii) a lack of three-dimensional information, which is needed to
assess the structure of forests [22,23]. Utilized across a diverse array of platforms, LiDAR
(Light Detection and Ranging) has refined the assessment of forest structural attributes
by using pulsed laser beams to obtain precise and accurate 3D, geo-located data [24], in-
dependently of light conditions [25]. The recent uptake of airborne laser scanner (ALS)
technologies has further revolutionized forest structure data acquisition [26], transitioning
from experimental to practical applications [27] due to the significant decrease in costs and
the increased availability of sensors and acquisition platforms [9]. While ALS complements
field measurements by providing three-dimensional information, the combination of opti-
cal data and ALS point clouds has shown its effectiveness in several applications compared
to using either data source alone [28,29]. In addition, the ability to predict ALS data from
optical data presents new opportunities for forest monitoring [30–33], as it allows for data
provision in areas where ALS data are currently unavailable, such as tropical evergreen
and deciduous forests [34,35]. Indeed, satellite data enables more frequent updates of ALS
data, which is crucial in the current context of rapid changes and disturbances driven by
climate change. Moreover, having access to comprehensive, wall-to-wall, and annually or
sub-annually updated ALS data facilitates the quantification of numerous forest indicators
essential for a common forest monitoring system [36]. Indeed, during the last decade, the
adoption of ALS technologies has transformed the way forest structure data are captured,
becoming a vital tool for forest assessment. Evolving from oceanographic applications,
ALS data have been implemented in forest monitoring since the mid-1990s [37,38]. The
first reported applications were related to topography, stand height and volume estimation,
and single-tree segmentation [39,40]. Since then, ALS technology has been continuously
and rapidly developing—along with its application in forestry monitoring [38]—especially
in Nordic countries [41]. Overall, the uptake of ALS technologies has revolutionized the
capturing of forest structure data, facilitating the assessment of ecosystem services and
establishing its role as an essential tool for ecosystem management strategies.

Recently, several authors have analyzed the pivotal role played by ALS data in forest
ecosystems, as demonstrated by studies on their applications in aboveground biomass
estimation [42] and biodiversity conservation [43]. In fact, the rapid development from
scientific tests to operational application [27] was related to decreased associated costs,
concurrent with increased sensors and acquisition platform availability. In this context, this
study aims at providing a comprehensive review of the most recent (2010–2023) scientific
studies addressing the application of ALS data and their derived metrics together with
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satellite data in both urban and natural forest ecosystems. Here, we identify emerging
trends and knowledge gaps in ALS data applications for forest monitoring. In detail,
considering the last decade of research on ALS-based metrics in forest assessment allows
this study to identify the most recent applications of this rapidly developing technological
tool [44]. Based on the results, we examined the most established ALS-based metrics or ALS-
derived forest attributes, the predictor variables used, and the model performances reached,
but also the remaining knowledge gaps that need to be addressed by future research.

2. Literature Review
First, we conducted a research in Elsevier’s Scopus engine (www.scopus.com) based on

the following fixed keywords: “ALS”, “LiDAR”, “laser scan*”, “forest*”, “forest variable*”,
“accurac*”, “RMSE”, “R2”, and “OA”. The asterisk symbol (*) was added to search words
that could have multiple spelling variations, allowing for different word endings (e.g.,
“forest” and “forestry”). Next, we selected only those publications in English, where the
keywords were included within their (i) “article title”, (ii) “abstract”, and (iii) “keywords”.
The time frame of the literature review was customized to include papers published in the
time range from 2010 to 2023. Manuscripts published before 2010 were not considered, as
the herein addressed topics are mainly driven by technological advancements and older
research may already be obsolete.

Based on this research, we retrieved 4310 peer-reviewed papers, from which self-
citations were excluded. We further excluded those documents not classified as “Article”,
not in the “final publication stage”, and not available in “Open Access”; this led to a final
set of 2060 documents.

