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Abstract: Regularization methods such as LASSO, adaptive LASSO, Elastic-Net, and SCAD
are widely employed for variable selection in statistical modeling. However, these methods
primarily focus on variables with strong effects while often overlooking weaker signals,
potentially leading to biased parameter estimates. To address this limitation, Gao, Ahmed,
and Feng (2017) introduced a corrected shrinkage estimator that incorporates both weak
and strong signals, though their results were confined to linear models. The applicability
of such approaches to survival data remains unclear, despite the prevalence of survival
regression involving both strong and weak effects in biomedical research. To bridge this
gap, we propose a novel class of post-selection shrinkage estimators tailored to the Cox
model framework. We establish the asymptotic properties of the proposed estimators
and demonstrate their potential to enhance estimation and prediction accuracy through
simulations that explicitly incorporate weak signals. Finally, we validate the practical utility
of our approach by applying it to two real-world datasets, showcasing its advantages over
existing methods.
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LASSO; shrinkage estimation; sparse model
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1. Introduction
High-dimensional data analysis, where the number of covariates frequently exceeds

the sample size, has become a central research focus in contemporary statistics (see [1]). The
applications of these methods span a broad range of fields, including genomics, medical
imaging, signal processing, social science, and financial economics. In particular, high-
dimensional regularized Cox regression models have gained traction in survival analysis
(e.g., [2–4]), where these techniques help construct parsimonious (sparse) models and can
outperform classical selection criteria such as Akaike’s information criterion [5] or the
Bayesian information criterion [6].

The least absolute shrinkage and selection operation (LASSO) proposed by [7] remains
one of the most popular approaches to high-dimensional regression, due to its compu-
tational efficiency and its ability to perform variable selection and parameter shrinkage
simultaneously. Numerous extensions of LASSO, such as adaptive LASSO [8], elastic
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net [9], and scaled LASSO [10], have been developed to further refine estimation and
prediction performance. In the context of Cox proportional hazards models, analogous
methods—including the LASSO [4,11], the adaptive LASSO [12,13], and smoothly clipped
absolute deviation (SCAD; [14])—have been widely examined. Interested readers may also
consult [15–18] for recent advancements in high-dimensional Cox regression.

When p > n, the focus is often on accurately recovering both the support (i.e., which
covariates have nonzero effects) and the magnitudes of the nonzero regression coefficients.
Although many penalized inference procedures excel at identifying “strong” signals (i.e., co-
efficients that are moderately large and thus easily detected), they may fail in adequately
accounting for “weak” signals, whose effects may be small but nonzero. To formalize this,
one can divide the index set {1, . . . , pn} into three disjoint subsets as follows: S1 for strong
signals, S2 for weak signals, and Snull for coefficients that are exactly zero. Standard estima-
tion procedures that neglect weak signals risk introducing non-negligible bias, particularly
when these weak signals are numerous.

In this paper, we tackle the bias induced by weak signals in high-dimensional Cox
regression by adapting the post-selection shrinkage strategy proposed by [19]. Our key
contribution is the development of a weighted ridge (WR) estimator, which effectively
differentiates small, nonzero coefficients from those that are truly zero. We show that the
resulting post-selection estimators dominate submodel estimators derived from standard
regularization methods such as LASSO and elastic net. Moreover, under the condition
pn = O(nα) for some α > 0, we establish the asymptotic normality of our post-selection WR
estimator, thereby demonstrating its asymptotic efficiency. Through extensive simulations
and real data applications, we illustrate that our method achieves substantial improvements
in both estimation accuracy and prediction performance.

The remainder of this paper is organized as follows. Section 2 presents the model setup
and the proposed post-selection shrinkage estimation procedure. In Section 3, we outline
the asymptotic properties of our estimators. Section 4 provides a Monte Carlo simulation
study, while Section 5 reports the results of applying our methodology to two real data sets.
We conclude in Section 6 with a brief discussion of possible future research directions.

2. Methodology
2.1. Notation and Assumptions

In this section, we state some standard notations and assumptions, used through-
out the paper. We use bold upper case letters for matrices and lower case letters for
vectors. Moreover, T denotes the matrix transpose and IN denotes the N × N identity
matrix. Design vectors, or columns of X, are denoted by Xj, j = 1, · · · , pn. The index set
M = {1, 2, · · · , pn} denotes the full model which contains all the potential variables. For a
subset A ⊂ M, we use βA for a subvector of βM indexed by A, and XA for a subma-
trix of X whose columns are indexed by A. For a vector v = (v1, · · · , vpn)

T, we denote

||v||2 =
√

∑
pn
j=1 v2

j and ||v||1 = ∑
pn
j=1 |vj|. For any square matrix A, we let Λmin(A) and

Λmax(A) be the smallest and largest eigenvalues of A, respectively. Given a, b ∈ R, we let
a ∨ b and a ∧ b denote the maximum and minimum of a and b. For two positive sequences
an and bn, an ≍ bn, if an is in the same order as bn. We use I(.) to denote the indicator
function; Hϑ(.; ∆) denotes the cumulative distribution function (cdf) of a non-central χ2-

distribution with ϑ degrees of freedom and non-centrality parameter ∆. We also use D−→ to
indicate convergence in distribution.

Let S ⊂ {1, · · · , pn} be the set of the indices of nonzero coefficients, with s = |S| de-
noting the cardinality of S . We assume that the true coefficient vector β∗ = (β∗T

1 , · · · , β∗T
pn )

T

is sparse, that is s < n. Without loss of generality, we partition the (n × pn)-matrix
X as X = (XS1 , XS2 , XSnull

)T, where S1 ∩ S2 ∩ Snull = ∅, S1 ∪ S2 ∪ Snull = M and
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Snull = {j : β0j = 0}. For two matrices XS1 and XS2 , we define the corresponding
sample covariance matrices by

ΣS1|S2
= ΣS1S1 − ΣS1S2 Σ−1

S2S2
ΣS2S1 ,

ΣS2|S1
= ΣS2S2 − ΣS2S1 Σ−1

S1S1
ΣS1S2 . (1)

Let V = (XS2 , XSnull)
T be a pn − s1 submatrix of X. Then, another partition can be written

as X = (XS1 , V)T. Let M1 = In − XS1 Σ̂−1
S1S1

XT
S1

. Then, VTM1V is a (pn − s1)× (pn − s1)

dimensional singular matrix with rank k1 ≥ 0. We denote ϱ1 ≤ · · · ≤ ϱk1 as all the k1

positive eigenvalues of VTM1V .

2.2. Signal Strength Regularity Conditions

We consider three signal strength assumptions to define three sets of covariates ac-
cording to their signal strength levels as follows [19]:

(A1) There exists a positive constant c1, such that |β j| ≳ c1
√
(log p)/n for ∀j ∈ S1;

(A2) The coefficient vector β satisfies ||βS2 ||22 ∼ O(nτ) for some 0 < τ < 1, where β j ̸= 0
for ∀j ∈ S2;

(A3) β j = 0, for ∀j ∈ Snull.

