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Abstract 
Single-cell transcriptomics is a key tool for unravelling metabolism and tissue diversity in model organisms. Its potential for elucidating 
the ecological roles of microeukaryotes, especially non-model ones, remains largely unexplored. This study employed the Smart-seq2 
protocol on Ochromonas triangulata, a microeukaryote lacking a reference genome, showcasing how transcriptional states align with 
two distinct growth phases: a fast-growing phase and a slow-growing phase. Besides the two expected expression clusters, each 
corresponding to either growth phase, a third transcriptional state was identified across both growth phases. Metabolic mapping 
revealed a boost of photosynthetic activity in the fast growth over the slow growth stage, as well as downregulation trend in pathways 
associated with ribosome functioning, CO2 fixation, and carbohydrate catabolism characteristic of the third transcriptional state. In 
addition, carry-over rRNA reads recapitulated the taxonomic identity of the target while revealing distinct bacterial communities, in 
co-culture with the eukaryote, each associated with distinct transcriptional states. This study underscores single-cell transcriptomics 
as a powerful tool for characterizing metabolic states in microeukaryotes without a reference genome, offering insights into unknown 
physiological states and individual-level interactions with different bacterial taxa. This approach holds broad applicability to describe 
the ecological roles of environmental microeukaryotes, culture-free, and reference-free, surpassing alternative methods like metage-
nomics or metatranscriptomics. 

Keywords: single-cell transcriptomics, smart-seq2, Ochromonas triangulataSSU rRNA, uncharacterized diversity, microeukaryote, bacte-
rial community 

Introduction 
Microbial eukaryotes comprise the vast majority of known 
eukaryotic lifeforms [1]. They showcase a plethora of lifestyles, 
from free-living to strictly parasitic [2], photosynthetic, phagotro-
phic, or both [3, 4]. They exhibit a varied catalogue of gene 
expression quirks, such as mRNA fragmentation, trans-splicing, 
or translational slippage [5]. They are ubiquitous across most 
aquatic and terrestrial environments [6, 7], and are subject to 
very strong spatial and seasonal constraints [8, 9]. The unifying 
feature that groups them together, beyond their eukaryotic 
characteristics, is that they are single-celled and, therefore, 
microscopic. Their small size, coupled to the difficulty of culturing 
the overwhelming majority of known single-celled eukaryotic 
organisms [10], has technically limited the study of their 
taxonomy, physiology, and ecology to those species that could 
be readily cultured or visually recognized under the microscope. 

The advent and subsequent development of techniques based 
on nucleic acid sequencing has circumvented these limitations, 
greatly expanding our understanding of microeukaryote biology 
[11, 12]. During the last two decades, several en masse approaches 

based on molecular characterization (i.e. “omics” methods) 
have developed into pivotal tools to study the composition and 
functional potential of microbial communities. Many of these 
approaches, however, lack single-cell resolution and therefore 
cannot capture heterogeneity at the organismal level. Single-
cell methods have emerged to overcome this limitation. The 
advantages of targeting individual cells are multiple: assays 
require little starting material, are independent of culture 
availability, are not limited by high microbial community diversity, 
and provide resolution at organismal level. In the case of single-
cell mRNA sequencing (scRNA-seq), single-cell resolution allows 
accessing transcriptomic information that would otherwise be 
too scarce to be recovered from bulk extraction (e.g. when the 
abundance of target organisms is low), and can resolve coexisting, 
conspecific cell types with disparate gene expression profiles 
which otherwise would be averaged in an integrated sample. 

Despite the potential, studies targeting gene expression in 
microeukaryotes at single-cell levels are scarce, and mostly 
committed to either well-studied model organisms [13–15] or  
pathogenic apicomplexans, such as Plasmodium [16–18] and
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Toxoplasma [19]. To date, only three publications exist that offer 
insight into microeukaryote gene expression beyond either of 
these lineages: one exploring the feasibility of expression-targeted 
scRNA-seq in two small flagellates, the haptophyte Prymnesium 
parvum and the dinoflagellate Karlodinium veneficum [20], and two 
other uncovering the dynamics of infection of specific giant 
viruses within their eukaryotic hosts [21, 22]. This paucity of 
studies is partly a consequence of methodological constraints and 
challenges associated with single-cell transcriptomic techniques, 
such as the need for rapid cell isolation upon sampling, low 
throughput of isolation strategies compatible with large cells 
where manual cell isolation is the only feasible option, the low 
number of mRNA molecules per individual cells or the difficulty 
of lysing walled or shielded cell types [20, 23]. Despite these 
limitations, the Plasmodium and Gephyrocapsa (formerly Emiliania) 
huxleyi examples showcase scRNA-seq as a feasible approach to 
metabolically map distinct cell stages within complex microbial 
populations. However, both examples rely on the availability 
of either good reference genomes or an integrated reference 
transcriptome to which scRNA-seq reads can be mapped to build 
single-cell expression profiles. Given the difficulty of culturing 
most of the enormous diversity of single-celled eukaryotic life 
forms, such resources are typically scarce. In these cases, an 
ad hoc, partial transcriptomic reference can still be built by 
assembling de novo the whole set of mRNA reads from the total 
pool of captured cells. 

In this study, we aim to test if it is feasible to study the 
gene expression of a non-model microeukaryote. For this purpose, 
we use full-length mRNA sequencing to explore and analyse 
expression profiles of the single-celled chrysophyte Ochromonas 
triangulata. This eukaryotic culture was chosen for its mixotrophic 
nature where information about feeding behaviour was available, 
but a genomic reference was not. Cells from two distinct growth 
phases in culture were sorted using Fluorescence-Activated Cell 
Sorting (FACS) and single-cell transcriptomic libraries were pre-
pared following the Smart-seq2 protocol, which provides the full-
length transcript coverage needed for de novo assembly of its 
transcriptome. This study demonstrates the feasibility to study 
the gene expression and bacterial interactions of non-model envi-
ronmental microeukaryotes in a reference-agnostic, culture-free 
manner, with minimal interference on the samples. Given the 
abundance and ecological importance of these microeukaryotes 
in our ecosystems, the study fills a considerable methodological 
gap that has limited our ability to understand the functional and 
ecological roles of microeukaryotes in their native habitats. 

