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Earth’s climate is tightly connected to carbon and nitrogen exchange between the atmosphere and 
ecosystems. Wet peatland ecosystems take up carbon dioxide in plants and accumulate organic carbon 
in soil but release methane. Man-made drainage releases carbon dioxide and nitrous oxide from 
peat soils. Carbon and nitrous gas exchange and their relationships with environmental conditions 
are poorly understood. Here, we show that open peatlands in both their wet and dry extremes are 
greenhouse gas sinks while peat carbon/nitrogen ratios are high and prokaryotic (bacterial and 
archaeal) abundances are low. Conversely, peatlands with moderate soil moisture levels emit carbon 
dioxide and nitrous oxide, while prokaryotic abundances are high. The results challenge the current 
assumption of a uniform effect of drainage on greenhouse gas emissions and show that the peat 
microbiome of greenhouse-gas sources differs fundamentally from sinks.

Future climates will be shaped by the balance between greenhouse gas sources and sinks in terrestrial ecosystems. 
Wet peatlands absorb annually 0.4 Pg of atmospheric carbon dioxide (CO2)1. All peatlands are the largest 
terrestrial carbon (C) stock (up to 535 Pg)1 and store one-tenth of all organic nitrogen (N)2. As a trade-off 
for the C storage3, wet peatlands are the largest natural source of methane (CH4), which is a 28 times more 
powerful greenhouse gas (GHG) than CO2 equivalent (CO2eq). N-rich drained peatlands also release nitrous 
oxide (N2O), the most dangerous destroyer of the stratospheric ozone layer and a GHG of 265 CO2eq. The 
balance between GHG fluxes in peatlands remains poorly understood, though there are known to be modulating 
effects of environmental factors, such as soil water content (SWC), soil temperature and availability of N4. SWC 
plays a key role in belowground ecosystems by determining the availability of water and oxygen for plant roots, 
fungi and prokaryotes (i.e. bacteria and archaea). Climate warming and drying, artificial drainage and land-use 
change have long-term implications for GHG exchange in peatlands5–8. Warming promotes metabolic rates, 
whereas SWC modulates warming-induced carbon fluxes9. Thus, a warmer climate aerates peat and promotes 
plant photosynthetic activity10 and fine-root growth, which releases more carbon to plant-associating fungi11. 
Moderate drying of wet soils enhances ecosystem respiration (ER)12,13 until it reaches a point of drought stress10. 
This produces a unimodal relationship of ER with soil moisture9. For net ecosystem exchange (NEE) of CO2, 
both negative3,12 and unimodal relationships9,10,13,14 with SWC have been proposed. N2O emissions from 
peatlands also peak at intermediate SWC, while wet and dry peatlands show negligible N2O emissions4. Net 
impact of drying on the balance between CO2 uptake vs. N2O and CH4 emission in peatlands is disputed15–17. 
However, the International Panel for Climate Change (IPCC) and other global surveys assert that CO2 represents 
the major component of global peatland GHG exchange, while CH4 and N2O play minor roles2. To understand 
GHG exchange in peatlands, we need to assess it in the context of C and N resource use and trade between 
plants and other biological kingdoms in peatland ecosystems. Plants photosynthesise organic C compounds 
including ‘easy’ ones, such as saccharides, and exude them into soil, which support bacteria and archaea. N 
fertilisation stimulates plants to allocate ‘easy’ C to root growth and root trait adjustment but reduces investment 
of C into mycorrhizal and other mutualisms, and leaves ‘easy’ C for bacteria and archaea18–23. Disturbances, most 
importantly land conversion, tillage, drainage or due to climate change, further promote dominance of non-
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mutualistic microbes18–22, primarily prokaryotes. Ecosystems on disturbed soils have low capacity to sequester 
and preserve C and N18–23 which is most integrally characterised by a low C/N ratio24.

Here, we analyse GHG exchange based on field chamber measurements of ER, N2O and CH4 fluxes4 and 
MODIS satellite data of gross primary production (GPP) in 48 open peatlands (Fig. 1) during the dry season. 
We further investigate explanatory factors of the GHG fluxes. We hypothesise that local environmental factors 
explain GHG exchange rates in the peatlands, while high gaseous C and N losses are associated with drained peat 
soils, low C/N ratios and high prokaryotic (bacterial and archaeal) abundances.