2.3. Cox Proportional Hazards Model

The proportional hazards (PH) model introduced by [20] is one of the most commonly
used approaches for analyzing survival data. In this model, the hazard function for an
individual depends on covariates through a multiplicative effect, implying that the ratio
of hazards for different individuals remains constant over time. We consider a survival
model with a true hazard function λ0

(
t | X

)
for a failure time T, given a covariate vector

X =
(
X1, . . . , Xp

)T. We let C denote the censoring time and define Y = min(T, C) and
δ = I

(
T ≤ C

)
. Suppose we have n i.i.d. observations {

(
Yi, δi, Xi

)
}n

i=1 from this true

underlying model, where X =
(
X1, . . . , Xp

)T represents the n × p design matrix.
The PH model posits that the hazard function for an individual with covariates X is

λ
(
t | X

)
= λ0(t) exp

(
XTβ

)
, (2)

where β =
(

β1, . . . , βp
)T is the vector of regression coefficients, and λ0(t) is an unknown

baseline hazard function. Because λ0(t) does not depend on X, one can estimate β by
maximizing the partial log-likelihood

l(β) =
n

∑
i=1

δi
(
xTi β

)
−

n

∑
i=1

δi log

(
∑

j∈R(ti)

exp
(
xTj β

))
, (3)

where δi = I
(
Ti ≤ Ci

)
and R(ti) = { j : Tj ≥ ti} is the risk set just prior to ti. Maximizing

l(β) in (3) with respect to β yields the estimator β̂ for the regression parameters.

2.4. Variable Selection and Estimation

Variable selection can be carried out by minimizing the penalized negative log-partial
likelihood as follows:

− l(β) +
pn

∑
j=1

Pλ

(
β j
)
, (4)
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where Pλ(β j) is a penalty function applied to each component of β, and λ is a tuning
parameter that controls the magnitude of penalization. We consider the following two
popular methods:

1. LASSO. The LASSO estimator follows (4) with an L1-norm penalty,

Penλ(β j) = λ|β j|.

As λ increases, this penalty continuously shrinks the coefficients toward zero,
and some coefficients become exactly zero if λ is sufficiently large. The theoreti-
cal properties of the LASSO are well studied; see [21] for an extensive review.

2. Elastic Net (ENet). The Elastic Net estimator implements (4) with the combined
penalty

Pλ(β j) = λ
(

α |β j| + (1 − α) β2
j

)
, (5)

where 0 ≤ α ≤ 1. When α = 1, this reduces to the LASSO, and when α = 0, it
becomes Ridge. Combining L1 and L2 penalties leverages the benefits of Ridge while
still producing sparse solutions. Unlike LASSO, which can select n variables at most,
ENet has no such limitation when pn > n.

2.4.1. Variable Selection Procedure for S1 and S2

We summarize the variable selection procedure for detecting the strong signals S1 and
the weak signals S2.

Step 1 (detection of S1). Obtain a candidate subset Ŝ1 of strong signals using a penalized
likelihood estimator (PLE). Specifically, consider

β̂PLE = arg min
β

{
−ℓn(β) +

pn

∑
j=1

Pλ

(
β j
)}

, (6)

where Pλ(β j) penalizes each β j, shrinking weak effects toward zero and selecting the strong
signals. The tuning parameter λ > 0 governs the size of the subset Ŝ1.

Step 2 (detection of S2). To identify Ŝ2, first solve a penalized regression problem with a
ridge penalty only on the variables in Ŝ c

1 . Formally,

β̂r = arg min
β

{
−ℓ(β) + rn

∥∥βŜ c
1

∥∥2
2

}
, (7)

where rn > 0 is a tuning parameter controlling the overall strength of regularization for
variables in Ŝ c

1 . We then define a post-selection weighted ridge (WR) estimator β̂WR by

β̂WR
j =

β̂r
j , j ∈ Ŝ1,

β̂r
j I
(∣∣β̂r

j
∣∣ > an

)
, j ∈ Ŝ c

1 ,
(8)

where an is a thresholding parameter. The set Ŝ2 is then

Ŝ2 =
{

j ∈ Ŝ c
1 : β̂WR

j ̸= 0, 1 ≤ j ≤ p
}

. (9)

We apply this post-selection procedure only if
∣∣Ŝ2
∣∣ > 2. In particular, we set

an = c n−κ , 0 < κ ≤ 1
2 . (10)
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2.4.2. Post-Selection Shrinkage Estimation

We now propose a shrinkage estimator that combines information from two post-
selection estimators, β̂RE and β̂WR. Recall that

β̂WR
Ŝ1

=
(

β̂r
j , j ∈ Ŝ1

)T, and β̂WR
Ŝ2

=
(

β̂r
j I
(
|β̂r

j | > an
)
, j ∈ Ŝ2

)T
.

Define the post-selection shrinkage estimator for Ŝ1 as

β̂SE
Ŝ1

= β̂WR
Ŝ1

−
( ŝ2 − 2

T̂n

)(
β̂WR
Ŝ1

− β̂RE
Ŝ1

)
, (11)

where ŝ2 =
∣∣Ŝ2
∣∣, and β̂RE

Ŝ1
is the restricted estimator obtained by maximizing the partial

log-likelihood (3) over the set Ŝ1. The term T̂n is given by

T̂n =
(

β̂WR
Ŝ2

)T(XT
Ŝ2

MŜ1
XŜ2

)−1

β̂WR
Ŝ2

, MŜ1
= In − XŜ1

Σ̂−1
Ŝ1

XT
Ŝ1

, (12)

using a generalized inverse if Σ̂Ŝ1
is singular.

To avoid over-shrinking when β̂WR
Ŝ1

and β̂SE
Ŝ1

have different signs, we define a positive
shrinkage estimator via the convex combination

β̂PSE
Ŝ1

= β̂WR
Ŝ1

−
(( ŝ2 − 2

T̂n

)
∧ 1
)(

β̂WR
Ŝ1

− β̂RE
Ŝ1

)
. (13)

This modification is essential to prevent an overly aggressive shrinkage that might reverse
the sign of estimates in β̂WR

Ŝ1
.

3. Asymptotic Properties
In this section, we study the asymptotic properties of the the post-selection shrinkage

estimators for the Cox regression model. To investigate the asymptotic theory, we need the
following regularity conditions to be met.

(B1) p = exp(O(nα)) for some 0 < α < 1.

(B2) ϱ1 = O(n−η), where τ < η ≤ 1 for τ in (A2).

(B3) The existence of a positive definite matrix Σn such that limn→∞ Σn = Σ, where the
eigenvalues of Σ satisfy 0 < κ1 < λmin(Σ) ≤ λmax(Σ) < κ2 < ∞.

(B4) Sparse Riesz condition: For the random design matrix X, any S ⊂ M with
|S| = q, q ≤ p, and any vector v ∈ Rq, there exists 0 < c∗ < c∗ < ∞ such that
c∗ ≤ ||XT

S v||22/||v||22 ≤ c∗ holds with probability tending to 1.

The following theorems will make it easier to compute the asympotic distributional
bias (ADB) and asympotic distributional risk (ADR) of the proposed estimators:

Theorem 1. Suppose that assumptions (A1)–(A3) and (B1)–(B4) hold. If we choose
rn = c2a−2

n (log log n)3 log(n ∨ p) for some constant c2 > 0 and an defined in (10) with
ν < (η − α − τ)/3, then, Ŝ2 in (9) satisfies

lim
n→∞

P(Ŝ2 = S2|Ŝ1 = S1) = 1, (14)

where τ, η, and α are defined in (A2), (B1), and (B2), respectively.



