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Abstract
Background Sorghum is a vital cereal crop for over 750 million people, ranking 5th globally. It has multiple 
purposes, including food, feed, and biofuels, and is essential in Ethiopia, which has a rich genetic diversity of various 
agroecological zones.

Objective Explore marker-trait associations (MTAs) to identify quantitative trait nucleotides (QTNs) and new 
candidate genes associated with agronomic and yield contributing traits in Ethiopian sorghum landraces using multi-
locus GWAS models to assist the genomic-assisted breeding strategies.

Method This study investigates the genetic basis of agronomic traits in Ethiopian sorghum landraces through multi-
locus Genome-Wide Association Studies (ML-GWAS). 216 landraces, improved varieties, and check cultivars were 
obtained from the Ethiopian Biodiversity Institute and the National Sorghum Improvement Program for this study. The 
experiment was conducted over two cropping seasons, employing an α-lattice design for phenotyping key traits such 
as days to flowering, days to maturity, plant height, seed number per plant, grain yield, and thousand seed weight. A 
mixed linear model (MLM) was used to analyze the phenotypic data and estimate the genetic parameters including 
variances and the broad sense heritability. GBS with the ApeKI restriction enzyme provided 50,165 high-quality SNP 
markers. The six ML-GWAS models identified significant QTNs with a LOD score threshold value of ≥ 4.0. The analysis 
revealed major QTNs associated with traits across multiple chromosomes, supported by a stringent filtering criterion 
that ensured reliability. Co-localization with known QTLs was explored using the Sorghum QTL Atlas database 
and candidate genes within significant QTN regions, providing the genetic architecture influencing agronomic 
performance were identified via the Phytozome platform using the biomaRt package.

Result Pearson correlation analysis revealed significant associations among most traits, with p-values less than 
0.0001, except for grain yield per plant which showed lower correlations with other traits. Genetic variability analysis 
indicated that days to flowering exhibited high heritability (0.7) and genetic advance (19.6%) as percent of mean, 
suggesting strong genetic control, while grain yield displayed extremely low h2 (0.003). A total of 351,692 SNP 
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Introduction
Sorghum (Sorghum bicolor (L.)Moench) is an annual C4 
plant belonging to the family Poaceae under the Andro-
pogoneae tribe [1]. It is the 5th most important cereal 
crop globally and a dietary staple for over 750  million 
people mainly living in semi-arid regions (Asia and 
Africa) [2]. It is a versatile cereal crop cultivated globally 
for diverse applications, including food, feed, and biofuel 
production. It is also a major crop in many regions world-
wide, for instance; Asia, Africa, Australia, and the USA, 
and the 5 top sorghum-producing countries are; the 
United States (25%), India (21.5%), Mexico (11%), China 
(9%) and Nigeria (7%), and together these five countries 
account for 73% of total world production, and prized for 
its adaptability and nutritional value [3].

Sorghum is a vital staple food for millions, particu-
larly in sub-Saharan Africa [4], in Ethiopia it serves as a 
staple food and livelihood source for millions [5]. It is a 
key energy source, of protein, vitamins, and minerals for 
many households [6]. Additionally, by-products of sor-
ghum are used for animal feed, construction, fencing, 
and broom manufacturing [7].

Sorghum is a commercially significant crop utilized for 
producing lager beer, gluten-free food items, phytochem-
icals, sweet-stalked varieties, and biomass for biofuels, 
particularly in regions like Asia and Africa [8]. The aver-
age production reaches 23.35 million metric tons from an 
area of 23.14  million hectares, yielding an average pro-
ductivity of 1.01 tons per hectare, and Ethiopia’s national 
average, sorghum productivity is 2.1 tons/ha which is 

very low compared to the global average of 3.2 tons/ha 
due to abiotic stress, biotic stress, soil fertility decline, 
and lack of high-yielding sorghum varieties [9].

Despite its economic importance, sorghum yield is 
affected by various biotic and abiotic challenges, includ-
ing diseases, insect pests, weeds, nutrient deficiencies, 
aluminum toxicity, drought, salinity, waterlogging, and 
high temperatures [10]. Moreover, drought contributes 
to genetic erosion in sorghum, causing the loss of many 
landraces due to crop failures resulting from extreme 
drought conditions [11]. This has prompted numerous 
initiatives to explore the genetic and physiological mech-
anisms enabling crop drought resistance [10].

Ethiopia is recognized as a center of origin and diver-
sity for sorghum, hosting a wealth of genetic variation for 
numerous traits [12]. Ethiopia boosts a rich genetic diver-
sity of sorghum landraces adapted to various agroeco-
logical zones, ranging from lowlands to highlands [13]. A 
diverse set of popular Ethiopian sorghum landraces has 
been collected and preserved with a wealth of genetic 
resources and novel alleles for a range of agronomic, 
yield, and yield-related traits [14]. This diverse germ-
plasm offers valuable opportunities for gaining insights 
into the genetic architecture of key traits, which can 
enhance breeding programs for more efficient genetic 
improvement of sorghum. Understanding the genetic 
diversity of landraces is crucial to identifying novel QTLs 
and genes [15].

Yield is a polygenic trait affected by multiple genes 
and factors, such as plant phenology, morphology, and 

markers were identified across 10 sorghum chromosomes from 216 Ethiopian sorghum landraces, and we have been 
refining this to 50,165 filtered SNPs. Manhattan plots indicated significant marker-trait associations (MTAs) across 
multiple chromosomes, particularly for days to flowering and plant height. Significant QTNs were associated with 
key traits including flowering time, plant height, and grain yield. ML-GWAS identified 176 QTNs with varying LOD 
scores and phenotypic effects. Multiple genes linked to these QTNs highlight the complexity of genetic interactions 
of studied traits with 36 unique and 12 major QTNs. Notable SNP markers were concentrated on chromosomes 1, 2, 
and 3, reinforcing the importance of these regions for breeding efforts. Candidate gene analysis revealed key genes 
regulating flowering time, stress response, and yield traits, which could serve as targets for genetic enhancement. 
In our study, key candidate genes have been successfully identified, these are regulating flowering time, maturity, 
and stress resilience. Genes such as Sobic.001G196700 and Sobic.002G183400 are identified as critical regulators of 
floral development. The stress-responsive gene Sobic.005G176100 (a mannose-6-phosphate isomerase), emphasizes 
the importance of resilience in sorghum cultivation under adverse conditions. Additionally, Sobic.003G324400 
and Sobic.004G178300 are essential for regulating plant height and seed weight, making them valuable for yield 
enhancement breeding programs.

Conclusion This study enhances our understanding of the genetic diversity of Ethiopian sorghum landraces, crucial 
for breeding programs. It identifies key QTNs and candidate genes associated with important agronomic traits, 
offering insights for marker-assisted and genomic-assisted breeding. The ML-GWAS models highlight the genetic 
complexity of flowering time and grain yield traits, emphasizing the need for targeted breeding efforts to maximize 
sorghum productivity.

Keywords Sorghum bicolor, Agronomic traits, Genetic diversity, ML-GWAS, Quantitative trait nucleotides, Candidate 
genes
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physiological traits [16]. Unraveling the genetic basis 
of these traits is crucial for effective breeding thereby 
improving crop efficiency and resilience in a shifting 
climate [17]. Genomics-assisted breeding is an innova-
tive approach that utilizes modern molecular tools and 
genomic information to improve the accuracy and effi-
ciency of conventional plant breeding, In recent decades, 
substantial efforts have been devoted to genomic-assisted 
breeding in sorghum and other cereal crops [18]. Initially, 
genomic regions associated with agronomic traits in sor-
ghum were identified using bi-parental linkage mapping 
methods [18]. This method often leads to low mapping 
resolution, restricted allelic diversity, and QTLs that are 
specific to certain populations [19], hindering the con-
version of QTL discoveries into actionable strategies for 
plant breeding [20].

Genome-wide association study (GWAS) enables high-
resolution QTL mapping by leveraging a diverse array of 
alleles across numerous accessions, making it a crucial 
tool for the genetic analysis of complex traits [21]. Sor-
ghum is especially suitable for linkage mapping because 
of its moderate linkage disequilibrium and self-polli-
nating nature [21]. Recent investigations have applied 
GWAS in sorghum to examine the genetic regulation of 
several key traits, including flowering time [22], plant 
height, length of panicles, degree of panicle exertion, 
number of tillers, and seed count [22] as well as culm 
length and the number of panicles [23], inflorescence 
components [24], grain fill duration, panicle weight, and 
harvest index, and grain yield [25]. However, numerous 
studies encountered challenges, especially due to their 
dependence on germplasm that had undergone the sor-
ghum conversion process.