Results and discussion
Our analysis showed that CO2 dominated GHG exchange in both net emitter and uptake sites (Fig.  2). In 
the latter, GPP clearly offset ER and CH4 emissions. In the high GHG source sites, the net emission of CO2 
contributed > 83% of each GHG exchange. This corroborates the conclusion of the IPCC and several other global 
studies that CO2 is the predominant GHG, while CH4 is a minor component2. N2O contributed > 33% of each 
GHG exchange value in four GHG source sites (drained floodplain meadows and cultivated fields) and > 10% 
in other drained grasslands. This is consistent with the previous notion that N2O emissions are mostly confined 
to restricted locations and events (i.e. hot spots and hot moments). The GHG-neutral sites (between –100 
and +100 mg CO2eq m–2 h–1) experienced modest fluxes of all three GHGs (Fig. 2a).

NEE and total GHG exchange values were both unimodally distributed along the dimension of soil water 
content (generalized additive model (GAM) R2

adj = 0.31 and 0.34 for NEE and GHG exchange, respectively; 
Fig. 2a; Extended Data Fig. 1): while moderately moist sites were CO2 and GHG sources, both wet and dry 
peatlands were net CO2 and total GHG sinks. The upward slope between the wet and moderately moist peatlands 
corresponds to the well-known response of ER to drainage, which, without a matching increase in GPP, promotes 
NEE3,12. However, the decline from moderately moist towards dry peat questions the current assumption of a 
universal positive effect of drainage on CO2 and GHG emissions3,12. Instead, the drop in NEE appears to indicate 
drought stress on heterotrophic respiration10 in the dry grasslands, while high GPP is maintained. The form 
of the relationship is consistent with previous unimodal CO2 curves in peatlands9,10,13,14. Here, we show that 
a global optimum of CO2 and GHG exchange is observed at ~ 0.6 m3 m–3 SWC within the full soil moisture 
spectrum of peatlands.

The relative bacterial and archaeal abundances of soil explained another good part of variation of GHG 
exchange rates across the peatlands (GAM R2

adj = 0.37 and 0.28 between GHG emission, and archaea or 
bacteria, respectively; Fig. 3) while no fungal guild showed a fair correlation with the GHG. Low C/N ratio 
was the main abiotic factor behind the high bacterial and archaeal abundances (linear R2

adj = 0.41 and 0.28, 
respectively). No bacterial or archaeal phylum showed strong correlation to GHG exchange, as only Nitrospirae, 
Parcubacteria, Deltaproteobacteria and Bathyarchaeota, known for wide metabolic capabilities, moderately 
correlated with GHG emissions (0.20 < R2

adj < 0.30). Multiple-regression GAM models involving SWC and soil 
prokaryotic abundances predicted the GHG exchange rates well (R2

adj = 0.57 with bacteria and R2
adj = 0.60 with 

archaea). The findings refine the idea that high carbon emissions from ecosystems experiencing disturbance, N 
fertilisation (including peat mineralisation), and low C and N preservation capacity18,20–22 are linked to a high 
proportion of microbial generalists18,19,22. We initially suspected mycorrhizal fungi behind the relationships. 
However, neither mycorrhizal fungal abundance nor its ratio to prokaryotes was correlated with GHG exchange. 
Instead, we suppose the mechanism is competition between plant-associated mutualisms and non-mutualistic 
microbes18,19,21,22. C and N sources are better available for prokaryotes in poorer plant–fungi collaboration, 
wherefore higher prokaryotic abundances may indicate habitats where prokaryotes flourish while plant–fungi 
mutualisms fail6,7,11,12,22,23.

