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H I G H L I G H T S

• Higher somatic cell counts (SCC) were associated with reductions in milk yield and efficiency of metabolizable energy use for lactation in Nordic Red cows.
• The reduction in efficiency was primarily due to an increase in heat energy losses.
• Adverse effects on energy utilization efficiency were apparent above 74 000 cells/mL.
• Rising SCC levels were linked to higher methane emission intensity.
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A B S T R A C T

The objective of this study was to evaluate the relationship of somatic cell count (SCC) with production effi-
ciency, energy partitioning, and methane emission in Nordic Red cows. Data were obtained from 10 previously 
conducted experiments consisting of 3 milk production trials and 7 GreenFeed (GF) studies, with available in-
formation on SCC, body weight (BW), milk production and feed intake. The complete data set consisted of a total 
of 924 cow/period observations from 265 cows. A subset of 150 cow/period observations from three of the GF 
studies, with available data on digestibility, and heat production were used for analysing energy partitioning 
variables. All measurements were made on cows fed diets based on grass silage with a range of protein and 
energy supplements. Production efficiency and energy partitioning variables were evaluated by mixed-model 
regression in SAS (SAS Institute Inc., Cary, NC). with the natural logarithm of SCC (lnSCC) treated as a fixed 
variable. Experiment (Exp), diet(Exp), and period(Exp) were included as random effects, allowing their effects to 
be excluded from the fixed-effect estimates. Additionally, segmented regression (PROC NLMIXED in SAS) was 
applied to determine SCC thresholds affecting feed efficiency variables. An increase in lnSCC showed a negative 
relationship with milk lactose concentration, milk yield, energy corrected milk (ECM), residual ECM, and feed 
conversion efficiency. Conversely, milk protein concentration increased with rising lnSCC. A trend towards 
increased BW was noted with rising lnSCC. Methane energy intensity and heat production increased while the 
efficiency of metabolizable energy (ME) use for lactation (kl) decreased with elevated lnSCC. We identified SCC 
thresholds of 40 000 cells/mL for heat production (HP) and 74 000 cells/mL for kl, indicating that HP increases at 
an earlier stage of infection, while a more advanced infection is required to impair energy utilization efficiency. 
These findings underscore the importance of early SCC management to sustain production, minimize energy 
losses, and enhance feed efficiency and overall dairy sustainability.
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1. Introduction

The importance of improved feed efficiency (FE) for the future sus-
tainability of milk production is well recognized by the dairy industry, 
scientific community, and policy makers around the world, both to 
maintain profitability and to reduce greenhouse gas production and 
nutrient losses to the environment (Connor 2015; Løvendahl et al., 
2018). As feed cost is the greatest single component of total milk pro-
duction costs, increase of FE provides a higher income over feed cost for 
the farmer (Connor 2015). Feed efficiency is mainly influenced by 
production level and body weight (BW) via the dilution of maintenance 
(Bauman et al., 1985), such that a greater proportion of metabolizable 
energy (ME) intake is channelled toward milk production instead of 
maintenance as production and feed intake increase. This principle be-
comes evident when examining energy metabolism in controlled set-
tings like respiration chambers, where milk energy output corrected for 
body energy balance (EB) varies between individual cows fed the same 
ME intake per metabolic BW (MBW; Agnew et al., 1998). Although the 
between-cow variation in FE hinges primarily on energy partitioning 
through ME use above maintenance (Bauman et al., 1985; Agnew et al., 
1998), its underpinnings remain inadequately documented. Notably, it 
is intrinsically associated with animal health factors such as the immune 
system and inflammatory responses (Zebeli and Ametaj, 2009). The 
health of a cow can cause changes to DM intake and milk yield (Ballou, 
2012), which in turn have a significant impact on FE (Kvidera et al., 
2017;Bach et al. 2020).

Mastitis is one of the most common inflammatory diseases within 
dairy cow production (Gomes and Henriques, 2016). Clinical mastitis 
(CM) presents distinct symptoms such as udder inflammation and 
altered milk composition. Subclinical mastitis (SCM) can sometimes 
present visible signs but not always; nevertheless, it still poses signifi-
cant negative consequences even in the absence of any noticeable udder 
abnormalities. An on-going SCM, identified through somatic cell count 
(SCC), is associated with an increased risk of developing CM (Steeneveld 
et al., 2008), reduced milk production (Huijps et al., 2008), compro-
mised product quality, and an overall reduction in farm productivity. 
Although cows with SCC exceeding 200 000 cells/mL are particularly 
prone to experiencing milk losses (Hagnestam-Nielsen et al., 2009; 
Potter et al., 2018), very low SCC levels may negatively impact pro-
duction due to potential udder damage (Franzoi et al., 2020). Indeed, 
milk losses (2.23 kg/d) associated with low SCC (< 6 250 cells/mL) have 
been reported (Franzoi et al., 2020) to be even greater than those (1.6 
kg/d) linked to high SCC in some cases (Potter et al., 2018), highlighting 
the complexity of SCC dynamics in dairy cows.