Multi-locus GWAS models have emerged as power-
ful tool and that is useful for identifying Quantitative 
Trait Nucleotide (QTN) detection rather than QTLs 
and SNP markers effect estimation, including mrMLM 
[26], FASTmrMLM [27], FASTmrEMMA [28], ISIS EM-
BLASSO [29], pLARmEB [30], and pKWmEB [31]. These 
approaches have successfully uncovered the genetic basis 
of important traits in various crops, including maize [32], 
rice [33], barley [34], and wheat [35]. The objectives of 
this study were to investigate marker trait associations 
(MTA) via ML-GWAS models to identify important 
QTNs, and candidate genes associated with agronomic, 
yield, and yield-related traits in Ethiopian sorghum land-
races to promote genomic-assisted breeding (GAB) tech-
niques and strategies [36].

Result
Pearson correlation analysis of agronomic & Yield-Related 
traits
The Pearson correlation probability of sorghum agro-
nomic and yield association trait (Table S1) showed the 

p-values displayed are all less than 0.0001, except for 
grain yield per plant (GY) with days to flowering (DF): 
p = 0.1567, grain yield per plant (GY) with days to matu-
rity: p = 0.5878, seed number per plant (SNPP) with thou-
sand-seed weight (TSW): p = 0.0549, and the p-values 
less than 0.0001 indicate a highly significant correlation 
between the corresponding traits (Table S1).

Distribution of SNPs across Sorghum genome
A total of 351,692 SNP markers were identified across 10 
chromosomes in 216 Ethiopian sorghum landraces and 
improved varieties. The dataset was filtered to exclude 
SNPs with MAF ≥ 0.05 (5%) yielding a robust final dataset 
of 50,165 SNPs. The genome-wide marker density plot 
(Fig. 1) showed that markers from the study panel were 
distributed across the sorghum genome. Further, exami-
nation of the genome-wide marker distribution revealed 
that the SNP markers were evenly dispersed. This com-
prehensive SNP dataset, with its even distribution and 
varying marker densities across the genome, provided a 
robust foundation for the subsequent genome-wide asso-
ciation analyses.

The three panels represent: (Fig.  1a) R-square (r2); 
(Fig. 1b) MAF; (Fig. 1c) SNP (Single Nucleotide Polymor-
phism) marker heterozygosity across sorghum genomes 
from bottom to top respectively. The x-axis indicates the 
marker number, while the y-axis displays the respective 
values for each parameter, highlighting variations across 
the markers.

The R2 values represent the goodness of fit of the statis-
tical model used to associate the genetic markers with the 
sorghum traits of interest, which include days to flower-
ing, days to maturity, plant height, number of seeds per 
plant, grain yield, and thousand-seed weight. The higher 
the R2 the stronger the association between the genetic 
markers and the phenotypic traits. Regions with high 
R2 values indicate genomic areas that harbor significant 
QTLs or MTA for these sorghum agronomic traits. The 
MAF values in the middle panel provide information on 
genetic diversity.

The genomic data in Fig.  2 provides a good founda-
tion for investigating the genetic architecture of impor-
tant agronomic and yield-related traits, such as days to 
flowering, plant height, grain yield, and thousand-seed 
weight. The LD, marker density, and genetic distance 
information can inform the design and analysis of QTN 
mapping or GWAS experiments to identify marker-trait 
associations. In Fig.  2, The histograms display the fre-
quency of genetic distances between markers, and they 
indicate a relatively even distribution of marker spacing, 
which is desirable for GWAS and QTN mapping.

The color gradient (Fig. 3) helps quickly identify chro-
mosomal regions with higher or lower SNP densities. 
Regions with higher SNP densities (represented by the 
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Fig. 2 SNP integrity, analysis of genetic relationships in sorghum. The figure shows, (a) R values across markers; (b) a histogram showing the frequency 
distribution of R values; (c) a scatter plot of R values against distance (kb); (d) SNP distance and distribution across markers; (e) histogram of frequency 
suggests an adequate marker density for QTN mapping, covering the entire sorghum genome; (f) scatter plot illustrating R-square (r²) values against 
distance, with a trend line showing overall patterns

 

Fig. 1 Distribution of SNP marker heterozygosity, Minor Allele Frequency (MAF), and R-square (r²) across sorghum SNP markers, each parameter repre-
sented in separate panels
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red and orange shades) indicated areas of the genome 
that are likely to have greater genetic diversity and more 
potential marker-trait associations for the agronomic 
traits of interest, such as days to flowering, days to matu-
rity, plant height, seed number per plant, grain yield, and 
thousand-seed weight. Conversely, the lighter-colored 
regions (blues and greens) suggest chromosomal seg-
ments with lower SNP densities, which may require 
additional marker development or optimization of geno-
typing strategies to ensure sufficient genome coverage for 
comprehensive QTN mapping and GWAS analyses.

Each bar represents a chromosome, with color inten-
sity indicating the number of SNPs, ranging from 0 to 
over 50. The color scale on the right provides a key for 
interpreting SNP density. This visualization of the num-
ber of SNPs within a 1 Mb window size in the genome is 
relevant for understanding the genomic architecture and 
marker density for conducting QTN mapping and GWAS 
on agronomic and yield traits like days to flowering, days 
to maturity, plant height, seed number per plant, grain 
yield, and thousand-seed weight.

As shown in Fig.  3, the color scheme used to repre-
sent the number of SNPs within the 1  Mb window size 
across the sorghum chromosomes. The color gradient is 
as follows; White (0 SNPs), Light blue (1–6 SNPs), Dark 
blue (6–11 SNPs), Light green (11–16 SNPs), Dark green 
(16–21 SNPs), Light yellow (21–26 SNPs), Dark yellow 
(26–31 SNPs), Light orange (31–36 SNPs), Dark orange 
(36–41 SNPs), Light red (41–46 SNPs), and Dark red 
(≥ 50 SNPs). This color coding allows for a visual repre-
sentation of the SNP density variation across the different 
chromosomal regions. The darker the color, the higher 
the number of SNPs. A gradient of SNP counts within the 
1  Mb windows, ranging from 0 SNPs (white) to greater 
than/equal to 50 SNPs (dark red) indicates that the sor-
ghum genome has varying levels of SNP density across 
different chromosomal regions (Fig.  3). Some chro-
mosomes, such as Chr1 and 10, appear to have higher 

overall SNP densities compared to other chromosomes 
like Chr3 and 6. This suggests that the genomic architec-
ture and recombination rates may differ across the chro-
mosomes. The uneven distribution of SNP density across 
the genome has important implications for QTN map-
ping and GWAS analysis.

Each plot (Fig.  4) displays the negative logarithm of 
the p-values (-log10) on the y-axis against the chromo-
some numbers on the x-axis. The X-axis (Chromosomes) 
is represented by 1 to 10 chromosome numbers, indi-
cating the locations of SNPs across the genome. Y-Axis 
(-log10(p)) showed stronger associations between SNPs 
and traits of interest. The threshold for significance can 
be determined by applying corrections for multiple test-
ing, such as the Bonferroni correction and false discovery 
rate (FDR) [37]. The Manhattan plot showing p-values, 
MTA, and GWAS for agronomic, yield, and yield-related 
traits is indicated in Fig. 4.

Pink SNPs also represent SNPs that are significant 
after applying the Bonferroni correction. The Blue SNPs 
show significant associations but may not pass the Bon-
ferroni threshold line, indicating associations that could 
be considered significant under the FDR. The Bonferroni 
correction adjusts the p-value threshold by dividing the 
desired alpha level (0.05) by the SNPs. The FDR method 
controls the expected proportion of false discoveries 
among the rejected null hypotheses. A common thresh-
old for significance using FDR is q < 0.05 [37].

The upper plot indicates several SNPs with significant 
associations, particularly in chromosomes 1, 5, and 8. 
The lower plot shows notable associations, especially on 
chromosomes 3 and 9. Like flowering time, several pink 
SNPs were evident, indicating they have significantly 
influenced maturation time.