CH4 emissions were best explained by log-linear relationships with SWC (R2
adj = 0.38) and water table 

height (R2
adj = 0.34; Extended Data Fig. 2). Thus, dry peats (< 0.5 m3 m–3 SWC) took up or emitted only small 

Fig. 1. GHG exchange in open peatland study sites. Negative GHG exchange indicates net GHG uptake and 
positive GHG exchange indicates net GHG emission. Global peatland map: reference8.
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amounts of CH4 (< 0.1 mg C m–2 h–1) whereas all high CH4 emissions were produced in water-saturated peat. 
This was expected from the strictly anaerobic process of methanogenesis. Furthermore, peatlands showed a 
tendency towards higher emissions > 13 °C soil temperatures (20 cm depth: R2

adj = 0.06; p = 0.047, Extended Data 
Fig. 3). The modest fit of the environmental CH4 models can be explained by the intrinsic confinement of CH4 
emissions to individual emission hot spots. However, as CH4 is a minor component of GHG exchange (Fig. 2), 
the > 60% uncertainty in CH4 flux estimates does not translate into large uncertainty in GHG exchange across 
global peatlands. N2O emissions were log–log linearly related to soil nitrate content and formed a unimodal 
relationship with SWC20.

Here are some limitations of this study. The study is based on field chamber measurements and MODIS 
satellite data during the dry season, which may not fully capture the spatial and temporal variability of GHG 
fluxes across different seasons and weather conditions. However, previous studies have shown that the annual 
minimum water table is an integral characteristic of annual GHG fluxes in peatlands25–27. The MODIS GPP 
product has been independently validated against chamber measurements in open peatlands with excellent 
matches28,29. Overestimation of MODIS GPP in dry grasslands has been suspected, owing to a proposed > 50% 
underestimate of a negative effect of drought30. On an opposite note, validation with flux towers has shown 
underestimation of MODIS GPP31. As another caveat, emax Eq.  (2) of MODIS GPP depends heavily on land 
cover type. Open peatlands are not a land cover type on its own but are distributed between wetlands, grasslands 
and croplands. The underestimation is low for croplands and grasslands31, and is mostly the problem in forests, 
which we did not analyse here. A multi-scale analysis has shown the accuracy of MODIS GPP product depends on 
calibration methods, with flux towers generally showing larger GPP than chambers32. The same analysis showed 
that the MODIS GPP product is robust at all scales, including at different microtopographic sites32. Duration-

Fig. 2. GHG exchange in peatland sites along the soil water content gradient. (a) breakdown of GHG budgets 
into individual fluxes; generalized additive model fit (k = 3) of GHG budgets as function of soil water content. 
Site average (bar or point) and standard error (whiskers) are shown. (b) GHG fluxes and land use along the soil 
water content gradient.
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wise, we assumed the vegetation in the 8-day MODIS GPP product window as representative of our sampling 
dates, which has been shown as producing negligible error33. Accordingly, we extracted GPP values for our sites 
from the dataset (kg C m–2 8 days–1) specifically for our field visit dates. Therefore, this study acknowledges a 
significant uncertainty in GHG flux estimates, which can exceed 60%. This uncertainty could affect the overall 
accuracy of GHG exchange measurements. We tested the significance of the possible overestimation30 in dry 
sites by multiplying the GHG exchange values from our dry (< 0.4 m3 m–3 SWC) by a factor of 0.5 and using them 
in the regression analyses. The patterns of GHG exchange values vs. SWC (Fig. 2; Extended Data Fig. 1) after 
this reduction became less pronounced but retained their significance. Thus, the main patterns we observed still 
hold after the test. As a further limitation, our findings are based on 48 open peatland sites under a broad range 
of land-use regimes, which may still not be representative of all peatland ecosystems globally. The results might 
not be directly applicable to peatlands with different environmental conditions or management practices. The 
limitations highlight the need for further research to improve the understanding of GHG exchange in peatlands, 
considering a broad range of environmental factors and comprehensive microbial analyses.

Taken together, future impacts of global change on GHG exchange and the state of peatland ecosystems 
will be determined by drying and mineralisation of peat. GHG sequestration potential of undisturbed wet 
peatlands and emissions from moderately drained peat are relatively well published. Conservation is by far 
the most efficient management strategy for natural peatlands. Wetlands with low soil prokaryotic abundances 
should also be a conservation priority for their inherently well-developed carbon and nitrogen sequestration 

Fig. 3. GHG exchange in relationship with soil prokaryotic abundances. (a) GHG exchange vs. sum of 
metagenomic relative abundance of soil bacteria; (b) GHG exchange vs. qPCR-measured gene copy numbers of 
archaea per gram of dry soil (copies g–1 dry weight). Negative GHG exchange shows net uptake in plants and 
positive GHG exchange shows net emission on top of the uptake.
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capacity. Our findings of GHG sinks in dry peatlands support recultivation with drought-tolerant vegetation 
and maintenance of an artificially low water table for those drained peatlands that cannot be feasibly restored 
as wetlands. Peatlands with high soil prokaryotic abundances present the greatest potential for revegetation to 
improve carbon preservation capacity. Time will need to be allowed to move beyond the short-term carbon and 
nitrogen management policies for peatlands.