Then, these 2060 articles were ranked based on the ratio between their number of
citations and the number of months since the publication date, and the first 500 articles
were selected. Finally, the abstracts of the 500 selected articles were carefully read to focus
further analysis only on those studies where ALS-based metrics—including both point-
cloud-derived metrics (such as height and intensity percentiles) and ALS-derived forest
attributes (such as estimates of forest biomass, structure, or biodiversity features)—were
(i) followed by some degree of validation and accuracy assessment, either for regression
or classification purposes, or (ii) applied to less commonly studied forest attributes (e.g.,
biodiversity-related variables). As a result, the present study focused on a total of 42 papers,
published in peer-reviewed journals from 2010 to 2023 and satisfying the above detailed
criteria (Figure 1).

For each paper revised, we extracted (i) the area of interest of the study, (ii) the ALS
metrics or ASL-based variables considered for the application, (iii) the average number of
laser pulses of the instrument, (iv) the ALS-derived strata such as DTM (Digital Terrain
Model), DSM (Digital Surface Model), and CHM (Canopy Height Model) and (v) their
spatial resolution, (vi) the forest attributes investigated in the study, (vii) further grouped
into eight macro classes (B: biodiversity, BC: biomass and carbon, FC: forest cover, NWFPs:
non-wood forest products, S: structure, TS: tree species identification, U: urban environment,
and V: volume), (viii) the spatial extent of the study (considering either the grid cell size,
the plot size, or the whole study area), (ix) the main methods or algorithm applied, and
(x–xiv) the relative accuracy metrics.

www.scopus.com
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3. State of the Art
This study analyzes recent advances in ALS data, analyzing their integration with

satellite and field sampling for forest monitoring, showing how this combination provides
a detailed, three-dimensional view of forests. The results highlight that integrating ALS
with satellite and field data not only enhances the accuracy of estimates, but also enables
frequent, large-scale updates, which are crucial for monitoring changes driven by climate
changes and human activities, such as forest management practices and urbanization. Thus,
this advanced approach thus supports sustainable forest management and contributes to
creating key indicators for monitoring frameworks.

3.1. ALS Metrics

The results reported in Table 1 showed how, among the ALS-based metrics, the most
implemented were those related to height and intensity (i.e., maximum, minimum, mean,
median, SD, variance, percentiles, kurtosis, and skewness). In detail, not only did height
metrics consistently correlated with volume, biomass, and structural attributes (i.e., vegeta-
tion height, DBH, and basal area), but so did tree species classification [45–47], biodiversity
indexes [48]—especially related to birds [49]—and non-wood forest products productivity
and yielding [50,51]. As for birds, forest three-dimensional structure has been proven
relevant for assessing the habitat quality of other wildlife species, such as bats’ occurrence,
activity, and abundance [52,53]. Similarly, the signal-return-related metrics proved particu-
larly valuable for biodiversity assessment, including for deadwood analysis [54,55], and
for urban forest classification and single-tree assessment [56,57].
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Table 1. Results of the peer review process.

Ref AOI ALS Metrics/ALS-Based Variables

Average
Number of

Pulses
[n m−2]

Strata
Derived Res [m] Forest

Attributes Group (s) Size *
Main

Method/
Algorithm

RMSE RMSE [%] R2 OA

[58] NOR

H (mean, median, SD, 30th
percentile, 40–60th relative

percentiles, density in the 70–80%
above ground threshold)

I
C_C

7.4
DTM
DSM
CHM

1 GSV (all
species) V 500–1000

m2

Most
Similar

Neighbor
Inference

34.56 m3/ha 17.07

[59] SVN

H mean
Return (FR, intermediate, only, LR)

angle
radian

ALS intensity

7.5 CHM 1

Canopy
cover

Vegetation
height

TC
S 25 m RF 14.708%

2.054 m

[60] FIN

Location (x, y),
H (mean, SD

range, max, 0–90th percentile, perc of
returns below 10–90% of total height);

C_A (area of convex hull)
C_V (convex hull in 3D)

Max crown diameter (ellipse)

2.6 DTM
CHM

Height
GSV
DBH

S
V Single tree RF

0.30 m
2.30 m3

0.55 m

10.03
45.77
21.35

[61] GBR FR
LR 10–17

DTM
DSM
CHM

20 Canopy
height TC 20 m k-NN 28–31

[54] FIN

FR
LR

C_H percentiles
C_D percentiles

0.5 DTM 10–20–25–
50

Deadwood
(CWD

volume)
B

10–20–
25–50 m
sample
units

[62] ITA FR
LR 8.4

DSM
DTM
CHM

1
1

10
Volume V k-NN 59.2 m3/ha

[63] PAN Voxels 2 MCH 60
Aboveground

Carbon
Density

BC 1 ha R 10.7
MgC/ha
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Table 1. Cont.