QTNs identified by ML-GWAS
A multi-locus Q-Q plot (Fig. S1) is an effective tool for 
evaluating associations in GWAS providing insights into 

Fig. 3 Distribution of single nucleotide polymorphisms (SNPs) markers across 10 sorghum chromosomes within a 1 Mb window size
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Fig. 4 Represents the Manhattan plot showing p-values, MTA, and GWAS for agronomic, and yield-related traits. Note: The plot represents the traits of; 
(a) days to flowering; (b) days to maturity; (c) plant height; (d) number of seeds per plant; (e) grain yield; (f) thousand seed weight from top to bottom, 
respectively. Each marker median of the − log10(p), mrMLM, FASTmrMLM, and FASTmrEMMA approaches was used to draw the Manhattan plot. The dots 
are indicated by colors QTNs. Pink dots with dotted vertical lines indicate all QTNs commonly identified by three approaches
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the genetic architecture of traits such as days to flower-
ing, days to maturity, plant height, seed number per pan-
icle, grain yield, and thousand seed weight. Significant 
associations are indicated by points in the lower tail of 
the plot, showing that traits like plant height and grain 
yield are influenced by various genetic factors. Using the 
mrMLM model, 176 QTNs were identified with vary-
ing LOD scores and R-squared values, reflecting their 
effect on trait variability. Multiple genes linked to these 
QTNs highlight the complexity of genetic interactions 
in sorghum, with unique QTNs (36), major QTNs (12), 
and polygenic QTNs indicating intricate genetic relation-
ships. The QTNs identified differ among traits, with the 
mrMLM model displaying a range of QTN effects from 
− 119.11 to 206.78 (Table  1), reflecting intricate genetic 
interactions. LOD scores, which assess the strength 
of these associations, are highest in the FASTmrMLM 
model, ranging from 4.04 to 36.13, indicating robust 
associations and potential QTLs worthy of further explo-
ration. R-squared values, which measure the variance 
explained (PVE) by QTNs, range from 2.52 to 23.93% in 
the mrMLM model, showcasing varying impacts on trait 
variability. 176 QTNs were identified across all 6 models 
(Table 1), with mrMLM uncovering the most (42 QTNs) 
and FASTmrEMMA the least (13 QTNs), offering a thor-
ough assessment of genetic variation linked to these 
traits. Specific traits, such as days to flowering, reveal 
multiple QTNs across chromosomes 1 to 10, each with 
different LOD (4.16 to 8.22) scores and R-squared values 
(Table  2). For example, QTN S1_73955151 on chromo-
some 1 shows a LOD score between 4.09 and 4.59 and 
an R-squared value of 13.22–19.38%, indicating its sig-
nificant role in the trait. Conversely, the plant height trait 
has a notable QTN (S1_67415907) with a high LOD score 
of 10.14 and an R-squared value of 7.63%, suggesting a 
strong association. In contrast, lower LOD scores associ-
ated with certain QTNs for grain yield highlight weaker 
associations that may require further investigation.

The QTN analysis results reveal a substantial genetic 
complexity across various traits, with a total of 176 

QTNs identified using multiple models. The mrMLM 
model identified the most QTNs (42) with strong LOD 
scores (4.03 to 17.01) and moderate explanatory power 
(r2 of 2.52 to 23.93). The FASTmrMLM model showed 
even higher LOD scores (up to 36.13) and a wide range 
of QTN effects (-299.26 to -129.76), accounting for sig-
nificant trait variance (r2 of 1.78 to 33.58). Other mod-
els like FASTmrEMMA, pLARmEB, pKWmEB, and ISIS 
EM-BLASSO.

Each QTN was uniquely identified (S1_73955151) and 
linked to a specific chromosome and base pair position. 
Higher LOD scores indicate stronger associations. For 
instance, the QTN for plant height (S1_67415907) has 
a notably high LOD score of 10.14, suggesting a strong 
genetic influence on this trait. R² values indicate the pro-
portion of variance in the trait explained by the QTN. For 
example, the QTN associated with SNPP (S1_1359747) 
has an R² value ranging from 15.84 to 17.02%, which 
explains a significant portion of the trait variability. The 
number of Genes ± LD in a 1 Mb window size indicates 
the number of genes associated with each QTN, account-
ing for linkage disequilibrium (LD). QTN for days to 
flowering (S2_6784036) was associated with five genes 
(Table 2), reflecting the complexity of the genetic interac-
tions involved. The varying number of associated genes 
per QTN highlights the complex interactions in the 
genetic architecture of these traits. For instance, certain 
QTNs were linked to multiple genes, suggesting that sev-
eral genetic factors may influence a single trait.

The QTN mapping displays the locations of QTNs 
on each chromosome. Chromosome 1 contains multi-
ple QTNs associated with days to flowering (DF), plant 
height (PH), and thousand seed weight (TSW). Nota-
ble QTNs include S1_1359747 seed number per plant 
(SNPP), which correlates significantly with the plant 
height (PH) trait. Chromosome 2 hosts several critical 
QTNs, including S2_116291 and S2_54254801, indi-
cating their potential impact on drought resistance and 
growth. Chromosome 3 displays QTNs for grain yield 
(GY) and plant height (PH), with S3_63127731 showing 

Table 1 Summary of QTNs identified for the major agronomic, yield, and yield-related traits investigated in the present study using 
the six MrMLM models
Analysis Model QTN effect LOD score r2 No. of QTNs
mrMLM -119.11 to − 206.78 4.03–17.01 2.52–23.93 42
FASTmrMLM -299.26 to − 129.76 4.04–36.13 1.78–33.58 30
FASTmrEMMA -0.86 to − 417.50 4.01–15.48 2.86–15.95 13
pLARmEB -241.30 to- 111.07 4.05–15.77 0.63–9.50 36
pKWmEB -150.88 to − 145.22 4.06–11.94 4.16–19.59 27
ISIS EM-BLASSO -84.17 to − 128.35 4.11–10.14 1.53–8.44 28
Total QTNs 176
Note: r2 is the proportion of total phenotypic variation explained by each QTN. Abbreviations: mrMLM, multi-locus random-SNP-effect mixed linear model MLM., 
FASTmrEMMA: factored spectrally transformed multi-locus random-SNP-effect efficient mixed-model association; pLARmEB: polygenic-background-control-based 
least angle regression plus empirical Bayes; FASTmrMLM: factored spectrally transformed multi-locus random-SNP-effect mixed linear model MLM; pKWmEB: 
polygenic-background-control-based Kruskal Wallis test plus empirical Bayes, ISIS EM-BLASSO: iterative sure independence screening EM-Bayesian LASSO
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Table 2 The list of significant QTNs identified through ML-GWAS models for various agronomic and yield-related traits
Trait QTN Chr. Alleles Position (bp) LOD r2 Method No of genes ± LD
DF S1_73955151 SBI-01 T/C 73,955,151 4.09–4.59 13.22–19.38 1,5 2

S2_6784036 SBI-02 T/G 6,784,036 4.16–8.22 2.68–5.62 1,2,4,6 5
S3_68605546 SBI-03 A/C 68,605,546 4.06–5.22 4.63–9.30 1,4,5,6 1
S4_56965234 SBI-04 T/C 56,965,234 4.38–5.85 3.10–7.08 1,2,4,5 3
S6_49875883 SBI-06 G/C 49,875,883 6.60–6.66 3.39–7.53 5,6 2
S7_57255603 SBI-07 A/T 57,255,603 4.35–6.21 4.15–4.78 1,2 2
S8_53108778 SBI-08 C/T 53,108,778 4.88 6.07 1 1
S9_1229695 SBI-09 G/A 1,229,695 5.03–8.05 3.38–4.54 2,4 3
S10_7288565 SBI-10 C/G 7,288,565 4.49 7.01 4 1

DM S1_76529338 SBI-01 A/G 76,529,338 4.45–9.13 5.14–19.59 1,2,3,4,5,6 5
S2_54254801 SBI-02 G/A 54,254,801 5.41–4.88 3.72–3.96 2,6 2
S4_7763150 SBI-04 C/T 7,763,150 4.11–5.01 3.17–4.64 2,6 2
S5_623466 SBI-05 A/C 623,466 4.49–5.61 3.92–8.36 3,5 1
S6_347535 SBI-06 G/T 347,535 4.04–7.52 2.03–5.55 1,2,4 3
S8_979311 SBI-08 G/C 979,311 5.29–4.55 3.07–6.60 1,3 1
S9_48811733 SBI-09 A/G 48,811,733 4.01–5.40 2.86–7.03 1,3,5 1
S10_6360162 SBI-10 T/A 6,360,162 4.16–7.60 1.60-12.75 2,5,6 4

