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Life on the dry side: a roadmap to
understanding desiccation tolerance and
accelerating translational applications

A list of authors and their affiliations appears at the end of the paper

To thrive in extreme conditions, organisms have evolved a diverse arsenal of
adaptations that confer resilience. These species, their traits, and the
mechanisms underlying them comprise a valuable resource that can bemined
for numerous conceptual insights and applied objectives. One of the most
dramatic adaptations to water limitation is desiccation tolerance. Under-
standing the mechanisms underlying desiccation tolerance has important
potential implications for medicine, biotechnology, agriculture, and con-
servation. However, progress has been hindered by a lack of standardization
across sub-disciplines, complicating the integration of data and slowing the
translation of basic discoveries into practical applications. Here, we synthesize
current knowledge on desiccation tolerance across evolutionary, ecological,
physiological, and cellular scales to provide a roadmap for advancing desic-
cation tolerance research. We also address critical gaps and technical road-
blocks, highlighting the need for standardized experimental practices,
improved taxonomic sampling, and thedevelopment of new tools for studying
biology in a dry state. We hope that this perspective can serve as a roadmap to
accelerating research breakthroughs and unlocking the potential of desicca-
tion tolerance to address global challenges related to climate change, food
security, and health.

Desiccation tolerance is one of nature’s most extraordinary phenom-
ena. Macromolecules, cells, and organisms typically require
high internal hydration to function1 and most of our understanding of
biology occurs within a narrow moisture window. However, there are
some organisms, tissues, and cells that can survive the near complete
loss of internal water without dying. Desiccation-tolerant cells and
organisms survive drying so extreme that there is insufficient liquid
water to form even a single layer of hydration around cellular struc-
tures and molecules2–4. Understanding the adaptive mechanisms that
preserve life in a desiccated state holds promise for various practical
applications, including the production, storage, and utilization of
agricultural, medicinal, and material products. For example, insight
into this phenomenon could drive innovations in optimizing dry sto-
rage of germplasms and labile macromolecules, facilitating the long-

term preservation of natural diversity, and has potential to accelerate
the bioengineering ofmore resilient crops. Advancing these objectives
is critical–now more than ever–given the unprecedented rates of
species and genetic diversity loss and the increasing frequency and
magnitude of natural disasters5.

The phenomenon of desiccation tolerance has long captivated
and perplexed scientists (Fig. 1)6–17, but unraveling the evolutionary,
physiological, and genetic basis of this trait has proven a formidable
challenge. The inherent complexity of desiccation tolerance and
diversity of desiccation-tolerant organisms, coupledwith the technical
limitations in experimental assays that require an aqueous environ-
ment, has hindered progress. Still, research on desiccation tolerance
has accelerated in recent years18,19, and this growing interest, combined
with technological advances in omics and other high-throughput
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methodologies, has led to a wealth of data across numerous mod-
alities. This growth offers exciting opportunities to accelerate break-
throughs and potential translational applications, but integration
across diverse study systems, scales of biological organization, and
individual labs remains a roadblock. Historically, desiccation tolerance
research has been conducted in siloed sub-disciplines defined pri-
marily by study organisms, with limited integration of findings across
kingdoms18. Currently, there is still considerable variation in the
organisms and questions being investigated, as well as the meth-
odologies employed and outcomes tracked. While this diversity is an
asset for data and hypothesis generation, standardization across sub-
disciplines is necessary to facilitate integration and unlock the full
potential of desiccation tolerance research.

Here, we provide an overview of the current understanding of
desiccation tolerance, summarize gaps and technical roadblocks that
should be addressed to accelerate desiccation tolerance research, and
highlight its potential translational applications. We outline core con-
ceptual frameworks and methodologies central to desiccation toler-
ance research, and present working definitions of key terms. We

suggest generalized best practices that span organisms and sub-dis-
ciplines, which we hope will facilitate knowledge integration. As the
field becomes more unified through the adoption of these shared
practices, we anticipate significant advances in xeropreservation
technology, synthetic biology, and other futuristic applications.

Definition of desiccation tolerance
What is desiccation tolerance? And what does it mean to survive or
maintain viability in a dry state? Developing language and consensus
around these concepts is critical for integration across the field. We
propose a set of working definitions (Box 1), built on historical fra-
meworks, which could be readily adopted by diverse sub-disciplines to
facilitate collaboration. To contextualize these definitions, it is
important to note that desiccation tolerance and the related term
‘anhydrobiosis’ are fundamentally different from drought avoidance
and resistance. Desiccation-tolerant cells dehydrate so completely that
essentially all measurable cellular activity ceases, yet somehow they
resume healthy cellular function within minutes to hours of rehydra-
tion. Desiccation-tolerant cells possess adaptations, either constitutive

Fig. 1 | Overviewof desiccation tolerance research. Summaries of a evolutionary,
b ecological, c morphological, d cellular, and e molecular aspects of desiccation
tolerance. f timeline of major natural and research milestones in desiccation tol-
erance. Colors represent the biological scale of each discovery: purple for dis-
coveries in evolution, blue for discoveries in geography, green for organismal-scale

discoveries, yellow for cellular-scale discoveries, and red for discoveries on the
molecular scale. Orange represents a historical biological event. For a brief history
of themoderndiscovery of desiccation tolerance, seeAlpert (2000). Illustrations in
(c–e) by Rachel Torrez.
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or induced during dehydration, which preserve cellular integrity in a
dry state and support repair upon rehydration. Decades ago, desic-
cation tolerance was defined as the ability to revive from equilibration
with the water potential of the air, which is predominantly low2. In
practice, this often equated to surviving equilibration to 50% relative
humidity at 20 °C, which corresponds roughly to a water potential of
−100MPa and the point at which the monolayer of water molecules
around cellular organelles breaks down4,20. Similarly, anhydrobiosis
was defined as the process bywhich anorganism canmaintain viability
in the dried state where there is insufficient water to support the
monolayered sphere of hydration around macromolecules and mem-
branes essential for enzyme activity3,21,22. These definitions, though
useful, lack flexibility regarding intermediate water potentials where
biological activity is severely inhibited, despite residual water, and do
not fully account for the multiple physiological, ecological, and ana-
tomical factors that influence desiccation tolerance. Therefore, we
suggest updated definitions (Box 1) that acknowledge the spectrum of
dehydration, placing desiccation at one extreme and hydration at the
other.Whilewe stillfind it useful to define thresholds and cutoff points
highlighting the extremity of desiccation tolerance, we suggest that
tolerance should be described on a continuum, allowing for a more
quantitative assessment. Massive shifts in cellular dynamics and
material properties occur between −5MPa and −100MPa20,23, and tol-
erance of these intermediate dehydration states is notably variable
across organisms and tissues. Dehydration tolerance should therefore
be described in relation to minimum recorded water content of the
sample, with desiccation tolerance being reserved only for those
samples with aminimum recordedwater potential < −100MPa (Box 1).