Materials and methods 
Individual O. triangulata cells were sorted from a unialgal non-
axenic culture selecting for microeukaryotes with plastids and 
feeding vacuoles. Transcriptomic libraries for these single cells 
were made according to Smart-seq2 protocol and then sequenced 
on NovaSeq 6000 (Illumina). Lacking reference genomes/tran-
scriptomes, de novo transcriptomes were assembled by pooling 
sequences from all cells together and annotated by sequence 
mapping as well as 3D protein structure mapping. This was fol-
lowed by downstream analyses, such as differential expression 
analysis and metabolic mapping. Leaked rRNA in the libraries 
were used to correctly identify O. triangulata as well as the indi-
vidual microeukaryotes’ associated bacterial communities. Fur-
ther details of individual steps are mentioned below and in the 
Supplementary material. 

Culture conditions 
Clonal, unialgal, and non-axenic stock cultures of the mixotrophic 
chrysophyte O. triangulata (∼8 μm in cell diameter) strain RCC21 
(Roscoff Culture Collection) were grown in batches of filter-
sterilized K/2 medium ([24], based on artificial seawater prepared 
according to [25]).  The cultures were serially kept at 18◦C under a 
12 h photoperiod (120 μmol m−2 s−1 photon flux measured with a 
QSL-100 spherical sensor, Biospherical Instruments) by diluting 10 
times a fraction of each batch into fresh medium approximately 
every 10 days. No bacterial supplement was added to the culture 
to sustain growth or promote feeding. Following this routine, 
representative cells from the fast-growing phase (0.6 doublings 
per day) were sampled after 2 days from the refreshing date, 
whereas representatives of the slow-growing phase (0.2 doublings 
per day) were sampled 11 days after refreshing. O. triangulata 
cell abundance prior to sorting was monitored daily using a 
CytoFLEX flow cytometer (Beckman Coulter). Cell discrimination 
was based on both side scatter signal (SSC) and chlorophyll 
a autofluorescence detected in the FL3 channel (EX 488, EM 
690/50). Cell abundance of the co-cultured, indigenous bacterial 
community was based on fixed samples (1% formaldehyde final 
concentration) kept at 4◦C upon fixation and analysed with 
the Cytoflex within 24 h from sampling after staining with 
SYBR Green I (Invitrogen) and jointly detected by SSC and FL1 
fluorescence (EX 488, EM 525/40). 

Sorting 
Cells from both growth phases were stained with LysoSensor Blue 
DND-167 (Invitrogen), used both as an indicator of cell viability 
and for presence of food vacuoles (Supplementary Fig. S1). Single-
cell sorting was performed with a MoFlo Astrios EQ cell sorter 
(Beckman Coulter) using 355 and 640 nm lasers for excitation, 
100 μm nozzle, sheath pressure of 25 psi and 0.1 μm sterile 
filtered 1× PBS as sheath fluid. Side scatter was used as trigger 
channel. Sort decisions were based on gates indicating presence 
of chlorophyll a (640-671/30 vs. SSC) in combination with LysoSen-
sor detection (355-448/59). Singlets were cytometrically selected 
based on the height-to-area relationship of the pulse (640-671/30 
Height-log vs. 640-671/30 Area-log). Individual cells were sorted 
based on the most stringent single-cell sort settings available 
(single mode, 0.5 drop envelope) and deposited into 384-well 
Eppendorf twin.tec PCR plates containing 2 μl of lysis buffer (see 
Library preparation section for composition). The sample plates 
were divided into four regions of equal size and cells from either 
growth phase were distributed in alternating regions to even out 
technical variation derived from downstream plate processing. 
The plate holder of the sorter was kept at 4◦C. After the sort, the 
plates were immediately spun down and kept on dry ice until 
transfer to −80◦C for storage. Flow sorting data were interpreted 
using the sorter-associated software Summit v 6.3.1. 

Library preparation 
All plates were processed according to the Smart-seq2 pro-
tocol [26] with slight modifications to comply with small-
volume handling robots (Smart-seq3, which combines full-
length coverage with UMIs, was unavailable to us at the time 
of this experiment). The oligo-dT (Smart-dTV30, 5′-Biotin-
AAGCAGTGGTATCAACGCAGAGTACT30VN-3′) primer, template 
switching oligo (TSO, 5′-Biotin-AAGCAGTGGTATCAACGCAGAGTA 
CATrGrG+G-3′) primer, and preamplification (IS-PCR, 5′-Biotin-
AAGCAGTGGTATCAACGCAGAGT-3′) primer were all modified 
with a 5′-biotin, which is crucial to increase cDNA yield by
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avoiding concatenation of TSOs after the first stand reaction 
[27, 28]. The lysis buffer contained a final concentration of 0.2% 
Triton-X100 (Sigma), 1 U/μl RNAse inhibitor (cat. no. 2313A, 
Takara), 2 mM dNTPs (ThermoFisher), Smart-dTV30 primer (IDT), 
and ERCC RNA Spike-in Mix (cat. no. 4456740, ThermoFisher) 
diluted 4 × 105 times. The lysis buffer was cold-dispensed in 
2 μl fractions using the MANTIS liquid dispenser (Formulatrix). 
Plates with sorted cells in lysis buffer were thawed and cDNA 
generation was conducted in 5 μl reactions containing a final 
concentration of 1× Superscript II buffer, 5 mM DTT, 1 M MgCl2, 
1 U/μl RNAse inhibitor (cat. no. 2313A, Takara), 5 U/μl SuperScript 
II Reverse Transcriptase (Invitrogen), and 1 μM TSO (Qiagen). The 
master mix was dispensed using the MANTIS liquid dispenser 
followed by mixing for 1 min at 1800 rpm on a plate shaker 
(Biosan). First strand reaction was run at 42◦C for 90 min, 
followed by 10 cycles of 50◦C for 2 min and 42◦C for 2 min, 
with a final 5 min extension at 72◦. A  72◦C initial denaturation 
step was omitted as this had shown to have no effect on the 
results. 