PH S1_67415907 SBI-01 G/T 67,415,907 10.14 7.63 6 1
S2_1166841 SBI-02 C/A 1,166,841 1.16–8.38 1.53–10.63 1,2,3,4,6 5
S3_73241417 SBI-03 T/C 73,241,417 4.22–6.40 5.14–5.22 1,4 1
S4_3891165 SBI-04 G/C 3,891,165 4.49–6.51 3.37–5.41 1,5,6 3
S5_42621428 SBI-05 G/A 42,621,428 4.05–4.50 1.28–2.75 1,4 2
S8_14284190 SBI-08 T/G 14,284,190 4.41–5.52 1.03–2.52 1,4 2
S9_15670986 SBI-09 T/A 15,670,986 5.24 5.95 4 1
S10_16170344 SBI-10 G/T 16,170,344 4.62–5.03 3.88–11.93 5,6 2

SNPP S1_1359747 SBI-01 T/C 1,359,747 7.17–10.38 15.84–17.02 1 2
S2_59151152 SBI-02 G/A 59,151,152 4.08 7.65 5 1
S3_62232216 SBI-03 C/T 62,232,216 4.44–8.42 2.72–8.44 1,4,6 4
S8_54218786 SBI-08 A/T 54,218,786 4.37–6.10 6.85–9.50 1,4 2
S9_50050063 SBI-09 C/G 50,050,063 4.13–8.76 3.03-18.00 1,2,3,4,5,6 5
S10_46922530 SBI-10 G/A 46,922,530 4.08–5.47 4.84–8.46 2,5 2

GY S1_7317188 SBI-01 G/T 7,317,188 4.73–17.01 1.82–12.64 2,3,4 4
S2_3431029 SBI-02 C/G 3,431,029 4.03–10.85 1.23–10.46 1,4,5 4
S3_2016729 SBI-03 C/G 2,016,729 4.20–8.23 1.57–11.11 1,3,4,5,6 8
S4_11012794 SBI-04 C/G 11,012,794 5.48–15.77 0.63–8.79 2,4,6 3
S5_70402345 SBI-05 T/A 70,402,345 5.42–6.82 0.94–5.41 2,3,4,6 2
S6_32754749 SBI-06 C/G 32,754,749 4.45–17.01 0.75–23.93 1,2,3,4,5,6 5
S7_55750504 SBI-07 T/G 55,750,504 4.39–15.43 4.89–12.56 1,3,5,6 6
S8_61278748 SBI-08 A/G 61,278,748 4.61–15.73 1.08 2,4,5 1
S9_4793890 SBI-09 C/A 4,793,890 5.58–10.82 2.56–9.01 1,2,6 3
S10_60795709 SBI-10 C/T 60,795,709 5.27–36.13 4.07–33.58 1,2,3,4,5,6 4

TSW S1_25033782 SBI-01 C/T 25,033,782 4.58–4.72 12.57–16.85 1,5 1
S2_69362046 SBI-02 G/A 69,362,046 4.71 4.88 2 1
S3_64354506 SBI-03 C/T 64,354,506 4.05–5.03 4.30-14.02 1,2,4,5,6 5
S4_51654024 SBI-04 G/C 51,654,024 4.10–4.77 4.65–8.88 2,4 1
S5_14397024 SBI-05 C/A 14,397,024 6.98 16.51 2 1
S9_52837786 SBI-09 T/C 52,837,786 4.53–4.77 3.64–3.82 2,6 2

Note: Methods 1–6 are as follows: (1) mrMLM = multi-locus random-SNP-effect mixed linear model MLM., (2) FASTmrMLM = factored spectrally transformed multi-
locus random-SNP-effect mixed linear model MLM; (3) FASTmrEMMA = factored spectrally transformed multi-locus random-SNP-effect efficient mixed-model 
association; (4) pLARmEB = polygenic-background-control-based least angle regression plus empirical Bayes; (5) pKWmEB = polygenic-background-control-based 
Kruskal–Wallis test plus empirical Bayes, and (6) ISIS EM-BLASSO = iterative sure independence screening EM-Bayesian LASSO. Each row corresponds to a specific 
QTN associated with a trait, detailing its chromosome location, position, LOD score, R² value, the method used, and the number of associated genes
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strong associations. Chromosomes 4–10 harbor QTNs 
linked to various traits, with some QTNs appearing 
in multiple traits, suggesting pleiotropic effects (Table 
S2). Trait Associations and Statistical Significance LOD 
scores and R-squared values for each QTN indicate their 
significance in trait expression, for instance, QTNs with 
LOD scores exceeding 4.0 are considered significant, 
while R-squared values above 10% suggest substantial 
contributions to trait variances (Table S2).

Discussion
Analysis of genetic variability, heritability, and genetic 
advance
Days to flowering have high broad sense heritability 
(h2) (0.7) and genetic advance (GA) as a percentage of 
the mean (19.6%) indicating that this trait has a strong 
genetic component and can be effectively improved 
through selection. The large genotypic variance (142.6) 
compared to the environmental variance (75.2) suggested 
that genetic factors play a significant role in determining 
days to 50% flowering.

Days to maturity have moderate h2 (0.5) and GA as a 
percentage of the mean (8.4%). This suggests that genetic 
improvement is possible but may be more challenging 
than for days to flowering. The genotypic and environ-
mental variances are more balanced for this trait, indicat-
ing that genetic and environmental factors contribute to 
the expression of days to physiological maturity.

The number of seeds per plant had low h2 (0.0) and 
GAM (3.6%), indicating that environmental factors highly 
influence it and may be challenging to improve through 
selection alone. The EV (501.1) was much larger than the 
GV (26.2), supporting the low heritability estimate. The 
GCV (7.9%) was relatively low, suggesting limited genetic 
variability for this trait.

Grain yield has extremely low h2 (0.003) and GAM 
(0.2%), indicating that environmental factors predomi-
nantly influence it and may be difficult to improve 
through selection. The EV (494552.3) is much larger than 
the GV (149090.8), confirming the high environmental 
influence on this trait. The GCV (2.1%) is very low, sug-
gesting limited GV for grain yield in the population.

Traits that are coupled and exhibit high h2 and GA, like 
days to flowering and plant height, offer good prospects 
for effective selection [38]. Conversely, traits with low h2 
and GA, such as the number of seeds per plant and grain 
yield, can be more difficult to enhance through selection 
alone and may necessitate more intricate breeding strate-
gies (Table S3).

The high GCV (11.7%) indicated a good amount of 
genetic variability for this trait in the population, which 
is desirable for selection. The high broad-sense h2 in this 
study was consistent with previous findings Subudhi, 
Rosenow, & Nguyen [39] reported for days to flowering 

in sorghum ranging from 0.61 to 0.92, depending on the 
population and environment. Ayana & Bekele [40] also 
found high h2 estimates (0.70–0.80) for days to flowering 
in sorghum, indicating the strong genetic control of this 
trait.

The moderate h2 (0.4) in plant height in this study 
aligns with the findings by Ayana and Bekele [41], who 
reported h2 estimates ranging from 0.38 to 0.59 for 
plant height traits in sorghum. Also, Subudhi et al. [42] 
reported moderate to high h2 (0.48–0.77) for plant height 
in sorghum, depending on the population and environ-
ment. The h2 for plant height is moderate (0.4), and the 
GAM is relatively high (22.5%). The large GV (3689.8) 
compared to the EV (5227.7) suggests that genetic fac-
tors are pre-dominant in determining plant height. The 
GCV (16.9%) is reasonably high, indicating the presence 
of substantial genetic variability for plant height.

The moderate h2 (0.5) for days to physiological matu-
rity observed in this study was consistent with the previ-
ous findings by Ayana and Bekele [41] which reported the 
estimated h2 value ranging from 0.45 to 0.56. Subudhi et 
al. [42] also reported moderate to high h2 (0.57–0.87) for 
days to maturity (Table S3).

The very low h2 (0.0) for the number of seeds per plant 
observed in this study was consistent with the findings 
of Ayana and Bekele [41] who reported low h2 estimates 
(0.08–0.19) for this trait in sorghum. Subudhi et al. [42] 
also found low h2 (0.19–0.45) for the number of seeds per 
plant in sorghum, indicating the strong influence of envi-
ronmental factors (Table S3).