Ref AOI ALS Metrics/ALS-Based Variables

Average
Number of

Pulses
[n m−2]

Strata
Derived Res [m] Forest

Attributes Group (s) Size *
Main

Method/
Algorithm

RMSE RMSE [%] R2 OA

[64] CHL
H (percentiles, cv, mean, kurtosis,

skewness)
C_D

1–3
DTM
DSM
CHM

1
GSV

Canopy
height

V
TC 0.25 ha RF 62 m3/ha

1.7 m
22

7.08
0.81
0.93

[65] USA
H (mean, SD, kurtosis, skewness,

percentiles, quadratic mean,
proportion of points 0–50 m)

2–4 DEM 1 AGB BC 0.05 ha R 72.2 Mg/ha 0.83

[66] FIN H (percentiles, mean, SD)
C_D 0.6 DTM

DSM 1
Dominant

height
Volume

S
V 9 m k-NN 9.78

19.96

[67] USA Returns (I, identity, coordinates) 0.625 DTM
DEM 5 Bird species

richness B 6000 ha R 0.05–0.22

[68] USA H (max, mean, CV, percentiles)
C_C above 2–5 m 18 AGB BC - k-NN 0.74

[69] DEU
C_H (mean, SD, max)

Penetration rate 5–1 m above
ground/10–2 m above ground

25
DTM
DSM
CHM

Bird species
abundance B 0.01 ha R

0.07–0.23
(standard

error)
0–0.4

[52] CHE

Vegetation height (mean, max, SD)
Proportion of lower vegetation

C_C (mean, SD)
Canopy ruggedness

Foliage height diversity

7.5 Bats activity B 1 km2 GLMM

[53] DEU

Roughness (SD)
Ground area

Deep gap
Hits below 5 m
Young stands

Shrubs
North-facing crown area

Crown isle
Edge

Bole zones SD
Euphotic zone
Regeneration

C_H (SD)
Entropy (SD)
Contrast (SD)

54.74 CHM

Bats activity
and species

composi-
tion

B 1 ha GLMM
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Table 1. Cont.

Ref AOI ALS Metrics/ALS-Based Variables

Average
Number of

Pulses
[n m−2]

Strata
Derived Res [m] Forest

Attributes Group (s) Size *
Main

Method/
Algorithm

RMSE RMSE [%] R2 OA

[70] CAN
H at which 14 (max canopy

height)–25–50–90% of the canopy
returns, quadratic mean

AGB BC 250 m R 22.2–33.2
Mg/ha 0.64–0.84

[71] FIN 1.3
DEM
DSM
CHM

1 AGB BC

Stepwise
multiple

linear
regression

0.74

[72] CHN H (10–90%, 25–75th percentiles)
Total waveform energy AGB BC RF 9.38–43.81

Mg/ha 0.80–0.90

[73] CZE H (mean, SD)
C_D 30–40 Canopy

cover TC RF 17.38 0.63

[74] DEU
H (mean, max, SD)

Penetration rate
Vertical distribution ratio

25 DTM 100

Fungal
fruiting
bodies

abundance

NWFP 200 m2 0.23–0.43

[75] CAN

H (SD, 50–65–95 percentiles)
Canopy relief ratio

FR > 1.37 m
0.15–1.37 m proportion of returns

1.4 Berry pro-
ductivity NWFP RF

0–38%
variance

explained

[50] MEX 6 AGB BC 1 ha 22.22
Mg/ha 0.68

[51] FIN L-moment (and their ratios)
C_C 0.91

Silvicultural
develop-

ment classes
TS 255 m2 RF 72.6

[22] NOR H (percentiles)
D 7.45 GSV V 10 m R 38.4 m3/ha 17.2 0.83

[76] CAN
H (percentiles)
Ground returns
Canopy returns

1 25

Stand
height
Crown
closure

S
TC 20 m k-NN 0.89

0.63
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Table 1. Cont.