Preamplification was performed in 12.5 μl final volume with a 
final concentration of 1× KAPA HiFi HS RM (Roche) and 10 μM 
IS-PCR primer. Following 3 min at 98◦C, amplification was for 
24 cycles of 98◦C for 20 s, 67◦C for 15 s, and 72◦C for 6 min, 
with a 6 min final extension at 72◦C. Bead cleanup of cDNA 
was automated using the Biomek NXP liquid handler (Beckman 
Coulter), AMpure beads, and an Alpaqua 384 post magnet with 
spring cushion technology (Alpaqua). In short, 10 μl beads were  
added to the 12.5 μl cDNA, the plate was mixed for 1 min at 
1800 rpm on a plate shaker and incubated for 8 min before 
spinning down the liquid and placing the plate on a magnet 
for 5 min. While on the magnet, the supernatant was removed 
and 25 μl of freshly prepared 80% EtOH was added and then 
aspirated after 30 s. The washing was repeated and the plate 
was left to dry for 2–3 min. Elution of cDNA was done by adding 
13 μl of water to the wells and the plate was then mixed before 
5 min of incubation at RT. Plates were briefly centrifuged and 
then put on the magnet for 2 min before transfer of 10 μl to a  
new plate. 

Twenty-two single reactions were randomly chosen across the 
plate for quantification using Qubit HS DNA ready mix, of which 
11–15 samples were also run on the Bioanalyzer using the HS DNA 
chip (Agilent). 

Sequencing 
Nextera XT libraries were prepared in 5 μl reactions where all 
reagent volumes had been scaled down 10-fold. The purified 
cDNA was diluted to ∼200 pg/μl based on the average cDNA 
concentration of the 22 randomly chosen reactions. The amplicon 
tagment mix (ATM) and tagment DNA buffer (TD) reagents were 
premixed and distributed in a 384-well plate before adding cDNA 
using the Mosquito HV contact dispenser (SPT Labtech). Barcodes 
of the Illumina Nextera DNA UD index set A-D (Illumina) were 
diluted 1:5 prior to the library amplification. Reactions were run 
for 12 cycles according to cycling conditions recommended by 
the manufacturer. For all steps, including manual mixing, a plate 
shaker run at 1800 rpm and a plate spinner were used. Single 
reactions from each plate were pooled and purified using 1:0.8 
AMPure XP beads. The two pools from each plate were run on 
separate lanes on a NovaSeq 6000 SP v1.5, PE 1× 150 bp, including 
1% PhiX spike-in. All sequence data generated in this project 
have been deposited in the European Nucleotide Archive (ENA) at 
EMBL-EBI and made publicly available under accession number 
PRJEB60973. 

De novo transcriptome assembly and read 
mapping 
Non-rRNA reads were run through kraken2 v2.1.2 [29] to identify 
contaminants. Trinity [30] was used for de novo combined assem-
bly of the O. triangulata partial transcriptome as a reference. Reads 
from all the individual cells were combined for this task. Following 
assembly, reads from individual cells were aligned to the reference 
transcriptome using Bowtie [31] and transcript abundance was 
estimated using RNA-Seq by Expectation Maximization (RSEM) 
[32]. The expression was normalized for each cell and all down-
stream expression values use transcripts per million (TPM) units. 

Clustering and transcript analysis 
Before clustering, data from cells with very low read coverage 
(fewer than 50 000 reads) were removed. Additionally, contigs 
that were observed in only a single cell or had over 20 million 
TPM across the population were filtered out to avoid under-
and over-representation bias, respectively. The transcript count 
matrix was dimensionally reduced using t-SNE (t-distributed 
stochastic neighbourhood embedding). Further, clustering was 
performed using the DBSCAN (density-based spatial clustering of 
applications with noise) algorithm (five minimum points within 
ε = 4.5). Transcript accumulation and transcript coverage curves 
following rarefaction were generated using the iNEXT R package 
[33] analogously to procedures used for obtaining curves of 
species accumulation and species coverage [34], using as counter-
parts transcript identity for species identity and cell identity for 
sample site. 

Transcriptome annotation 
The de novo assembled transcriptome was annotated using blastx 
as implemented in the BLAST+ suite [35]. UniProtKB/Swiss-Prot 
was used as the database for the annotation. MGkit [36], AGAT 
(v1.1.0, [37]), and TransDecoder (v5.5.0, [38]) were used to obtain 
only the annotated parts of the assembled contigs. The longest 
isoforms were selected using a custom python script. Reads from 
the individual cells were re-mapped to the annotated transcrip-
tome for further expression analysis. 

Differential expression analysis 
Pairwise differential expression analysis was carried out using 
DESeq2 [39]. The analysis was performed with reads mapped to 
both the assembled transcriptome and the annotated transcrip-
tome separately. Transcripts with a Benjamini–Hochberg adjusted 
P-value <.05 were considered as differentially expressed. 

Metabolic mapping 
The expression matrix of annotated transcripts was mapped to 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
database. Pathview [40] was used to map mean expression levels 
of proteins in the three clusters to metabolic maps or pathways 
obtained from the KEGG Orthology database. To reduce the num-
ber of maps to a tractable number, only maps with at least 1 
matched protein, 0.25 match ratio (number of matched protein-
s/number of proteins in pathway), and 0.1 differential expres-
sion ratio (number of differentially expressed proteins/number 
of matched proteins) were retained. The remaining pathways 
were manually inspected and pathways where the only differ-
entially expressed genes were not specific to the pathway were 
removed.
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3D structure-based transcriptome annotations 
70 447 open reading frames, identified using TransDecoder (v5.5.0, 
[38]), were selected from 150 823 transcripts after filtering out 
transcripts that were present in a single sample or had a cumula-
tive TPM of over 20 000 000. Of these, very large proteins (>800 aa) 
were excluded, and 3D structures were generated for 66 973 pro-
teins using ESMFold [41]. After removing structures with low con-
fidence (predicted local distance difference test (pLDDT) ≤ 0.5), 
54 721 proteins remained. Read mapping was done, using the 
same reads, against the corresponding transcript open reading 
frames (ORFs), which was a subset of the assembled transcrip-
tome, using RSEM [32]. Structural search was performed using 
Foldseek [42] against the Protein Data Bank (PDB; [43]) as well 
as the AlphaFold structures of the Uniprot/Swiss-Prot database 
(AFDB; [44]) with an e-value cut-off of 10. Differential expres-
sion analysis using DESeq2 [39] and metabolic mapping using 
pathview [40] was conducted on the reads mapped to these PDB 
and AFDB annotated proteins. Protein functions, in the form of 
Enzyme Commission (EC) numbers, and Gene Ontology:Biological 
Processes (GO:BP) terms were predicted via graph convolutional 
networks using DeepFRI [45]. Gene set enrichment analysis was 
performed using fgsea [46] with the predicted GO:BP terms as 
the gene sets and the list of differentially expressed genes as the 
preranked list. 