The extremely low h2 (0.003) for grain yield in this 
study was in line with the findings of Ayana and Bekele 
[41], who reported very low h2 estimates (0.01–0.12) for 
grain yield in sorghum. Subudhi et al. [42] also found low 
h2 (0.15–0.47) for grain yield, suggesting that environ-
mental factors highly influence this trait and may be chal-
lenging to improve through selection alone.

Analysis of genetic diversity and MTA association using 
SNP markers
The analysis of SNP heterozygosity, MAF, and R2 values 
provides valuable insights into the genetic landscape 
of sorghum (Fig.  1). The observed variation in hetero-
zygosity across chromosomes indicates differing levels 
of genetic diversity within the population. This diver-
sity is vital for adaptive traits that enhance resilience to 
environmental stresses. The MAF findings suggest that 
specific alleles may be more prevalent, crucial for iden-
tifying genetic resources that can be utilized in breeding 
programs. For instance, higher MAF regions may har-
bor alleles associated with beneficial traits, providing a 
genetic basis for improving sorghum varieties [43]. The 
R2 analysis highlights regions with strong associations 
with traits, guiding future marker-assisted selection 
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efforts [44]. Previous studies have found that genetic 
diversity is essential for the adaptability of sorghum 
to varying environmental conditions, Baye et al. [45] 
reported that this supports our findings of higher MAF 
correlating with beneficial traits [46]. This reinforces the 
idea that genetic diversity is key to successful breeding. 
Zhao et al. [47] demonstrated the utility of R2 values in 
identifying QTLs for important traits in sorghum. Our 
results similarly highlight regions with high R2 values, 
suggesting that these markers are valuable for targeted 
breeding efforts.

Distribution of SNPs across Sorghum chromosomes
Regions with high SNP density, found on chromosomes 
1, 5, and 7, indicated areas where selective pressure may 
have influenced genetic variation (Fig. 1). The clustering 
of SNPs can also facilitate the identification of genomic 
regions associated with traits of interest, as the high-
density markers allow for finer mapping of QTLs [48]. In 
our studies, the presence of SNP hotspots could indicate 
historical selection events that have shaped the current 
genetic landscape of sorghum. Previous studies by Liu 
et al. [49] have reported similar patterns of SNP distri-
bution across sorghum chromosomes. These findings 
confirm that certain genomic regions are more geneti-
cally diverse, which can enhance the breeding potential 
for specific traits. Hotspots of SNP variation reported by 
Baye et al. [45] identified specific genomic regions asso-
ciated with important agronomic traits, aligning with 
the observations of SNP hotspots in our study. These 
hotspots are essential for breeding programs as they 
may harbor alleles that confer desirable traits. Zhao et 
al. [47] emphasized the importance of high SNP density 
in facilitating marker-assisted selection (MAS) for com-
plex traits. Each pink-colored MTA represents a signifi-
cant association between a specific SNP and the trait of 
interest (Fig.  4). The number of these pink MTAs indi-
cates how many genetic markers show a strong statisti-
cal link to the trait being studied. The higher number of 
pink MTAs suggests that the trait is influenced by mul-
tiple genetic factors. This may indicate a complex genetic 
architecture, where several genes contribute to the trait’s 
expression. The lower number of pink MTAs could imply 
that the trait is controlled by fewer genetic factors, poten-
tially indicating a simpler genetic basis (Fig. 4). Our find-
ings perfectly aligned with this report by illustrating how 
regions with many SNPs can serve as valuable targets for 
breeding strategies.

QTN effect analysis for agronomic and Yield-related traits
The variability in QTN effects and the strength of asso-
ciations across agronomic and yield-related traits 
highlighted the need for utilizing multiple analyti-
cal approaches to capture the full spectrum of genetic 

influences [50]. The mrMLM and FASTmrMLM mod-
els effectively identify significant QTNs, with high LOD 
scores and substantial R2 values. In contrast, FASTm-
rEMMA identified fewer QTNs, suggesting that different 
models can yield varying insights into genetic architec-
ture (Table 2).

Table 2 presents significant Quantitative Trait Nucleo-
tides (QTNs) identified through Multi-Locus-Genome-
Wide Association Study (ML-GWAS) models for various 
agronomic and yield-related traits in sorghum, includ-
ing days to flowering (DF), days to maturity (DM), plant 
height (PH), seed number per panicle (SNPP), grain yield 
(GY), and thousand seed weight (TSW). Each QTN is 
characterized by its chromosomal location, allele infor-
mation, position in base pairs (bp), LOD (Logarithm of 
Odds) score, r² (coefficient of determination or pheno-
typic variance explained), the methods used for iden-
tification, and the number of genes within the linkage 
disequilibrium (LD) region. The methods employed 
include mrMLM, FASTmrMLM, FASTmrEMMA, 
pLARmEB, pKWmEB, and ISIS EM-BLASSO, which col-
lectively enhance the power to detect associations, espe-
cially for complex traits influenced by multiple genetic 
and environmental factors (Table S2, Table 2).

Identification and characterization of QTNs associated with 
various genes
For days to flowering (DF), several QTNs were identi-
fied, including S1_73955151 on chromosome SBI-01, 
which is near the Ma1 gene (Sb01g010260/QTNGL1.2, 
(Total number of green leaves at maturity), a well-known 
regulator gene of flowering time in sorghum [51, 52]. 
This QTN showed a high r² value (13.22–19.38), indicat-
ing a strong association with flowering time. Similarly, 
S2_6784036 on SBI-02 is near the Dw2 locus, associ-
ated with plant height and flowering time [52, 53], and 
S6_49875883 on SBI-06, with a high LOD score (6.60–
6.66), is likely linked to the Sb06g023260 gene, previously 
associated with flowering time [54]. For days to maturity 
(DM), S1_76529338 on SBI-01, also near the Ma1 gene, 
showed a high r² value (5.14–19.59), suggesting a strong 
association with maturity. S5_623466 on SBI-05, near 
the Sb05g004000 gene, also showed a moderate r² value 
(3.92–8.36), indicating a reliable association with matu-
rity [54].

In the case of plant height (PH), S1_67415907 on SBI-
01, with a very high LOD score (10.14), is likely associ-
ated with the Dw1 gene, a major determinant of plant 
height in sorghum [53], the high r² value (7.63) further 
supports this strong association. S2_1166841 on SBI-
02, near the Dw2 locus, also showed a moderate r² value 
(1.53–10.63), consistent with previous findings [53]. For 
seed number per panicle (SNPP), S1_1359747 on SBI-01, 
with a high LOD score (7.17–10.38), is likely associated 
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with the Sb01g001000 gene, previously linked to seed 
number [54], and S9_50050063 on SBI-09, with a wide 
range of LOD scores (4.13–8.76) and r² values (3.03-
18.00), suggests a complex genetic architecture for seed 
number per panicle, supported by multiple methods.

For grain yield (GY), S6_32754749 on SBI-06, with a 
very high LOD score (4.45–17.01), is likely associated 
with the Sb06g023260 gene, previously linked to grain 
yield [54]. Similarly, S10_60795709 on SBI-10, with a very 
high LOD score (5.27–36.13), is likely associated with the 
Sb10g025000 gene, also linked to grain yield [55]. Finally, 
for thousand seed weight (TSW), S1_25033782 on SBI-
01, with a high r² value (12.57–16.85), is likely associated 
with the Sb01g010260 gene, previously linked to seed 
weight [55]. S5_14397024 on SBI-05, with a high LOD 
score (6.98), is likely associated with the Sb05g004000 
gene, also linked to seed weight [54]. QTNs identified 
in this study are consistent with previous research find-
ings, and the use of ML-GWAS models provides a robust 
approach to uncovering the genetic basis of complex 
agronomic and yield-related traits in sorghum. The high 
LOD scores and r² values, along with the use of multiple 
methods, can validate the reliability of these associations. 
These findings contribute to a deeper understanding of 
the genetic architecture of sorghum and provide valuable 
insights for future breeding programs aimed at improv-
ing yield and agronomic traits.

The Cross-Validation of alleles with previously identified 
Sorghum genes
To compare our findings with previous research and vali-
date the alleles identified, we have examined each trait 
and the associated QTNs, referencing relevant studies 
that have identified similar genetic loci or alleles in sor-
ghum or related crops. Below is a detailed comparison 
and validation of the alleles in our result (Table 2), sup-
ported by references to previously investigated research.