Considering the responses to infection as well as the decreased 
dilution of maintenance due to a lower milk yield (Bauman et al., 1985), 
mastitis emerges as a potential factor that may affect the FE of a cow. 
Arndt et al. (2015) reported a four-fold disparity in SCC values between 
cows categorized under low and high feed conversion efficiency (FCE) 
brackets and attributed this to increased energy demands for immune 
functions linked to SCM. An apparent positive correlation between SCC 
and residual feed intake (RFI), as illustrated by Xi et al. (2016) accen-
tuates the potential of SCC in elucidating individual cow variability in 
FE. Moreover, the estimated parallel increase in methane (CH4) emission 
and CH4 intensity with levels of SCC reported by Potter et al. (2018)
highlights the potential environmental consequences of mastitis, 
bringing forth concerns that extend beyond the scope of milk produc-
tion. To the best of our knowledge, a recent study by Huhtanen and 
Bayat (2024) is the first to investigate the relationship between indi-
vidual cow enteric CH4 emission and SCC, using respiration chambers 
for CH4 measurements. However, there is a need to extend this research 
using more widely adopted CH4 estimation techniques such as the 
GreenFeed (C-Lock Inc. Rapid City, SD), to better assess the on-farm 
environmental costs of mastitis across national herds. Additionally, 
the relationship between SCC and FE as well as energy partitioning have 
only been marginally reported. Hence, the objective of the present study 

was to test the hypothesis that increased SCC negatively impacts not 
only milk yield but also FE, energy partitioning, and environmental 
emissions.

2. Materials and methods

2.1. Data collection

Evaluations were performed using data collected from milk- 
production trials and studies measuring CH₄ and CO2 production with 
or without O2 consumption using the GreenFeed (GF) system (C-Lock 
Inc., Rapid City, SD) in lactating Nordic Red cows. Most of these studies 
have been published in peer-reviewed scientific journals, and their ref-
erences are presented in Table 1. For a study to be included, a minimum 
pre-condition was the availability of data on SCC, production parame-
ters [dry matter intake (DMI), milk production and composition], and 
BW. The two data sets from 10 studies originally consisted of 265 Nordic 
Red cows with 936 cow/period observations, along with an additional 
36 cow/period observations from 12 Holstein cows. However, to ensure 
an only Nordic Red data set, these 36 cow/period observations from the 
12 Holstein cows were removed. Additionally, 12 outlier observations 
were detected and excluded based on the Anderson− Darling test 
(Sauvant et al., 2008), leaving a final analysed data set of 265 Nordic 
Red cows with 924 cow/period observations. The cow/period obser-
vations were considered as the experimental unit.

The production data set was sourced from 2 full lactation studies 
conducted at Kungsängen (Patel et al., 2017) and Lövsta (Karlsson et al., 
2020) research stations of the Swedish University of Agricultural Sci-
ences (SLU) in Uppsala, Sweden, and 1 unpublished change-over study 
at the Natural Resources Institute Finland (LUKE) research barn in 
Jokioinen, Finland. It included 13 diets, 123 cows, and 420 cow/period 
observations after removing Holstein cows from the study of Karlsson 
et al. (2020).

The GreenFeed data set was derived from 6 change-over studies 
(Cabezas-Garcia et al., 2017; Karlsson et al., 2019; Chagas et al., 2021; 
Fant et al., 2021; Pang et al., 2021; Ramin et al., 2021) and 1 continuous 
study spanning early- to mid-lactation (1 to 126 DIM; Guinguina et al., 
2021a, 2021b) conducted at Röbäcksdalen research station (SLU, 
Umeå). This data set comprised 25 diets, 142 cows, and 504 cow/period 
observations after removing statistical outliers. Not all GF studies had 
data on O2 consumption for the estimation of HP. Therefore, only three 
studies (Fant et al., 2021; Guinguina et al., 2021a, 2021b; Pang et al., 
2021) including 150 cow/period observations from 45 Nordic Red cows 
were used to analyse the relationship of SCC with energy partitioning 
variables.

The experimental periods of all changeover studies (Cabezas-Garcia 
et al., 2017; Patel et al., 2017; Karlsson et al., 2019, 2020; Chagas et al., 
2021; Fant et al., 2021; Pang et al., 2021; Ramin et al., 2021) lasted 21 or 
28 days. Data from 1-50 days in milk (DIM) of the continuous GF study 
(Guinguina et al., 2021a, 2021b) were discarded to have similar range in 
DIM with the other GF studies and the remaining data were divided into 
3 periods of 28 days. For the full lactation studies, the lactation stages 
were divided into early- (53-120 DIM), mid- (121-210 DIM) and late- 
(211-305 DIM) to represent periods 1, 2, and 3 within experiment, 
respectively.

All cows were housed in experimental free stall barns and had free 
access to water and salt block. The cows from Kungsängen and Lövsta 
were milked in a robotic AMS system while those from Jokioinen and 
Umeå were milked in a herring-bone milking parlour twice daily. Indi-
vidual animal feed intake was recorded daily with Roughage Intake 
Control feeders (Insentec B.V., Marknesse, The Netherlands) in Umeå 
and with forage troughs (CRFI, BioControl Norway A/S, Rakkestad, 
Norway) and concentrate dispensers (FSC400, DeLaval International 
AB), in Kungsängen and Lövsta. In Jokioinen, daily feed intake was 
determined as the difference between the feed offered and refusal. For 
clarification, intake data from cows in the study by Karlsson et al. (2020)
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were the raw data and not corrected values as mentioned therein. The 
experimental diets were based on grass silage with cereal grains or 
by-products as energy supplements, and rapeseed meal as protein sup-
plement. The average forage-to-concentrate ratio of the diets ranged 
from 40:60 to 90:10 on DM basis. Grass silages were produced from 
primary growth, primary regrowth, and secondary regrowth material, 
and were wilted before ensiling with application of silage acid-based 
additive. The concentrates used in each of the studies included cereal 
grains (barley, wheat, or corn), agro-industrial by-products (molassed or 

unmolassed sugar beet pulp, citrus pulp, or molasses), protein supple-
ments (soybean meal, canola expeller, or meal), oil supplements, and 
mineral-vitamin supplements. An additional commercial concentrate 
was given to cows in the GF studies to lure them to the system. There-
fore, the total DMI recorded for cows in the GF studies included 
concentrate intake from the GF system.