Methods
Field sampling
We conducted a survey of CO2, CH4 and N2O fluxes and potentially controlling environmental variables at 
peatland sites globally, during the dry season (i.e. the annual water table minimum time of year including 
temperate and boreal summers) at each site between 2011 and 2018. We selected a total of 48 open (i.e., with 
vegetation height < 0.5 m inside and around the chambers) peatland sites (Fig. 1) from our global wetland soil 
database4,34 throughout the rainy tropical (A), temperate (C), and boreal (D) climate zones of the Köppen 
classification (Fig.  1). We identified natural and artificially drained sites based on the proximity of drainage 
ditches, water table height, and characteristic vegetation. The hydrology and trophic status of the natural sites 
ranged from groundwater-fed swamps and fens to rain-fed peat bogs. We also selected the sites to represent 
the full typical range of land uses of each study region. Accordingly, our study sites represent peatlands that 
have been arable lands for > 5  years (Borneo, Myanmar, Tasmania and Uganda), abandoned peat extraction 
areas (Russia and Tasmania), intensively (more than once a year) grazed or mown peatlands (Brazil, Colombia, 
Estonia, Kyrgyzstan, New Zealand, Quebec, Tasmania and Uganda), non-intensively (once a year) grazed or 
mown peatlands (California, Catalonia, Estonia, France, Iceland, Kyrgyzstan, Mexico, Montana, Myanmar, 
Russia, New Zealand and Wales) and a peatland under no human land use in each study region, hence distributed 
uniformly across the world’s peatlands. To capture the full variety of GHG fluxes at a site, we set up transects 
of 2–3 points per transect, each point containing 3–4 opaque truncated conical chambers, arranged along 25–
100 m of terrain. Gas concentrations were sampled during 3–6-day campaigns using the static chamber method 
with PVC collars of 0.5 m diameter and 0.1 m depth installed in the soil4,28. The gas samples were collected into 
pre-evacuated 50 mL glass vials between 8 am and 8 pm to represent the average diurnal emissions35. The gas 
samples were transported to our laboratory at the University of Tartu and analysed by gas chromatography (GC-
2014; Shimadzu, Kyōto, Japan) instrumented with an electron capture detector for detection of N2O and a flame 
ionisation detector for CH4, and Loftfield-type autosamplers. We calculated ER, CH4 and N2O fluxes (in mg 
m–2 h–1) using changes in concentration during one hour within the chamber. Accordingly, gas concentration 
was measured at 20  min intervals (0, 20, 40 and 60  min). An individual gas flux was determined from the 
linear regression obtained from the consecutive concentrations. We closely examined the shape of our gas 
concentration trends in each individual chambers. Practically all significant deviations from a linear trend were 
apparently caused by a faulty chamber sealing. We did not observe any signs of ebullition such as jump rises in 
concentration not followed by a drop in concentration. An only small share of ebullition may be a peculiarity of 
our long chamber closing time of 1 h. A p level of < 0.05 was accepted for the goodness of fit to linear regression. 
Insignificant fluxes (p > 0.05) below the accuracy of gas chromatograph (regression change of gas concentration 
δv < 10 ppb) were included in the analysis as zeros.

Each transect point was instrumented with a 1-m-deep observation well (a 50-mm-diametre perforated PP-
HT pipe wrapped in geotextile). Water-table height was recorded daily from the observation wells during the gas 
sampling. Soil temperature was measured at 10, 20, 30, and 40 cm depths. We collected soil samples of 150–200 g 
from the chambers at 0–10 cm depth after the final gas sampling, and transported them to laboratories in Tartu, 
Estonia.