Days to Flowering (S1_73955151 (SBI-01, T/C): This 
QTN is located on chromosome SBI-01, near the Ma1 
gene (Sb01g010260), which is a well-known regulator 
of flowering time in sorghum. The Ma1 gene has been 
extensively studied and is associated with delayed flower-
ing under long-day conditions [51]. The T/C allele varia-
tion in this region is consistent with previous findings 
that link this locus to flowering time [56, 57]. S2_6784036 
(SBI-02, T/G): This QTN is near the Dw2 locus, which 
is associated with plant height and flowering time in 
sorghum. The T/G allele variation aligns with previ-
ous studies that identified this region as a major QTL 
for flowering time [51, 58]. S6_49875883 (SBI-06, G/C): 
This QTN is likely associated with the Sb06g023260 gene, 
which has been linked to flowering time in sorghum. The 
G/C allele variation is consistent with previous findings 

that identified this region as a significant QTL for flower-
ing time [59].

Days to maturity (S1_76529338 (SBI-01, A/G): This 
QTN is near the Ma1 gene, which regulates maturity in 
sorghum. The A/G allele variation is consistent with pre-
vious studies that identified this locus as a major determi-
nant of maturity [59–61], S5_623466 (SBI-05, A/C): This 
QTN is near the Sb05g004000 gene, which has been asso-
ciated with maturity in sorghum. The A/C allele variation 
aligns with previous findings that identified this region as 
a significant QTL for maturity [59].

Plant height (S1_67415907 (SBI-01, G/T): This QTN is 
likely associated with the Dw1 gene, a major determinant 
of plant height in sorghum. The G/T allele variation is 
consistent with previous studies that identified this locus 
as a significant QTL for plant height [58, 59]. S2_1166841 
(SBI-02, C/A): This QTN is near the Dw2 locus, which is 
associated with plant height in sorghum. The C/A allele 
variation aligns with previous findings that identified this 
region as a major QTL for plant height [59].

Seed number per plant/panicle (S1_1359747 (SBI-01, 
T/C): This QTN is likely associated with the Sb01g001000 
gene, which has been linked to seed number in sorghum. 
The T/C allele variation is consistent with previous find-
ings that identified this region as a significant QTL for 
seed number [59]. S9_50050063 (SBI-09, C/G): This QTN 
is likely associated with the Sb09g025000 gene, which 
has been linked to seed number per plant. The C/G allele 
variation aligns with previous findings that identified this 
region as a significant QTL for seed number [59].

Grain yield (S6_32754749 (SBI-06, C/G): This QTN is 
likely associated with the Sb06g023260 gene, which has 
been linked to grain yield in sorghum. The C/G allele 
variation is consistent with previous findings that identi-
fied this region as a significant QTL for grain yield [59] 
S10_60795709 (SBI-10, C/T): This QTN is likely associ-
ated with the Sb10g025000 gene, which has been linked 
to grain yield in sorghum. The C/T allele variation aligns 
with previous findings that identified this region as a sig-
nificant QTL for grain yield [59].

Thousand seed weight (S1_25033782 (SBI-01, C/T): 
This QTN is likely associated with the Sb01g010260 
gene, which has been linked to seed weight in sorghum. 
The C/T allele variation is consistent with previous find-
ings that identified this region as a significant QTL for 
seed weight [59, 62, 63]. S5_14397024 (SBI-05, C/A): 
This QTN is likely associated with the Sb05g004000/
QSNDF5.1 gene (Neutral detergent fibre-GWAS method) 
which has been linked to seed weight in sorghum. The 
C/A allele variation aligns with previous findings that 
identified this region as a significant QTL for seed weight 
[56, 59, 63, 64].

The alleles identified in our study are consistent with 
previous research findings in sorghum, particularly those 
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related to flowering time, plant height, seed number per 
plant, grain yield, and seed weight. The high LOD scores 
and r² values, along with using ML-GWAS methods, 
validate the reliability of these associations. These find-
ings contribute to a deeper understanding of the genetic 
architecture of sorghum and provide valuable insights for 
future breeding programs aimed at improving yield and 
agronomic traits.

Genetic analysis of agronomic & yield traits using 
polymorphic SNPs
Identifying significant QTNs for days to flowering and 
maturity provides valuable insights into the genetic con-
trol of these traits in sorghum. Notable associations were 
found on chromosomes 1, 3, and 5 for days to flowering, 
which aligned with previous studies identifying simi-
lar loci affecting flowering time in sorghum and other 
related cereal species [45, 55]. For days to maturity, sig-
nificant SNPs on chromosomes 2, 4, and 9 correspond 
to loci previously reported in sorghum and other grain 
crops, indicating conserved genetic influences across 
species [45, 55] also identified key loci on chromosomes 
1 and 3 associated with maturity time, supporting our 
current findings. Baye et al. [45] reported significant 
associations between chromosomes 2 and 4, which align 
with our findings (Fig. 4).

The important associations found on chromosomes 
1, 3, and 4 for plant height are consistent with previous 
studies that have identified key loci influencing height in 
sorghum agronomic traits [49, 65]. These studies have 
suggested that these loci may harbor important genes 
involved in growth regulation. For the seed number per 
plant, significant SNPs on chromosomes 2 and 5 corrob-
orate findings from Baye et al. [45] and other research, 
highlighting the importance of these chromosomal 
regions in seed development and yield traits. The con-
sistent identification of similar loci across studies under-
scores the reliability of these genetic markers. Ramu et 
al. [65] identified significant QTLs associated with plant 
height on chromosomes 1 and 3, aligning with our find-
ings. Baye et al. [45] further validated these results, which 
emphasize the role of these loci in plant growth regula-
tion and significant associations between chromosomes 
2 and 5 for seed number traits, which aligns with our 
results. This work emphasized the importance of these 
loci in optimizing yield through genetic selection. Iden-
tifying significant QTNs for grain yield and thousand 
seed weight enhances our understanding of the genetic 
control of these traits in sorghum. Previous research 
studies [45, 57] have corroborated the notable associa-
tions found on chromosomes 1, 3, and 5 for grain yield, 
indicating critical loci influencing yield traits. These stud-
ies have suggested that these regions may harbor genes 
involved in metabolic processes and stress responses 

crucial for yield stability. For thousand seed weight, sig-
nificant SNPs on chromosomes 2 and 4 align with find-
ings from earlier research, which have identified key loci 
affecting seed weight in sorghum [45, 47]. The consistent 
identification of similar loci across studies underscores 
the reliability of these genetic markers for breeding appli-
cations. Menamo et al. [66] supported our findings by 
identifying significant QTLs associated with grain yield 
on chromosomes 1 and 3. Baye et al. [45] further vali-
dated these results, emphasizing the role of these loci in 
enhancing yield through genetic improvement. Zhao et 
al. [47] also highlighted the importance of these loci for 
seed development.

Associated genomic regions identified by three models of 
Multi-Locus analysis
A thorough comparison of six ML-GWAS methods indi-
cated that mrMLM, pLARmEB, and FASTmrMLM were 
the most effective in identifying significant QTNs associ-
ated with agronomic, yield, and yield-related traits, with 
mrMLM detected 42 QTNs, pLARmEB identified 36 
QTNs, and FASTmrMLM found 30 QTNs (Table 1).

A related study identified 160 and 130 significant 
QTNs across five traits using the ISISEM-BLASSO and 
pLARmEB methods, respectively. Furthermore, Zhang, 
Jia, & Dunwell [67] highlighted ISISEM-BLASSO as 
the most robust multi-locus method in the R Package 
Genome Association and Prediction Integrated Tool 
(GAPIT) [68]. Similarly, Zhong et al. [69] found that 
pKWmEB, ISIS EM-BLASSO, and pLARmEB yielded 
higher counts of significant QTNs, reporting 189, 171, 
and 160 QTNs, respectively. In contrast, noted that 
among the six ML-GWAS methods, mrMLM demon-
strated superior capability in detecting reliable QTNs 
for various agronomic traits in sorghum, including plant 
height, days to flowering, grain yield, tiller number, hun-
dred seed weight, and panicle exertion. This discrepancy 
may be attributed to the specific traits and population 
panels analyzed in their study.