2.2. Calculations

For the complete data set, FE of individual cows was determined 
through distinct calculations as follows: 

Feed conversion efficiency (FCE) : FCE = ECM ÷ DMI (1) 

where ECM is energy corrected milk in kg/d and DMI is dry matter 
intake in kg/d.

Residual feed intake (RFI) was calculated as the difference between 
actual DMI (kg/d) and predicted DMI. The model used to predict DMI 
was a mixed model multiple linear regression, with ECM yield, MBW, 
positive BW change (ΔBWp), and negative BW change (ΔBWn) included 
as independent variables. Adjustments were made for random experi-
ment, period within experiment, and diet within experiment to address 
potential variations in accuracy of intake records across experiments 
and differences in growth and lactation for various experimental periods 
and diets. The regression model was: 

Predicted DMI
(

kg
d

)

= b0 + b1 × ECM + b2 × MBW + b3 × ΔBWp + b4

× ΔBWn + ε
(2) 

where b0 = intercept, b1 = partial regression coefficient of ECM yield 

(kg/d), b2 = partial regression coefficient of MBW (kg0.75), b3 = partial 
regression coefficient of ΔBWp (kg/d), b4 = partial regression coefficient 
of ΔBWn (kg/d), and ε = independently and identically distributed 
random residuals.

Residual ECM yield (RECM) was calculated as the difference between 
actual ECM (kg/d) and the ECM predicted from a mixed model multiple 
linear regression, which included DMI, MBW, ΔBWp and ΔBWn as in-
dependent variables. Experiment, Diet(Exp), and Period(Exp) were 
considered as random factors. The regression model was:  

where b0 = intercept, b1 = partial regression coefficient of ECM yield 
(kg/d), b2 = partial regression coefficient of MBW, b3 = partial regres-
sion coefficient of ΔBWp (kg/d), b4 = partial regression coefficient of 
ΔBWn (kg/d), and ε = independently and identically distributed random 
residuals.

For the GF data set, milk energy output (MilkE; MJ/d) was calculated 
using the ratio, 1 kg of ECM: 3.14 MJ (Sjaunja et al., 1990). Heat pro-
duction (HP; MJ/d) was calculated from volumes of O2 consumption 
(L/d), CO2 production (L/d), CH4 production (L/d), and urinary nitro-
gen excretion (UN, g/d), according to Brouwer (1965).

Energy balance (EB; MJ/d) was calculated for each cow using the 
following equation: 

EB = ME intake − HP − MilkE (4) 

The efficiency of ME use for lactation (kl) was calculated according to 
(AFRC, 1993) as: 

kl = (MilkE + a × EB) ÷ (ME intake − MEm) (5) 

where coefficient a = 0.84 if EB < 0 or a = 1/0.95 if EB > 0, and MEm is 
the ME requirement for maintenance (MJ/d) estimated using the 
following equation from AFRC (1993): 

MEm = 0.53 × (BW ÷ 1.08)0.67
÷ (0.35 × ME ÷ GE + 0.503) (6) 

It should be noted that due to the limited number of observations on 
O2 consumption for HP estimates, 150 cow/period observations from 
three GF studies (Fant et al., 2021; Guinguina et al., 2021a, 2021b; Pang 
et al., 2021) were used for the analyses of energy partitioning variables.

Table 1 
List of studies, number of diets, individuals, and observations from the data used for the analysis.

Author and year of publication Location Type of study Design Number of diets Number of cows Cow/period observations

Initial Used Initial Used

Cabezas-Garcia et al., 2017 Röbäcksdalen GreenFeed Change-over 4 16 16 63 63
Karlsson et al., 2019 Röbäcksdalen GreenFeed Change-over 2 22 22 66 65
Chagas et al., 2021 Röbäcksdalen GreenFeed Change-over 4 20 20 80 76
Fant et al., 2021 Röbäcksdalen GreenFeeda Change-over 4 16 16 58 57
Guinguina et al., 2021a, 2021b Röbäcksdalen GreenFeeda Continuous 2 22 22 70 66
Pang et al., 2021 Röbäcksdalen GreenFeeda,b Change-over 5 30 30 115 113
Ramin et al., 2021 Röbäcksdalen GreenFeed Change-over 4 16 16 64 64
Patel et al., 2017 Kungsängen Production trial Full lactation 3 71 71 240 240
Karlsson et al., 2020 Lövsta Production trial Full lactation 4 36 24 108 72
Unpublished Jokioinen Production trial Change-over 6 28 28 108 108
Total 38 277 265 972 924

a GreenFeed studies used in the evaluation of energy partitioning variables.
b Only 27 cow/period observations were used from this study in the evaluation of energy partitioning variables.