Evolution of desiccation tolerance
Understanding the evolution of desiccation tolerance is critical for
identifying the genetic, physiological, and ecological conditions that
enable life at the extreme. The evolutionary processes that gave rise to
desiccation tolerance also provide a blueprint for potential translation

into applied contexts. Desiccation tolerance has evolved recurrently
and convergently across the tree of life24–27 and is widely distributed
across taxa, spanning diverse prokaryotic and eukaryotic lineages
(Fig. 1a). Desiccation tolerance is an ancestral adaptation to periodi-
cally dry conditions that played a critical role in enabling the transition
of early life from aquatic to terrestrial environments. Desiccation tol-
erance likely arose in ancestral bacteria, archaea, and algal populations
as a response to periodic drying28. The rise and diversification of ter-
restrial organisms was enabled by ancestral traits present in these
lineages29–32. As some lineages diversified and adapted to terrestrial
life, they evolved other mechanisms to cope with water scarcity, and
many lineages lost their ability to tolerate desiccation as they evolved
alternative ways to escape or resist drought33. Interestingly, a few
animalsmaintained desiccation tolerance in their eggs or larvae, as did
many vascular plants in their seeds or spores, indicating that the
genetic potential for desiccation tolerance was widely retained across
hundreds ofmillions of years of evolution, but its expressionwasoften
developmentally restricted to specific tissue types and life stages. In
vascular plants, the occurrence of desiccation tolerance in vegetative
tissues is thought to be secondary, as compared to the ancestral
vegetative desiccation tolerance present in extant streptophytes and
bryophytes. This secondary evolution is thought to have occurred
through the rewiring of ancestral pathways that were maintained in
spores and seeds34–36.

There have been multiple evolutionary losses of desiccation tol-
erance, suggesting that there is a cost associated with maintaining
desiccation tolerance when it is not required for survival29,33,37. Indeed,
tradeoffs do exist between desiccation tolerance and other traits, such
as growth and productivity33, and these tradeoffs partially explain the
restricted distribution of many desiccation-tolerant organisms,
although there are exceptions38. The evolution of desiccation toler-
ance is often associated with expansion intomarginal habitats, such as
bare rock outcrops in the tropics39, tidal zones40, and hyper-arid
microclimates. Desiccation tolerance has evolved, been lost, and

BOX 1

Working definitions

Anhydrobiosis: The process of drying to a quiescent state, where there is insufficientwater to hydrate cellularmacromolecules andmembranes,
and resuming normal cellular function when rehydrated.

Desiccation tolerance: The ability to dry to a quiescent state and resume normal cellular functionwhen rehydrated. Typically, organisms and
cells are considered desiccation-tolerant when they can revive after being dried to, or below, −100 MPa (~10% dry mass).

Dehydration tolerance: The ability to dry to cellular water potentials between −5MPa and −100MPa and resume normal cellular function
when rehydrated. In practice, this should be described in relation to the minimum recorded water content of a sample.

Dehydration sensitivity: Inability to maintain viability after cellular water potential drops below −5MPa
Maintain viability: Preservation of cellular integrity, such that normal cellular function, including metabolism, growth, and reproduction

resume when cells regain full turgor.

Water Potential

Context for most biology Anhydrobiosis

Dehydration
sensitivity Dehydration tolerance

Desiccation
tolerance
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sometimes subsequently re-gained at different times than the genes
that influence desiccation tolerance phenotypes, complicating the
identification of evolutionary homologies. For example, genes that
underlie non-homologous desiccation tolerance phenotypes (e.g., due
to convergent evolution) might well be homologous (e.g., due to
shared ancestry), highlighting that some lineages could be genetically
predisposed to evolve desiccation tolerance.

The complex evolutionary history of desiccation tolerance has
given rise to a wide diversity of desiccation-tolerant organisms and
tissues. Not surprisingly, there is substantial variability in the combi-
nation of traits expressed in different lineages, and this remains poorly
understood, especially on a broad phylogenetic scale41. However,
comparisons within and across taxa have been leveraged to identify
phenotypic and genomic homologies underlying desiccation
tolerance27,42–46. For example, a growing number of sister-species
comparisons in vascular plants within families such as Selaginellaceae,
Linderniaceae, and Poaceaehave shown that the convergent expansion
of Early Light Inducible Proteins (ELIPs) distinguish the genomes of
desiccation-tolerant plants47–53. Desiccation tolerance also appears to
build on the deeply conserved genetic architecture of water deficit
responses27,42,46 and similar genetic features are evident across diverse
taxa43. Comparative studies at increasingly shallow evolutionary time
scales (e.g., within single species) have highlighted the role of gene
duplication and polyploidy in enhancing desiccation tolerance45. Phe-
notypic plasticity in desiccation tolerance also exists, perhaps best
studied in bryophytes54,55 and is itself a trait that can itself evolve.
Phenotypic plasticity is a matter of degree, so rather than using cate-
gorical terms, a more quantitative framework such as the norm of
reaction approach, which compares the phenotypes of each genotype
across an environmental gradient56 is recommended. Untangling the
complex evolutionary dynamics of desiccation tolerance requires
integration across scales and study systems.

