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Abstract 

Modern stock assessment models used to provide management advice on sustainable catches rely on unbiased catch data. Distortion 

of this data, intentional or not, may increase the uncertainty in the stock perception, jeopardize the assessment of marine resources, and 

compromise their sustainable management with negative ecological and socio-economic effects. In this study, we apply an analysis of 
anomalous numbers based on the Newcomb–Benford law (NBL) to test for fisheries catch misreporting. We focus on the Swedish small 
pelagic fisheries targeting herring and sprat in the Baltic Sea, which are known to be highly problematic due to the pronounced mixing of 
the two species in their catches and the existence of potential incentives for misreporting. The analyses also include fishery-independent 
data from international scientific surveys, which are used as standards for the interpretation of the anomalies in the commercial catch 

data. We demonstrate that data from two Baltic fishery independent surveys conformed to the NBL, while Swedish commercial catch 

data recorded at sea (logbooks) and onshore (landing declarations) did not, indicating inaccurate reporting of commercial catches. While 
non-conformity to the NBL may not be considered as proof of misreporting, and to determine the intentionality of misreporting, if any, 
goes beyond the scope of the paper, we discuss the possible reasons for the observed deviations from the model and recommend the 
application of this method for quality control of fishery data. Further research (i.e. testing new tools both for detection and estimation of 
misreporting) should be carried on this fishery with the aim of improving the accuracy of the reported catches. Furthermore, we open 

the discussion to whether the management should rely on less accurate but more spatially resolved or more accurate but spatially 
unresolved commercial data. The application of the NBL presented in this study can be readily implemented to other stocks and fishery 
as a supporting tool to in vestig ate potential misreporting and contribute to improve our understanding of self-reported fisheries data. 
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Introduction 

Fisheries management worldwide is generally based on stock 

assessment models that rely on information from fisheries 
catches (Hilborn and Walters 2013 ). Catch data of good qual- 
ity are important for the evaluation of stock status, and incom- 
plete or distorted catch information likely bias the estimates 
of stock assessment models and might mislead management 
decisions (Clarke et al. 2006 , Pauly and Zeller 2016 ). Most 
modern stock assessment methods assume that the catch is a 
random variable, therefore subject to at least observation er- 
ror, but require the catches to be nearly unbiased (Methot et al.
2020 ). For processes highly dispersed in space and time, such 

as commercial fishing, control or scientific observation of all 
fishing activities is financially unsustainable (Blank and Gavin 

2009 ). One approach to complement commercial fishing data 
involves combining a mosaic of a few expensive, high-quality 
samples collected by scientists in specific areas and times (also 

called fishery-independent data) with a large amount of data 
obtained directly from the fishing industry (also called fishery- 
dependent data). Fishery-dependent data are generally char- 
acterized as having a good spatio-temporal coverage (Dennis 
et al. 2015 ), but of questionable quality (Watson and Pauly 
2001 , Pitcher et al. 2002 , Tesfamichael and Pitcher 2007 ) and 

can be distorted by misreporting (i.e. the inaccurate transmis- 
© The Author(s) 2025. Published by Oxford University Press on behalf of Interna
article distributed under the terms of the Creative Commons Attribution License 
reuse, distribution, and reproduction in any medium, provided the original work 
ion, intentional or not, of catch information). Misreporting 
ay occur in a fishery because commercial fishing is an eco-
omic activity subjected to numerous regulations and report- 
ng requirements, in which the eventual manipulation of re- 
orted data could lead both to higher revenues or the avoid-
nce of high fines (Watson and Pauly 2001 , Le Gallic and Cox
006 , Blank and Gavin 2009 ). There are also intrinsic chal-
enges in characterizing fisheries catches such as in situations 
here catches are large and the weight of various species in a
ixed fishery needs to be individually reported (Thiessen and 

lasius 2012 ). 
When validation of data is not possible due to the lack of

ndependently verified information, one has to face the ap- 
arent paradox of searching for distortion in the data, using
he potentially distorted data. Unsupervised anomaly detec- 
ion techniques have been developed to analyze these situa- 
ions. These techniques track a common behavior shared by 
ost of the observations and use it as a reference to identify

hose records that deviate from it as outliers, and thus can be
onsidered potentially anomalous (Bolton and Hand 2002 ). A 

imilar approach is to use theoretical models to which intrin-
ic features of the observations should conform to highlight 
ossible anomalies in the data. The Newcomb–Benford law 

NBL) is a mathematical model that serves this scope. Against
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he popular belief that numbers extracted randomly from na-
ure are equally likely to have as leading digit any number
rom 1 to 9, the NBL predicts that they are more likely to have
 small number as the leading digit (Raimi 1969 , Graham et
l. 2009 ). NBL predicts that leading digits from 1 to 9 will
ccur in empirical data with expected proportions and that
hese proportions can be calculated using logarithmic func-
ions. The patterns described by the NBL were first observed
y the American astronomer and mathematician Simon New-
omb (1835–1909, Newcomb 1881 ) and then documented by
he physicist Dr Frank Benford ( 1938 ) in a surprising amount
f different natural phenomena (e.g. the specific heat of chem-
cal compounds, the area of rivers, etc.). 