Predicted ECM
(

kg
d

)

= b0 + b1 × DMI + b2 × MBW + b3 × ΔBWp + b4 × ΔBWn + ε (3) 

A. Guinguina and R. Danielsson                                                                                                                                                                                                             Livestock Science 296 (2025) 105697 

3 



2.3. Statistical analysis

Statistical analyses were performed with SAS (SAS 9.4 Institute Inc., 
Cary, NC). Proc MEANS were used for means, min and max values 
within subsets. The univariate relationship between the natural log- 
transformed SCC (lnSCC) and intake, milk production and composi-
tion, FE, as well as energy partitioning variables were analysed by PROC 
MIXED regression (Littell et al., 2006). The model included lnSCC as 
fixed variable and was defined as follows: 

Yij = B0 + B1X1ij + b0 + biX1ij + eij (7) 

where Yij = the expected value for the dependent variable Y observed at 
level of j of the independent variable X in the study i. B0 = the overall 
intercept (fixed effect); b0 = the random effect of study i on the intercept 
(i = 1, …, 10); bi = the random effect of study i on the regression co-
efficient of Y on X1 in study i (i = 1, …, 10); B1 is regression coefficient of 
Y on X1 across all studies (fixed effects); X1ij = value j of the continuous 
variable X1 in study i; and eij = is the residual error. The prediction 
models included 3 random statements: a random intercept and slope of 
X1 with SUBJECT = Exp, a random intercept with SUBJECT = Diet(Exp), 
a random intercept with SUBJECT = Period(Exp), and a random inter-
cept with SUBJECT = Cow(Exp), using the TYPE = VC (variance com-
ponents) covariance structure for all random statements. The model 
incorporated a REPEATED statement since measurements of individual 
cows were taken repeatedly over time (Period) within experiment 

[period(Exp)]. A first-order autoregressive covariance structure [AR(1)] 
was selected based on its Akaike’s information criterion being closest to 
zero, as recommended by Littell et al. (2006). The method = restricted 
maximum likelihood (REML) statement was used in the PROC MIXED 
model syntax.

A segmented regression analysis was performed using the non-linear 
mixed procedure (PROC NLMIXED in SAS) to fit parameter values to the 
data and to determine the threshold at which SCC levels began 
impacting feed efficiency variables. The model included lnSCC as fixed 
variable and experiment as a random effect.

3. Results

3.1. Descriptive data

Mean diet characteristic and animal variables for both the produc-
tion and GF studies data set as well as mean energy partitioning vari-
ables for the GF data set are shown in Table 2. Both animal and diet 
parameters showed considerable variation and covered the range in 
dietary chemical composition relevant to commercial milk production. 
For both data sets, the range in diet composition and average DMI were 
similar, whereas average ECM was 1.8 kg/d lower in the GF compared 
with the production data set. The natural log of SCC for individual cows 
showed similar coefficient of variation of 0.095 and 0.094 in the pro-
duction and GF data sets, respectively. The GF data set represented a 

Table 2 
Description of diet composition, intake, milk production, and energy metabolism variables of cows used in the statistical analysis.

Item Production studies GreenFeed studies

n Mean SD Min Max n Mean SD Min Max

Diet Composition, g/kg DM ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
OMa ​ ​ ​ ​ ​ 503 929 10.8 888 950
CPb 420 144 14.3 95.1 183 504 156 14.2 130 190
NDFc 180 433 25.7 385 490 503 360 33.3 300 471

DIMd 420 155 66.2 53 298 504 126 39.3 52 232
DMIe, kg/d 420 21.6 3.40 12.2 31.3 504 21.4 2.70 14.3 27.9
Milk yield, kg/d 420 31.3 6.72 12.9 54.2 504 29.1 5.08 17.1 46.4
ECMf yield, kg/d 420 32.7 6.10 14.9 50.1 504 30.9 4.82 18.5 44.8
Milk composition, g/kg ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

Fat 420 43.5 5.59 28.3 60.9 504 44.8 5.16 31.1 63.4
Protein 420 34.4 2.93 25.9 43.3 504 35.9 2.98 27.5 43.8
Lactose 420 47.5 1.50 38.8 50.7 504 45.9 1.80 36.2 51.4
SCCg, 1000 cells/mL 420 93.5 157 7.2 1663 504 142 265 9 2767

lnSCCh 420 10.8 1.03 8.9 14.3 504 11.2 1.05 9.1 14.8
BWi 420 625 81.6 443 852 504 611 79.7 433 850
ΔBWj 392 0.22 0.428 − 1.18 1.94 389 0.23 0.705 − 1.64 2.42
Parity 420 2.0 1.08 1.0 7.0 504 2.2 1.20 1.0 6.0
Digestibility, g/kg DM ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

OMa ​ ​ ​ ​ ​ 388 724 42.4 612 848
CPb ​ ​ ​ ​ ​ 315 649 78.8 310 775
NDFc ​ ​ ​ ​ ​ 323 591 70.4 342 780