Technological and computational advancements have acceler-
ated the use of omics approaches for untangling the evolutionary
history of desiccation tolerance across kingdoms57,58. Currently, over a
dozen genome assemblies of desiccation-tolerant or so-called “resur-
rection” plants have been published including for Boea hygrometrica16,
Craterostigma plantagineum59, Eragrostis nindensis52, Haberlea
rhodopensis60, Lindernia brevidens49, Microchloa afra27, Oropetium
thomaeum15,61, O. capense27, Selaginella tamariscina, S. lepidophylla50,
Sporobolus stapfianus53, Syntrichia caninervis17, S. ruralis, Tripogon
minimus27, and Xerophyta schlechteri, many of which are hosted at the
Drying Without Dying database (http://desiccation.novogene.com/
home)62 and are coupled with vast RNAseq and multi-omics datasets.
Comparatively, fewer genomic resources are available for desiccation-
tolerant animals, but genome assemblies exist for the midge Poly-
pedilum vanderplanki63, tardigrades Ramazzottius varieornatus64 Hyp-
sibius dujardini65 and Paramacrobiotus sp66, brine shrimp Artemia
franciscana67, rotifers Adineta vaga68, Rotaria macrura, and R.
magnacalcarata69, and nematodes Aphelenchus avenae70, Anguina
tritici71, and Caenorhabditis elegans72. Genome assemblies are also
available for numerous desiccation-tolerant algae73, bacteria, and
fungi. Comparative studies that leverage these phylogenetically
diverse datasets are a powerful way to understand the evolutionary
history and mechanisms of desiccation tolerance43. However, wide-
spread gaps in taxonomic sampling and genomic resources hinder our
ability to reconstruct the deep evolutionary history of desiccation
tolerance, and additional data are needed to understand con-
temporary evolution and local adaptation.

Ecology of desiccation tolerance
Understanding the ecological dynamicsof desiccation-tolerant species
is critical for identifying processes that sustain ecosystems and com-
munities in extreme environments. This knowledge will provide a
foundation for translating natural processes into conservation efforts,

sustainable management practices, and ecosystem engineering. In
many cases, desiccation-tolerant organisms can tolerate a variety of
extreme conditions beyond water limitation, including temperature
extremes above 100 °C and below 0 °C, high salinity, nearly complete
vacuum, intense radiation, and toxins2,74,75. This remarkable cross-
tolerance is typically only observed in the desiccated state76,77, but
many species alsohavemechanisms for accelerating their life cycle78–80

and avoiding carbon starvation81,82 that facilitate survival in extreme
environments.

It might seem intuitive that desiccation-tolerant organisms would
be linked to arid regions, but this is common only in some taxonomic
groups24,83. Many desiccation-tolerant organisms are found in wetter
climates but in microhabitats where water availability is sometimes or
always very low, including hypersaline lakes, ephemeral pools, rock
outcrops, or tree trunks and canopies76,84,85. So while desiccation-
tolerant organisms can be found almost anywhere on Earth, taxa are
not evenly distributed (Fig. 1b). Some groups have a cosmopolitan
distribution such as desiccation-tolerant tardigrades, nematodes,
lichens, bryophytes, and seeds, which are all found from the tropics to
Antarctica83,86, but other groups show more geographical and ecolo-
gical specificity. For example, the diversity of angiosperms with
vegetative desiccation tolerance increases towards the tropics and in
areas with moderate seasonal conditions41,84. More subtle patterns of
spatial distribution and habitat specification are evident within nar-
rower taxonomic groups. For example, desiccation-tolerant eudicots
are nearly absent from the Americas41. It is likely that inter- and intra-
specific differences in desiccation tolerance phenotypes partially
explain ecological and biogeographical patterns. Species native to
drier environments tend to tolerate more rapid, complete, or pro-
longed desiccation81 than species from more mesic environments.

There is a need to link species responses to community dynamics
and ecosystem functions, particularly in heterogeneous environments
where multiple selective pressures are at play. While data in this area
remain limited, assessing community-level dynamics of desiccation
tolerance has been explored in some systems. For example, soil crusts
that combine desiccation-tolerant bacteria, fungi, algae, lichens, and
bryophytes decrease erosion and fix nitrogen in arid systems world-
wide and are strongly affected by both climate change and human
disturbance87,88. Investigating the interaction of soil crusts (and the
desiccation-tolerant organisms that comprise them) with other eco-
logical processes will enhance our understanding of the roles of
desiccation tolerance in maintaining biodiversity, ecosystem resi-
lience, and stability.

Physiology and cell biology of desiccation tolerance
Understanding the precise physiological and cellularmechanisms that
enable desiccation tolerance is essential for nearly all potential appli-
cations. Desiccation tolerance is a complex, emergent phenotype that
requires the coordination of numerous cellular processes and bio-
chemical pathways. While many of the central cellular processes are
known, how they are regulated and coordinated remains unclear.
Despite the diversity of desiccation-tolerant organisms, certain
responses are widely shared across distantly related taxa20,43. For
example, leaf curling is commonly observed in desiccating plants
(Fig. 1c)53,89–93. Similarly, the dauer larvaeofmidges and nematodes coil
up, and tardigrades contract their bodies and retract their limbsduring
desiccation (Fig. 1c)25,86,94. These structural changes could simply be a
consequence of water loss but are also thought to help mitigate
mechanical damage due to volume loss, protect brittle appendages,
and reduce exposure to photooxidative damage. The pre-emptive
cessation of metabolism, including photosynthesis in photo-
autotrophs, also occurs during desiccation. However the cessation of
metabolic activity is a consequence of dehydration95 that does not
predict survival, but is only reversible in tolerant cells upon
rehydration.
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The impacts of dehydration and desiccation on cellular macro-
molecules and compartments are multifacteted: from intracellular
molecular crowding and concomitant higher local concentrations of
damaging reactive oxygen species (ROS), to the loss of the molecular
hydration layer94,96. ROS-associated DNA damage accrues during dry-
ing and in the dry state97–99 but chromatin condensation observed in
desiccation-tolerant tissues may minimize damage (Fig. 1d)98,100–105.
Increased molecular concentration leads to partial protein unfolding,
misfolding, and aggregation106, which in turn affects the function of
enzymes and macromolecular complexes, with the electron transport
chains of chloroplasts and mitochondria being major sites of damage
in sensitive organisms107,108. In desiccation-tolerant plants and some
bacteria, gross changes in cell wall shape are observed, and these
dynamics require cellular and tissue remodeling (Fig. 1d)109–111. Cellular
integrity is maintained under these conditions by complex cell wall
remodeling and folding to alleviate mechanical stress112, or by
increased vacuolation to maintain volume and shape111. The cytoske-
leton also undergoes significant changes as microtubules depolymer-
ize during drying and reassemble during rehydration (Fig. 1d)113. Lipid
bilayers exhibit increased fusion events and lipid phase transitions
(Fig. 1d), which desiccation-tolerant organisms counter by altering
lipid composition early in the drying response114.