Many authors from different backgrounds attempted to ex-
lain the ubiquity of NBL in natural systems (Berger et al.
009 ). Natural populations’ consistency to the NBL has been
xplained through exponential growth, implying that popu-
ations spend more time in regions of their exponential in-
rease characterized by a low leading digit (Ross 2011 ). Scott
nd Fasli ( 2011 ), Rodriguez (2004) , and later Fang and Chen
2020) showed that log-normally distributed data have a good
t to the NBL when the underlying distribution has a suffi-
iently high shape parameter (i.e. σ ≥ 1.2). Data on the in-
ividuals caught from natural populations (i.e. catch data, as
he one treated in this work) are expected to be conform to
he NBL as they typically distribute according to a log-normal
istribution (Hoyle et al. 2024 ). 
In the modern literature, this model has been popularized as

n auditing tool (e.g. Nigrini 2012 ). The expected frequencies
f records starting with digits from 1 to 9 according to NBL
re used as a null model to test empirical data and search for
eviations that could be related to external sources of alter-
tion such as, in the case of fisheries, catch misreporting. 

The NBL has been used in 2002 studies (gathered on the
ebsite https:// www.benfordonline.net/ , Berger et al. 2009 )

rom different disciplines. In fishery science, it has not been
sed extensively as an auditing tool, but it has been used in a
mall number of applications (i.e. Graham et al. 2009 , Tsag-
ey et al. 2015 , 2017 , Noleto-Filho et al. 2022 ). For example,
raham et al. (2009) used NBL to investigate the outputs from
 Canadian lobster fishery in two areas subjected to different
onservation measures. The analysis showed that in the stan-
ard fishing areas, data did not conform to the NBL, while
onformity was found in the highly regulated area. Tsagbey et
l. ( 2017 ) found departures from the NBL in a Ghanaian fish-
ry for tunas. Noleto-Filho et al. (2022) estimated that 20%
f fish and invertebrate landings in the Brazilian small-scale
sheries were potentially biased. 
Misreporting is expected to occur in this fishery for bio-

ogical, methodological, and economic reasons. First, the two
pecies are often caught together and, as they are morpholog-
cally similar, it is difficult to separate them for non-experts.
econd, they are often caught in large quantities, which makes
oth the estimation of the species composition by the fishers
nd controls of the declared species proportions by author-
ties on board difficult (Patterson 1998 , Bray 2001 ). During
shing operations, the catch is pumped on board and into
anks. The species composition is estimated by the fishers vi-
ually or through the sorting of several catch samples. The to-
al amount caught of each species is sometimes derived using
he volume in the tank and the (approximate) density of the
atch. Landing is an opportunity for verifying the quantities
nd the species composition, but catches from different fish
vents may be stored together and mixed to varying degrees,
aking an accurate estimation challenging and leaving room

or misreporting (Hentati Sundberg et al. 2014 ). Third, the
wo species are subject to Total Allowable Catches (a factor
nown to constitute a strong incentive for fishers to misreport,
etterson 1998 ), which may vary for the two species and for
eets belonging to different countries fishing on them in the
ame area. Finally, the catch comprising both species may be
estined to industrial purposes (e.g. production of fish prod-
cts) leading to less incentive for fishers to have an accurate
pecies identification. 

Suspicions of misreporting in this mixed fishery have been
aised and discussed for the last 20 years, both in the scien-
ific (Sjöstrand 2000 , ICES 2015 , 2016 , 2017 , 2018 , 2019 ,
020 , 2021b ), the divulgative ( sensu scientific, but not peer-
eviewed, FishSec 2019 , Berkow 2021 ) and the fisheries com-
unity (Svensson 2019 ). Hentati Sundberg et al. ( 2014 )

howed possible discrepancies both in the total quantity re-
orted and in the species composition in the historic catch
ata from the Swedish pelagic fishery (1996–2009) for both
pecies. They estimated that in some time period (2002–2007)
nd fleet segments about half of the catch (57% of sprat and
8% for herring) was possibly misreported. ICES has progres-
ively recognized the importance of possible misreporting in
he mixed fishery and declared in 2021 that 

Species misreporting of herring has occurred in the past 
(Hentati Sundberg et al. 2014 ) and there are again indi- 
cations of sprat being misreported as herring. This has not 
been quantified but may affect the quality of the assess- 
ment. (ICES 2019 , 2020 , 2021a). 

The aim of this work is to detect possible species misre-
orting in the small pelagic fishery targeting sprat and herring
n the central Baltic. Estimates of misreporting in the pelagic
sheries from the Baltic Sea would be highly relevant for a cor-
ect evaluation of the herring and sprat stocks (ICES 2021a ).
owever, a correction is not trivial as misreporting is expected

o have been changing in time and space and among different
eet components. In this study, we use the NBL for the first
ime for a fishery in the Northeast Atlantic. Our work is also
articularly novel as it is based on a comparative analysis of
cientific and commercial fisheries data. First, the NBL model
s validated on scientific survey catch data, which are collected
ith the highest possible standards. Once demonstrated that

he scientific catches conform to the NBL, the model is used
o test the fishery catch data. 

aterials and methods 

tudy area and subject 

he Baltic Sea is a semi-enclosed sea (Ducrotoy and Elliott
008 ). Semi-enclosed basins like the Baltic Sea have been
hown to be particularly susceptible to anthropogenic pres-
ures (e.g. the Black Sea, Tokarev and Shulman 2007 ). Of
he ∼100 fish species recorded in the Baltic (McKenzie et al.
007 ), three (i.e. herring, sprat, and cod) constitute 90% of
he overall catches and feed and/or contribute to the econ-
my of the 16 million people, by nine countries, living along
altic coastal waters (Ojaveer et al. 2010 , Burns and Stöhr
011 ). Among the Baltic species, herring and sprat histori-
ally dominate the biomass available in the basin (Ojaveer et
l. 2010 ). The small pelagic fishery targeting these two species

https://www.benfordonline.net/
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Figure 1. A map illustrating the Baltic Sea and the area analyzed in this study. The latter is filled with colors in order to distinguish the ICES Subdivisions: 
Southern Central Baltic—West (Subdivision 27.3.d.25), Southern Central Baltic—East (Subdivision 27.3.d.26), West of Gotland (Subdivision 27.3.d.27), 
East of Gotland (Open Sea) (27.3.d.28.2), Archipelago Sea (Subdivision 27.3.d.29), and Gulf of Finland (Subdivision 27.3.d.32). 
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represents the largest and most economically important com- 
mercial fishery in the Baltic Sea (Arrhenius and Hansson 1993 ,
ICES 2021a ). 