Energy intake and output, MJ/d ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
Gross energy ​ ​ ​ ​ ​ 150 417 64.6 302 598
Digestible energy ​ ​ ​ ​ ​ 150 285 42.4 215 367
Urinary energy ​ ​ ​ ​ ​ 150 24.5 11.7 6.5 51.4
Methane energy ​ ​ ​ ​ ​ 150 24.1 3.74 14.7 36.2
Metabolizable energy ​ ​ ​ ​ ​ 150 235 35.3 144 329
Heat production ​ ​ ​ ​ ​ 150 123 14.8 93 162
Milk energy ​ ​ ​ ​ ​ 150 97.7 15.8 40.2 141
Energy balance ​ ​ ​ ​ ​ 150 9.1 27.6 − 64.7 81.9

a OM = organic matter.
b CP = crude protein.
c NDF = neutral detergent fibre.
d DIM = days in milk.
e DMI = dry matter intake (includes intake of GreenFeed concentrate in GreenFeed studies).
f ECM = energy corrected milk yield.
g SCC = somatic cells count.
h lnSCC = natural logarithm of SCC.
i BW = body weight.
j ΔBW= BW change.
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wide range of GE intakes and correspondingly large differences in en-
ergy outputs from urine, CH4, and HP. Methane energy was 24.1 MJ/ 
d on average, with minimum and maximum values of 14.7 and 36.2 MJ/ 
d, respectively. Metabolizable energy intake ranged from 144 to 329 
MJ/d and HP from 93 to 162 MJ/d. The range in EB was from − 64.7 to 
81.9 MJ/d as the data included records of cows with DIM covering 52 to 
232 d.

3.2. Intake, production, and efficiency

The relationship of lnSCC with intake, milk production, and FE for 
the complete data set is shown in Table 3. The analysis showed that an 
increased number of lnSCC had a negative relationship (P < 0.001) with 
milk lactose concentration, milk yield, ECM, RECM, and FCE. On the 
other hand, there was a significant increase (P = 0.03) in milk protein 
concentration with increasing lnSCC. A trend (P = 0.08) towards 
increased BW and milk fat was noted with rising lnSCC, while no re-
lationships were found between lnSCC and DMI, RFI, or DIM.

3.3. Energy partitioning

The relationship between lnSCC and energy partitioning variables 
from studies conducted in GF is shown in Table 4. Methane energy 
(CH4E) intensity (CH4E/MilkE), HP, and HP/GE increased (P ≤ 0.01) 
with increased lnSCC. Milk energy and the efficiency of ME utilization 
for milk production (kl) decreased (P ≤ 0.04) with increasing lnSCC.

3.4. Segmented regression

The threshold analysis of the impact of lnSCC on feed efficiency 
variables is presented in Table 5. Residual ECM remained at 1.1 kg/ 
d with SCC levels up to 32 000 cells/mL, after which it declined at a 
steeper rate of − 0.98 ± 0.22, approximately 1.5 times the slope in the 
full range of data. For FCE, the corresponding values were 1.37 kg ECM/ 
kg DMI up to SCC of 33 000 cells/mL above which the slope was − 0.04 
± 0.011. Heat production (HP) was 122 MJ/d until SCC exceeded 40 
000 cells/mL, where the slope increased to 3.36 ± 0.978, about 1.4-fold 
compared with the slope in the full range of data. The kl remained at 
0.65 up to SCC of 74 000 cells/mL before decreasing by 0.010 ± 0.005 
per lnSCC. For CH4E intensity, the change above a threshold of 38, 000 
cells/mL was 15.6 kJ CH4E/MJ MilkE.

4. Discussion

The results of the present study align with previous research, high-
lighting the negative relationship between increased SCC and milk yield 
(Rearte et al., 2022) and milk lactose concentration (Alessio et al., 
2021). The findings concerning protein contents also corroborate pre-
vious studies (Ahmed et al., 2021). A trend towards increased BW with 
rising lnSCC could partly be explained by the larger udder size of bigger 
cows, which can impact milking ease and increase the risk of environ-
mental contamination, leading to bacterial infection (Litwińczuk et al., 
2015). In addition, the absolute metabolic demands associated with 
maintaining a larger body size and producing more milk can contribute 
to a higher susceptibility to SCM. A unique aspect of the present study is 
its examination of the relationship between SCC and energy partitioning 
variables alongside individual cow enteric CH4 emission estimated from 
the GF system, making it the first to investigate this connection. 
Although, a recent study by Huhtanen and Bayat (2024) investigated 
this relationship, their measurements of energy metabolism variables 
were conducted in respiration chambers. Thus, our study contributes 
new insights by utilizing the GF technology to explore these dynamics. 
Higher SCC levels are associated with increased HP and, consequently, 
reduced energy available for milk production, which could explain the 
observed decrease in ECM. In general, effectively managing SCC is 
crucial for improving animal health, feed efficiency, and ensuring the 
economic and environmental sustainability of dairy herds.

4.1. Feed efficiency

Results from the present study suggests that a cow with relatively 
high SCC (250 000 cells/mL), compared to a cow with a relatively low 
SCC (50 000 cells/mL) produces 0.05 kg less ECM per kg of DMI (FCE). 
This loss is outside the range (95 % CI) of values (0.026–0.042) pre-
dicted by Potter et al. (2018) for cows at the two levels of SCC. The more 
pronounced FCE losses in our study could partly be due to sustained DMI 
even at lower milk production. Olson et al. (2011) also recounted that an 
incidence of mastitis reduced FE expressed as a ratio of MilkE to gross 
energy intake in Holstein, Jersey, and reciprocal F1 crossbred cows.

Only a few studies have addressed the relationship between SCC and 
RFI in dairy cows, primarily due to a lack of availability of individual 
feed intake measurements. Xi et al. (2016) found a positive phenotypic 
correlation between SCC and RFI, suggesting that increased SCC might 
partly explain variation in the efficiency of feed conversion among cows. 