Entropy 2025, 27, 254 6 of 22

Theorem 2. Let s2
n = dT

n Σ−1
n dn for any (p1 + p2)× 1 vector dn satisfying ||dn||22 ≤ 1. Suppose

assumptions (B1)–(B4) hold. Consider a sparse Cox model with a signal strength under (A1)–(A3),
and with 0 < τ < 1/2. Suppose a pre-selected model such as S1 ⊂ Ŝ1 ⊂ S1 ∪ S2 is obtained with
probability 1. If we choose rn in Theorem 1 with ν < {(η − α − τ)/, 1/4 − τ/2}, then, we have
the asymptotic normality,

n1/2s−1
n dT

n (β̂WR
Sc

null
− βSc

null
)

D−→ N (0, 1). (15)

Asymptotic Distributional Bias and Risk Analysis

In order to compare the estimators, we use the asymptotic distributional bias (ADB)
and the asymptotic risk (ADR) expressions of the proposed estimators.

Definition 1. For any estimator β⋄
1n and p1-dimensional vector d1n, satisfying ||d1n||22 ≤ 1,

the ADB and ADR of dT
1nβ⋄

1n, respectively, are defined as

ADB(dT
1nβ⋄

1n) = lim
n→∞

E[{n1/2s−1
1n dT

1n(β⋄
1n − β1)}], (16)

ADR(dT
1nβ⋄

1n) = lim
n→∞

E[{n1/2s−1
1n dT

1n(β⋄
1n − β1)}2], (17)

where s2
1n = dT

1nΣ−1
S1|S2

d1n. Let δ = (δ1, · · · , δp2)
T ∈ Rp2 and

∆d1n =
dT

1n(Σ
−1
S1

ΣS1S2 δδTΣS2S1 Σ−1
S1

)d1n

dT
1n(Σ

−1
S1

ΣS1S2 Σ−1
S2|S1

ΣS2S1 Σ−1
S1

)d1n
. (18)

We have the following theorems on the expression of ADBs and ADRs of the post-selection estimators.

Theorem 3. Let d1n be any p1-dimensional vector satisfying 0 < ||d1n||22 ≤ 1 and
s2

1n = dT
1nΣ−1

S1|S2
d1n. Under the assumptions (A1)-(A3), we have

ADB(dT
1n β̂WR

1n ) = 0, (19)

ADB(dT
1n β̂RE

1n ) = s−1
1 dT

2 β2, (20)

ADB(dT
1n β̂SE

1n ) = (p2 − 2)s−1
1 dT

2 β∗
2E[χ−2

p2
(∆d2)], (21)

ADB(dT
1n β̂PSE

1n ) = s−1
1 dT

2 β∗
2

[
(p2 − 2)

{
E[χ−2

p2
(∆d2)] + E

[
χ−2

p2
(∆d2)I(χ2

p2
(∆d2) < (p2 − 2))

]}

− Hp2

(
p2 − 2; ∆d2

)]
, (22)

where d2n = ΣS2S1 Σ−1
S1

d1n and E[χ−2j
p2 (∆d2)] =

∫ ∞
0 x−2jdHp2(x; ∆d2).

See the Appendix A for a detailed proof.

Theorem 4. Under the assumptions of Theorem 2, except (A2) is replaced by β j = δ/
√

n,
for j ∈ S2, with |δj| < δmax, for some δmax > 0, we have
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ADR(dT
1n β̂WR

1n ) = 1, (23)

ADR(dT
1n β̂RE

1n ) = 1 + (1 − c)1/2[2 + (1 − c)1/2(1 + 2∆1)], (24)

ADR(dT
1n β̂SE

1n ) = 1 + (1 − c)1/2(p2 − 2)
[
(1 − c)1/2(p2 − 2)

{
E[χ−4

p2+2(∆d2)]

+ (s−1
2 dT

2 β2)
2E[χ−4

p2
(∆d2)]

}
+ 2E[χ−2

p2+2(∆d2)]
]
, (25)

ADR(dT
1n β̂PSE

1n ) = 1 + (1 − c)(p2 − 2)2

{
E[χ−4

p2+2(∆d2)] + (s−1
2 dT

2 β2)
2E[χ−4

p2
(∆d2)]

+ E[χ−4
p2+2(∆d2)I(χ2

p2+2(∆d2) < (p2n − 2))]

}

+ 2(1 − c)1/2(p2 − 2)

{
E[χ−2

p2+2(∆d2)] + E[χ−2
p2+2(∆d2)I(χ2

p2+2(∆d2) < (p2 − 2))]

− (p2 − 2)E[χ−4
p2+2(∆d2)I(χ2

p2+2(∆d2) < (p2 − 2))]− (1 − c)1/2

×
[

E[χ−2
p2+2(∆d2)I(χ2

p2+2(∆d2) < (p2 − 2))]

+ (s−1
2 dT

2 β∗
2)

2E[χ−2
p2
(∆d2)I(χ2

p2
(∆d2) < (p2 − 2))]

]}
,

+ (1 − c)1/2

[
(1 − c)1/2

(
E[χ2

p2+2(∆d2)] + (s−1
2 dT

2 β∗
2)

2Hp2(p2 − 2; ∆d2)

)

+ 2

{
Hp2(p2 − 2; ∆d2)− (p2 − 2)E[χ−2

p2+2(∆d2)I(χ2
p2+2(∆d2) < (p2 − 2))]

}]
, (26)

where c = limn→∞ dT
1nΣ−1

S1
d1n/(dT

1nΣ−1
S11.2

d1n) ≤ 1 and s2
2n = dT

2nΣ−1
S22.1

d2n.

It can be observed that the theoretical results are different from Theorem 3 of [19].
Ref. [19] considered the ADR of PSE estimations for the linear model. In contrast, our
Theorems 3 and 4 are used for the PSE with the Cox proportional hazards model, which
are feasible estimations. From Theorem 4, we can compare the ADRs of the estimators.

Corollary 1. Under the assumptions in Theorem 4, we have

1. If ||δ||22 ≤ 1, then ADR(dT
1n β̂PSE

1n ) ≤ ADR(dT
1n β̂SE

1n ) ≤ ADR(dT
1n β̂WR

1n );
2. If ||δ||22 = o(1) and p2 → ∞, then ADR(dT

1n β̂RE
1n ) < ADR(dT

1n β̂PSE
1n ) ≤ ADR(dT

1n β̂WR
1n )

for δ = 0.

Corollary 1 shows that the performance of the post-selection PSE is closely related to
the RE. On the ond hand, if ŝ1 ⊂ S1 ∪ S2 and (S1 ∪ S2)∩ Ŝc

1 are large, then the post-selection
PSE tends to dominate the RE. Further, if a variable selection method generates the right
submodel and ||δ||22 = o(1) , that is, limn→∞ Ŝ1 = S1 ∪ S2, then, a post-selection likelihood
estimator β̂RE

1n is the most efficient one compared with all other post-selection estimators.

Remark 1. The simultaneous variable selection and parameter estimation may not lead to a
good estimation strategy when weak signals co-exist with zero signals. Even though the selected
candidate subset models can be provided by some existing variable selection techniques when p > n,
the prediction performance can be improved by the post-selection shrinkage strategy, especially when
an under-fitted subset model is selected by an aggressive variable selection procedure.
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4. Simulation Study
In this section, we present a simulation study designed to compare the quadratic risk

performance of the proposed estimators under the Cox regression model. Each row of
the design matrix X is generated i.i.d. from a N(0, Σ) distribution, where Σ follows an
autoregressive covariance structure, as follows:

Σjj′ = 0.5 |j−j′ |, 1 ≤ j, j′ ≤ p.