This study concentrates on Central Baltic herring and sprat 
stock inhabiting the Baltic in FAO Subdivision Southern Cen- 
tral Baltic—West (Subdivision 27.3.d.25), Southern Central 
Baltic—East (Subdivision 27.3.d.26), West of Gotland (Subdi- 
vision 27.3.d.27), East of Gotland (Open Sea) (27.3.d.28.2),
Archipelago Sea (Subdivision 27.3.d.29), and Gulf of Finland 

(Subdivision 27.3.d.32) ( Fig. 1 ). 

Data 

The dataset used in this study covers a 23-year timespan 

(1999–2021) for both commercial and survey data ( Tab le S3 ).

Data on scientific surveys 

Fisheries-dependent data of abundance of sprat and herring 
were derived from two surveys: the Baltic International Trawl 
Surveys (BITS, ICES 2014 ) and the Baltic International Acous- 
tic Survey (BIAS). 

BITS is a demersal survey carried out during the first and 

fourth quarters in ICES subdivisions 22–28 (ICES 2014 ). For 
BITS, we used data collected by all available countries between 

1999 and 2020. To compare the output of the application of 
he NBL to commercial and survey data, BITS hauls made us-
ng International Standard Trawl for Baltic Demersal Survey 
V-3#930TVL gear (TVL, ICES 2014 ) were used. TVL gear
as selected since this gear closely mimics the commercially 
sed Otter and Paired Bottom Trawls, and thus can be re-
arded as the best available control for conformity of small
elagic trawl catches with the NBL. 
BIAS is an international pelagic survey carried out during 

he third quarter (October) and across ICES subdivisions 25–
9 (Larson 2020 ). In this survey, fish biomass is estimated us-
ng hydroacoustic methods. Trawling and biological sampling 
re carried out to divide the acoustic data into species, lengths,
nd ages. This analysis focuses on the part of the BIAS data
esulting from these hauls and that were collected by Sweden
etween 2001 and 2021. In the case of BIAS, we used data be-
onging to pelagic gears (midwater otter trawl, indicated with 

ode “321” hereafter). 

ata on Swedish commercial fishery catches 

ommercial fishery data both in the forms of logbooks and
anding declarations from Swedish vessels were used. These 
ata result from reports by the fishers, at sea and at land-
ng site, respectively, carried out under the legal framework of
he EU control regulation. The data contain references in time

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf044#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf044#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf044#supplementary-data
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nd space, information on the effort (vessel and gear features),
nd the species caught (quantities, taxonomy, contribution of
he species to the catch, among the others). In Sweden, there
re two sources of official catch data: logbook data, which
re the estimated catches recorded on a haul-by-haul basis,
nd landing declarations, which represent the landed weight
er species, area, and gear, measured at the end of the fish-
ng trip. Being reported at sea, logbooks have a higher spatio-
emporal resolution with expected lower accuracy, while the
anding declaration, which is based on weights measured at
he landing site, has a lower spatio-temporal resolution, but
t is expected to have a higher accuracy. Note that while we
ill refer to this latter data as “landing declaration,” the data

eported by the fishermen at the landing site (i.e. the landing
eclaration) were not available to our study in the original for-
at they were collected. Rather, a transformed dataset, with

anded weights corrected for onboard processing and disag-
regated by area (based on logbooks) by the Swedish author-
ties, was available. The procedure used by the Swedish au-
horities includes the assignation of the weight declared by
he fishermen to the areas reported in the logbook and propor-
ionally to the catch the fishermen declared in the latter docu-
ent. Furthermore, species-specific conversion factors taking

ccount of the presentation of the catch (e.g. gutted or not)
re used to complete the conversion. The presence of con-
ersion factors makes it difficult to rebuild the original de-
lared catch via aggregation, except for those landings that are
anded whole, with no correction factor applied. Although not
epresenting the original landing dataset as reported directly
y the fishermen, this dataset can be considered as an example
f data used in the stock assessment context to input commer-
ial catches. For this reason, it can be used as an example of
ommercial catch data set used as input in the stock assess-
ent and hence suitable for the application of the methodol-
gy presented here. 
The commercial database in the form of a logbook is con-

idered particularly relevant as this is the one currently repre-
enting the fishery-dependent data provided by Sweden to the
tock assessment of the two stocks given its higher resolution
i.e. haul level). On the other hand, the commercial database
n the form of a landing declaration was used in this analysis
s it is considered a more accurate indication of the quanti-
ies caught. For this study, only data from pelagic and bot-
om trawlers that landed their catch in Sweden or Denmark
n the time frame 1999–2021 were considered. The study does
ot consider differences in landings below or above minimum
anding size. 

nomaly detection with the Newcomb–Benford law

he general significant digit law [Equation 1 , Nigrini (2012) ,
dapted from Hill (1995) ] describes the expected relative fre-
uency of any number in the interval (1–9) at different digit
or combination of digits) position in a number, according to
he NBL: 

Pr 
(
D 1 = d 1 , . . . , D k = d k 

) = lo g 10 

[ 

1 + 

( 

1 ∑ k 
i =1 d i · 10 

k −i 

) ] 

.