Ref AOI ALS Metrics/ALS-Based Variables

Average
Number of

Pulses
[n m−2]

Strata
Derived Res [m] Forest

Attributes Group (s) Size *
Main

Method/
Algorithm

RMSE RMSE [%] R2 OA

[45] CAN

Ratio of crown area to tree height
H (CV, skewness, kurtosis)
nH mean and percentiles
Ratio of returns in % bins
Ratio of FR to all returns

Average slope of lines connecting
highest returns to others

FR mean H/tree H
FR median H/tree H

FR median H/FR mean H
All returns mean H/tree H

All returns median H/tree H
All returns median H/FR mean H
FR median H/all returns mean H
FR mean H/all returns mean H

FR mean H/2nd returns mean H
I

3.3 DTM
CHM

1
0.25 Tree species TS 87

[77] CAN

Measures of central tendency (mean,
median, mode)

Measures of dispersion (variance,
standard deviation, interquartile

range)
Percentiles, proportions, and

densities of point heights above
ground

1.63

Height
Basal area

GSV
Stem

density

S
V 25 ha

3.08 m
12.56 m2/ha
115.86 m3/ha

792.58
trees/ha

17.43
40.76
49.19
66.49

0.76
0.71
0.78
0.26

[46] DEU

H-I-E max
H-I-E mean

H-I-E SD
H-I-E CV

H-I-E kurtosis
H-I-E skewness

H-I-E width 25–90th percentiles
Mean H of first-or-single returns

Percentage of FR-LR > 2 m
All returns > 2 m

Ratio of crown base H to tree H
Ratio of crown volume to crown area

Canopy relief ratio

70 DTM 0.5 Tree species TS RF 57.1–
66.5
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Table 1. Cont.

Ref AOI ALS Metrics/ALS-Based Variables

Average
Number of

Pulses
[n m−2]

Strata
Derived Res [m] Forest

Attributes Group (s) Size *
Main

Method/
Algorithm

RMSE RMSE [%] R2 OA

[78] CAN

H (max, percentiles, skewness, SD)
Vertical distribution ratio
Vertical complexity index

CHM metrics

7.3 DTM
CHM 1

Lorey’s
mean height
Basal area
Gross mer-
chantable
volume

Total
volume

AGB

S
V

BC
20 m RF

0.94
0.83
0.88
0.91
0.85

[79] ESP Normalized point cloud 0.5 Tree species TS 83.3

[49] USA

H (max, mean, SD)
Coordinates

Canopy models
Leaf area density (voxel)

4 DTM
DSM 10

Bird species
richness
proxy

B 20–40-200 m RF
44.41%

variance
explained

[80] CAN H (CV, percentiles)
Percentage of returns > 2 m 2.8

Lorey’s
height

Basal area
GSV
AGB

S
V

BC
30 m R

2.7 m
6.89 m2/ha
71.5 m3/ha
34.4 Mg/ha

24.5
50.7
78.7
65

0.5
0.54
0.49
0.51

[48] IRN

H-D (min, max, mean, SD, variance,
mode, kurtosis, skewness,

percentiles)
Penetration of all echoes

C_C

4 DTM 1

Menhenick
Margalef
Simpson

Reciprocal
of Simpson

Shanon-
Winer

Simpson’s
evenness

B 0.1 ha RF

37.8
38.8
27.8
29.3
33.5
24.6

[81] FIN

H-I (percentiles, max, min, SD,
median, mean, skewness, kurtosis)

Density at fixed H
Echo class proportion

3.7–4.8 DTM 30
Species-
specific

GSV
V 30 m 17.8–54.4
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Table 1. Cont.

Ref AOI ALS Metrics/ALS-Based Variables

Average
Number of

Pulses
[n m−2]

Strata
Derived Res [m] Forest

Attributes Group (s) Size *
Main

Method/
Algorithm

RMSE RMSE [%] R2 OA

[82] CAN 0.75–12
Height

Basal area
GSV

S
V

4.9 m
3.8 m2/ha

224.2 m3/ha

[83] SWE
H

C_C
I

0.5–1 DEM 2 Berry yield NWFP 0.25 m2

[84] BRA C_H
LAI 360

DSM
DTM
CHM

0.2 AGB BC 7.62 Mg/ha 9 0.82

[55] USA

Density
percent of FR

Percent of second returns
Percent of third returns

Gap fraction profile
Leaf area density

Rumple index
Entropy

Vegetation area index
Vertical complexity index

Elevation
Slope

Transformed aspect

4.2
Deadwood
(snag char-
acteristics)

B 625 m2 RF 50–77

[56] DEU NR 4.6 CHM 0.5

Urban
forest classi-

fication
Height
Crown

diameter
Crown area

U
TS

OBIA
R

1.9 m
1.4 m

55.7 m3

0.79
0.83
0.97

95
5

[57] CHN I 230

Urban
forest

species clas-
sification
Crown
width

U
TS CNN 1 m 0.92 92
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Table 1. Cont.