In this setup, we consider the following true regression coefficients:

β =
(

8, 9, 10︸ ︷︷ ︸
S1

, 1, 0.8, 0.5, 0.2, . . . , 0.2︸ ︷︷ ︸
p2−p1︸ ︷︷ ︸

S2

, 0, 0, 0, . . . , 0︸ ︷︷ ︸
p−p1−p2

)T
, (27)

where the subsets S1 and S2 correspond to strong and weak signals, respectively. The true
survival times Y are generated from an exponential distribution with parameter Xβ. Cen-
soring times are drawn from a Uniform(0, c) distribution, where c is chosen to achieve
the desired censoring rate. We consider censoring rates of 15% and 25%, and we explore
sample sizes n = 100, 300, 400.

We compare the performance of our proposed estimators against two well-known
penalized likelihood methods, namely, LASSO and Elastic Net (ENet). We employ the
R package glmnet to fit these penalized methods and choose the tuning parameters via
cross-validation. For each combination of n and p, we run 1000 Monte Carlo simulations.
Let β⋄

1n denote either β̂PSE
1n or β̂RE

1n after variable selection. We assess the performance using
the relative mean squared error (RMSE) with respect to β̂WR

1n as follows:

RMSE
(

β⋄
1n
)
=

E
∥∥β̂WR

1n − β
∥∥2

2

E
∥∥β⋄

1n − β
∥∥2

2

.

An RMSE(β⋄
1n) > 1 indicates that β⋄

1n outperforms β̂WR
1n , and a larger RMSE signifies a

stronger degree of superiority over β̂WR
1n .

Table 1 presents the relative mean squared error (RMSE) values for different regression
methods—LASSO and Elastic Net (ENet)—under varying sample sizes (n), number of
predictors (p), and censoring percentages (15% and 25%). The RMSE values are averaged
over 1000 simulation runs. The table compares three estimators, β̂PLE

S1
, β̂RE

S1
, and β̂PSE

S1
,

providing insight into their performance under different settings.

Table 1. Simulated relative mean squared error (RMSE) across different values of p and n, averaged
over N = 1000 simulation runs.

Censoring Percentage

15% 25%

n p Method β̂PLE
Ŝ1

β̂RE
Ŝ1

β̂PSE
Ŝ1

β̂PLE
Ŝ1

β̂RE
Ŝ1

β̂PSE
Ŝ1

100 300 LASSO 1.04 1.66 1.19 1.08 1.96 1.23
ENet 1.07 1.45 1.23 0.92 1.44 1.06

400 LASSO 1.03 1.10 1.60 0.96 1.03 1.98
ENet 0.90 1.00 1.45 0.89 0.98 1.36

500 LASSO 1.08 1.13 1.66 0.98 1.05 1.37
ENet 0.96 1.01 1.03 0.95 1.00 1.22
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Table 1. Cont.

Censoring Percentage

15% 25%

n p Method β̂PLE
Ŝ1

β̂RE
Ŝ1

β̂PSE
Ŝ1

β̂PLE
Ŝ1

β̂RE
Ŝ1

β̂PSE
Ŝ1

300 300 LASSO 0.85 1.60 0.98 0.92 1.64 1.06
ENet 0.96 1.37 1.08 0.87 1.46 1.00

350 LASSO 0.83 0.99 1.01 0.90 1.07 1.17
ENet 0.85 0.99 1.52 0.87 1.02 1.56

400 LASSO 0.90 1.03 1.25 0.81 0.95 1.73
ENet 0.90 1.04 1.25 0.76 0.89 1.41

400 400 LASSO 0.99 1.52 1.12 0.82 1.50 0.94
ENet 0.91 1.29 1.02 0.83 1.26 0.99

450 LASSO 0.83 1.00 1.13 0.84 0.94 1.61
ENet 0.92 1.05 1.46 0.85 0.99 1.79

500 LASSO 0.89 0.93 1.83 0.81 0.93 1.90
ENet 0.82 0.93 1.38 0.82 0.95 1.75

Figures 1 and 2 visualize the RMSE trends for different values of p when comparing
LASSO (Figure 1) and ENet (Figure 2) against the proposed estimators (RE and PSE).
The plots indicate how RMSE varies as p increases for different sample sizes (n) and
censoring levels.
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Figure 1. Relative mean squared error (RMSE) of the proposed estimators compared to LASSO for
different n and p.
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Figure 2. Relative mean squared error (RMSE) of the proposed estimators compared to Elastic Net
for different n and p.

Key Observations and Insights

1. Superior performance of post-selection estimators: Across all combinations of n
and p, the post-selection estimators (β̂RE

S1
and β̂PSE

S1
) consistently demonstrate lower

RMSEs compared to LASSO and ENet. This suggests that these estimators provide
better predictive accuracy and stability.

2. Impact of censoring percentage:

• When the censoring percentage increases from 15% to 25%, the RMSE values
tend to increase across all methods, indicating the expected loss of predictive
power due to increased censoring.

• However, the post-selection estimators maintain a more stable RMSE trend,
demonstrating their robustness in handling censored data.

3. Effect of increasing predictors (p):

• As p increases, the RMSE for LASSO and ENet tends to rise, particularly under
higher censoring rates.

• This trend suggests that LASSO and ENet struggle with larger feature spaces,
likely due to their tendency to aggressively shrink weaker covariates.

• In contrast, the post-selection estimators show relatively stable RMSE behavior,
indicating their ability to retain relevant information even in high-dimensional
settings.

4. Impact of sample size (n) on RMSE stability:

• Larger sample sizes (n) generally lead to lower RMSE values across all methods.
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• However, the gap between LASSO/ENet and the post-selection estimators re-
mains consistent, reinforcing the advantage of the proposed methods even with
more data.

5. Comparing LASSO and ENet:

• ENet generally has lower RMSE values than LASSO, particularly for small sample
sizes, indicating its advantage in balancing feature selection and regularization.

• However, ENet still underperforms compared to post-selection estimators, suggest-
ing that the additional shrinkage adjustments help mitigate underfitting issues.

To further compare the sparsity of the coefficient estimators, we also measure the False
Positive Rate (FPR), as follows:

FPR
(

β̂
)
=

∣∣{ j : β̂ j ̸= 0 ∧ β j = 0
}∣∣∣∣{ j : β j = 0

}∣∣ . (28)

A higher FPR indicates that more non-informative variables are incorrectly included in
the model, thereby complicating interpretation [22]. When β does not contain any zero
components, the FPR is undefined. Table 2 compares the performance of LASSO and Elastic
Net (ENet) in selecting variables in a high-dimensional Cox model under 15% and 25%
censoring. As sample size (n) increases, both methods select more variables, but false
positive rates (FPR) also rise, especially for ENet. LASSO is more conservative, selecting
fewer variables with a lower FPR, while ENet selects more but at the cost of higher false
discoveries. Higher censoring (25%) slightly increases FPR, reducing selection accuracy.
Overall, LASSO offers better false positive control, whereas ENet captures more variables
but with increased risk of selecting irrelevant ones.

Table 2. Average number of selected predictors (Ŝ1) and false positive rate (FPR) across different
values of n and p, averaged over N = 1000 simulation runs.