Estimation of GPP
As the estimate of GPP, we used MOD17A2H 8-day 500 m grid V006 data36 developed from the MODIS sensor 
data onboard the Terra and Aqua satellites and expressed in kg CO2 m–2 8 days–1. MOD17A2H V006 is based 
on the radiation use efficiency concept37 with three major components. The first assumption is that GPP is 
directly related to the solar energy absorbed by plants. Second, the concept assumes a connection between 
absorbed solar energy and satellite-derived spectral indices such as NDVI. The third assumption is that for 
biophysical reasons, the actual conversion efficiency of absorbed solar energy is lower than the theoretical value. 
The calculation of GPP Eq. (1) requires radiation use efficiency and absorbed photosynthetically active radiation 
(APAR) measurements. APAR calculates the available leaf area index (LAI) to absorb incident solar energy. 
This estimate is then converted into GPP by multiplying APAR with radiation use efficiency (e) Eq. (1). Remote 
sensing data usually provide the fraction of photosynthetically active radiation (FPAR). APAR can be calculated 
by Eq. (4)38. This requires the estimation of incidental photosynthetically active radiation (IPAR) Eq. (5), which 
is extracted from the GMAO/NASA dataset36.

 GP P = e ∗ AP AR (1)

 e = emax ∗ Tmin_scalar ∗ V P D_scalar (2)

 F P AR = AP AR/P AR ≈ NDV I  (3)

 AP AR = IP AR ∗ F P AR (4)

 IP AR = SW Rrad ∗ 0.45 (5)
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emax is the maximum radiation conversion efficiency in kg C MJ–1 which is obtained from the Biome Properties 
Look-Up Table (BPLUT) of the at-launch land cover product of MODIS (MOD12)32.

Tmin_scalar and VPD_scalar are the ramp functions of Tmin and VPD. This calculation requires the following 
parameters extractable from the GMAO/NASA dataset38.

Tmin_max (ºC)—the daily minimum temperature at which e = emax for an optimal VPD.
Tmin_min (ºC)—the daily minimum temperature at which e = 0 at any VPD.
VPDmax (Pa)—the daylight average vapor pressure deficit at which e = emax for an optimal Tmin.
VPDmax (Pa)—the daylight average vapor pressure deficit at which e = 0.0 at any Tmin.
SWRrad = Incident shortwave radiation used for calculating IPAR.The values were converted to mg C m–2 h–1 

as follows:

 GPP = MODIS GPP · 1, 000, 000/ (8 days · 24 h) (6)

where GPP was gross primary production transformed to mg C m–2 h–1.
We calculated NEE from GPP and ER as follows:

 NEE = ER−GP P  (7)

GHG exchange was calculated for each chamber as follows.

 GHG exchange = CH4 · GW PCH4 + N2O · GW PN2O + NEEwhere : (8)

GHG exchange was the greenhouse gas exchange in CO2 equivalents (CO2eq),
CH4 was the field-observed methane flux, mg CH4 m–2 h–1,
GWPCH4 was 28 CO2eq, the 100-year global warming potential of CH4 without climate–carbon feedbacks 

according to the IPCC Fifth Assessment Report,
N2O was the field-observed nitrous oxide flux, mg N2O m–2 h–1,
GWPN2O was 265 CO2eq, the 100-year global warming potential of N2O without climate–carbon feedbacks 

according to the IPCC Fifth Assessment Report, and.
NEE was the net ecosystem exchange of CO2 (Eq. 6).

Laboratory inorganic chemical and soil physical analyses
The homogenised samples were divided into subsamples for physical–chemical analyses and DNA extraction. 
Plant-available phosphorus (P, NH4-lactate extractable) was determined on a FiaStar5000 flow-injection 
analyser40. Plant-available potassium (K) was determined from the same solution by the flame-photometric 
method and plant-available magnesium (Mg) was determined from a 100  mL NH4-acetate solution with a 
titanium-yellow reagent on the flow-injection analyser40. Plant-available calcium (Ca) was analysed using the 
same solution by a flame-photometrical method. Soil pH was determined using a 1N KCl solution; soil NH4 and 
NO3 were determined on a 2 M KCl extract of soil by flow-injection analysis (APHA-AWWA-WEF). Total N and 
C contents of oven-dry samples were determined by a dry-combustion method on a varioMAX CNS elemental 
analyser (Elementar Analysensysteme GmbH, Germany). Organic matter content of dry matter was determined 
by loss on ignition40. We determined SWC from gravimetric water content (GWC), dry matter content and 
empirically established bulk densities (BD) of mineral and organic matter fractions4,41–43 as follows:

 SWC = GWC · BD (9)

where: SWC is soil water content, m3 m−3,
GWC is gravimetric water content, Mg Mg−1, calculated as the difference between the fresh and oven-dry 

weight divided by the oven-dry weight41, and
BD is bulk density, Mg m−3.