(1) 

For all positive integers k , all d 1 ∈ { 1 , 2 , . . . , 9 } and all
 j ∈ { 1 , 2 , . . . , 9 } , with j = 2 , . . . , k . Equation ( 1 ) is a gener-
lization of the following more specific formulas, predicting
he probability of numbers from 1 to 9, at first (Equation 2 ),
econd (Equation 3 ), and first two digits (Equation 4 ) (with
ther possible configurations) (Nigrini 2012 ): 

Pr 
(
D 1 = d 1 

) = log 10 

(
1 + 

1 

d 1 

)
with d 1 ∈ 

{ 1 , 2 , . . . , 9 

} , (2)

Pr 
(
D 2 = d 2 

) = 

9 ∑ 

d 1 =1 

log 10 

(
1 + 

1 
d 1 · d 2 

)
with d 2 ∈ { 0 , 1 , . . . , 9 } , 

(3)

Pr 
(
D 1 D 2 = d 1 d 2 

) = log 10 

(
1 + 

1 

d 1 · d 2 

)

with d 1 d 2 ∈ 

{ 10 , 11 , . . . , 99 

} . (4)

The Equation ( 2 ) predicts the behavior of numbers at the
rst digit under the NBL model and serves as reference for the
rst-digit test (F1T). The Equation ( 3 ) is the reference for the
econd-digit test (F2T), while the Equation ( 4 ) is known as the
rst-two-digit test (F12T). F12T will be considered the main
est for this work. We report the F1T results as well for histor-
cal reasons but highlight to the reader that this test may suffer
rom false negatives. The presence of false negatives is due to
he fact that at F1T a set of numbers may resemble NBL like
ven if the mantissas (i.e. the part of a logarithm after the deci-
al point) are not evenly distributed, and an even distribution
f mantissas is a mathematical basis for the NBL model (see
igrini 2012 for a formal explanation). Data on commercial

wedish catches were tested against the NBL model to detect
he possible presence of anomalies. 

In this study, we used the mean absolute deviation (MAD)
est to assess if the data conform to the NBL (Nigrini 2012 ).

e also report the χ2 goodness of fit test results for historical
easons (for details on the test, see Sheskin 2003 ), but this
est has been found to exhibit an excess of power problem
i.e. may lead to false positives when a high number of records,
sually ∼5000, is provided and requires equal sample sizes to
ompare their results across different databases, see Nigrini
012 ). 
The MAD statistic corresponds to the mean discrepancy be-

ween the values observed for each digit and those expected
nder the NBL model, across all categories (da Silva Azevedo
t al. 2021 , Equation 5 re-adapted from Nigrini 2012 ): 

MAD = 

∑ k 
i =1 

∣∣O i − E i 
∣∣

k 

, (5)

here O i represents the observed frequency at the i th -
ategory, E i represents the expected (or theoretical) frequency
t the i th -category, while k is the number of categories. Sim-
lar to the χ2 goodness of fit test, the k parameter is given
n the case of the NBL by the test that is carried out on
 k F 1 T = 9 , k F 12 T = 90 ) (Nigrini 2012 , da Silva Azevedo et al.
021 ). MAD test does not consider the number of records
nd thus does not exhibit excess of power problem. MAD is
herefore a suitable tool for testing the consistency to NBL
or large datasets and comparing datasets of different magni-
ude (Nigrini 2012 ). The advantage of a sensitivity indepen-
ent from the number of records comes with the cost that the
ritical threshold to judge the conformity of a dataset to NBL
s expert-based (da Silva Azevedo et al. 2021 ). Nigrini (2012)
eports cut-off scores that can be used as a reference for this
urpose. Following Nigrini (2012) , we used the threshold lev-
ls presented in Table 1 . 
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Table 1. Critical cut-off scores (readapted from Nigrini 2012 ). 

F1D F2D Conformity 

0.000–0.006 0.0000–0.0012 Close conformity 
0.006–0.012 0.0012–0.0018 Acceptable conformity 
0.012–0.015 0.0018–0.0022 Marginally acceptable 

conformity 
> 0.015 > 0.0022 Non-conformity 
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Data handling and analyses were performed in R (R ver- 
sion 4.2.1) and using the benford.analysis R package (ver- 
sion 0.1.5, Cinelli 2018 ). The analysis was carried out on 

the commercial and survey datasets. For the commercial data,
we proceeded further with the analysis of all species caught 
by all trawlers. Afterward, we considered the small pelagics 
caught by bottom trawlers (merging catches from paired bot- 
tom trawlers and otter bottom trawlers) and those caught by 
mid-water trawlers (paired mid-water trawlers and otter mid- 
water trawlers). In this part of the analysis, we used records 
involving herring and sprat catches to maximize the number 
of records available to the test with the NBL. Similarly, for 
survey data, we based the analysis first on all the species and 

secondly on small pelagic only (i.e. sprat and herring only). To 

produce a basis for comparison for commercial data, we re- 
stricted the analysis on survey data collected with comparable 
gears (i.e. catches of commercial bottom trawlers can be com- 
pared with surveys using “TVL” gear and catches from com- 
mercial pelagic trawlers can be compared with those of scien- 
tific gear used in BIAS). The number of orders of magnitude 
the dataset is covering may have a role in its consistency to 

the NBL and hence should be taken into account for this type 
of comparison. Fewster (2009) indicates that “data from any 
distribution will tend to be ‘Benford’, as long as the distribu- 
tion spans sev eral integer s on the log10 scale—several orders 
of magnitude on the original scale—and as long as the distri- 
bution is reasonably smooth.” Survey data may be regarded 

as datasets spanning over a higher number of orders of mag- 
nitude, as they do not target aggregation of fishes. However,
in our case, for the (unfiltered) scientific BITS and BIAS data 
and the commercial logbook and landing declaration data, the 
orders of magnitude observed are, respectively, 8, 7, 7, and 7 