Censoring Percentage

%15 %25

n p Method Average Ŝ1 FPR Average Ŝ1 FPR

100 300 LASSO 6.1 0.063 6.4 0.056
ENet 6.2 0.063 6.6 0.052

400 LASSO 4.9 0.072 5.2 0.085
ENet 5.1 0.072 4.8 0.075

500 LASSO 5.6 0.039 12.6 0.043
ENet 4.9 0.039 4.0 0.033

300 300 LASSO 13.4 0.209 13.8 0.223
ENet 12.9 0.209 16.3 0.282

350 LASSO 15.6 0.202 15.8 0.208
ENet 15.7 0.202 22.6 0.279

400 LASSO 14.5 0.137 13.7 0.155
ENet 13.5 0.137 14.2 0.173

400 400 LASSO 14.1 0.163 15.8 0.171
ENet 14.2 0.163 20.4 0.212

450 LASSO 18.4 0.217 23.5 0.24
ENet 19.1 0.217 30.1 0.263

500 LASSO 13.6 0.150 13.3 0.158
ENet 13.3 0.150 13.6 0.158
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5. Real Data Example
In this section, we illustrate the practical utility of our proposed methodology on

two different high-dimensional datasets.

5.1. Example 1

We first apply our method to a gene expression dataset comprising n = 614 breast
cancer patients, each with p = 1490 genes. All patients received anthracycline-based
chemotherapy. Among these 614 individuals, there were 134 (21%) censored observations,
and the mean time to treatment response was approximately 2.98 years. Using biological
pathways to identify important genes, Ref. [23] previously selected 29 genes and reported a
maximum area under the receiver operating characteristic curve (AUC) of about 62%. This
relatively low AUC suggests limited predictive power when only using these 29 genes.

To improve upon these findings, we begin by performing an initial noise-reduction
procedure on the data. This step helps remove potential outliers and irrelevant features,
thereby enhancing the quality of the subsequent variable selection and estimation processes.
We applied LASSO and Elastic Net (ENet) for gene selection. The results show that
LASSO selected 14 genes, whereas ENet selected 12 genes. We then applied the proposed
post-selection shrinkage estimators introduced in Section 2 to evaluate their performance
compared to standard methods such as LASSO and Elastic Net. Table 3 shows the estimated
coefficients from different estimators, along with the AUC at the bottom. It is evident that
the PSE estimate has slightly improved the prediction performance.

Table 3. Estimated coefficients using the LASSO and ENet method for example 1.

LASSO ENet

Gen ID β̂LASSO
Ŝ1

β̂RE
Ŝ1

β̂PSE
Ŝ1

β̂ENet
Ŝ1

β̂RE
Ŝ1

β̂PSE
Ŝ1

18 −0.02 0.26 0.21 −0.03 0.07 0.20
97 0.01 0.27 0.00 0.01 0.26 0.01

101 0.05 0.19 0.13 0.05 0.27 0.12
128 – – – −0.01 – –
232 0.04 −0.42 −0.28 0.04 0.20 −0.25
342 0.15 −0.42 −0.13 0.14 −0.39 −0.10
369 −0.09 −0.05 0.04 −0.08 −0.40 −0.12
408 −0.01 – – −0.01 −0.09 0.03
410 0.03 −0.26 −0.15 0.03 −0.06 −0.14
445 – – – −0.00 – –
468 0.14 0.08 0.02 0.13 −0.26 −0.01
660 −0.00 – – −0.00 – –
731 −0.08 0.09 0.06 −0.08 0.06 0.06
810 −0.04 −0.08 −0.09 0.01 0.09 −0.09
907 – – – 0.01 – –
934 −0.00 – – −0.00 – –
952 – – – −0.01 – –
961 −0.05 — – −0.05 −0.08 0.20
1212 – – – −0.00 – –

AUC 0.62 0.63 0.65 0.63 0.64 0.66

5.2. Example 2

We now consider the diffuse large B-cell lymphoma (DLBCL) dataset of [24], which
is also high-dimensional. This dataset was used as a primary example to illustrate the
effectiveness of our proposed dimension-reduction method. It consists of measurements
on 7399 genes obtained from 240 patients via customized cDNA microarrays (lymphochip).
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Each patient’s survival time was recorded, ranging from 0 to 21.8 years; 127 patients had
died (uncensored) and 95 were alive (censored) at the end of the study. Additional details
on the dataset can be found in [24].

To obtain the post-selection shrinkage estimators, we first selected candidate subsets
using two variable selection approaches—LASSO and Elastic Net (ENet). All tuning param-
eters were chosen via 10-fold cross-validation. Table 4 shows the estimated coefficients from
both LASSO and ENet for the setting p = 6800. The AUC results indicate that β̂PSE

Ŝ1
generally

outperforms β̂RE
Ŝ1

and β̂PLE
Ŝ1

for both LASSO and ENet procedures. Notably, the ENet-based
estimators appear more robust than those obtained via LASSO, underscoring the value of
combining L1 and L2 penalties in high-dimensional survival analysis.

Table 4. Estimated coefficients using the LASSO and ENet method for example 2.

LASSO ENet

Gen ID β̂LASSO
Ŝ1

β̂RE
Ŝ1

β̂PSE
Ŝ1

β̂ENet
Ŝ1

β̂RE
Ŝ1

β̂PSE
Ŝ1

95 0.02 – – −0.34 – –
112 0.06 0.71 0.70 −0.00 −0.13 −0.08
173 −0.63 – – 0.68 – –
205 – – – – – –
551 1.60 1.69 1.57 −0.11 −0.28 −0.20

1377 −0.22 −0.84 −0.80 −0.09 −0.16 −0.12
1526 0.41 0.67 0.56 0.02 – –
1543 −0.43 −0.79 −0.77 0.40 0.75 0.69
2003 −0.11 – – 1.10 – –
2025 0.18 0.90 0.78 1.04 1.22 1.07
2439 – – – −0.01 −0.14 −0.12
2705 −0.85 – – 0.36 0.77 0.61
2973 0.59 1.23 0.99 −0.63 −1.12 −0.81
3240 1.13 – – 0.03 – –
3598 −0.22 −0.59 −0.54 0.29 0.55 0.49
3882 0.13 0.40 0.39 −0.06 −0.20 −0.15
4015 0.34 0.81 0.76 −0.08 −0.13 −0.12
4186 −0.50 −0.72 −0.53 – – –
4357 0.09 – – −0.59 −0.70 −0.65
4662 0.70 0.90 0.83 0.21 0.60 0.38
5131 0.54 0.80 0.71 0.01 0.01 0.01
5222 −0.15 −0.38 −0.26 1.24 1.67 1.34
5541 – – – −0.52 −0.72 −0.68
5577 0.39 0.86 0.70 −0.73 −0.97 −0.80
5778 −0.62 – – −0.09 – –
5808 – – – 0.35 0.55 0.46
5951 – – – 1.29 2.12 1.70
6103 – – – −0.63 −0.80 −0.76
6254 – – – 0.25 0.56 0.48
6493 – – – 0.65 – –
6510 – – – 0.86 1.09 0.99

AUC 0.71 0.71 0.73 0.72 0.72 0.74

6. Conclusions
In this paper, we proposed high-dimensional post-selection shrinkage estimators for

Cox’s proportional hazards models based on the work of [19]. We investigated the asymp-
totic risk properties of these estimators in relation to the risks of the subset candidate model,
as well as the LASSO and ENet estimators. Our results indicate that the new estimators per-
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form particularly well when the true model contains weak signals. The proposed strategy
is also conceptually intuitive and computationally straightforward to implement.