Desiccation-tolerant organisms exhibit a dynamic accumulation
of protective proteins during the early phase of drying, including
various DNA-binding proteins, late embryogenesis abundant (LEA)
proteins, heat shock proteins (HSPs), lipocalins, and, in plants, ELIPs
(Fig. 1e)106,115–119. Many of these proteins are intrinsically disordered
(IDPs) and likely help to prevent protein aggregation, unfolding, and
membrane disruption, thereby preserving cellular organization106,120.
Some IDPs have now convincingly been shown to confer protection via
percolation or gel transitions that maintain cellular organization and
prevent drying-induced damage95,121–123. The formation of membrane-
less compartments via biomolecular condensation or gelation of
proteins could also play a role in the desiccation tolerance
phenotype124–128.

In desiccation-tolerant organisms, drying also leads to major
shifts in carbohydrate metabolism and the accumulation of protective
metabolites129,130. Non-reducing sugars such as trehalose, raffinose, and
sucrose play central roles in stabilizing desiccated cells and tissues
across various life forms, including bacteria, yeast, nematodes, inver-
tebrates, desiccation-tolerant (orthodox) seeds, and vegetatively
desiccation-tolerant plants130–133. For example, animals like brine
shrimp, nematodes, and tardigrades accumulate trehalose25,130,134, and
the accumulation of raffinose or sucrose appears to play an analogous
role in many desiccation-tolerant plants135. DNA damage is mitigated
by DNA-binding proteins that enhance desiccation protection136 but
there is also evidence of upregulated DNA repair machinery during
drying98, suggesting that bothDNAprotection and repair contribute to
establishing themaintenance of DNA integrity when the cells reach the
desiccated state. Similarly, sugars and IDPs appear to function syner-
gistically to help maintain membrane fluidity114,130 during the drying
process.

At sufficiently low water content, the cytosol will undergo vitrifi-
cation to adopt a non-crystalline or “glassy” solid state (Box 1;
Fig. 1d, e)137. This state reduces molecular motions that would other-
wise allow for the unfolding and aggregation of proteins, the fusion of
membranes, and the general loss of cellular organization and
integrity115,138. While cytosol vitrification is associated with desiccation
tolerance, it is not sufficient to confer tolerance, as any sufficiently
heterogeneous system (e.g., a cell) will form a vitrified, non-crystalline
state upon drying139. The ‘vitrification hypothesis’ has been a long-
standing theory which posits that desiccation-tolerant organisms
survive drying by vitrifying or forming non-crystalline glasses. The
theory suggests that by forming intracellular glasses, an organism
induces a super-viscous state in which molecular motions, such as

protein unfolding, are slowed to the point that they no longer take
place on biological time scales–thus preserving biological form and
function. Current work is focused on identifying the properties that
distinguish a protective vitrified system from a non-protective one.
While there is clearlymuchmore to learn about thematerial properties
andbiophysicsunderlying protective vitrification, an emerging picture
makes it clear thatglass transition temperature is not theonlyproperty
contributing to protection by glasses in the dry state139–141. Other
properties, such as glass former fragility, a measure of how a system’s
viscosity increases as it approaches its glass transition temperature
and/or dries, also often trend positively with survival in the dry
state25,139,140,142.

Roadblocks and key questions in desiccation tol-
erance research
Despite significant progress in understanding the mechanisms
underlying desiccation tolerance, many questions remain (Box 2), and
persistent roadblocks hinder comprehensive insights and translational
applications. A critical challenge is the lack of standardization in
experimental practices, includingdifferentmethodsof assessingwater
status, methods of drying and rehydrating specimens, the timing of
sampling, set of traits measured, and selection of metadata reported.
This variability complicates comparisons and synthesis across differ-
ent studies, organisms, and scales of biological organization. Technical
limitations to studying biology in a dry state, including the reliance on
water in traditional cell biology techniques, taxonomic sampling gaps,
and sparse ecological data, pose added challenges.

To advance research on desiccation tolerance, answer key ques-
tions (Box 2), and accelerate potential translational applications, it is
essential to address these gaps through the adoption of standardized
practices and by promoting the open and equitable sharing of
resources to strengthen collaborations. Below, we present a brief
guide to central concepts, approaches, and best practices for data
generation, standardization, curation, and synthesis in the context of
desiccation tolerance. We outline classic dehydration and rehydration
experiments, discuss key measurements, and propose essential
metadata that can be used to answer key questions in the field.

How do you know if a specimen is desiccation-tolerant?
In order to standardize and integrate across disciplines, we need to
agree on how to test if an organism, tissue, or cell is desiccation-
tolerant. To determine if a specimen is desiccation-tolerant, we must
first observe it in a desiccated state, and subsequently observe it
recover when rehydrated. However, this is not as simple as it sounds
and many factors impact drying and subsequent recovery. Thus, it is
important to test a selection of drying and rehydration scenarios
before drawing a conclusion (Fig. 2). Different species tolerate differ-
ent rates and intensities of drying, durations in a dry state, and rates of
rehydration54,92,143. Each species likely has an optimal drying scenario
that maximizes desiccation tolerance and this can be established
empirically by implementing sequential drying experiments (Box 3).
Considering the habitat and environment where the organism natu-
rally occurs can inform the design of ecologically relevant drying
scenarios and rehydration methods. Additional factors such as the
temperature, light, and starting condition of the specimen can also
have a substantial impact on survival and these should always be
reported. For example, exposure to previous dryorwet conditions can
influence recovery from desiccation in some species144,145 so the
experimental and growth conditions of materials should always be
reported. Rehydration methods also matter, and while specimens are
commonly rehydrated by the addition of liquid water, in some cases,
exposure to high humidity prior to the addition of water improves
recovery146.