( Fig. S1 ). When filtered for herring and sprat, the orders of 
magnitude become 8, 7, 6, and 7 ( Fig. S2 ). The order of mag- 
nitude of the datasets relative to small pelagic fish and filtered 

by specific gear is 6 for logbook pelagic trawlers and 6 for 
logbook bottom trawlers, 7 for landing declaration pelagic 
trawlers and 5 for landing declaration bottom trawlers, and 

8 for BITS selected bottom trawlers and 7 for BIAS pelagic 
trawlers ( Table S4 , Fig. S3 for bottom gears, Fig. S4 for pelagic 
gears). Hence, we consider the datasets comparable and the 
differences in the orders of magnitude negligible. 

We used the “benford.analysis:: get.Suspects ” function to 

retrieve the observations belonging to the digit groups ( n = 5) 
most inconsistent with the NBL (Noleto-Filho et al. 2022 ).
This was done on both data types with the exclusion of those 
strata having < 1000 records. In this analysis with “record,”
we indicated the information relative to the quantity reported 

for one species in one haul (in the case of commercial logbook 

or survey data) or in one landing event split by fishing date,
ICES Rectangle (according to the logbook proportions, in the 
case of the landing declaration, see the “Data on Swedish com- 
mercial fishery catches” section for details). 
esults 

cientific data performance against the NBL 

he scientific BITS data 
he survey BITS data ( n = 34 344) showed “close con-

ormity” to the NBL at the first digit and “close confor-
ity” at the first two digits. The survey BITS data, includ-

ng herring and sprat species ( n = 9885 records), showed
close conformity” to the NBL at the first digit (F1T,
AD = 0.00204) and “close conformity” at the first two 

igits (F12T, MAD = 0.0009). The results were consistent 
ith the analyses using only the data of small pelagics caught
ith the TVL ( Figs 2 and 3 , Table 2 and Table S5 for
etails). 

he scientific BIAS data 
hen all the species caught with the available gear are con-

idered, the performance of BIAS data ( n = 2974) was weaker
resulting in “acceptable conformity” at F1T and “accept- 
ble conformity” at F12T). The BIAS data consist of a rel-
tively small dataset, when compared to the others, and the
bserved frequency of digits is less clearly matching the fre-
uencies expected for those digits under the NBL model.
evertheless, this dataset falls within the MAD conformity 

imits with the NBL model. Comparable results to the for-
er cases were observed when only small pelagic catches 
ere analyzed for BIAS ( Figs 2 and 3 , Tables 2 and S5 for
etails). 

ommercial data performance against the NBL 

he commercial logbook data 
hen commercial logbook catches for all the species hav- 

ng more than 1000 records are considered, the data 
 n = 291 672) have an “acceptable conformity” at F1T, but
ere found to have non-conformity to the model at F12T

 Fig. 4 , Tables 2 and S5 ). Catch data on herring and sprat
 n = 119 525) exhibited “non-conformity” to the NBL at the
rst digit (F1T, MAD = 0.017) and “non-conformity” at the 
rst two digits (F12T, MAD = 0.01203) ( Figs 3 and 4 , Tables
 and S5 ). 
Around 45.12% of the records ( n = 53 928, herring and

prat species only considered) were found to be potentially 
iased according to F12T. The number of suspect cases var-
ed between ICES areas (range: 40.95%–51.42% of records) 
nd ICES Rectangles (range: 30.41%–56.29% of records), but 
lso with differences by destination country (range: 42.85%–
0.19% of records), year (range: 31.5%–55.04% of records),
ear type (range: 41.28%–48.96% of records), and vessel 
range: 12.7%–77.96% of records) ( Table S6 ). Compara- 
le results are observed for the commercial logbook data 
sing the catches for small pelagics performed by bottom 

rawlers and pelagic trawlers ( Table 2 and Table S5 for
etails). 

he commercial landing declaration 

he commercial landing declaration dataset collecting catches 
f all species ( n = 225 841) was found to be in “close
onformity” to the NBL at the first digit but showed 

non-conformity” at the first two digits ( Fig. 4 , Table S5
or details). When only the catches of herring and sprat
pecies ( n = 92 868) were tested, the data exhibited “ac-
eptable conformity” to the NBL at the first digit (F1T,

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf044#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf044#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf044#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf044#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf044#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf044#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf044#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf044#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf044#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf044#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf044#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf044#supplementary-data
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Figure 2. Surv e y data against the NBL. T he top panels (first six plots) sho w the perf ormance of BI TS data when tested against the NBL model. T he 
bottom panels (last four plots) refer to the BIAS data. The first and third rows refer to the distribution of the first digit, while the second and fourth rows 
refer to the distribution of the first tw o digits. T he surv e y data tested includes all species (in the first column, f or BI TS and BIAS), the small pelagic for all 
gears (in the second column for BITS, in BIAS only one gear is a v ailable) and the small pelagic caught by specific gears (in the third column for BITS with 
TVL, in the second column for BIAS with the gear “321”). 