Our theoretical analysis and simulation studies demonstrate that the post-selection
shrinkage estimator exhibits superior performance relative to LASSO and ENet, in part
because it mitigates the loss of efficiency often associated with variable selection. As a pow-
erful tool for producing interpretable models, sparse modeling via penalized regularization
has become increasingly popular for high-dimensional data analysis. Our post-selection
shrinkage estimator preserves model interpretability while enhancing predictive accuracy
compared to existing penalized regression techniques. Furthermore, two real-data exam-
ples illustrate the practical advantages of our method, confirming that its performance is
robust and potentially valuable for a range of high-dimensional applications.
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Nomenclature

Symbol Description
General Notation
n Sample size (number of observations)
p Number of covariates (predictor variables)
R Set of real numbers
P Probability measure
E Expectation operator
I(·) Indicator function
Regression and Estimators
β Regression coefficient vector
β̂ Estimated regression coefficients
λ Regularization parameter (for LASSO/ENet)
Ŝ1 Selected subset of variables
d1n p1-dimensional vector in the selection model
β◦1n Selected regression coefficient estimator
β̂WR Weighted Ridge (WR) estimator
Survival Analysis Notation
L(β) Cox proportional hazards likelihood function
D Dataset containing observations
X Covariate matrix
Y Response variable (time-to-event outcome)
h(t) Hazard function at time t
ĥ(t) Estimated hazard function
Λ(t) Cumulative hazard function
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Evaluation Metrics
RMSE Root Mean Squared Error
FPR False Positive Rate
AUC Area Under the Curve (for classification models)
Methods and Models
LASSO Least Absolute Shrinkage and Selection Operator
ENet Elastic Net
Cox-PH Cox Proportional Hazards Model
WR Weighted Ridge estimator
PSE Post-selection Shrinkage Estimator
RE Restricted Estimator

Appendix A. Proofs
The technical proofs of Theorems 3 and 4 are included in this section.

Proof of Theorem 3. Here, we provide the proof of the ADB expressions of the proposed
estimators. Based on Theorem 2, it is clear that

lim
n→∞

E

[
n1/2s−1

1n dT
1n

(
β̂WR

1n − β1

)]
= E

[
lim

n→∞

{
n1/2s−1

1n dT
1n

(
β̂WR

1n − β1

)}]
= E[Z ] = 0,

where Z ∼ N (0, 1). Then,

ADB(dT
1n β̂RE

1n ) = lim
n→∞

E

[
n1/2s−1

1n dT
1n

(
β̂RE

1n − β1

)]
= lim

n→∞
E
[
n1/2s−1

1n dT
1n

{
(β̂WR

1n − β1)− (β̂WR
1n − β̂RE

1n )
}]

= lim
n→∞

E

[
n1/2s−1

1n dT
1n

(
β̂WR

1n − β1

)]
− lim

n→∞
E

[
n1/2s−1

1n dT
1n

(
β̂WR

1n − β̂RE
1n

)]

= ADB(dT
1n β̂WR

1n )− lim
n→∞

E

[
n1/2s−1

1n dT
1n

(
β̂WR

1n − β̂RE
1n

)]

= lim
n→∞

E

[
n1/2s−1

1n dT
2n β̂WR

2n

]

= lim
n→∞

(s2n/s1n)E

[
n1/2s−1

2n dT
2n β̂WR

2n

]
= (s2/s1)s−1

2 dT
2 β2 = s−1

1 dT
2 β2

where d2n = ΣS2S1 Σ−1
S1

d1n, dT
1n(β̂WR

1n − β̂RE
1n ) = −dT

1 Σ−1
S1

ΣS2S1 β̂WR
2n = −dT

2n β̂WR
2n and

s2
2n = dT

2 Σ−1
S2|S1

d2n.
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Now, we compute the ADB of β̂SE
1n as follows

ADB(dT
1n β̂SE

1n ) = lim
n→∞

E

[
n1/2s−1

1n dT
1n

(
β̂SE

1n − β1

)]

= lim
n→∞

E

[
n1/2s−1

1n dT
1n

(
β̂WR

1n − [(p2n − 2)T̂−1
n ](β̂WR

1n − β̂RE
1n )− β1

)]

= lim
n→∞

E

[
n1/2s−1

1n dT
1n

(
β̂WR

1n − β1

)]

− lim
n→∞

(p2n − 2)E

[
n1/2s−1

1n dT
1n

(
β̂WR

1n − β̂RE
1

)
T̂−1

n

]

= E[Z ]− (p2 − 2)E

[
lim

n→∞

{
n1/2s−1

1n dT
1n(β̂WR

1n − β̂RE
1n )T

−1
n

}]

= (p2 − 2)E

[
lim

n→∞

{
n1/2s−1

1n dT
2n β̂WR

2n T−1
n

}]

= (p2 − 2)(s2/s1)E

[
lim

n→∞

{
n1/2s−1

2n dT
2n β̂WR

2n T−1
n

}]

= (p2 − 2)s−1
1 dT

2 β2E

[
χ−2

p2
(∆d2)

]
.

Finally, we obtain the ADB of β̂PSE
1n ,

ADB(dT
1n β̂PSE

1n ) = lim
n→∞

E

[
n1/2s−1

1n dT
1n

(
β̂PSE

1n − β1

)]

= lim
n→∞

E

[
n1/2s−1

1n dT
1n

{
β̂SE

1n + [1 − (p2n − 2)T̂−1
n ](β̂WR

1n − β̂RE
1n )

× I(T̂n < (p2n − 2))− β1

}]

= lim
n→∞

E

[
n1/2s−1

1n dT
1n

(
β̂SE

1n − β1

)]

+ lim
n→∞

E

[
n1/2s−1

1n dT
1n[1 − (p2n − 2)T̂−1

n ]
(

β̂WR
1n − β̂RE

1n

)
I
(
T̂n < (p2n − 2)

)]

+ E

[
lim

n→∞

{
n1/2s−1

1n dT
1n(β̂SE

1n − β1)
}]
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+ E

[
lim

n→∞

{
n1/2s−1

1n dT
1n(β̂WR

1n − β̂RE
1n )I

(
T̂n < (p2n − 2)

)}]

− (p2 − 2)E

[
lim

n→∞

{
n1/2s−1

1n dT
1n(β̂WR

1n − β̂RE
1n )T−1

n I
(
T̂n < (p2n − 2

)
)
}]

= ADB(dT
1n β̂SE

1n )− E

[
lim

n→∞

{
n1/2s−1

1n dT
2n β̂WR

2n I
(
T̂n < (p2n − 2)

)}]

+ (p2 − 2)E

[
lim

n→∞

{
n1/2s−1

1n dT
2n β̂WR

2n T̂−1
n I

(
T̂n < (p2n − 2)

)}]

= ADB(dT
1n β̂SE

1n )− (s2/s1)E

[
Z I
(
χ2

P2
(∆d2 ) < (p2 − 2)

)]
− s−1

1 dT
2 β2Hp2 (p2 − 2; ∆d2 )

+ (p2 − 2)(s2/s1)E

[
Zχ−2

p2
(∆d2 )I

(
χ2

P2
(∆d2 ) < (p2 − 2)

)]

+ (p2 − 2)s−1
1 dT

2 β2E

[
χ−2

p2
(∆d2 )I

(
χ2

P2
(∆d2 ) < (p2 − 2)

)]
= ADB(dT

1n β̂SE
1n )− s−1

1 dT
2 β2Hp2 (p2 − 2; ∆d2 )

+ (p2 − 2)s−1
1 dT

2 β2E

[
χ−2

p2
(∆d2 )I

(
χ2

p2
(∆d2 ) < (p2 − 2)

)]

= s−1
1 dT

2 β2

[
(p2 − 2)

{
E
[
χ−2

p2
(∆d2 )] + E

[
χ−2

p2
(∆d2 )I

(
χ2

P2
(∆d2 ) < (p2 − 2)

)]}

− Hp2 (p2 − 2; ∆d2 )

]
.