Detection and annotation of rRNA reads 
Detection of sequence reads originating from rRNA was carried 
out with RiboDetector [47]. For taxonomic classification of puta-
tive rRNA sequences, reads of 150 nucleotides or longer and 
represented at least twice in the whole dataset were annotated 
using the SINTAX algorithm implementation in VSEARCH [48, 49] 
against the PR2 Reference Sequence Database version 4.14.0 [50] 
for eukaryote identification and against the SILVA 138 SSU Ref 
NR 99 [51] for prokaryotic community identification. Prokaryotic 
data were filtered to remove common human and laboratory-
associated contaminants [52]. Alpha and beta diversity of the 
associated prokaryotes was analysed using the R packages mia 
[53] and  vegan [54]. Differential abundance was determined by 
a consensus of DESeq2, LinDA [55], MaAsLin2 [56], ANCOM-BC 
[57], and ALDEx2 with an adjusted P < .05 (Benjamini–Hochberg 
correction) [58]. 

Results 
De novo transcriptome assembly reveals three 
distinct metabolic states in unicellular eukaryote 
Ochronomas triangulata cells sampled from two distinct growth 
stages (Fig. 1A) were sorted based on the joint signal of chlorophyll 
a and LysoSensor Blue (Fig. 1C and Supplementary Fig. S2). A 
total of 744 single-cell mRNA libraries were sequenced, yielding 
a median of 1.4 M reads per cell. De novo assembly of reads pooled 
across all cells produced a transcriptome of ∼166 000 contigs 
(median length 432 bases), which reduced to 60 307 (median 
length 835 bases) after removing contigs that were not observed 
in at least two cells (Supplementary Fig. S3). After mapping reads 
to the assembly, 23 cells that failed to map at least 50 000 reads to 
the working transcriptome were excluded from further transcrip-
tomic analysis. Of the remaining set of 721 cells, t-SNE dimen-
sionality reduction and DBSCAN clustering of expression profiles 
correctly identified 646 cells with their sorting-based affiliation 
(Fig. 1B). Unexpectedly, a third, as yet uncharacterized, cluster of 
cells originating from both the fast (37 cells) and slow (38 cells) 

sort groups were observed and will henceforth be referred to as 
the uncharacterized cluster/cells. 

In total, 19% of the contigs were present across all three 
expression clusters and 53% were shared by only the fast- and 
slow-growing clusters, whereas less than 1% were unique to the 
uncharacterized cluster (Fig. 1D). However, all expression clusters 
showed coverage of cluster-specific transcriptomes at or above 
80%, with the fast- and slow-growing clusters very close to full 
transcriptome completeness (Fig. 1E). 

Core metabolic activity occurs in three distinct 
levels in the three clusters 
Only 17 883 transcripts out of the 60 307 contigs could be 
annotated using sequence homology against the UniProt database 
(see Supplementary Fig. S4 for the proportions of annotated 
transcripts per expression cluster), corroborating the underrep-
resentation of annotated protist sequences in public databases 
[59]. Pairwise comparisons among the three distinct cell clus-
ters revealed 538 differentially expressed annotated genes 
(DEGs; Fig. 2). Mapping these DEGs against KEGG Orthology 
pathways identified four main pathway families: transcription 
and translation processes, vesicle maintenance and membrane 
trafficking, photosynthetic activity, and carbohydrate metabolism 
(Fig. 3). DEGs in the KEGG pathways detected from any pairwise 
comparison against the uncharacterized group were in all 
instances and without exception, downregulated in the latter. 

Three pathways related to transcription and translation (ribo-
some, protein processing, and proteasome) featured the highest 
number of differentially expressed genes. In addition, two other 
key components in the progression from transcript to functional 
protein (spliceosome, protein export) also had a small number of 
differentially expressed genes. Downregulation of genes involved 
in such processes was prevalent in the uncharacterized cells (28 
and 33 genes when comparing it to the slow-growing or fast-
growing cells, respectively). This agrees with the expression level 
pattern across the groups (Fig. 2) and suggests reduced transcrip-
tional activity in the uncharacterized group when compared to 
the other two. 

The second pathway family (endocytosis and lysosome path-
ways) provides insights into endocytic behaviour, revealing joint 
downregulation of clathrin and AP-2 (both essential coating com-
ponents of vesicles resulting from endocytosis) in the uncharac-
terized group as well as high expression of lysosomal proteases 
(homologues of tripeptidyl-peptidase 1 and cathepsin A, B, D, F, 
and X) in fast- and slow-growing expression clusters in parallel 
with negligible expression of these proteases in the uncharac-
terized group. These observations, although limited, provide evi-
dence of active lysosomal digestion in the growing cells, which in 
contrast seems to be absent from the uncharacterized cells. 

The third and fourth pathway families, represented by 
the pathways associated to photosynthesis and carbohydrate 
metabolism, harbour the highest number of DEGs featured in the 
whole set of KEGG and provide the clearest picture associated to 
physiological differences between cell stages (Fig. 4). In all cases, 
DEGs in this category showed high expression in the fast-growing 
cells, and low in the uncharacterized cells, whereas expression 
was either intermediate or comparable to the fast-growing in the 
slow-growing cells. 