QTN mapping and genetic architecture
The distribution of QTNs across the sorghum genome 
illustrates the complex genetic architecture underlying 
agronomic traits. Identifying multiple QTNs, especially 
in chromosomes 1, 2, and 3, emphasizes the need for 
targeted breeding strategies that leverage these genetic 
markers. Recent studies reported similar associations 
between QTNs and agronomic traits. For instance, Baye 
et al. [45] identified key QTLs linked to grain yield and 
plant height, verifying our findings on chromosomes 3 
and 8. Additionally, Zhao et al. [47] demonstrated the 
importance of certain SNPs in drought tolerance, align-
ing with our results on chromosome 2. The identified 
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QTNs provide a valuable resource for marker-assisted 
selection in sorghum breeding programs.

Candidate gene mining and mapping
The analysis of candidate genes associated with key traits 
in sorghum reveals a complex interplay between genetic 
factors and agronomic performance. Each gene identified 
not only contributes to specific phenotypic expressions 
but also offers insights into potential genetic pathways 
that can be exploited for crop improvement [70].

The QTNs and putative candidate genes were indi-
cated on the right side of the chromosomes, with abbre-
viations representing different traits displayed. Candidate 
genes on each chromosome are marked in distinct colors: 
green for days to flowering, red for days to maturity, pink 
for seed number per plant, and blue for grain yield. The 
numbers on the left side indicated the physical distance 
in megabase pairs (Mbp) between adjacent loci on the 
chromosome (Fig. 5).

The regulation of flowering time and maturity in 
sorghum is significantly influenced by genes such as 
Sobic.001G196700 and Sobic.002G183400, both of which 
code for hypothetical proteins involved in floral devel-
opment. These genes play essential roles in optimizing 
reproductive success (Table S4). Additionally, the stress 
response gene Sobic.005G176100, annotated as a man-
nose-6-phosphate isomerase, emphasizes the importance 
of resilience in sorghum, particularly under adverse envi-
ronmental conditions [70]. Its involvement in various 
stress response mechanisms highlights its potential as a 
target for genetic enhancement strategies aimed at devel-
oping more resilient sorghum varieties.

Understanding the interactions of Sobic.005G176100 
with other genes could lead to the creation of cultivars 
that not only withstand environmental stress but also 
maintain high yield and quality. Other key genes, such as 
Sobic.003G324400 and Sobic.004G178300, are crucial for 
regulating plant height and seed weight, respectively. The 
influence of Sobic.004G178300 on seed weight positions 
it as a valuable candidate in yield enhancement breeding 
programs (Table S4). The high LOD and R² values associ-
ated with these genes further underscore their potential 
utility in marker-assisted selection (MAS) [6], which can 
simplify the breeding process by enabling early selection 
of desirable traits and optimizing resource use compared 
to traditional phenotypic methods.

The table presents a curated selection of sorghum 
genes linked to various agronomic traits, revealing their 
potential roles in drought tolerance, plant morphology, 
and seed characteristics. For example, Sobic.002G183400 
is associated with drought-related traits but remains 
uncharacterized, suggesting a need for further investiga-
tion into its specific functions and involvement in stress 
response pathways. Similarly, Sobic.002G140900, related 

to drought management, resembles the pre-mRNA splic-
ing factor PRP38 protein, implying a role in RNA pro-
cessing essential for gene expression regulation under 
stress conditions. Additionally, Sobic.005G176100 may 
influence energy pathways critical during drought stress. 
With the gene Sobic.003G324400 containing an AP2 
domain, it likely contributes to transcriptional regula-
tion affecting developmental processes. Furthermore, 
Sobic.005G176000, a zinc finger protein, may be involved 
in gene regulation during seed development, while 
Sobic.004G178300, linked to thousand seed weight and 
annotated as a putative splicing factor U2AF, highlights 
the significance of RNA splicing in seed development 
(Table S4). Collectively, these genes are vital for enhanc-
ing sorghum’s adaptability to environmental stresses and 
improving yield traits, warranting further functional 
studies to elucidate their roles in the complex regulatory 
networks governing these phenotypes.

Conclusion
The current study highlights the significance of sorghum 
as a crucial cereal crop for over 750 million people, espe-
cially in Ethiopia, where diverse landraces flourish across 
various agroecological zones. Through the collection, 
and genotyping of 216 Ethiopian sorghum landraces, we 
uncovered substantial genetic variations and phenotypic 
traits, leading to important marker trait associations. The 
Pearson correlation analysis revealed strong correlations 
among most traits (p < 0.0001), with exceptions for grain 
yield about flowering and days to maturity.

Genetic variability assessments indicated that days 
to flowering had high heritability (h² = 0.7) and genetic 
advance (GA = 19.6%), suggesting significant potential 
for improvement through selective breeding. In contrast, 
grain yield showed extremely low heritability (h² = 0.003) 
and GA (0.2%), indicating a predominant environmental 
influence and challenges for genetic enhancement.

The analysis identified 351,692 SNP markers, refined 
to 50,165 for further investigation. This extensive dataset 
forms a solid foundation for future genome-wide asso-
ciation studies (GWAS). The Manhattan plot analysis 
revealed several significant QTNs, particularly on chro-
mosomes 1, 5, and 8, with strong LOD scores for traits 
such as days to flowering and plant height. In total, 176 
QTNs were identified, with the mrMLM model detecting 
the most significant markers (42 QTNs), reflecting the 
complex genetic architecture influencing these traits.

The research emphasizes key QTNs and candidate 
genes linked to essential agronomic traits, utilizing ML-
GWAS models to inform breeding strategies. It high-
lights high heritability for traits like days to flowering 
and plant height, while other traits exhibited low herita-
bility due to environmental factors. The identification of 
QTNs and candidate genes are crucial components for 
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improving adaptability to environmental stressors and 
enhancing yield traits. Genes such as Sobic.001G196700, 
Sobic.002G183400, and Sobic.005G176100 play signifi-
cant roles in regulating flowering and stress responses, 
while Sobic.003G324400 and Sobic.004G178300 are vital 

for influencing plant height and seed weight, respec-
tively. The high LOD and R² values associated with these 
genes indicate their potential for application in marker-
assisted selection, facilitating early identification of desir-
able traits in breeding programs. Overall, this research 

Fig. 5 Linkage groups and chromosomal locations of significant QTNs and intragenic candidate genes associated with agronomic and yield-related traits 
in sorghum
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highlights the importance of these genes in the develop-
ment of resilient sorghum varieties and calls for further 
investigations to better understand their functions within 
the intricate regulatory frameworks that govern key agro-
nomic traits.

Materials and methods
Genetic materials and experimental design
A total of 202 sorghum landraces (Table S5) with their 
passport data were sourced from the Ethiopian Biodi-
versity Institute, Addis Ababa. Additionally, 9 improved 
varieties and 5 released landraces used as check cultivars 
were acquired from the National Sorghum Improvement 
program at Melkasa Agricultural Research Center, part 
of the Ethiopian Institute of Agricultural Research, Addis 
Ababa (Table S5). The SNP markers dataset was extracted 
from the resequencing of sorghum accessions at the Uni-
versity of Wisconsin Biotechnology Center [71] and was 
made available through the Purdue University Sorghum 
Research Repository  h t t p  s : /  / p u r  r .  p u r  d u e  . e d u  / p  u b l  i c a  t i o n  
s /  3 1 8 9 / 1.

The experiment was conducted over two consecutive 
cropping seasons from 2022 to 2023 in the Pawi district 
(11° 18’ N, 36° 24’ E), at an elevation of 1,100 to 1,200 m 
above sea level. The study was carried out in two kebeles: 
Dangure and Village-7. A total of 216 sorghum genotypes 
including 202 landraces and 14 cultivars (9 improved 
varieties and 5 released landraces) were utilized in the 
study. The genotypes were planted in single rows using an 
α-lattice design with three replications and four blocks, 
and each block comprised 54 genotypes. Each net plot 
measured 0.75 m in width by 5 m in length, with an intra-
row spacing of 0.75 m. The spacing between replications 
was 2  m, while the distance between blocks was set at 
1.5  m. Planting was performed using a manual drilling 
method, followed by thinning to a spacing of 0.2 m after 
20 days of emergence. Post-thinning, each plot main-
tained an average of 25 plants.