Proof of Theorem 4. We provide the proof of the ADR expressions of the proposed estima-
tors. It is clear that

lim
n→∞

E

[{
n1/2s−1

1n dT
1n

(
β̂WR

1n − β1

)}2
]
= E

[
lim

n→∞

{
n1/2s−1

1n dT
1n

(
β̂WR

1n − β1

)}2
]
= E[Z2] = 1,

where Z ∼ N (0, 1). Then,

ADR(dT
1n β̂RE

1n ) = lim
n→∞

E

[{
n1/2s−1

1n dT
1n

(
β̂RE

1n − β1

)}2
]

= lim
n→∞

s−2
1n E

[{
n1/2dT

1n

[(
β̂WR

1n − β1

)
−
(

β̂WR
1n − β̂RE

1n

)]}2
]

= lim
n→∞

E

[{
n1/2s−1

1n dT
1n

(
β̂WR

1n − β1

)}2
]
+ lim

n→∞
E

[{
n1/2s−1

1n dT
1n

(
β̂WR

1n − β̂RE
1n

)}2
]

− 2 lim
n→∞

E

[
ns−2

1n dT
1n

(
β̂WR

1n − β̂RE
1n )(β̂WR

1n − β1

)T
d1n

]
= I1 + I2 + I3.

From (23), we have I1 = limn→∞ E

[{
n1/2s−1

1n dT
1n(β̂WR

1n − β1)
}2
]
= 1. Furthermore,
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I2 = lim
n→∞

s−2
1n E

[
n1/2dT

1n

(
β̂WR

1n − β̂RE
1n

)]2

= lim
n→∞

(s2
2n/s2

1n)E

[
n1/2s−1

2n dT
2n β̂WR

2n

]2

.

Since s2
2n/s2

1n → 1 − c, then,

I2 = (1 − c) lim
n→∞

E

[
χ2

1(∆d2n)

]
= (1 − c)(1 + 2∆d2).

Furthermore,

I3 = −2 lim
n→∞

E

[
ns−2

1n dT
1n

(
β̂WR

1n − β̂RE
1n

)(
β̂WR

1n − β1

)T
d1n

]

= 2 lim
n→∞

(s2n/s1n)E

[
n1/2s−1

2n dT
2n β̂WR

2n n1/2s−1
1n

(
β̂WR

1n − β1

)T
d1n

]
= 2(1 − c)1/2.

Now, we investigate (25). By using Equation (17), we have

ADR(dT
1n β̂SE

1n ) = lim
n→∞

E

[{
n1/2s−1

1n dT
1n

(
β̂SE

1n − β1)
}2
]

= lim
n→∞

E

[
n1/2s−1

1n dT
1n

{(
β̂WR

1n − β1

)
− [(p2n − 2)/T̂n]

(
β̂WR

1n − β̂RE
1n

)}]2

= lim
n→∞

E

[
n1/2s−1

1n dT
1n

(
β̂WR

1n − β1

)]2

+ lim
n→∞

E

[
n1/2s−1

1n
[
(p2n − 2)T−1

n
]
dT

1n

(
β̂WR

1n − β̂RE
1n

)]2

− 2 lim
n→∞

E

[
ns−2

1n
[
(p2n − 2)T̂−1

n
]
dT

1n

(
β̂WR

1n − β̂RE
1n

)(
β̂WR

1n − β1

)T
d1n

]
= J1 + J2 + J3.

Again, J1 = limn→∞ E

[{
n1/2s−1

1n dT
1n

(
β̂WR

1n − β1

)}2
]
= 1. Then, we have

J2 = lim
n→∞

E

[
n1/2s−1

1n
[
(p2n − 2)T̂−1

n
]
dT

1n

(
β̂WR

1n − β̂RE
1n

)]2

= lim
n→∞

(p2n − 1)2E

[
n1/2s−1

1n dT
2n β̂WR

2n T−1
n

]2

= (s2
2/s2

1)(p2 − 1)2E

[
lim

n→∞

{
n1/2s−1

2n dT
2n β̂WR

2n T̂−1
n

}]2

= (s2
2/s2

1)(p2 − 1)2
{

E[Z2χ−4
p2

(∆d2 )] + (s−1
2 dT

2 β2)
2E[χ−4

p2
(∆d2 )]

}
= (1 − c)(p2 − 2)2

{
E[χ−4

p2+2(∆d2 )] + (s−1
2 dT

2 β2)
2E[χ−4

p2
(∆d2 )]

}
,
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and

J3 = −2 lim
n→∞

E

[
ns−2

1n
[
(p2n − 2)T̂−1

n
]
dT

1n

(
β̂WR

1n − β̂RE
1n

)(
β̂WR

1n − β1

)T
d1n

]

= 2 lim
n→∞

(s2n/s1n)(p2n − 2)E

[
n1/2s−1

2n dT
2n β̂WR

2n s−1
1n (β̂WR

1n − β1)
TT̂−1

n

]

= 2(1 − c)1/2(p2 − 2)

{
E
[
Z2χ−2

p2
(∆d2)

]
+ s−1

2 dT
2 β2E

[
Zχ−2

p2
(∆d2)

]}
= 2(1 − c)1/2(p2 − 2)E

[
χ−2

p2+2(∆d2)
]
.

Finally, we compute the ADR of β̂PSE
1n as follows:

ADR(dT
1n β̂PSE

1n ) = lim
n→∞

E

[{
n1/2s−1

1n dT
1n

(
β̂PSE

1n − β1

)}2
]

= lim
n→∞

E

[{
n1/2s−1

1n dT
1n

[(
β̂SE

1n − β1

)
+
[
1 − (p2n − 2)T̂−1

n
](

β̂WR
1n − β̂RE

1n

)
I
(
T̂n < (p2n − 2)

)]}2
]

= lim
n→∞

E

[{
n1/2s−1

1n dT
1n

(
β̂SE

1n − β1

)}2
]

+ lim
n→∞

E

[{
n1/2s−1

1n dT
1n
[
1 − (p2n − 2)T̂−1

n
](

β̂WR
1n − β̂RE

1n

)
I
(
T̂n < (p2n − 2)

)}2
]

+ 2 lim
n→∞

E

[
n1/2s−2

1n dT
1n
[
1 − (p2n − 2)T̂−1

n
](

β̂WR
1n − β̂RE

1n

)(
β̂SE

1n − β1

)T
× I
(
T̂n < (p2n − 2)

)
d1n

]

= ADR(dT
1n β̂SE

1n ) + lim
n→∞

E

[{
n1/2s−1

1n dT
1n

(
β̂WR

1n − β̂RE
1n

)
I
(
T̂n < (p2n − 2)

)}2
]

+ lim
n→∞

(p2n − 2)2E

[{
n1/2s−1

1n dT
1n

(
β̂WR

1n − β̂RE
1n )T̂

−1
n I

(
T̂n < (p2n − 2)