Ref AOI ALS Metrics/ALS-Based Variables

Average
Number of

Pulses
[n m−2]

Strata
Derived Res [m] Forest

Attributes Group (s) Size *
Main

Method/
Algorithm

RMSE RMSE [%] R2 OA

[85] FIN Points in the 0.2–1 m bin above
ground 15 Deadwood B CNN 9 m

Precision
31%,
recall
30%

[47] CHN

H (1–99th percentile)
I 5th percentile

Proportion of points in the 10th bin
Mean intensity of single returns

Proportion of LR > 2 m
Ratio of crown length to average

crown
Crown diameter SD

320–360 CHM 0.1 Species clas-
sification TS 9 ha 60

* Grid cell size or spatial extent of study area. Abbreviations: C_A (Canopy Area), C_C (Canopy Cover), C_D (Canopy Density), C_H (Canopy Height), C_V (Canopy Volume), CNN
(Convolutional Neural Network), DBH (Diameter at Breast Height), DTM (Digital Terrain Model), DSM (Digital Surface Model), E (Echo Width Metrics), F (First Return), GLMM
(Generalized Linear Mixed Model), GSV (Growing Stock Volume), H (Height/Height Metrics), I (Intensity Metrics), L (Last Return), MCH (Mean Canopy Profile Height), NR (Number
of Returns), OA (Overall Accuracy), OBIA (Object-Based Image Analysis), RMSE (Root Mean Square Error), R (Regression), R2 (Coefficient of Determination), RF (Random Forest), SD
(Standard Deviation), CV (Coefficient of Variation), CHM (Canopy Height Model), Res (Resolution), CWD (Coarse Woody Debris).
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Besides the assessment of forest variables, several strata were often derived from ALS
data such as Digital Surface Models, Digital Terrain Models, Digital Elevation Models and
Canopy Height Models, with spatial resolutions ranging from 0.1 m [47] to 1 ha [74].

Another aspect of ALS data to be considered is pulse density, which refers to the
number of emitted laser pulses that intersect a surface per unit area. While strictly influ-
enced by the instrument and acquisition parameters, changes in ALS pulse density can be
achieved by modifying flight height or speed [86]. For instance, flying at higher altitudes
or speeds can result not only in a reduction in acquisition costs, but also in a lower pulse
density [87], resulting in fewer ground returns in areas with dense vegetation [88]. In this
analysis, we observed that studies focused on tree species classification [47], particularly
in urban settings [57], and on estimating AGB in tropical forests [84] typically utilized
higher pulse densities—greater than 100 pulses per square meter. In contrast, research that
relied on sparse pulse densities (≤1 pulse/m2) was mostly conducted in boreal regions like
Canada [76], Finland [51,66], and Sweden [83].

3.2. Forest Variables

The most common forest characteristics assessed from ALS data (Figure 2), considering
the analyzed papers reported in Table 1, were related to (i) forest structure such as forest
height (either at the single tree or the stand level), basal area, DBH, and stand density,
and forest height, (ii) volume, and (iii) biomass (also related to carbon content). Along
with structural features, ALS-derived forest characteristics were also implemented in the
assessment of canopy cover [59,73] and tree species detection in different ecosystems,
spanning from the Mediterranean [79], to temperate [46] and boreal biomes [45].
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Moreover, the combination of ALS information with aerial digital photogrammetry
allows for the modeling of several tree species diversity indices—i.e., Menhenick, Margalef,
Simpson’s heterogeneity, reciprocal of Simpson’s heterogeneity, Shannon-Winer hetero-
geneity, and Simpson’s evenness—in complex forests ecosystems [48]. In this study, the
integration of photogrammetry and ALS data enhanced the model accuracy, resulting in an
improvement of approximately 0.2–6.6% in RMSE% and a 4.5% reduction in the relative
SD of the differences across species diversity indices. On the other hand, the applications



Land 2025, 14, 567 13 of 23

of ALS data extend to urban environments, given the role that these methodologies can
play in accurately assessing vegetation structure properties at different scales. In urban
environments, ALS has shown its potential not only in species classification [57], but also
in providing the three-dimensional structure of single trees [56].