Our working definition of desiccation tolerance hinges on mea-
suring the water status of a specimen in its most dehydrated state, and
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then detecting viability of the sample after rehydration (Box 1). While
measuring water potential directly is ideal147, for practical reasons,
measuring relativewater content (RWC), water content (WC as gH2O g
dwt-1), or drying to equilibration with a known relative humidity (RH),
may be more feasible (Box 3). Most methods for the direct measure-
ment of water potentials, such as thermocouple psychrometers, dew
point sensors, and pressure bombs have practical or technical
limitations148–150. It is for these reasons that gravimetry-based methods
for assessing water status, including RWC and WC, although less
comparable across species151, have been adopted (Box 3). Physiological
markers associated with water status, such as the cessation of
respiration, photosynthesis and other metabolic processes are useful
indicators for the early stages of dehydration (between −2 to
−15MPa20), and the extent of vitrification may be used to help validate
the more extreme changes in water status. We suggest that measures
of both water status and physiology be coupled to improve
robustness.

Drying to equilibrium with known relative humidities (Box 3) is
the most precise method for varying the rate and intensity of desic-
cation. This approach works well in many organisms such as bacteria,
yeasts, algae, bryophytes, and seeds, but is less useful for vascular
plants as it does not mimic their natural processes. Desiccation-
tolerant animals are typically desiccated by extended exposure to low
humidity environments, but it is unclear if drying continues to equili-
brium as water status is typically reported as WC25. Desiccation-
tolerant seeds are routinely dried to equilibrium with air at 10 to 20%
RH152. However, simply drying an organism to equilibrium with a

particular RH to establish if the organism is desiccation-tolerant does
not consider the impact of drying rate and rehydration on the toler-
ance, so again, multiple drying and rehydration scenarios should be
assayed.

Our definition of desiccation tolerance also relies on detecting
viability after rehydration. Viability is determined by evidence of cel-
lular function after rehydration including metabolism, growth, and
reproduction. In practice, this can take multiple forms. Some studies
measure growth and development following rehydration, while others
measure physiological markers of metabolism and photosynthesis,
and othersmeasure water status.Water status alone is not sufficient to
determine recovery, and we recommend that a combination of these
metrics be reported, with the caveat that researchers measuring
growth must distinguish between recovery of existing cells vs. new
growth, as only the former demonstrates tolerance. Viability after
desiccation is also influenced by the rehydration process, which can
impose additional stresses on organisms, so again multiple scenarios
should be assayed.

How do you measure physiological and cellular responses to
dehydration in desiccation-tolerant organisms?
A suite of physiological processes linked to desiccation tolerance can
be measured to gain insight into the degree of stress and mechanisms
of tolerance. Most of these manifest in the early stages of desiccation,
while water still remains in the tissues. The majority of cellular pro-
cesses cease at water potentials below −15MPa20,153 and the compo-
nents required for desiccation tolerance likely need to be assembled

BOX 2

Key questions in desiccation tolerance research

Evolutionary origins
• Howhas desiccation tolerance evolved across different taxa, andwhat genetic, physiological, and ecological factors influence its emergence
and loss?

• What are the evolutionary tradeoffs between desiccation tolerance and other traits, such as growth, metabolic rate, and reproduction?

Ecological dynamics
• How does the distribution of desiccation tolerant species correlate with environmental factors?
• What ecological interactions and community-level dynamics support desiccation tolerance?
• How do desiccation-tolerant organisms contribute to ecosystem stability and resilience?
• How are global changes in temperature and precipitation impacting the performance and survival of desiccation tolerant organisms?

Physiological and cellular mechanisms
• What cellular and molecular processes enable desiccation tolerance in different species?
• Howdoprotective proteins (e.g., LEAs, HSPs, ELIPs) and sugars (e.g., trehalose, sucrose, raffinose) interact tomodulate the vitrifiedproperties
of a cell and maintain cellular integrity during desiccation?

• What mechanisms restore cellular functions and repair damage upon rehydration?
• How is gene expression regulated during desiccation and rehydration, and what roles do chromatin modifications, non-coding RNAs, and
post-transcriptional modifications play?

• How can omics data be integrated to elucidate systems-level mechanisms of desiccation tolerance?

Data gaps and methodology
• How can taxonomic sampling of desiccation tolerant specimens be improved?
• How can existing techniques for studying the desiccated state be improved?
• What frameworks are needed to ensure that desiccation tolerance research is inclusive and FAIR (Findable, Accessible, Interoperable, and
Reusable)?

Translational applications
• How can desiccation tolerance research inspire novel materials and biotechnological innovations?
• How can xeropreservation of complex biological specimens be achieved?
• Can we engineer desiccation tolerance in seeds that are sensitive to desiccation?
• How can principles of desiccation tolerance be applied to enhance plant resilience under water-limiting conditions?
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prior to this. Cellular processes vary in their need for water: protein
and nucleic acid synthesis ceases when water potentials reach
approximately −5MPa, respiration ceases at ~ −15MPa, and enzyme
activity ceases at ~ −25MPa153. Biochemical changes at water potentials
below this are likely determined by chemical activity and physical
forces and are not biologically driven. The specific water requirements
for these processes vary across life forms and tissues, highlighting the
need for careful characterization of each desiccation-tolerant organ-
ism under consideration. Measuring these parameters across a drying
timecourse can help to determine the water content at which various
cellular processes cease.

Many properties and pathways involved in desiccation tolerance
can be surveyed across drying time courses, including oxidant and
antioxidant activity, changes in pigment concentration, and in the case
of plants, chlorophyll fluorescence parameters such as the maximum
(FV/FM) or effective (ΦPSII) quantum yield of photosystem II. To
complement these traditional physiological measures, changes in the
amount and combination of various sugars, such as trehalose, sucrose,
raffinose family oligosaccharides, and other metabolites can be tested
via metabolomics135, and proteins and transcripts can be quantified via
proteomics and transcriptomics. For desiccation-tolerant organisms
that undergo dry-wet-dry cycles in nature, the carbon balance
metric82,154,155, employing infrared gas analysis, is especially illustrative
of physiological tolerance. While this technique was originally devel-
oped for use with photosynthetic organisms, any organism that
exchanges gas with a headspace (e.g., biocrust communities156) can be
measured with respect to carbon balance, providing insights into the
relative level ofmetabolismduring dry-wet-dry cycles. Carbon balance

measurements can be applied to communities to assess combined and
emergent phenotypes or on individual community members (excised
or grown separately) to examine individual roles of organisms82.
Similarly, oxygen consumption can be measured in non-
photosynthetic anhydrobiotes (e.g., brine shrimp, nematodes, tardi-
grades) during desiccation157. Biophysical and material properties of
dried organisms, like changes in cytoplasmic vitrification, stability of
sugar glasses, molecular mobility, H-bonding patterns, and molecular
packing are informative and can be assayed by various forms of
spectroscopy158,159. Traditionally, glass transition temperature has been
considered a key protective property distinguishing desiccation-
tolerant from sensitive vitrified systems. However, recent work sug-
gests that properties such as glass fragility can be just as important in
conferring desiccation tolerance and therefore warrant further
research attention139.