)}2
]

− 2 lim
n→∞

(p2n − 2)E

[{
ns−2

1n dT
1n

(
β̂WR

1n − β̂RE
1n

)2
T̂−1

n I
(
T̂n < (p2n − 2)

)
d1n

}]

+ 2 lim
n→∞

E

[{
ns−2

1n dT
1n

(
β̂WR

1n − β̂RE
1n

)(
β̂SE

1n − β1

)T
I
(
T̂n < (p2n − 2)

)
d1n

}]

− 2 lim
n→∞

(p2n − 2)E

[{
ns−2

1n dT
1n

(
β̂WR

1n − β̂RE
1n

)(
β̂SE

1n − β1

)T
× T̂−1

n I
(
T̂n < (p2n − 2)

)
d1n

}]
= ADR(dT

1n β̂SE
1n ) + K1 + K2 + K3 + K4 + K5,
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where

K1 = lim
n→∞

E

[{
n1/2s−1

1n dT
1n

(
β̂WR

1n − β̂RE
1n )I

(
T̂n < (p2n − 2)

)}2
]

= lim
n→∞

E

[{
n1/2s−1

2n dT
2n β̂WR

2n I
(
T̂n < (p2n − 2)

)}2
]

= lim
n→∞

(s2n/s1n)
2E

[{
n1/2s−1

2n dT
2n β̂WR

2n I
(
T̂n < (p2n − 2)

)}2
]

= (s2/s1)
2

{
E

[
Z2 I

(
χ2

p2
(∆d2) < (p2 − 2)

)]
+ (s−1

2 dT
2 β2)

2Hp2(p2 − 2; ∆d2)

}

= (1 − c)

{
E

[
χ2

p2+2(∆d2)

]
+ (s−1

2 dT
2 β2)

2Hp2(p2 − 2; ∆d2)

}
,

K2 = lim
n→∞

E

[{
n1/2s−1

1n dT
1n

(
β̂WR

1n − β̂RE
1n )(p2n − 2)T̂−1

n I
(
T̂n < (p2n − 2)

)}2
]

= lim
n→∞

(p2n − 2)2(s1n/s2n)
2E

[{
n1/2s−1

2n dT
2n β̂WR

2n T̂−1
n I

(
T̂n < (p2n − 2)

)}2
]

= (p2 − 2)2(s2/s1)
2E

[
lim

n→∞

{
n1/2s−1

2n dT
2n β̂WR

2n T̂−1
n I

(
T̂n < (p2n − 2)

)}2
]

= (p2 − 2)2(1 − c)E

[
Z2χ−4

p2
(∆d2)I

(
χ2

p2
(∆d2) < (p2 − 2)

)]

= (p2 − 2)2(1 − c)E

[
χ−4

p2+2(∆d2)I
(
χ2

p2+2(∆d2) < (p2 − 2)
)]

,

K3 = −2 lim
n→∞

(p2n − 2)E

[{
ns−2

1n dT
1n

(
β̂WR

1n − β̂RE
1n )

2T̂−1
n I

(
T̂n < (p2n − 2)

)
d1n

}]

= −2(p2 − 2)(s2/s1)
2E

[
lim

n→∞

{
n1/2s−1

2n dT
1n β̂WR

2n

}2
T̂−1

n I
(
T̂n < (p2n − 2)

)
]

= −2(p2 − 2)(1 − c)

{
E

[
Z2χ−2

p2
(∆d2)I

(
χ2

p2
(∆d2) < (p2 − 2)

)]

+ (s−1
2 dT

2 β2)
2E

[
χ−2

p2
(∆d2)I

(
χ2

p2
(∆d2) < (p2 − 2)

)]}

= −2(p2 − 2)(1 − c)

{
E

[
χ−2

p2+2(∆d2)I
(
χ2

p2+2(∆d2) < (p2 − 2)
)]

+ (s−1
2 dT

2 β2)
2E

[
χ−2

p2
(∆d2)I

(
χ2

p2
(∆d2) < (p2 − 2)

)]}
,
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K4 = 2 lim
n→∞

E

[{
ns−2

1n dT
1n

(
β̂WR

1n − β̂RE
1n

)(
β̂SE

1n − β1

)T
I
(
T̂n < (p2n − 2)

)
d1n

}]

= 2 lim
n→∞

(s2n/s1n)E

[{
n1/2s−1

2n dT
2n β̂WR

2n

}{
n1/2s−1

1n dT
1n

(
β̂SE

1n − β1

)}T
I
(
T̂n < (p2n − 2)

)]

= 2(s2/s1)E

[{
n1/2s−1

2n dT
2n β̂WR

2n

}{
n1/2s−1

1n dT
1n

(
β̂WR

1n − β1

)
− (p2n − 2)T̂−1

n I
(
T̂n < (p2n − 2))

}T
I
(
T̂n < (p2n − 2)

)]
= 2(1 − c)1/2

{
E

[
lim

n→∞

{
n1/2s−1

2n dT
2n β̂WR

2n

}{
n1/2s−1

1n dT
1n

(
β̂WR

1n − β1

)
I
(
T̂n < (p2n − 2)

)}T]

− (p2 − 2)E

[{
n1/2s−1

2n dT
2n β̂WR

2n

}{
n1/2s−1

1n dT
1n

(
β̂WR

1n − β1

)
T̂−1

n I
(
T̂n < (p2n − 2)

)}T]}

= 2(1 − c)1/2

{
E

[
Z2 I

(
χ2

p2
(∆d2) < (p2 − 2)

)]
− (p2 − 2)E

[
Z2χ−2

p2
(∆d2)I

(
χ2

p2
(∆d2) < (p2 − 2)

)]}

= 2(1 − c)1/2

{
Hp2+2(p2 − 2; ∆d2)− (p2 − 2)E

[
χ−2

p2+2(∆d2)I
(
χ2

p2+2(∆d2) < (p2 − 2)
)]}

and

K5 = −2 lim
n→∞

(p2n − 2)E

[{
ns−2

1n dT
1n

(
β̂WR

1n − β̂RE
1n

)(
β̂SE

1n − β1

)T
T̂−1

n I
(
T̂n < (p2n − 2)

)
d1n

}]

= 2(p2 − 2)(s2/s1)E

[
lim

n→∞

{
n1/2s−1

2n dT
2n β̂WR

2n T̂−1
n I

(
T̂n < (p2n − 2)

)}

×
{

n1/2s−1
1n dT

1n

(
β̂WR

1n − β1

)
− (p2n − 2)

(
β̂WR

1n − β̂RE
1n

)
T̂−1

n I
(
T̂n < (p2n − 2)

)}T]

= 2(p2 − 2)(s2/s1)

{
E

[
Z2χ−2

p2
(∆d2 )I

(
χ2

p2
(∆d2 ) < (p2 − 2)

)]

− (p2 − 2)E

[
Z2χ−2

p2
(∆d2 )I

(
χ2

p2
(∆d2 ) < (p2 − 2)

)]}

= 2(p2 − 2)(1 − c)1/2

{
E

[
χ−2

p2+2(∆d2 )I
(
χ2

p2+2(∆d2 ) < (p2 − 2)
)]

− (p2 − 2)E

[
χ−4

p2+2(∆d2 )I
(
χ2

p2+2(∆d2 ) < (p2 − 2)
)]}

.
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