Table 3 
The relationship of lnSCC with feed intake, milk production and composition, and feed efficiency in the complete data set (n = 924).

Item Intercept Slope CI Adj. RMSE

Intercept Slope

Estimate SE Estimate SE P-value Lower upper Lower upper

DMIa, kg/d 22.4 1.14 − 0.07 0.093 0.48 19.8 24.9 ​ − 0.25 0.12 1.63
RFIb, kg/d − 0.65 1.035 0.06 0.087 0.51 − 2.95 1.66 ​ − 0.11 0.23 1.50
Milk, kg/d 36.1 1.66 − 0.55 0.140 <0.001 32.4 39.8 ​ − 0.83 − 0.28 4.13
ECMc, kg/d 37.9 1.79 − 0.56 0.154 <0.001 33.9 41.8 ​ − 0.86 − 0.25 3.11
RECMd, kg/d 7.2 1.90 − 0.65 0.164 <0.001 3.0 11.4 ​ − 0.97 − 0.32 2.79
FCEe, kg ECM/kg MI 1.79 0.09 − 0.03 0.008 <0.001 1.57 2.00 ​ − 0.04 − 0.01 0.15
Milk composition, g/kg ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

Fat 41.1 1.90 0.29 0.165 0.08 36.9 45.3 ​ − 0.03 0.62 2.99
Protein 33.4 0.90 0.18 0.071 0.01 31.4 35.4 ​ 0.04 0.32 1.17
Lactose 51.1 0.62 − 0.42 0.046 <0.001 49.7 52.5 ​ − 0.51 − 0.33 0.70

BWf, kg 598 16.7 2.0 1.13 0.08 560 635 ​ − 0.2 4.2 14.4
DIMg 134 8.9 0.26 0.418 0.54 115 154 ​ − 0.56 1.08 5.35

a DMI = dry matter intake.
b RFI = residual feed intake.
c ECM = energy corrected milk yield.
d RECM = residual ECM yield.
e FCE = feed conversion efficiency.
f BW = body weight.
g DIM = days in milk.
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Hailemariam et al. (2020) also showed that low-RFI cows had lower SCC 
compared with high-RFI counterparts. Hou et al. (2012) analysed 
Bovine SNP genotyping data from cows grouped by high RFI and 
low-RFI. They (Hou et al., 2012) found that more efficient cows (low 
RFI) exhibited copy number variations in genes associated with immu-
nity and the inflammation, potentially affecting their ability to elicit a 
response to an immune challenge. In contrast, Marinho et al. (2021), in 
their study, found no differences in somatic cell score and mastitis for 
400 cows categorized by RFI during early- and mid-lactation. The pre-
sent study also showed no clear link between lnSCC and RFI likely due to 
similar DMI recorded for all cows irrespective of SCC levels.

We found a negative relationship between lnSCC and RECM, sug-
gesting that mastitis may lead to greater economic losses due to cows 
that yield lower-than-expected ECM. For example, an increase in SCC 
from 50 000 to 250 000 cells/mL would reduce RECM by 1.0 kg/d. This 
loss translates to an estimated economic impact of approximately, US 
$172 per cow over a 305-day lactation period. These estimates are based 
on the January 2025 raw milk price in Sweden (Regulation (EU) No 
2017/1185 Article 12(a), Annex II.4(a)), and the European Central 
Bank’s average exchange rate for €/US$ in January 2025. The economic 
repercussions would even be greater if factors such as the discarding of 
milk, labour, treatment costs, and culturing tests related to mastitis are 
considered. Using segmented regression, we identified a threshold SCC 
level of 32 000 cells/mL, beyond which the negative impacts on RECM 
became more pronounced. This threshold is lower than the 110 000 
cells/mL reported by Huhtanen and Bayat (2024) based on data from 
two respiration chamber studies with 136 cow/period observations. The 

difference in thresholds highlights the complex nature of SCC and its 
relationship with mastitis, necessitating caution when interpreting re-
sults. Whist and Østerås (2007) showed that cows with SCC < 20 000 
cells/mL had the lowest risk of developing CM. However, Franzoi et al. 
(2020) found that cows with very low SCC (< 6 250 cells/mL) had 
higher risk of reaching high SCC in a subsequent test day (90 DIM) 
compared with cows with SCC levels of between 6 250 and 12 500 
cells/mL. Additionally, specific mastitic pathogens, such as Streptococcus 
uberis, Escherichia coli, and coliforms compromise the host immune 
response, potentially leading to CM even in cases with low SCC 
(Suriyasathaporn et al., 2000; Peeler et al., 2003; Thompson-Crispi 
et al., 2014). These findings imply that not all low SCC situations are 
protective, and the risk varies depending on the specific pathogens 
involved and the host immune response. Determining an appropriate 
SCC threshold is therefore, critical to help fine tune the accuracy of 
RECM loss estimations and assessing the subsequent effect on farm 
income.

4.2. Energy partitioning

In the GF data set of the present study, we found that the relationship 
between InSCC and HP was strong and positive. At SCC of 250 000 cells/ 
mL, the predicted HP loss was 3.8 MJ/d higher compared to an SCC of 50 
000 cells/mL. This difference is equivalent to 1.2 kg of ECM loss using 
the average milk energy concentration (3.8 MJ of HP/3.14 MJ/kg of 
ECM = 1.2 kg/d of ECM; (Sjaunja et al., 1990). The reduction in ECM 
due to increased HP is equivalent to the mean difference in ECM (1.0 

Table 4 
The relationship of lnSCC with energy partitioning variables from three GreenFeed studies (n = 150).