Viewing organisms and cells in hydrated, dehydrated, and rehy-
drating states is useful and relies on microscopy and, in some cases,
spectroscopy. Changes to the structure of cells during desiccation and
rehydration can be observed using electron and light microscopy160 if
appropriate fixation techniques are utilized to prevent rehydration of
dried samples. To observe changes in protein localization and orga-
nelle morphology during desiccation and recovery, proteins can be
tagged with fluorescent markers and visualized by fluorescent
microscopy122,125,161. Changes in cellular rehydration can be measured
using genetically encoded multimeric nanoparticles162, which are
fluorescently labeled particles within cells that allow monitoring of
changes in sub-cellular diffusion and cytoplasmic viscosity163. Similarly,
changes to intracellularmolecular crowding during osmotic stress can

Fig. 2 | Generalized diagram depicting a desiccation-rehydration time course
for representative desiccation-tolerant organisms. a Shows organismal water
content as a function of environmentalwater availability and the drying parameters
that can be varied (rate of drying, intensity of drying, time in the dry state and rate

of rehydration). Boxes inb showexamples ofmeasurements that canbeperformed
in organismal biology, physiology, cell biology, andmulti-omics. Pre-measurement
conditions and data integration are important additional considerations. Illustra-
tions in (a) by Rachel Torrez.
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further be assayed using the Förster Resonance Energy Transfer based
sensor SED1164. Cell viability and division can be measured either by
using appropriate stains, microscopy, or growth assays such as colony
forming units in microbes165, or tissue growth in plants90. In addition,
cell membrane phase behavior can be quantified using Fourier trans-
form infrared spectroscopy166, and the viscosity of tissue can be pro-
bed by electron paramagnetic resonance158.

How do you integrate omics data to understand desiccation
tolerance at the systems level?
Systems-level analyses coupling genomics, transcriptomics, pro-
teomics, and metabolomics with traditional physiology and cell biol-
ogy offer powerful tools to elucidate the complex mechanisms
underlying desiccation tolerance. Desiccating cells undergo massive
shifts in transcriptomic, proteomic, and metabolomic profiles, and
capturing these changes has been central to dissecting the

mechanisms of desiccation tolerance. However, these high-
dimensional omics studies often suffer from inconsistent methodol-
ogies and incomplete metadata reporting, similar to those observed
more broadly in the plant drought response literature167. It is also
important to recognize that the presence of a compound (e.g., mRNA,
protein, metabolite) does not provide information about the balance
between synthesis and degradation. Indeed, there is often very little
correlation between transcript abundance and protein synthesis168,
and this also extends to the relationship between protein abundance
and metabolite levels169. As cells dry, their ability to synthesize tran-
scripts, proteins, and metabolites becomes compromised20. Thus,
increases in transcripts, proteins, and metabolites late in the drying
process are likely the result of changes in turnover rates, stability, or
sequestration, as seen in dehydrating Syntrichia ruralis170. This is par-
ticularly relevant to studies that are focused on the longevity of
desiccated samples where alterations in cellular components

BOX 3

Methods of measuring and controlling drying

WaterContent (WC):WC is commonly used to assess thewater content of bacteria, yeasts, algae, seeds, roots, andbryophytes and is calculated
as WC= (Fwt-Dwt)/Dwt where fresh weight (Fwt) is the initial weight in grams of the specimen and the dry weight (Dwt) is the weight of the
specimen in grams after oven drying to constant weight (for vegetative tissues, 65 °C to 75 °C; for seeds, 103 °C as recommended by the
International Seed Testing Association (ISTA, 2023)). Care must be taken to avoid the loss of volatiles in vegetative tissues and/or an increase in
mass of the dried samples due to absorption of water vapor between removal from a drying oven and weighing. Drying to 0.1 g H2Ogdwt-1 is
reported to be roughly equivalent to drying to −100MPa200 and would thus serve as a determinant for classification for desiccation tolerance
based on our working definition. WC assessments can be made more rigorous by verifying that tissues have stabilized and are no longer
decreasing in mass despite continued exposure to a constant dry environment, suggesting equilibration.

RelativeWaterContent (RWC):RWCmeasures thewater content of a tissue relative to theweight of the tissue at full turgor, and is calculated
using the equation: RWC= (Fwt-Dwt)/(FTwt-Dwt) × 100where Fwt = Fresh weight, Dwt = DryWeight and FTwt = Freshweight at full turgor201. Once
the fresh weight of the tissue has been recorded the full turgor weight is obtained by submerging the sample in water until the sample has
reached a constant weight (timingmust be determined empirically for each tissue type). In some cases, the tissue can be floated on the surface
or, in the case of some leaves, by submerging the specimen inwater. Theestablishment of the full turgorweight should include removal of visible
external water and be accomplished at 4 °C and in the dark tominimize the impact of respiratory and/or photosynthetic activity201. The tissue dry
weight is determined by oven drying the sample at 65 °C to 75 °C for 24 to 48 h. Although this is a useful measure in plant based studies, there is
nodirectwayof relatingRWC to thewater potential of the tissue.However, RWCcanbecalculated fromWC/WCFwhereWCF is the specificwater
content at full turgor. Drying to 10%RWC is roughly equivalent to −100MPa. RWCalsocomeswithacaveat in that it is not a very sensitive indicator
of plant water status when the water deficit is not severe202.