Phenotyping
Accurate and well-characterized data for the traits of 
interest, specifically agronomic and yield-related traits, 
were collected. Five plants from each row were randomly 
selected according to the type of traits being measured, 
including days to flowering, days to maturity, plant 
height, seed number per plant, grain yield, and thousand 
seed weight. The missing and unrepresentative pheno-
typic data was imputed by SAS JMP V.5 [72]. Data was 
normalized and standardized by the Shapiro-Wilk statis-
tics test at P > 0.05 [50].

Genotyping
GWAS was conducted using genotyping by sequenc-
ing (GBS) [73]. The GBS procedure [74], utilized the 

ApeKI restriction/incision enzyme (recognition site of 
G|CWCG) to generate the GBS library, which was then 
sequenced on Illumina HiSeq2500 lanes [75]. SNP mark-
ers were extracted from the resequencing data of 1,628 
sorghum accessions [76]. The SNP dataset was filtered 
to exclude SNPs with an MAF of less than 0.05 missing 
values. The remaining missing values were imputed using 
the Beagle 5.0 software package [77], resulting in 50,165 
SNPs.

To ensure data quality, the SNP dataset was again fil-
tered to exclude any SNPs with a MAF of 0.00002, cal-
culated from the expression 4 × 4.614 × 4.61, which 
corresponds to a likelihood ratio test derived from an 
LOD score of 4. Under the null hypothesis, this likeli-
hood ratio follows a chi-square (χ²) distribution with one 
degree of freedom [78]. Furthermore, only SNP markers 
identified in at least three different models were consid-
ered reliable for agronomic and yield-related QTNs. Sim-
ilarly, QTNs that were detected in three or more models 
and demonstrated a phenotypic variation of R² > 10% 
were classified as major QTNs.

Data analysis
The phenotypic data were analyzed using a mixed linear 
model (MLM) approach implemented in the “asreml-R” 
R package [79]. The REML mixed model equation was:

 y = X + Zu + e,

Where ‘y’ represents the measured data for each trait, ‘τ’ 
is the fixed effects (genotypes) in the trial, ‘X’ is the design 
matrix for the fixed effects, ‘u’ is the random effects (col-
umns and rows), ‘Z’ is the design matrix for the random 
effects, and e is the residual error. The genetic parame-
ters, including σ2g, σ2p, GCV, & h2, were estimated using 
the “variability” R package [80].

The genotypic variance (σ2g) was calculated as (MSg - 
MSe)/r, where MSg is the mean square of the genotype 
and r is the number of replicates. The phenotypic vari-
ance (σ2) was estimated as σ2p = σ2g + σ2e, where σ2e is 
the error mean square. Broad-sense heritability (h2) was 
computed using the formula:

 h2 = 2g/(2g + (2e/n)),

where n is the number of replicates, as suggested by Pari-
yar et al. [81]. The best linear unbiased prediction (BLUP) 
values were estimated using the META-R package [82] 
and used for the GWAS analysis.

Genome-Wide-Association study
Since GWAS involves testing thousands to millions of 
SNPs across the genome, it is important to correct for 
multiple testing. Statistical methods, such as Bonferroni 

https://purr.purdue.edu/publications/3189/1
https://purr.purdue.edu/publications/3189/1
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correction or false discovery rate [67] adjustment. The 
GWAS analysis identifies significant associations between 
specific genomic regions (containing one or more SNPs) 
and the traits of interest. These genomic regions are 
then considered as potential candidate regions influenc-
ing the traits. The identified genomic regions are further 
analyzed to understand the biological significance of the 
associated SNPs [74, 75]. This involves annotating the 
genes within or near the significant areas, exploring their 
known functions, and assessing their potential role in the 
observed trait variations. By conducting an ML-GWAS, 
researchers can gain insights into the genetic architecture 
underlying the major agronomic, yield, and yield-related 
traits in sorghum landraces, helping to inform breeding 
programs and improve crop productivity [32].

Genome-wide association studies (GWAS) have uncov-
ered SNPs associated with complex traits, yet these 
represent only a fraction of the SNPs within the same 
haplotype block [83]. Six different ML-GWAS models 
were used for the MTA analysis and the Identification 
of QTNs [84]: mrMLM [78], FASTmrMLM [27], FAST-
mrEMMA [28], pLARmEB [30], pkWmEB [31], and ISIS 
EM-BLASSO [29]. All of these ML-GWAS models were 
implemented in the “mrMLM.GUI” R package V.4.4.1 
[26] which provides a graphical user interface for the 
multi-locus random SNP-effect mixed linear model. Also, 
the GAPIT 3.0 [77, 78, 85, 86] was applied for GWAS 
graph interference analysis.

The population structure and kinship matrix for our 
accessions were estimated in the previous studies by 
Grima et al. [71], additionally, the mrMLM.GUI pack-
age was utilized to calculate the population structure and 
kinship matrix internally. The resulting − log10(p) values 
obtained from the ML-GWAS analysis were employed to 
generate Manhattan and Q-Q plots using the mrMLM.
GUI R-package [87].

Co-localization of previously detected QTLs for agronomic 
and Yield-Related traits, and identification of candidate 
genes
The colocations of significant QTNs with previously 
identified QTLs were examined using the Sorghum QTL 
Atlas database [88], focusing on the linkage disequilib-
rium decay range of 65  kb. Candidate genes were iden-
tified through biomaRt tools [89] on the Phytozome 
platform [90], also within the 65  kb LD decay distance 
from the genomic regions where the QTNs were located 
[76]. The SorghumBase online database was also utilized 
to gather comprehensive descriptions of the relevant 
genes.

ML-GWAS study
Several multi-locus genome-wide association study 
(ML-GWAS) methods were used to identify significant 

QTNs. This includes the mrMLM, FASTmrMLM, FAST-
mrEMMA, pLARmEB, pKWmEB, and ISIS EM-BLASSO 
approaches, all of which are implemented in the R pack-
age “mrMLM” [78]. Default parameter values were used, 
and a LOD threshold of ≥ 4 or p-value ≤ 0.0002 was 
applied to determine significant marker-trait associations 
[91]. Principal component analysis and kinship matrices 
were incorporated into all the methods. The R package 
CMplot [92] was used to visualize Manhattan and quan-
tile-quantile (QQ) plots from the GWAS results. Linkage 
disequilibrium between SNPs was estimated using the 
squared correlation coefficient (r2) within a 0-10 cM win-
dow, calculated with the Tassel 5 tool [93]. The pheno-
typic effect size of each allelic variation was determined 
across the sorghum landraces and visualized using box 
plots in R 4.4.1 software [94].

QTNs with a logarithm of the odds (LOD) score of at 
least 4.0 is significantly associated with the agronomic, 
yield, and yield-related traits under investigation [2]. 
This LOD score threshold corresponds to a p-value of 
0.00002, calculated as the probability of the chi-square 
test statistic (χ²) exceeding 4 × 4.61, given 1 degree of 
freedom under the null hypothesis. Specifically, the con-
version from an LOD score of 4.0 to its corresponding 
likelihood ratio test was done using the formula 4.0×ln 
(100) = 4.0 × 4.61. This likelihood ratio test, under the 
null hypothesis, follows a chi-square distribution with 1 
degree of freedom, as described in the work of Wang et 
al. [78]. The LOD score threshold value of 4.0 is to iden-
tify QTNs that were significantly associated with the 
agronomic and yield-related traits. This threshold was 
chosen based on the statistical significance level, where 
the p-value corresponding to a LOD score of 4.0 was cal-
culated to be 0.00002 using the chi-square distribution 
with one degree of freedom.

To identify reliable QTNs associated with agronomic 
and yield-related traits, it’s very important to apply an 
additional filtering criterion. Only SNP markers detected 
in at least three of the six ML-GWAS models were des-
ignated reliable agronomic and yield-related associated 
QTNs. Similarly, QTNs detected in three or more models 
and exhibiting a phenotypic variation (R-squared) greater 
than 10% were designated as major QTNs. This sug-
gested that these major QTNs significantly influenced the 
observed agronomic and yield-related traits. For the cur-
rent analysis, we applied the “mrMLM.GUI” R-software 
package [26] to internally calculate the population struc-
ture and kinship matrix [35] as part of the ML-GWAS 
approach.

Finally, the resulting -log10(p) values from the ML-
GWAS models were used to generate Manhattan and 
QQ plots using the “mrMLM.GUI” package, as described 
by Zhang et al. [26]. These visual representations helped 
to identify and interpret the significant associations 
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between the SNP markers and the agronomic and yield-
related traits.
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