Widespread downregulation of carbohydrate catabolism is 
a pronounced feature of the uncharacterized cells, apparent 
through the downregulation of key enzymes of the glycolysis 
pathway (phosphofructokinase-1 and pyruvate kinase), the β 
oxidation of fatty acids (enoyl-Coenzyme A (CoA) hydratase,

D
ow

nloaded from
 https://academ

ic.oup.com
/ism

ej/article/19/1/w
raf046/8064733 by Torgny N

Ã?Â¤sholm
 user on 25 April 2025

https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wraf046#supplementary-data
https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wraf046#supplementary-data
https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wraf046#supplementary-data


scRNA-seq of non-model microeukaryote | 5

Figure 1. Sampling, sorting, and clustering Ochromonas triangulata. (A) Growth curves of source cultures for cells during exponential growth stage (fast 
growth) and linear growth stage (slow growth). Batch labels refer to the source culture for cells in slow (B14) and fast growth (B15). Arrowheads indicate 
the sampling points for each stage. (B) t-SNE visualization of expression clusters. Each dot represents one cell color-coded based on its sampling origin. 
Clusters identified by DBSCAN are enclosed by a dotted line. (C) Flow cytograms showing placement of FACS-sorted O. triangulata cells (coloured dots) 
for each growth stage, with cells from the uncharacterized third cluster coloured grey. (D) Venn diagram showing the number of shared and exclusive 
transcript sets among postclustering groups. (E) Partial transcriptome coverage plot for each postclustering group. The black dots indicate sample size,  
the solid lines follow sample rarefaction, and the dotted lines represent an extrapolation based on the rarefaction model for each group. 
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Figure 2. Heatmap of annotated genes that were differentially expressed between different Ochromonas triangulata growth stages. Coloured rectangles 
in the horizontal axis indicate cell affiliation to clustering group. Circle pairs indicate pairwise comparisons between stages. Those cases where gene 
expression in one group is significantly different to that of the other two groups, the joint is represented by a split circle in which the color of each half 
encodes the identity of each member. A three coloured circle represents cases in which gene expression differs significantly for any possible pairwise 
comparison. The colours in circles and rectangles correspond to fast-growing (cyan), slow-growing (red), and uncharacterized (grey) stages. 

β-hydroxyacyl-CoA dehydrogenase, and acyl-CoA acetyltrans-
ferase), and the tricarboxylic acid (TCA) cycle (citrate synthase) 
( Fig. 4A). Expression of all enzymes involved in β oxidation and 
most enzymes in the TCA cycle was recovered in all three 
clusters. Low expression of genes mediating such pathways in the 
uncharacterized cluster implies low levels of energy production 
for cell maintenance when compared to the other two groups. 

In contrast, observable in the fourth KEGG family pathway with 
the highest number of DEGs (porphyrin metabolism; Fig. 3), exac-
erbation of chlorophyll a synthesis manifested in the fast-growing 
stage (Fig. 4B). It involves the upregulation of five enzymes in 
the pathway, including magnesium chelatase, which catalyses 
the first committed step of chlorophyll a production, and pro-
tochlorophyllide reductase, which generates chlorophyllide a, the  

immediate precursor of chlorophyll a. A putative increased 
chlorophyll a production in the fast-growing stage is in accor-
dance with an enhanced chlorophyll fluorescence signal in the 
sorting cytograms (Fig. 1B). 

Downregulation of key enzymes of the Calvin cycle in the 
uncharacterized cells (fructose 1,6-biphosphatase and fructose-
bisphosphate aldolase, both catalysing unidirectional reactions, 
Fig. 4C) indicates little or no carbon fixation in this group. At the 
same time, upregulation of photorespiration enzymes in the fast-
growing stage suggests high CO2 fixation activity associated to 
these cells, because this is a compensatory mechanism to coun-
teract the efficiency loss in carbon fixation due to the oxygenase 
activity of rubisco [60]. Photorespiration is expected to occur in 
peroxisomes [61], which are not characterized in chrysophytes but
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Figure 3. Summary of KEGG pathways associated to multiple differentially expressed genes. For each pathway label, n indicates the total number of 
genes that belong to the pathway and m the number of genes for which expression was recovered in our transcriptomes. 

are reported in other stramenopiles based on microscopic and 
genomic evidence [ 62, 63]. This, in combination with increased 
chlorophyll a production, indicates fast growth conditions are 
facilitated by photosynthesis. 

Among DEGs not associated to a relevant KEGG pathway, 
only three show significant upregulation in the uncharacter-
ized cluster. Their UniProt-based annotation corresponds to 
prokaryotic entries in the database, although the three genes 
have also eukaryotic homologues. Additionally, many genes 
unique to this uncharacterized group (42 of the 183 contigs) all 
had prokaryotic hits as basal annotation, 22 of which lack any 
eukaryotic homologue. 

Structural homology analysis pipeline adds 
annotation and upholds sequence 
homology-based inferences 
ESMFold successfully predicted the 3D structures for 54 725 pro-
teins (Fig. 5E and Supplementary Tables S1 and S2), including 
32 858 proteins with high confidence (0.7 < pLDDT ≤ 0.9) and 8328 
proteins with very high confidence (pLDDT > 0.9). Cells in fast-
growing, slow-growing, and uncharacterized clusters featured a 
median of 1094, 878, and 624 expressed protein-coding genes, 
respectively (Fig. 5A). Over 80% of the predicted structures were 
common to both fast- and slow-growing clusters, whereas only 
0.22% were unique to the uncharacterized cluster (Fig. 5C). The 

distribution of predicted protein encoding genes expressed in the 
three clusters was similar to the distribution based on sequence 
homology. A median of 164 184, 122 519, and 75 196 RNA reads 
mapped to the fast-growing, slow-growing, and uncharacterized 
cells, respectively, based on the transcripts associated to pre-
dicted structures. Overall, these comprised 9.31% of all reads 
sequenced, which is similar to the 10.5% reads mapping to the 
transcripts annotated by sequence similarity analyses (Fig. 5B and 
Supplementary Fig. S5). 

Unlike sequence similarity-based annotation, where only 
29.6% of the transcripts were successfully annotated, over 99.9% 
of the transcripts were successfully annotated based on structural 
homology. A total of 1397 of these transcripts were differentially 
expressed between the comparisons, with significant differences 
in all three comparisons for 557 transcripts bearing high 
expression in fast-growing cells, intermediate expression in 
slow-growing cells, and low expression in uncharacterized cells 
(Fig. 5D and Supplementary Fig. S6). Additionally, there were 339 
transcripts that had comparable expression between fast- and 
slow-growing cells, but having low expression in uncharacterized 
cells. 