Figure 3. Comparison between commercial and scientific MAD values when tested against the NBL. The vertical lines are MAD value thresholds 
identifying areas of consistency with the NBL. The panels describe the performance of the data in different instances. From top to bottom: (i) all species 
with all gears a v ailable, (ii) small pelagic species (herring and sprat) with all gears a v ailable, (iii) small pelagic species with bottom trawl gears, and (iv) 
small pelagic species with pelagic trawl gears. 
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AD = 0.00863) and “non-conformity” at the first two dig-
ts (F12T, MAD = 0.00335) (Figs 3 and 4 , Tables 2 and S5 ).
bout 19.22% of the records ( n = 17 852, herring and sprat

pecies considered) were found to be potentially biased ac-
ording to F12T. The number of suspect cases varied between
CES areas (range: 14.3%–21.38% of records) and ICES Rect-
ngles (range: 13.35%–34.04% of records), but also with dif-
erences by year (range: 14.38%–31.26% of records), gear
ype (range: 16.74%–20.04% of records), and vessel (range:
.71%–37.59% of records) ( Table S6 ). Comparable results
o the previous case were observed when the data were fil-
ered for the catches performed by pelagic or bottom trawlers
 Tables 2 and S5 ). 
t  
iscussion and conclusion 

isreporting is a long-standing issue both in statistical sur-
ey studies (e.g. Sloan et al. 2004 , Maurer et al. 2006 , Rosaz
nd Villeval 2012 , Selb and Munzert 2013 , Amuedo-Dorantes
nd Arenas-Arroyo 2022 ) and in fishery science (Watson and
auly 2001 , Ainsworth and Pitcher 2005 , Clarke et al. 2006 ,
entati Sundberg et al. 2014 , Pauly and Zeller 2016 , Rudd

nd Branch 2017 , Van Beveren et al. 2017 ). Many counter-
easures to misreporting have been discussed in fishery sci-

nce, but no “one fits all” solution has been offered to date. 
In this work, we have shown how the analysis of anomalous

umbers via the application of the NBL to fishery data, and
he comparison of performance with a scientific dataset can

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf044#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf044#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf044#supplementary-data
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Figure 4. Commercial data against the NBL. The top panels (first eight plots) sh
model. The bottom panels (last eight plots) refer to the landing declaration data
the second and fourth rows refer to the distribution of the first two digits. The c
pelagic herring and sprat in the second column, and the small pelagic caught by
columns. 

Table 2. Main results from analysis of first (“Test” = “F1T”) and first two (“Test”
landing declaration data (“LD”), Baltic International Trawl Survey (“BITS”), Balti

Dataset Instance N Test MAD 

BITS AS-AAG 34 344 F1T 0.00 083 
BITS SP-AAG 9885 F1T 0.00 204 
BITS SP-TVL 8542 F1T 0.00 232 
BITS AS-AAG 34 344 F12T 0.00 080 
BITS SP-AAG 9885 F12T 0.00 090 
BITS SP-TVL 8542 F12T 0.00 088 
BIAS AS-AAG 2974 F1T 0.00 612 
BIAS SP-AAG 2162 F1T 0.00 747 
BIAS AS-AAG 2974 F12T 0.00 158 
BIAS SP-AAG 2162 F12T 0.00 188 
LB AS-AAG 291 672 F1T 0.01 022 
LB SP-AAG 119 525 F1T 0.01 700 
LB SP-PTG 73 750 F1T 0.01 934 
LB SP-BTG 45 775 F1T 0.01 330 
LB AS-AAG 291 672 F12T 0.01 046 
LB SP-AAG 119 525 F12T 0.01 203 
LB SP-PTG 73 750 F12T 0.01 276 
LB SP-BTG 45 775 F12T 0.01 086 
LD AS-AAG 225 841 F1T 0.00 448 
LD SP-AAG 92 868 F1T 0.00 863 
LD SP-PTG 52 177 F1T 0.00 892 
LD SP-BTG 40 691 F1T 0.00 908 
LD AS-AAG 225 841 F12T 0.00 280 
LD SP-AAG 92 868 F12T 0.00 335 
LD SP-PTG 52 177 F12T 0.00 302 
LD SP-BTG 40 691 F12T 0.00 383 

These datasets were analyzed in instances (“Instances”) whose acronym refers to al
pelagic trawl (“PTG”), or bottom trawl gear (“BTM” for commercial and “TVL
deviation (“MAD”) values are reported. The conformity to the NBL model, asse
conformity” (AC), “marginally acceptable conformity” (MAC), and non-conform
belonging to the first five groups of digits “not-conform” to the NBL in the F12T
100. The “SU VE (range %)” is the same percentage but stratified by vessel, meani
belonging to the vessels having the fewest and most suspect records. In the Supp
statistics ( χ2 , Table S5 ), and a version of it deepening the suspects stratification (i
ow the performance of logbook data when tested against the NBL 
. The first and third rows refer to the distribution of the first digit, while 
ommercial data tested includes all species in the first column, the small 
 the bottom and pelagic trawlers, respectively, in the third and fourth 

= “F12T”) digits of different databases (“Dataset”): logbook data (“LB”), 
c International Acoustic Survey (“BIAS”). 

Conformity (MAD) SU (%) SU VE (range %) 

CC - - 
CC - - 
CC - - 
CC 6.82% 6%–12.07% 

CC 11% 9.77%–11.02% 

CC 9.01% 8.59%–9.21% 

AC - - 
AC - - 
AC 11.74% - 

MAC 13.27% - 
AC - - 
NC - - 
NC - - 

MAC - - 
NC 41.21% 6.86%–77.89% 

NC 45.12% 12.7%–77.96% 

NC 47.5% 16.22%–66.78% 

NC 41.29% 12.58%–77.96% 

CC - - 
AC - - 
AC - - 
AC - - 
NC 18.02% 8.45%–36.9% 

NC 19.22% 8.71%–37.59% 

NC 18.36% 11.88%–24.7% 

NC 20.32% 8.71%–37.59% 

l species (“AS”), small pelagics (“SP”) caught by all available gears (“AAG”), 
” for survey). Column N refers to the number of records. Mean absolute 

ssed through MAD values, is one of “close conformity” (CC), “acceptable 
ity (NC). The total amount of suspects (“SU (%)”) is the number of records 
, divided by the total number of records of the dataset and multiplied per 

ng that the range indicates the extremes of the percentage of suspect records 
lementary Material, a version of this table ( Table S5 ), including additional 
.e. by year and ICES Subdivision, Table S6 ) are available. 
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nform about potential misreporting. This study represents the
rst application of the NBL not only in a Baltic fishery and
urvey but in the Northeast Atlantic geographical region. 