Equilibrium drying: Equilibrium drying is achieved by placing samples in a closed chamber over a saturated salt solution that maintains a
stable RH at a given and constant temperature, and then allowing sufficient time for the samples to reach a constant weight. The specific RH
within the chamber is determinedby the physico-chemical properties of the salt and can range from98 to 8%dependingupon the temperature151

Once the samples maintain a constant weight, the water potential of the organisms or tissues are at equilibrium with the water potential of the
surrounding air. The water potential of the air, and by extension the water potential of the sample at equilibrium, can be calculated using the
formula Ψ = (RT/Vw) ln (%RH/100) where Ψ =water potential, R = the gas constant, T = temperature in degrees Kelvin, and Vw = the partial molar
volume of water151. Water activity (aw) is also often used to describe thewater content of a tissue, and involves equilibrium drying such that at the
equilibrium RH (the sample would be at equilibrium) RH= aw X 100. For an organism or tissue to be considered desiccation-tolerant, it must be
equilibrated with a combination of RH and temperature that would deliver a water potential of −100MPa or less (an aw value of 0.5 or below).

Sequential dryingexperiments:Sequential exposure to adescending series of RHscanbeused tomanipulate the rate and intensity of drying.
Specimens can be removed and rehydrated at different points along the sequential drying process. In addition, specimens can bemaintained at
intermediateRHs for differing amounts of time tomodify drying rate. Drying rate can also be sloweddownby use of awetted substrate at a single
RH (preferably 50%) to slow the water loss203; the latter forms a region of high humidity at the surface of the substrate that slowly dissipates with
time55.

Measuring viability: Viability can be determined by screening for cell division, tissue growth, organismal movement, or physiological
markers. In the context of desiccation tolerance, it is critical that viability be assessed in cells that underwent desiccation or their daughter cells.
Cell division andgrowth are simplemetrics andcanbeused inmost systems.Cell division canbemeasuredbyusing a compoundmicroscope, in
microbes by testing for colony forming units165, or by visible tissue growth in plants90. In some organisms like C. elegans and tardigrades,
coordinated organismal movement after desiccation134,204 may be a more appropriate metric than cell growth or division because these
organisms only undergo cell division in some stages of their lifecycle. In early stages of recovery, changes in water content can serve as a proxy
for viability using infrared thermography. This technique has been used to visualize and measure RH-controlled “thermal fingerprints” of seeds
and several species of desiccation-tolerant lichens205, though thismay pose issues in organisms that take upwater when they are dead. In light of
this, physiological markers associated with water status such as the resumption of metabolism and photosynthesis, should be used to help
determine viability after rehydration.
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(transcripts, metabolites, etc.) are likely to result from instability,
chemical activity, or physical forces rather than biological activity
since cellular processes are non-operative in the desiccated state. Such
samples may also contain changing fractions of potentially viable and
nonviable components (cells, tissues), which can be difficult to deci-
pher in pooled samples. This begs the question as to whether or not
components that accumulate late in the drying process are important
during drying, are necessary for recovery upon rehydration, or are
needed to replenish depleted pools.

Pairedmulti-omic datasets with completemetadata are needed to
decipher these dynamics (Fig. 2). Recent technological advances that
enable measurements of genome accessibility and ribosome occu-
pancy can help resolve these uncertainties and many types of mea-
surements can be performed simultaneously171. Experiments that are
designed to integrate physiological, cellular, and -omic level processes
will allow for critical connections between form and function in
desiccation tolerance research. Expanding these studies further to
investigate community level responses is another important area for
future research. Such experiments also provide an obvious opportu-
nity to collaborate across labs and institutions to bring diverse
expertises together.

How do you manage, curate, and share your desiccation toler-
ance research data?
Desiccation tolerance research has generated large volumes of data
across all omics modalities as well as established and emerging
laboratory and in silico techniques. Such data can be expensive to
generate and, in the absence of harmonized metadata referring to
common technical standards, difficult to integrate between experi-
ments, let alone between laboratories167 and sub-disciplines.

Tomake efficient use of research funds and embrace productivity
gains from emerging computational techniques, data must be shared
in a FAIR (Findable, Accessible, Interoperable and Reusable) manner.
An attempt to achieve this has been initiated for desiccation-tolerant
plants in the Drying without Dying database62, but community buy-in
and extension to additional study organisms are needed. Shared
practices should not only apply to the laboratory, but be documented
and annotated with appropriate machine and human-readable meta-
data (Supplementary Table 1), and deposited in reputable repositories
that can guarantee longevity (Supplementary Table 2). Appropriate
metadata standards should capture and report sample histories and
status, and relevant environmental parameters such as the RH, light,
temperature, and water status. Standardized physiological data (e.g.,
water status, respiration, photosynthesis, etc.) should accompany all
omics studies to enable comparative analyses, and sampling times
should account for circadian regulation. Relevant standards and
guidelines for reportingdata andmetadata are listed in Supplementary
Table 3.

Prospects and future vision
Research on desiccation tolerance has immense potential (Fig. 3). The
adoption of standardized methods and FAIR data practices will
streamline the development of novel medical drugs and biofluids,
enhance techniques for the dry storage of cells, and stable biologicals
such as therapeutic antibodies and mRNA vaccines, and provide
genetic tools for engineering biostasis. This standardization could also
accelerate the engineering of crops that are more resilient to water
limitation, improve seed priming and conservation efforts, and target
pathogen dormancy, while inspiring the creation of new envir-
onmentally responsivematerials thatmimic these biological processes
for industrial, agricultural, and medical applications.

The study of desiccation tolerance has long promised to improve
human health and medical technology. For example, understanding
how pathogens or disease vectors tolerate desiccation will help com-
bat the spread of disease and could yield new drug targets172–174.

Metabolites such as trehalose, phenolic compounds, and essential oils
derived fromdesiccation-tolerant organisms have been recognized for
their antioxidant, anti-obesity, anti-inflammatory, antimicrobial,
osmotic stress reducing, and chemoprotective properties, and thus
carry potential for cosmetics, nutrition, and food storage175. Extracts
from several desiccation-tolerant plants are already used in anti-aging,
skin protective, and moisturizing lotions. Dietary intake of these
compounds has been associated with lower rates of cancer, diabetes,
and cardiovascular diseases and might improve meat quality, growth,
and gut function when used in animal nutrition176–182. However there is
a lack of information on possible side effects or contaminations in
these extracts and low biomass production challenges the sustainable
harvesting of desiccation-tolerant organisms. These challenges should
be tackled by the development of effective production systems, reg-
ulations to ensure sustainable use, and comprehensive toxicological
studies, guidelines, and regulatory frameworks to facilitate safe con-
sumer products178,182–184.