Item Intercept Slope CI Adj. RMSE

Intercept Slope

Estimate SE Estimate SE P-value Lower Upper Lower Upper

Intake and output, MJ/d ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
Gross energy (GE) 466 52.0 − 2.9 3.14 0.35 242 690 ​ − 9.18 3.30 20.4
Digestible energy (DE) 314 42.3 0.2 2.75 0.96 − 224 851 ​ − 5.36 5.68 29.2
Methane energy (CH4E) 22.6 2.74 0.21 0.237 0.38 10.8 34.4 ​ − 0.26 0.68 1.56
Urinary energy (UE) 33 10.2 − 0.43 0.404 0.29 − 10.7 76.7 ​ − 1.24 0.38 3.17
Metabolizable energy (ME) 261 29.5 − 1.7 2.14 0.43 134 388 ​ − 5.94 2.57 19.8
Heat production (HP) 103 6.9 2.35 0.540 <0.001 86.0 120 ​ 1.26 3.44 4.33
Milk energy (MilkE) 132 13.2 − 2.64 1.17 0.03 76 189 ​ − 4.99 − 0.28 10.1
Energy balance (EB) 20.4 25.2 − 0.9 2.15 0.67 − 88.1 129 ​ − 5.18 3.35 23.5

Energy partitioning, kJ/MJ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
DE/GE 653 31.5 2.2 2.63 0.41 518 789 ​ − 3.04 7.40 25.2
CH4E/GE 46.3 5.03 0.82 0.420 0.11 34.0 58.6 ​ − 0.012 1.64 5.29
CH4E/MilkE 118 43.4 11.5 3.82 <0.01 − 68 305 ​ 3.9 19.1 42.7
UE/GE 68 17.1 − 0.43 0.772 0.58 − 5.57 142 ​ − 1.97 1.10 7.34
ME/GE 549 31.5 0.82 2.55 0.75 414 685 ​ − 4.25 5.90 26.6
HP/GE 217 26.6 7.09 2.29 <0.01 103 332 ​ 2.5 11.7 14.5

kl 
a 0.70 0.031 − 0.01 0.003 0.03 0.62 0.77 ​ − 0.01 − 0.0001 0.05

a kl = Efficiency of ME utilization for milk production [Milk energy at zero energy balance / (ME intake – ME requirement for maintenance)].

Table 5 
Threshold analysis of lnSCC impact on feed efficiency variables.

Variable Intercept Slope above threshold Threshold lnSCC Adj. RMSE Threshold SCC, cells/mL

Estimate SE Estimate SE P-value Estimate SE P-value

RECMa, kg/d 1.1 9.44 − 0.98 0.22 <0.01 10.35 0.668 <0.001 1.75 32 000
FCEb, kg ECM/kg DMI 1.37 0.383 − 0.04 0.011 <0.01 10.36 0.514 <0.001 0.09 33 000
HPc, MJ/d 122 31.2 3.36 0.978 0.01 10.40 0.834 <0.001 8.39 40 000
CH4E/MilkEd, kJ/MJ 279 122.9 15.6 3.80 0.01 10.55 0.484 <0.001 18.3 38 000
kl

e 0.65 0.065 − 0.01 0.005 0.04 11.22 0.022 <0.001 0.01 74 000

a RECM = residual energy corrected milk yield.
b FCE = feed conversion efficiency expressed as kg ECM per kg dry matter intake (DMI).
c HP = heat production.
d CH4E/MilkE = methane energy intensity expressed as kJ methane per MJ milk energy.
e kl = Efficiency of metabolizable energy (ME) utilization for milk production [Milk energy at zero energy balance / (ME intake – ME requirement for maintenance)].
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kg/d) between cows in these groups. Hence, the relatively lower ECM 
production observed in High-SCC than in Low-SCC cows could be 
attributed to a less efficient metabolic process in converting ME to milk 
energy. Certainly, we detected a 0.013 difference in kl between High- 
and Low-SCC cows per day. Using the mean DMI of 21.4 kg/d and ME 
concentration of 11.2 MJ/kg of DM in the GF data set from the above 
example, the difference of 0.013 in kl would give a value of 1.0 kg/d of 
ECM (also comparable to the observed difference in ECM between Low- 
and High-SCC cows).

Our findings are in line with Huhtanen and Bayat (2024), who 
demonstrated a positive relationship between logSCC and HP and 
negative relationship between logSCC and kl. In our study, the SCC 
threshold for kl was 74 000 cells/mL, which is higher than the 40 000 
cells/mL threshold for HP. This indicates that energy utilization effi-
ciency may not be immediately affected during the early stages of 
intramammary infection. However, as infection persists, the cumulative 
effects of metabolic disruption and heat production losses become more 
pronounced, reducing energy utilization efficiency. Although our SCC 
thresholds are lower than those reported by Huhtanen and Bayat (2024), 
our findings corroborate their conclusion that increased HP due to 
elevated SCC levels in milk is the main driver of reduced kl. The physi-
ological mechanism behind these findings is linked to mastitis-induced 
inflammation, which triggers a systemic release of inflammatory medi-
ators and negatively impacts the cow’s metabolic efficiency (Bach et al. 
2020). For instance, pro-inflammatory cytokines such as tumour ne-
crosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) can inhibit 
insulin signalling pathways, impair glucose uptake by peripheral tissues, 
and promote lipolysis (Egyedy et al., 2022). The immune system re-
sponses can lead to an increase in metabolic activity, which require 
additional energy expenditure, thereby compromising the energy 
availability for milk production and other physiological processes 
(Hailemariam et al., 2020). The energy cost of activating the immune 
system has been reported to be 0.66 g of glucose per kg of metabolic BW 
per hour in dairy cows (Kvidera et al. 2017). Consequently, cows with 
increased SCC could expend more energy on immune function than cows 
with lower SCC, and this could be the likely link between higher SCC and 
reduced FE observed for Nordic Red cows in the present study. The 
progressive thresholds for HP and kl emphasize the need for early SCC 
monitoring and intervention to help maintain production, reduce energy 
losses, and improve overall energy utilization efficiency in lactating 
Nordic Red cows.