Between sequence-similarity–based analysis and structure-
similarity–based analysis, there was large overlap among the 
KEGG pathways associated with differentially expressed genes 
(Figs 2 and 5F); these pathways represented transcription and
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Figure 4. Differential expression in key metabolic pathways involving (A) carbohydrate catabolism (glycolysis, tricarboxylic acid cycle, and β oxidation 
of fatty acids), (B) chlorophyll a synthesis, and (C) carbon fixation (Calvin cycle, CCM mechanism, and photorespiration). Coloured arrows represent 
enzymes that catalyse the depicted reactions. Black dots indicate enzymes that only catalyse the reactions in the depicted direction. Dashed lines 
indicate substrate translocation across organelle boundaries. 

translation, photosynthesis, and cell metabolism associated 
pathway groups. Additionally, pathways associated with cell 
cycle (focal adhesion and oocyte meiosis) and oxidative stress 

(autophagy and peroxisome) were identified. This was further 
evident from gene set enrichment where a total of 100, 91, and 
69 GO:BP gene sets were significantly enriched for in the three 
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Figure 5. Protein tertiary structure-based analyses. (A) Distributions of protein richness per cell. (B) Relative proportion of total reads that either did 
not map to the assembled transcriptome, were assigned as ribosomal, or mapped to unannotated contigs or structurally annotated proteins (C) Venn 
diagram showing the number of shared and exclusive protein sets among postclustering groups. (D) Venn diagram showing the number of shared and 
exclusive protein sets that were differentially expressed among the postclustering groups. (E) Distribution of the predicted protein structures on 
protein sequence length (no. of amino acids: small (0, 200], medium (200, 400], large (400, 800]), and structure confidence (pLDDT scores: good (0.5, 0.7], 
high (0.7, 0.9], very high (0.9, 1]) axes. (F) Summary of KEGG pathways associated to multiple differentially expressed genes (n = no. of proteins in 
pathway, m = no. of those proteins recovered). Functions and pathways also identified by sequence homology (Fig. 3) include transcription and 
translation (ribosome, protein processing in endoplasmic reticulum, and proteasome), photosynthesis (porphyrin metabolism, photosynthesis, and 
carbon fixation in photosynthetic organisms), and cell metabolism (glycolysis, pyruvate metabolism, citrate cycle, fatty acid biosynthesis, and 
elongation) associated pathway groups. 
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comparisons: fast- vs. slow-growing, uncharacterized vs. fast-
growing, and uncharacterized vs. slow-growing comparisons. 
These enriched gene sets included GO terms for cellular response 
to oxidative stress (GO:0034599), oxygen radical (GO:0071450), 
reactive oxygen species (GO:0034614), stress (GO:0033554), as 
well as DNA repair (GO:0006281). Some pathways’ enrichment 
suggested bacterial symbiosis, for instance, interspecies interac-
tion (GO:0044419) and symbiotic interaction (GO:0044403) and 
potentially bacterial invasion, for instance, interaction with host 
(GO:0051701), entry into host (GO:0044409), and movement in 
host (GO:0052126, Supplementary Tables S3–S5). 

rRNA read carry-over enables identification of 
microeukaryote and distinct associated 
prokaryotes 
Overall, 241.7 M reads were predicted to be of rRNA origin across 
all samples (24% of the total), although rRNA read coverage was 
uneven across cell types, constituting 33%, 16%, and 4% of the 
fast-growing, slow-growing, and uncharacterized cells, respec-
tively (Supplementary Fig. S5). After discarding singletons and 
reads shorter than 150 nucleotides, the resulting set was success-
fully de-replicated into 4.5 million unique sequences. Of these, 
one third (33%) contained useful information for taxonomic anno-
tation and could be classified with confidence (>0.8 bootstrap 
support). Annotated read recovery across samples was sufficient 
(median 106 688 sequences per sample) to correctly annotate 
most cells (88%) as O. triangulata (median 23 811 per sample). The 
remaining 75 cells belonged, without exception, to the uncharac-
terized cluster. 

Median rRNA abundance in the uncharacterized cluster, 
across all rRNA genes, was low (∼43 000 reads per cell). A 
broadly reduced expression landscape, which also includes lower 
demand for rRNA (as suggested by generalized downregulation 
of ribosomal proteins, Fig. 3), might explain insufficient rRNA 
coverage for unambiguous annotation of cells characterized by 
low transcriptional activity. 

The 16S rRNA read recovery across the samples was rel-
atively low (median 2807 reads per sample) but saturated 
(Supplementary Fig. S7), and sufficient to characterize the 
prokaryotic community composition associated with individual 
O. triangulata cells. 

The prokaryotic communities of the uncharacterized cells 
were more internally uniform (Fig. 6A and B; median Bray–Curtis 
dissimilarities 0.23 within the group) compared to the fast-
growing and slow-growing cells (median Bray–Curtis dissimilarity 
0.31 and 0.38 within the groups, respectively; Fig. 6B). The 
prokaryotic communities were significantly different between 
the fast- and slow-growing (Permuttional Analysis of Variance 
(PERMANOVA): R2 = 0.32, P = .001; median Bray–Curtis dissimilarity 
0.50), fast-growing and uncharacterized (PERMANOVA: R2 = 0.60, 
P = .001; median Bray–Curtis dissimilarity 0.80), and slow-growing 
and uncharacterized cells (PERMANOVA: R2 = 0.22, P = .001; 
median Bray–Curtis dissimilarity 0.47). Bacterial alpha diversity 
(richness) also was significantly different between the three 
groups (Supplementary Fig. S7C). 