Promising applications also exist in “xero-” or dry-preservation of
biological materials that wouldmitigate the dependence on costly and
logistically difficult cryo-preservation and cold chain logistics. Cur-
rently, the state of the art lies in xeropreservation of simple biologics
such as vaccines and other molecular therapeutics185,186 as well as cell-
based biologics including platelets and stem cells187–190, but xer-
opreservation of tissues and increasingly complex systemscould beon
the horizon. Advancing these techniques will require refinement of
preservation techniques, possibly leveraging novel excipients, for-
mulations, and loading methods. Future advances could someday
move beyond molecules and cells to tissues, organs, or even whole-
organism stabilization. Of course, immunogenicity and toxicity studies
areneeded to assess the safety of novel excipients andbiologics stored
under new conditions, but this area holds promise.

Desiccation-tolerant plants and seeds also hold a wealth of
information relevant to agriculture, biotechnology, and material
science. Through direct genetic manipulation of key pathways and
their regulators, desiccation-sensitive seeds and crops could be
made more tolerant of water deprivation. Seeds of many tropical
plants, including high-value crops such as coffee, cocoa, and mango
are desiccation sensitive. Understanding desiccation sensitivity and
tolerance in these seeds is crucial for safeguarding the germplasm of
this important biodiversity. Even for traditional crops which are
unlikely to face vegetative desiccation, research on desiccation tol-
erance mechanisms could help improve performance under periodic
water deficits. For instance, desiccation inspired traits related to
osmotic adjustment, protective pigments, and oxidative stress
management could inform breeding strategies that enhance recov-
ery under drought stress. We acknowledge that extremewater deficit
experienced by desiccation-tolerant organisms differs substantially
from milder, sub-lethal drought stresses that agricultural crops are
faced with. However, metabolic and protective pathways activated in
desiccation-tolerant plants could be used to enhance survival across
a spectrum of water-limited conditions, especially in subsistence
agriculture, not just for engineering crops that survive desiccation
outright. As modern crop breeding shifts focus from purely max-
imizing productivity to enhancing resilience and ecological func-
tionality, desiccation tolerance research provides an opportunity for
developing crops that balance productivity with resilience under
marginal conditions. Studies have already demonstrated that over-
expression of LEA, HSPs, and other key desiccation tolerance genes
can improve photosynthetic rates and recovery under moderate
drought stress191–194. While industrialized, high-input agriculture
seeks to optimize yield, in regions where drought-related crop fail-
ures can lead to total food insecurity (e.g., smallholder or subsistence
farming systems), having a crop that can survive a period of water
deficit—enabling partial yield after rain returns—would be transfor-
mative. Indirect approaches, which circumvent the negative public
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perception of genetically modified organisms and the plant trans-
formation bottleneck, should also be exploited. For example,
desiccation-tolerant plants harbor valuable microbial diversity
that can be leveraged to enhance microbe-mediated drought
tolerance195–197. The root-associated microbiota of multiple
desiccation-tolerant plants are currently being tested as biostimu-
lants and stress-tolerance enhancers with promising results198,199.

Maximizing potential through interdisciplinary collaboration
and community building
Tremendous progress in understanding desiccation tolerance has
been driven by diverse research communities around the world. These
communities havepushedour understandingof howorganisms across
the domains of life survive desiccation, providing insight into the
biophysical, molecular, cellular, organismal, ecological, and evolu-
tionary mechanisms of tolerance. With these advances, our hope is
that we are now on the verge of unifying the field to translate these
results to practical uses.

In order to achieve these lofty goals, global partnerships and
interdisciplinary collaborations are needed. Collaborations that span
the scientific disciplines of biology, engineering, computer science,
and beyond should be coupledwith partnerships across governmental

agencies, entrepreneurs, and local communities. Integrating expertise
and principles from material engineering, computer science, and
biophysics will accelerate the development of new tools for studying
biology in a dry state and analytical approaches for integrating multi-
dimensional datasets. Of course, partnerships with governmental
agencies, non-profit organizations, and entrepreneurs are critical for
bringing advances to consumers while ensuring legal and ethical
compliance.

Breaking down the silos within desiccation tolerance research will
require investing in collaborations across diverse disciplines and glo-
bal regions. Given that desiccation-tolerant organisms are widely dis-
tributed with many important diversity hotspots in the Global South,
collaborations should respect the sovereignty and intellectual prop-
erty rights of local and indigenous communities, with equitable
benefit-sharing agreements established at their inception to ensure
compensation for germplasm or traditional knowledge. Partnerships
should also ensure that technologies for studying desiccation toler-
ance are both accessible and affordable. Open access to research tools,
data, and sharing platforms can democratize science, allowing a
broader range of researchers, including those from less affluent
regions, to participate. We advocate for developing methods and
approaches that are cost-effective and easily accessible across
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ideas

New tools for research on 
desiccation tolerance Biostasis of tissues 

and organisms

20242024
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subdisciplines and 
complementary 
analyses

Fully integrated, global, 
interdiscplinary network 
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drugs, vaccines, and 
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FAIR principles More resilient 
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Fig. 3 | Desiccation tolerance research, going forward. a De-siloing sub-dis-
ciplines of desiccation tolerance research. b Future prospects and possible appli-
cations of desiccation tolerance research. In (a), colors represent research in
desiccation tolerance at different biological scales (evolution, geography, organ-
ism, cell, and molecule). In (b), colors represent broad categories for aspirational

goals in desiccation tolerance research: purple for social and community growth
and development, blue for geographical advancement, green for organismal-scale
applications, yellow for cellular-scale applications, and red for applications on the
molecular scale. Orange represents broad, general advancements in desiccation
tolerance research.
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different geographical and economic landscapes. By continuing to
encourage and push for an inclusive, equitable, and interdisciplinary
global research network, we can help support a new standard for
desiccation tolerance research.
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