Shuster et al. (1991) measured increased lactose in the urine of cows 
with mastitis and attributed it to the leakage of lactose out of the alve-
olus between epithelial cells of the mammary gland. Despite this, they 
(Shuster et al., 1991) did not find any significant impact of mastitis on 
urine volume, implying that changes in milk lactose concentration are 
proportional to changes in lactose excretion in urine. Based on this 
premise, we would expect an increase in UE/GE in cows with elevated 
SCC due to their lower milk lactose concentration as evidenced in this 
retrospective study. However, we detected no relationship between 
UE/GE and lnSCC, indicating that differences in UE/GE might have no 
contribution to the variation observed in FE among cows.

4.3. Enteric methane emission

Mitigating CH4 emissions has long been a priority for the dairy 
sector. Several strategies have been explored to achieve this goal, with 
the feeding strategy being the most advanced. Although feeding strategy 
holds potential for reducing CH4 emissions of a dairy farm, it may 
inadvertently result in a trade-off with socio-economic aspects of sus-
tainability (Mostert et al., 2019). This delicate balance between envi-
ronmental concerns and socio-economic aspects led us to consider the 
interplay between animal health, particularly mastitis and enteric CH4 
emission, which is a less explored but highly relevant dimension. Earlier 
studies have started to address the connection between SCC (Gülzari 
et al., 2018) or CM (Mostert et al., 2019) and greenhouse gas (GHG) 

emissions. However, the body of research in this field is still relatively 
limited. Moreover, literature is limited regarding the relationship be-
tween SCC and specific GHG, such as enteric CH4 emissions at the in-
dividual cow level.

In our study, we observed no relationship between lnSCC and both 
CH4E output. This lack of association can be ascribed to the absence of a 
link between lnSCC and GE intake, as well as DE/GE, both of which are 
important explanatory variables for CH4 production (Ramin and Huh-
tanen, 2013; Løvendahl et al., 2018; Guinguina et al., 2020). Conse-
quently, the CH4E/GE was not different for cows across various levels of 
SCC. However, the positive relationship observed between CH4E in-
tensity (kJ/MJ of MilkE) and lnSCC in the present study can be 
explained by similar CH4E output accompanied by lower ECM produc-
tion in cows with elevated SCC. Potter et al. (2018) estimated an extra 
0.34 g of CH4/kg milk from a cow with relatively high SCC (250, 000 
cells/mL) compared with a cow with relatively low SCC (50, 000 
cells/mL). Huhtanen and Bayat (2024) also estimated a similar increase 
in CH4 intensity (0.3 g CH4/kg ECM) with an increase of SCC from 50 
000 to 250 000 cells/mL. Using individual cow CH4 emission data from 
the GF system in the present study, we calculated a difference of 18.5 kJ 
CH4/MJ of milk (or 1.07 g of CH4/kg of ECM), which is approximately 
7.1 % of the annual g CH4 /kg ECM of a dairy cow in Sweden (Bertilsson, 
2016). Using the rate of increase above the threshold of 38 000 cells/mL 
the increase of CH4E intensity was much greater. The estimated differ-
ence in CH4E intensity between a cow with SCC of 250 000 cells and one 
at this threshold is 29.3 kJ CH4/MJ of milk (or 1.67 g of CH4/kg of ECM), 
which is about 35 % percent more than that estimated from the full 
range of data. In summary, our study adds to the growing body of 
literature on the relationship between animal health, particularly SCM, 
and GHG emissions in dairy farming. These results emphasize the sig-
nificance of managing diseases like mastitis not only for animal welfare 
but also for reducing the environmental footprint of dairy production. 
The implications are clear: healthier cows can potentially translate to 
lower CH4 intensity. Further research is warranted to explore strategies 
for minimizing the impact of mastitis on milk production and CH4 in-
tensity, considering both CM and SCM.

5. Conclusions

Nordic Red cows with somatic cell counts (SCC) above 40 000 cells/ 
mL lose more energy as heat, likely due to increased immune system 
demands. As SCC exceed 74 000 cells/mL, this inefficiency worsens, 
reducing the propensity of converting metabolizable energy (ME) into 
milk even if a cow maintains its feed intake. This reduced efficiency has 
economic implications as it translates to lower income over feed costs for 
farmers. Additionally, cows with over 38 000 cells/mL of SCC emit more 
methane per unit of milk energy output, contributing to the dairy 
industry’s greenhouse gas footprint. Overall, managing SCC and 
enhancing cow health is not only essential for animal welfare but also 
pivotal for sustaining dairy farm economics and mitigating methane 
emission.
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