The proportion of 16S rRNA to total rRNA was significantly 
higher in the uncharacterized cell cluster compared to the fast-
and slow-growing groups (Wilcoxon P < 2.2 × 10−16 and P < .009, 
respectively), whereas the proportion of 16S rRNA to total RNA 
was not significantly different between any of the groups (Fig. 6C). 
This is in contrast with the proportion of the 18S rRNA to all 
rRNA and all RNA reads, where the 18S rRNA proportion for the 
uncharacterized group was significantly lower than the others 

(Wilcoxon test P < 2.2×10−16 and P < 2.2×10−16, respectively). The 
differentially abundant families (Supplementary Fig. S7C and 
Supplementary Table S6) between the cell clusters include 
Flavobacteriaceae, Endomicrobiaceae, Devosiaceae, Alcaligenaceae, 
Rhodocyclaceae, Xanthomonadaceae (lowest abundance in the fast-
growing population, highest abundance in the uncharacterized 
population), and Comamonadaceae, Holosporaceae, Prolixibacteraceae, 
Bdellovibrionaceae, and  Cyanobacteriaceae (lowest abundance in 
the uncharacterized population, highest abundance in the fast-
growing population). 

Discussion 
Single-cell transcriptomic profiling of the microbial eukaryote 
O. triangulata was technically feasible with minimal sample pro-
cessing and without the need of a reference genome. Although 
resources like the Marine Microbial Eukaryotic Transcriptome 
Sequencing Project [59], containing 678 functionally annotated 
transcriptomes of a number of marine microbial eukaryotes (now 
available as a database of predicted protein sequences [64]) are 
currently available, their taxonomic breadth is relatively limited. 
However, given the high diversity of microeukaryotes in most 
environments, it cannot be expected that randomly sampled 
microeukaryotes would have reference genomes available. In our 
case, no reference for O. triangulata was available in the database, 
and assembly against the reference from other Ochromonas species 
yielded very low mapping. In contrast, the SmartSeq2 protocol, 
used to generate the mRNA libraries of FACS-sorted single cells of 
O. triangulata, provided sufficient output while preserving the full-
length transcript information necessary to generate a working 
transcriptome assembled ad hoc. Using this transcriptome as a 
basis for the analysis of gene expression, we were able to discern 
three distinct cell clusters of O. triangulata originating from two 
contrasting growth stages, therefore uncovering a third unchar-
acterized group of cells that was not expected a priori. 

Transcript recovery for each of these three populations was 
satisfactory. Concerns about the need of very large sample sizes 
to discern expression patterns in microbial eukaryotes have been 
raised previously [20], indicating that sampling sizes well above 
100 individuals would be necessary. Such concerns are grounded 
on the joint effect of the low numbers of mRNA molecules 
coexisting in a small microbial eukaryote [20] together with the 
widespread occurrence of gene transcription in successive bursts 
[65]. Indeed, our results show that transcriptome recovery at 
cell sampling depth (represented by black dots in Fig. 1E) is far  
from saturation in all three groups. Nonetheless, at least for O. 
triangulata, 100 cells would have been sufficient to recover ∼80% 
of the transcriptome in each of the three groups (Fig. 3E). We 
therefore suggest that sampling in the order of 100 individuals 
might be enough to characterize microeukaryote populations 
based on single-cell expression profiles. As a control, a bulk RNA 
transcriptome or metatranscriptome could be generated too. 

Although we found no technical limitations in deploying 
scRNA-seq, annotation issues are still pervasive. In our dataset, 
two-thirds of the comprehensive transcriptome remained unan-
notated (Supplementary Fig. S4). Consequently, of all the data 
generated in our experiment, only ∼11% of the reads contributed 
to our understanding of mRNA expression that could be associ-
ated with putative biological functions (Supplementary Fig. S5). 
In contrast, the dataset is characterized by a large proportion 
of reads that mapped to transcripts devoid of known function 
(45% in our dataset) and therefore much biological significance 
remains unavailable due to annotation gaps. Unavoidably,
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Figure 6. The prokaryota associated with the O. triangulata cultures. (A) Relative abundance of the 11 most abundant prokaryotic genera associated 
with the different expression clusters. (B) Bray–Curtis dissimilarity of each sample’s associated prokaryota with the rest of the samples. (C) Ratios of 
18S and 16S rRNA to the rest of the RNA or rRNA obtained from the samples. 

organisms that are poorly represented in annotation databases 
(as is the case for most microeukaryotes) will be subject to such 
constraints. Experimental studies targeting specific genes and 
sequencing whole genomes for environmental microeukaryotes 
will aid in mitigating this problem. 

We explored predictive structural annotation to mitigate this 
phenomenon. We obtained tertiary structures for ∼55 000 pro-
teins and successfully annotated over 99% of them. Read map-
ping against these proteins’ transcripts however remained on 
par, at ∼10%, with mapping against ∼20 000 sequence-annotated 
transcripts. Such low mapping to transcripts of known function 
after structural analysis could indicate that many contigs and 
transcripts from the de novo assembly may not encode proteins 
at all. 

The problems associated to transcripts with unknown function 
are well exemplified by the uncharacterized cell cluster. This 
cell group had fewer well supported unique transcripts that 
accounted for a good representation of the expression landscape 
of the group (covering ∼80% of its full transcriptome). In turn, 
most of these transcripts were shared with one or both other two 
groups, whereas only 1% were unique to this group. The question 
of what this seemingly uncharacterized cluster represents 
remain enigmatic. We speculate that these cells might be 
under colonization by a bacterial community, possibly involving 

pathogens or parasites, as exemplified by presence of members of 
Endomicrobiaceae family which are known to endosymbionts 
of protozoa [66]. This scenario would be consistent with the 
prokaryotic nature of at least a portion of the mRNA transcripts 
unique to the uncharacterized group. This possibility would 
be compatible with the very erratic recovery associated with 
these transcripts, since the recovery of non-polyadenylated 
prokaryotic mRNA, likely caused by random mRNA capture in a 
similar mechanism driving rRNA leakage, would be expectedly 
inconsistent. In addition, the relatively high proportion of 
transcripts that are shared between the uncharacterized cluster 
and either of the other two groups (slightly above 2000 transcripts 
in both cases; Fig. 3C) agrees with the hypothesis that the 
uncharacterized cluster is the result of bacteria invading cells 
that were originally from the other two groups. 