Besides forest structural characteristics, ALS can play a role in assessing different
aspects of forest biodiversity and related ecosystem services. Indeed, the importance of
mapping ecosystem services has been widely recognized [89], helping to support sustain-
able forest management and enabling multiple uses of forest landscapes. In this context,
some studies have implemented ALS data to predict the actual yield of edible non-wood for-
est products such as berries [75,83] or mushrooms [74,90]. Similarly, recent studies have also
assessed the capacity of ALS data to differentiate the structural signatures of deadwood—
both standing [55] and downed dead trees, especially in old-growth forests [85]—and to
optimize deadwood field inventory efficiency, by identifying specific hotspots for coarse
woody debris [54]. Along with deadwood, the assessment of biodiversity-related indices
through ALS data has been explored, reducing the costs of regular field sampling and
increasing its efficiency. Hence, the growing accessibility of ALS data presents a promising
opportunity to advance ecological research, especially in the fields of species distribution
modeling and habitat quality assessments. In this context, ALS data might be used to better
understand the habitat preferences and environmental requirements of different species,
leading to more accurate and reliable predictions of their distribution patterns. Additionally,
ALS data are instrumental in assessing habitat quality [91]. By capturing high-resolution
vegetation structures, ALS data enables the identification of microhabitats, sheltering and
foraging spots, and resources that contribute to the overall quality and suitability of certain
species. Indeed, the use of ALS data as a valuable proxy for habitat heterogeneity has been
largely demonstrated. While previous researchers primarily focused on examining the ef-
fectiveness of ALS-derived variables in describing species-environment associations [92,93],
over time, the focus shifted to investigating the relationships between vegetation struc-
ture and the distribution of individual species, especially concerning birds [49,67,69] and
chiropters [52,53]. In detail, previous studies published by [93], and [94], analyze the role
that ALS data have been demonstrated to have not only in analyzing trees and forest
features, but also in identifying wildlife dynamics in different environments, which are
deeply dependent on the structural complexity. Additionally, some studies have explored
the variation in the applicability of ALS-derived variables concerning different functional
guilds, such as nesting, foraging, and habitat guilds, highlighting that the importance of
individual variables and the predictability of species occurrence using vegetation structure
differ between these guilds [74].

3.3. Statistical Performance

In the review of studies presented in Table 1, accuracy is primarily reported as the
coefficient of determination (R2), indicating the proportion of variance explained by regres-
sion models. Additionally, Root Mean Square Error (RMSE), expressed in either absolute
units or as a percentage of the mean in-situ observed value (RMSE%), was frequently
employed while overall accuracy (OA) was mainly reported for studies involving classi-
fication tasks. Overall, Random Forest (RF) models were the most widely used for both
classification and regression tasks. Other commonly used methods were regression and
k-NN. RF proved particularly effective in predicting structural attributes, with the highest
R2 values (0.94–0.97) obtained by [56]- for the crown area—and by [78], for Lorey’s mean
height prediction. On the other hand, the k-NN method was successfully applied in stand
height estimation, yielding an R2 up to 0.89 [76], and a lower RMSE related to structural at-
tributes [66]. Furthermore, ALS data proved to be particularly useful in supporting species
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classification—also in urban areas—where they allows models to reach a considerable OA.
For instance, in the study carried out by [56] in Dresden (Germany), an OA of 95% was
achieved by combining ALS data with multispectral imagery for single tree classification in
green and built-up areas. Similar results (OA 92%) were obtained by [57], where hyperspec-
tral and ALS intensity features were combined to identify urban tree species in Hangzhou
City (China) through the use of CNN-based segmentation. High-resolution imagery was
also implemented in [79], where Pleiades images were combined with low-density ALS
data to discriminate pine species in mixed Mediterranean forests, with an OA over 80%
in pure stands. Conversely, studies predicting biodiversity variables using ALS data have
demonstrated considerable challenges, leading to the lowest performance scores, with R2

values of up to 0.4 for bird species abundance assessment [69], precision reaching 31% in in-
dividual dead tree detection, and a maximum OA of 77% for large snags identification [55].
For these, RF was the most used model, followed by GLMM [52,53].