Overall, research data conformed to the NBL frequency
istribution, while the commercial data departed from it. As
ighlighted in the literature, non-conformity with the NBL
annot be considered as proof of misreporting (Graham et
l. 2009 , Nigrini 2012 ). In the context of the analysis pre-
ented here, several reasons can explain the lack of confor-
ity between the NBL and the commercial fishery data. The
on-conformity of these data is likely the result of inaccurate
eporting of the quantities caught due to the introduction of
on-random error in the figures communicated to authorities
nd used by the scientific community, but this does not nec-
ssarily imply that the inaccuracy is driven by the human in-
ention to misreport. Discrepancies from the NBL model may
e due to inaccuracy in the measurement tools or procedures
sed by the fishers. The large amount caught in this mixed
shery and the requirements to report information at a haul
evel may have resulted in estimates of the species ratio and to-
al amount caught that are associated with various degrees of
easurement errors. When the distribution of digits from the

ommercial data is considered, the observed frequencies seem
o retain the shape expected under the model but on various
evels are characterized by high maxima and low minima ex-
eeding the values expected for frequencies that conform to
he NBL. 

The peaks in the frequency in multipliers of five seem to
ighlight a tendency to round results, a behavior that is likely
o occur, especially considering the intensity of fishing in the
igh seas. This may explain the decrease in the number of
nomalies of the landing declaration data that are collected
n a better controlled condition environment. However, the
mprovement in performance does not remove doubts about
he possible presence of misreporting because these latter data
lso do not conform to the NBL model. Alteration of data,
f any, may occur in several ways; therefore, any reasoning
round its occurrence, extent, and direction remains specula-
ive (Nigrini 2012 ). In the commercial case presented here, a
ossible explanation for the observed distribution is that fish-
rs are rounding at the second digit to the nearest multiplier
f five. The peaks at first and second digits at 5 and 50, respec-
ively, may derive from a coarse estimation of the proportion
f the two species coupled with the fact that the catch data
ollow the NBL. For instance, if a given quantity is extracted
rom the sea, as demonstrated by our analysis of survey data,
ts leading digit is more likely to be 1 than any other digit. In
his example, any coarse splitting of this quantity in 50% her-
ing and 50% sprat will increase the frequency of 5 and 50,
espectively, at F1T and F12T. 

In the Baltic, herring and sprat are quota-limited species,
nd concerns have routinely been raised in the context of their
ssessment about the possible misreporting of their catches
nd its impacts (ICES 2021a ). Which species may provide
he incentive to misreporting in which period depends on the
uota set. In any case, modifications to the numbers within
ach year will most likely not be random, but directional.
mpacts on stock assessment are likely considering the large
uantities being involved. 
Assessing the intentionality of providing inaccurate results

s out of the scope of this paper, and determining the modal-
ties by which the reported data may diverge from the real
ne (i.e. the truth) is out of the capabilities of the tool used in
ur analysis. Instead, we would like to stress three important
oints related to the accuracy of the data highlighted by our
esearch. 

First, the numbers analyzed span across several orders of
agnitude (e.g. for commercial logbook data up to 6, with
 range of 0.1–500 000.0 kg, Table S4 ), and inconsistencies
ere found at the first two digits. This means that the inaccu-

acy (e.g. due to rounding), if any, may involve a large amount
f fish. The risk of the presence of large approximations in the
atch data collected at sea should motivate further research on
he impact of possible inaccurate reporting (in each form, in-
luding rounding) on the stock perception (Watson and Pauly
001 ). 
Second, logbooks are generally used in fishery science, in-

luding their use for compilation of catch data for stock as-
essment (Sampson 2011 ). They provide unique information
n the spatial and temporal distribution of catches (Cotter
nd Pilling 2007 ). This resolution is unavailable in the original
anding declaration, which pools together the time and space
esolution of the different hauls of the trips into unique points
n time (i.e. landing dates) and space (i.e. landing sites). A
patially oriented stock assessment requires both high spatio-
emporal resolution and accuracy of the data (Cotter and
illing 2007 , Cadrin 2020 ). If the logbook data are used for as-
essing the status of the resources, as is the case for the stocks
nalyzed in this study, they need to be accurate to avoid bias
n the stock assessment model estimates. If the landing decla-
ation data are used, they need to be spatially and temporally
nformative. The version of the landing declaration we used
n this study disaggregates in space and time (according to the
ogbook information) the weights declared by the fishers at
he landing site and given its improved conformity with the
BL may be considered, using a case-by-case approach, as a
ata input source for the assessment. 
Third, while we appreciate the difficulties of estimating ac-

urately the amounts of fishes caught by the large trawls and
heir separation by species, we believe that both industrial and
esearch efforts are needed to assess the accuracy of catch
ata. Estimation of species composition on board is a complex
ask, which is carried on by fishermen using traditional meth-
ds that may be improved with ad hoc experiments. State-of-
he-art, science-based methods to estimate the species com-
osition are developing and include, among the others, apply-
ng computer vision and machine learning to videos or photos
f the fish caught in order to classify them (e.g. Allken et al.
019 ) as well as environmental DNA processing (e.g. Urban
t al. 2024 ) in order to detect the species and possibly deter-
ine the percentage with which each of the species caught is

ontributing to the catch. Providing the fishers with more ac-
urate and efficient ways of estimating the catch at the haul
evel would be beneficial for the science, the management, the
esources, and the fishers as it would improve the quality of
he commercial data at the highest resolution possible (Cotter
nd Pilling 2007 ), reducing the risk of bias in stock status and
hus increasing the likelihood of viability for the stocks and
he fishery economy, decreasing the rate of unintentional mis-
eporting (e.g. because of rounding) and thus decreasing the
isk of fines for fishers. 