DNA extraction, quantitative PCR and metagenomics
DNA extraction was performed from 0.2 g of frozen soil samples using the Qiagen Dneasy PowerSoil Kit (12888-
100), following the manufacturer’s recommendations. DNA concentrations were measured with the Qubit™ 1X 
dsDNA HS Assay Kit using a Qubit 3 fluorometer (Invitrogen)34.

For soil archaeal and bacterial abundances, real-time quantitative polymerase chain reaction (qPCR) assays 
were performed using a RotorGene® Q equipment (Qiagen, Valencia, CA, USA). Amplification was carried out 
in 10 μL reaction solutions containing 5 μL Maxima SYBR Green Master Mix (Thermo Fisher Scientific Inc., 
Waltham, MA, USA), with an optimised concentration of forward and reverse primers, 1 μL of template DNA 
and sterile distilled water. qPCR measurements were performed in triplicate, and the absence of contaminations 
was verified against negative controls. For a detailed description of the gene-specific primer sets, thermal cycling 
conditions, and primer concentrations for the bacterial and archaeal 16S rRNA, see44. Quantitative data were 
analysed with RotorGene Series Software v. 2.0.2 (Qiagen) and the LinRegPCR program v. 2018.045. The archaeal 
and bacterial gene abundances were calculated as mean fold differences between samples and corresponding 
tenfold standard dilution in respective standards, as recommended by45; the gene abundances were reported as 
gene copy numbers per gram of dry soil (copies g–1 dry weight).

We calculated metagenomic relative abundances (i.e. miTag46) of archaea, bacteria and fungi based on 
small subunit (SSU) rRNA genes34. For this, SortMeRNA (version 2.0)47 was used to extract and blast search 
rRNA genes against the SILVA SSU database (v128). Reads approximately matching this database with e < 10−4 
were further filtered with custom Perl and C +  + scripts and merged using FLASH. In case read pairs could 
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not be merged, the reads were interleaved such that the second read pair was reverse complemented and then 
sequentially added to the first read. Of these preselected reads, 50,000 reads were fine-matched the Silva SSU 
database using Lambda and the lowest common ancestor (LCA) algorithm adapted from LotuS.

For calculating relative abundance of different fungal guilds, we performed metabarcoding using PacBio 
sequencing. The sequencing data were analysed using the PipeCraft pipeline48. We used the FungalTraits 
database49 for functional annotation of the data. We calculated metagenomic relative abundances of fungi based 
on small subunit (SSU) rRNA genes, blasted against the Silva SSU database. The read abundance was normalised 
by the total number of metagenomic SSU reads.

Correlation analysis of GHG against environmental factors and soil microbiome 
characteristics
We calculated a correlation matrix between our individual GHG fluxes and their total CO2eq exchange values, 
environmental factors, relative abundances of functional groups of microbes and ratios between them. We used 
linear and non-parametric GAM models applying minimal smoothness (k = 3)4. We assessed the normality of 
our data using visual approaches and the Shapiro–Wilk test. Where necessary, we log-transformed the values. For 
the GHG flux rates, we considered the following environmental predictor variables: soil and water temperature, 
distance from the equator, Köppen climate zone (A, C or D), water table, volumetric SWC, soil chemistry 
(pH, total C%, organic matter, total N%, C:N ratio, ammonium, nitrate, calcium, magnesium, potassium and 
phosphorus), water oxygen content, and agricultural land use intensity. We calculated the correlation matrix 
using the R programming language (stats and mgcv packages). We reported correlations with a significance level 
of p = 0.05.

Data availability
The study is mostly based on data published in4,34. Additional source data (Figs. 1–3) are provided with this 
paper.
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