Finally, Figure 3 provides a summary of the reported RMSE% and R2 values from
the reviewed studies in Table 1. Volume was among the most common forest attributes
estimated through ALS data, and it also had the widest range in accuracy. Indeed, the
R2 for the prediction of forest volume ranged from 0.49 to 0.88, whereas for structure, R2

ranged from 0.26 to 0.94, and from 0.51 to 0.91 for biomass and carbon stock. In contrast,
biodiversity and urban variables—while less common—were more consistent in their
accuracies, with R2 ranging from 0.22 to 0.4 and from 0.83 to 0.92, respectively. For RMSE%,
volume errors ranged from 10.30 to 78.7%, biomass variables from 9 to 65%, biodiversity
from 0.32 to 44.1%, and structural variables from 7.08 to 50.7%.
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3.4. Study Areas

From a geographic perspective (Figure 4), most of the studies reviewed were carried
out within Europe, the USA, and Canada. In detail, Europe (i.e., Finland, Germany, Norway,
Czech Republic, Italy, Slovenia, Spain, Sweden, Switzerland, and the UK) accounted for the
most ALS-based studies, with a total of 21 out of 42, followed by the USA and Canada (5
and 8, respectively). South America—i.e., Chile, Brazil, Mexico, and Panama—accounted
for almost 10% of the total investigated areas, while the remaining studies were based
in China and Iran (three and one, respectively). At the country level, Canada accounted
for 19% of the total areas of interest (eight studies), closely followed by Finland (seven
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studies), Germany and the United States (both accounting for five studies each), China
(three studies), and Norway (two studies). Overall, more than one-third of the studies
focused on forests mainly located in boreal ecosystems (15 studies, 35.7% of the total).
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4. Take Home Messages
Based on this study, several conclusions can be drawn. First, the findings of this

analysis underscore the significant role of ALS data in assessing forest characteristics,
especially through height and intensity metrics. Indeed, ALS enables accurate estimates
of essential variables such as biomass, biodiversity, and forest structure, overcoming the
limitations of optical data alone [95]—which are not able to capture the vertical structure—
and traditional in-situ samplings [55], especially in terms of area coverage [96,97]. Studies
on the ability of ALS data to profile the three dimensions of forests suggested that this
technology could support the assessment of forest biodiversity—especially regarding larger
elements, such as snags [55]—aiding in capturing information on the composition and
structure of trophic niches [98]. Despite providing reliable information on forest vertical
characteristics and heterogeneity—which can be positively correlated to the diversity of
species [99,100]—ALS data alone presented limitations, especially regarding complex forest
elements like smaller deadwood [85], and in the detectability of species and characteristics
related to forest understory [101,102], especially in dense canopy conditions [49]. Indeed,
due to their inherent characteristics, biodiversity-relevant ALS metrics are often case-
specific, as there is no single general metric suitable for all ALS-based forest biodiversity
assessments (e.g., [54,55,85]). While promising, species richness and abundance metrics
yielded moderate fits among the reported studies, perhaps due to their complex non-
linear relationship with ALS predictors [67], or due to the low variability within small
study areas [103]. Perhaps, whether ALS data are collected under leaf-on, or leaf-off
conditions may further influence the observed correlations, especially when analyzing
seasonal organisms [67]. In this context, integrating ALS data with various information
sources—such as in-situ measurements [55], terrestrial scanning [104], or additional remote
sensing spectral data [48]—might enhance regular and comprehensive analyses, helping
to overcome the limitations posed by the absence of multi-temporal ALS data. This has
been proven effective in urban environments, where the integration of ALS data with
multispectral imagery [56] and hyperspectral features [57] achieved high accuracies for tree
species identification.
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Second, the analysis reveals that higher pulse densities are pivotal for accurate tree
species classification and biomass estimation, especially in dense tropical forests [105,106].
Previous studies have shown that low pulse densities (>0.5 pulses/m2) are necessary for
reliable canopy metrics and digital terrain models in tropical rainforests [107,108], while
higher pulse densities (>15 pulses/m2) were required for estimating leaf area density
profiles in dense tropical forests [109]. The effects of a reduced pulse density are more
pronounced in areas with steep slopes and dense vegetation, leading to poor ground surface
identification and under-sampling of the canopy profile [105,108]. However, lower pulse
densities can still provide accurate biomass change estimates if a high-quality digital terrain
model is available from at least one high-density survey [105]. Here, the correct identifi-
cation of the ground surface [108]—and, thus, the creation of an efficient DTM [105]—is
crucial not only for forest metrics’ estimation (such as carbon and biomass) [110], but also
for detecting selective logging activities [111]. On the other hand, high point densities
require high acquisition costs and longer flight times [87], compared to low-density data.
To address this gap, the integration of ALS data with other sources of information may
enhance the ability to estimate biomass and carbon content in tropical regions, providing
spatially explicit information across otherwise inaccessible landscapes, and decreasing
reliance on extensive field sampling [112]. Here, ALS data could overcome the limitations
of optical remote sensing—due to complex canopy cover, and the presence of clouds—and
field-based observation, allowing for the retrieval of the three-dimensional structures of
tropical ecosystems [113]. Recent applications of ALS data have been proven effective in
capturing trees’ height, even in dense and stratified canopy conditions [102]. This approach
significantly reduces the costs associated with in-situ measurements in challenging envi-
ronments while also mitigating inaccuracies, particularly in tree height estimation [102].
Furthermore, the fusion of ALS data with other sources of information (i.e., hyperspectral
imagery) could complement the structural information provided by ALS [114,115]. Simi-
larly, the optimization of acquisition time, perhaps by avoiding midday hours, can enhance
both ground and canopy detection in dense tropical forests [116].