The conformity of survey data to NBL highlights that this
odel is adequate to describe the distribution of catches from
elagic and demersal species in fisheries based on trawling
perations in the Baltic Sea. To identify the causes of mis-
eporting goes beyond the aim of this study. It is important,

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf044#supplementary-data
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however, that future work is undertaken to investigate the pos- 
sible drivers of potential non-compliances as well as other pos- 
sible sources of inaccuracy in the reports from this fishery, so 

that misreporting can be mitigated or alternatively quantified.
The approach presented here might be applied to many 

other contexts as misreporting affects or is suspected to af- 
fect many stocks and fisheries. Documented examples are 
numerous in the literature, including the eastern Baltic cod 

( Gadus morhua ) fishery (Bastardie et al. 2008 ), the angler- 
fish ( Lophius piscatorius and Lophius budegassa ) caught in 

the Scottish fishery in the North Sea (Dobby et al. 2008 ),
the herring and mackerel ( Scomber scombrus ) in the Dutch 

freezer-trawlers pelagic fishery occurring in European wa- 
ters (Borges et al. 2008 ), many of the rockfishes species, in- 
cluding pacific ocean perch ( Sebastes alutus ) and northern 

rockfish ( Sebastes polyspinis ), caught in the Gulf of Alaska 
(Faunce 2011 ), the groundfish stocks in New England (e.g.
Gulf of Maine haddock, Melanogrammus aeglefinus ; Kerr et 
al. 2022 ), Northeast Atlantic spurdog ( Squalus acanthias , De 
Oliveira et al. 2013 ), the Northeast Atlantic stocks of deep- 
water red crab ( Chaceon affinis ; Robinson 2008 ), the Eu- 
ropean common megrim ( Lepidorhombus whiffiagonis ), and 

the four-spotted megrim ( L. boscii ) in the Spanish mixed 

megrim fishery (Crego-Prieto et al. 2012 ), the North Amer- 
ican off-shore ( Merluccius albidus ) and silver ( M. bilinearis ) 
hakes (Garcia-Vazquez et al. 2012 ), the red snapper ( Lutjanus 
campechanus ) in the fisheries Gulf of Mexico fishery (Marko 

et al. 2004 ), the Southern bluefin tuna ( Thunnus maccoyii ) 
caught in the Japanese longline tuna fishery (Polacheck 2012 ),
and potentially many others (see Pauly and Zeller 2016 for a 
review concerning the accuracy of global fishery catch statis- 
tics). Fishery-dependent data are self-reported by the fisher- 
men (e.g. fishery logbooks, sale notes, etc.) and constitute the 
main source of information on species catch composition and 

amounts extracted from the sea and therefore are a primary 
input to fish stock assessments. While advancements in fishery 
regulation (e.g. linked to the introduction of electronic log- 
book, the implementation of observer programs) have con- 
tributed to reduce some of the uncertainties, there is a general 
lack of supporting tools to assess the quality of fishery self- 
reported data. We argue that the NBL can contribute to filling 
this gap, and the methodology presented in this study can be 
readily implemented to other stocks and fishery as a support- 
ing tool to investigate potential misreporting and contribute 
to improve our understanding of self-reported fisheries data.
While the ignorance about the existence of this tool by the 
fishers is seen as an aspect that safeguards its applicability, we 
think that the realization by the fishers that post hoc control 
measures exist for the reported data may act as a deterrent to 

avoid intentional misreporting, if any. 
Based on the results from this study, we recommend using 

the NBL model for quality control of commercial fishery in- 
formation before their use as input data in stock assessment.
While we recognize that the tool is not able to quantify the 
misreporting, we argue that it may assist in identifying where,
and potentially when, further efforts are required to make 
such quantifications. Here, only commercial catch informa- 
tion from Swedish vessels was analyzed, and it is important to 

understand if similar non-conformities would also appear in 

catch data from other countries fishing in the Baltic. 
To develop and implement tools able to quantify species 

misreporting in fisheries that take place in areas shared by 
multiple country fleets, an internationally coordinated effort 
gainst this phenomenon is needed. Future research based on 

hese foundations shall focus on the production or implemen- 
ation of these tools to produce alternative time series of the
atches for the different species and evaluate the impact of
he relative different scenarios on the stock perception. For 
xample, alternative time series of catches inspected by our 
ethodology could represent equally plausible hypotheses on 

he amount of fish removed and therefore be used as an ad-
itional dimension of the uncertainty in the current ensemble 
f stock assessment models used to provide management ad- 
ice for the stocks (e.g. Stock Synthesis, Methot and Wetzel
013 ). This may help the understanding of the consequences 
f the different catch time series that include misreporting on
he status of the stock and reference points used to produce the
cientific advice for the two stocks analyzed here and poten-
ially many others, ecologically and economically important 
tocks in the Northeast Atlantic. 
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