Despite the presence of transcripts with unknown function, 
differential expression of genes involved in quasi-universal 
cellular pathways, and therefore well represented in annotation 
databases, provided insight into the functional state of O. trian-
gulata beyond the uncharacterized group. For example, enhanced 
photosynthetic activity in combination with seemingly increased 
CO2 fixation were characteristic of cells in fast exponential 
growth. This, together with a concurrent peak in bacterial 
abundance during this phase seemed to indicate that a boost
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in O. triangulata growth, could be enabled by its heterotrophic 
activity (Supplementary Fig. S8). When prey declined into a 
stable, potentially predation-resistant community, O. triangulata 
growth transitioned into a slower growth rate driven mostly 
by photosynthesis. This would be in line with what has been 
shown before for Ochromonas isolate CCMP1393 [67, 68] and would 
delineate O. triangulata as a mainly phototrophic constitutive 
mixotroph that could benefit from prey uptake to accelerate 
growth (group C mixotroph sensu Jones [69]). 

Results from the structure-based analysis corroborated those 
from the sequence-based analysis in terms of read mapping, 
transcript diversity, and differential expression between clusters, 
as well as metabolic mapping. Additionally, improved structure 
and structure–function annotation, based on predicted protein 
structures, as compared to sequence-based annotation, revealed 
enrichment in pathways associated with oxidative stress as well 
as interspecies interaction in the uncharacterized expression 
cluster, providing further evidence that this uncharacterized 
population could be composed of cells that are close to dormancy 
or have been invaded by bacteria. Beyond protein expression, 
another additional source of useful information that was featured 
in our dataset came from rRNA annotation. Although Smart-
Seq2 targets specifically mRNA, the cellular amount of rRNA in 
a eukaryotic cell is vast enough to allow considerable leakage of 
rRNA reads into the dataset. This phenomenon, typically regarded 
as a nuisance, can be used to the researcher’s advantage when 
taxonomic affiliation of a cell is unknown, as would be the 
case from a natural sample. In our dataset, about one-quarter 
of the total reads corresponded to rRNA, although it was not 
equally distributed across cell clusters. This can become limiting 
when read coverage per cell is relatively low, since we needed 
>100 000 reads to correctly annotate O. triangulata cells based on 
direct annotation of rRNA reads. The reason for this might be 
that the taxonomical information conveyed by these sequences 
is generally poor because they can originate anywhere in the 
rRNA operon, much of which is phylogenetically ambiguous. 
In the case of the uncharacterized group, where only 4% of 
the reads overall originated from rRNA, annotation becomes 
misleading. The potential prokaryotic nature of many reads 
associated to the uncharacterized cell group could also explain 
the difficulty in proper taxonomic annotation for members of 
this group. Nevertheless, when read support is high, cells could 
be taxonomically annotated with confidence. 

The carry-over of 16S rRNA reads in the sequencing data 
permits profiling the bacterial communities associated with indi-
vidual O. triangulata cells. The community compositions were con-
sistent within the clusters but variable between them despite the 
similarity of the co-cultured bacterial communities (Fig. 6B). The 
internally most consistent bacterial communities were amidst the 
uncharacterized cell group whereas more variability was observed 
within the fast-growing and slow-growing groups. Additionally, 
the bacterial community composition of the members of the 
uncharacterized expression cluster did not depend on their origin 
in the fast- or slow-growing cells. Also, the slight bimodality in the 
alpha diversity of the uncharacterized cells had no connection to 
the growth stage. 

We speculate that the differences in the bacterial communities 
between the groups could be explained by grazing behaviour of 
the O. triangulata cells. Initially, low abundance of O. triangulata 
cells would allow the bacteria to grow fast under little grazing 
pressure. With time and consequently increasing numbers of O. 
triangulata, we speculate that the peak density of the bacterial 
community is consumed and the community transitions to a 

grazing-resistant steady state (Supplementary Fig. S8) forcing O. 
triangulata to progress from a fast-growing to slow-growing state. 
The increased grazing pressure due to higher numbers of O. 
triangulata could selectively affect the community structure of the 
co-cultured bacteria, which in turn could result in lower stability 
as well as a shift from the bacterial community associated with 
the fast-growing population. Unfortunately, the current study 
lacks community profiling of the co-cultured bacterial cells and 
therefore we are not able to confirm the similarity of the indi-
vidual O. triangulata bacterial communities to the bulk bacterial 
community structure of the fast- and slow-growing culture stages. 

The specific bacterial community composition within the 
uncharacterized cell cluster is consistent with the scenario 
described above, in which bacteria might be colonizing com-
promised O. triangulata cells. This is supported, in addition to 
the lower abundance of total RNA reads associated to this 
cluster, by its elevated cell-associated bacterial load, observed 
as a significantly higher proportion of prokaryotic rRNA in cells 
from this cluster compared to the other two groups. As the 
cells in the uncharacterized cluster do not seem to be actively 
feeding according to the downregulation of key lysosome-related 
enzymes, colonization by invasive bacteria seems a plausible 
explanation of the higher prokaryotic rRNA. Finally, the consistent 
bacterial community composition associated to these cells could 
be explained by very specific bacterial community members 
taking part in the invasion. However, this third uncharacterized 
state was not expected by the authors a priori, and the bacterial 
invasion is one potential explanation. Further study is needed in 
the future with methods like fluorescence in situ hybridization 
(FISH), scanning electron microscipy (SEM), and transmission 
elecctron microscopy (TEM) to provide conclusive evidence. 

There are myriad small microeukaryotes that are difficult 
to culture in laboratory conditions and consequently to study. 
Our results show that scRNA-seq is technically apt to deal with 
such small microeukaryotes without sample manipulation, even 
those lacking a reference genome. Although potential for detailed 
mechanistic understanding of functional states is limited for 
organisms that are poorly represented in public databases, such 
as microeukaryotes, potential for discovery of unexpected and 
diverse expression consortia remains a key asset of scRNA-seq. 
Taken together, the combination of 18S rRNA annotation with 
expression-driven cell clustering and structural homology-driven 
protein annotation holds promise as a powerful tool to charac-
terize community structure and function from natural samples 
beyond 18S rRNA gene amplicon sequencing. 
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