Third, this study identified a geographical bias in ALS research, predominantly con-
centrated in Europe and North America, particularly within boreal ecosystems. This un-
derscores the necessity for further expanding studies into tropical and subtropical regions,
where ALS has the potential to yield valuable insights into biodiversity and ecosystem
services. Here, the scattered availability of ground-based data may hinder the training
of algorithms and the validation of derived products [117,118]. To address this issue, re-
cent studies emphasize the importance of calibrating ALS data locally using permanent
sampling plots [119], or to prioritizing the establishment of supersites with long-term
observation capacity [119]. On the other hand, open data policies can significantly impact
the expansion of ALS data application in forestry [96], especially in understudied regions.
Along with international missions—such as ICESat-2 and GEDI [120,121]—several national
and regional datasets became openly accessible in recent years (e.g., [122,123]), broaden-
ing the potential to utilize ALS data for extensive forest monitoring applications [112]
and to spatially extend important forest attributes to areas lacking current inventories
(e.g., [124]). This expansion would enhance the relevance and benefits of ALS data for
forest management and conservation initiatives, by optimizing carbon stock and biomass
quantification [125].

In conclusion, over recent decades, ALS data have significantly advanced the assess-
ment of forest features. In addition, while this study considers the most recent applications
of ALS in the forestry sector, ALS technology had been operationally applied to forest
research for more than half a decade before 2010, for instance, to assess forest structural
variables such as tree height, mean diameter, basal area, stem number, and timber vol-
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ume [40,126,127], above- and below-ground biomass [128,129], and carbon stock [130].
Still, limitations persist, particularly in detecting understory elements, and in ensuring
comprehensive spatial coverage. These limitations may be addressed through the inte-
gration of ALS data with other data sources, including in-situ measurements (especially
regarding biodiversity variables) and satellite imagery. However, the high cost of ALS
data acquisition, especially when higher pulse densities are required, remains a challenge.
Hence, the geographical concentration of ALS research in Europe and North America
underscores the need for increased studies in tropical and subtropical regions, where
ecosystems play a critical role in carbon sequestration and biodiversity conservation. Nev-
ertheless, ongoing technological advancements, decreasing ALS costs, and the expansion
of open data initiatives present promising opportunities to extend the application of ALS
in forest monitoring and management. These advancements are expected to enhance the
ability to assess and conserve carbon stocks, biodiversity, and forest structure across diverse
ecosystems globally.
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