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A B S T R A C T

Biomolecules can be condensed through liquid-liquid phase separation (LLPS) or other material states. The 
resulting biomolecular condensates can play key roles in cellular organisation and stress responses. While often 
regarded as membrane-less structures, some biomolecular condensates interact with cellular membranes. Despite 
their potential importance, these interactions remain largely unexplored, primarily due to their dynamic nature. 
We focus here on membrane-biomolecular condensate interactions that have significant functions in stress re-
sponses, suggesting their link with long-term stress adaption.

Introduction

Cells constantly monitor their surroundings for changes that could 
disrupt their normal function. When a cell encounters environmental 
stress, such as extreme temperatures (heat or cold), drought, or the 
presence of harmful organisms, it initiates a complex response to sur-
vive. This process begins with specialised sensor molecules, known as 
receptors, strategically positioned on the cell’s surface, within its cyto-
plasm, or in other cellular compartments (Wang et al., 2024b). These 
receptors act like sentinels, detecting the specific stressor and triggering 
a cascade of molecular events (Jiang et al., 2019). This cascade often 
involves intricate protein-protein interactions, chemical modifications 
like phosphorylation, and the release or activation of signalling mole-
cules called secondary messengers (e.g., calcium and reactive oxygen 
species). These signalling events ultimately converge on key cellular 
players, including transcription factors, enzymes, and other regulatory 
proteins. By modulating the activity of these proteins, the cell orches-
trates a coordinated stress response aimed at mitigating the damage, 
restoring homeostasis, and ensuring survival.

Environmental stress profoundly impacts the cellular organisation, 
affecting both traditional organelles and the more recently discovered 
membrane-less organelles, known as biomolecular condensates (Wang 
et al., 2020b). Biomolecular condensates usually form through 
liquid-liquid phase separation (LLPS) (Holehouse and Alberti, 2025). 
These condensates, composed of proteins, RNA, and other biomolecules, 
were initially thought to exist primarily within the cytoplasm and 
nucleoplasm. However, they frequently interact with cellular 

membranes, membranous vesicles, and lipids, expanding the complexity 
of their functional roles (Mangiarotti et al., 2023; Dumelie et al., 2024).

One of the most well-characterized examples of a membrane-bound 
condensate in a stress context is the mammalian T-cell receptor (TCR) 
signalling, a critical component of the adaptive immune response 
(Huang et al., 2019). Upon encountering an antigen, the T-cell receptor 
initiates a signalling cascade leading to T-cell activation. This process 
involves the formation of a condensate at the plasma membrane, con-
sisting of the transmembrane protein Linker of Activation of T cells 
(LAT) and the cytoplasmic adaptor proteins Growth factor 
receptor-bound 2 (Grb2) and Son of Sevenless 1 (Sos1). This 
LAT/Grb2/Sos1 condensate acts as a specialised microenvironment, 
concentrating the signalling components necessary for efficient TCR 
signalling. Within this condensate, proteins are brought into proximity, 
facilitating phosphorylation and thus downstream signalling pathways. 
This precise spatiotemporal signalling is crucial for fine-tuning the im-
mune response.

Although many biomolecular condensates have been identified in 
plants, a significant gap remains in our understanding of their in-
teractions with membranes and how they behave and function there, 
particularly under stress conditions. The broader landscape of plant 
biomolecular condensates, including their diverse types and functions, 
has been extensively reviewed (Liu et al., 2024b; Fang and Li, 2024). 
Here, we will specifically focus on those condensates that exhibit a clear 
functional connection to membranes, especially in cellular stress 
responses.
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The basics of membrane trafficking in plants

Before exploring the interplay between biomolecular condensates 
and membranes, it is essential to understand the fundamental process of 
membrane dynamics, known as membrane trafficking. This process 
governs the movement of membrane-bound vesicles and organelles, 
facilitating the targeted delivery of molecules within the cell. This dy-
namic process is particularly crucial during stress responses, enabling 
the recycling of damaged molecules and the transport of both intracel-
lular and extracellular materials. Below, we provide a concise overview 
of membrane trafficking in plants. For a more in-depth exploration, we 
refer the reader to (Aniento et al., 2022). In plants, two primary path-
ways orchestrate membrane trafficking:

The Secretory Pathway: This pathway originates in the ER, the 
central hub for protein synthesis, folding, and initial packaging. Proteins 
destined for secretion or integration into cellular membranes are pro-
cessed within the ER and transported to the Golgi apparatus. Here, 
further modifications, such as glycosylation and phosphorylation, occur, 
and the proteins are sorted and packaged into transport vesicles. These 
vesicles then bud off from the Golgi and are targeted to their final des-
tinations, including the plasma membrane, the vacuole, or the cell wall.

The Endocytic Pathway: This pathway mediates the internalisation 
of molecules from the plasma membrane (or elsewhere), encompassing a 
diverse array of cargo, including signalling molecules, ion channels, and 
receptors. Endocytosis involves plasma membrane invagination to form 
vesicles that bud inward and undergoing scission, encapsulating the 
target molecules. These vesicles then fuse with early endosomes (EEs)/ 
trans-Golgi network (TGN), a complex assembly of interconnected 
membranes. From these intermediate compartments, cargo can be 
recycled back to the plasma membrane, directed to the vacuole, or 
transported to other specific cellular locations.

Vesicle formation, movement, and targeted fusion are regulated by a 
diverse array of molecular machinery. Key players in this dynamic sys-
tem are the RAS-RELATED IN BRAIN (RAB) GTPases. These small pro-
teins exhibit remarkable specificity, localising to distinct membrane 
compartments and recruiting effector proteins that orchestrate vesicle 
transport and fusion. Vesicle formation is driven by the assembly of coat 
proteins on the membrane surface. Three major types of coat proteins 
exist: COAT PROTEIN COMPLEX I (COPI), COPII, and CLATHRIN. COPI 
plays a crucial role in retrograde transport, which is shuttling cargo from 
the Golgi apparatus back to the ER, a process facilitated by ADP RIBO-
SYLATION FACTOR 1 (ARF1) (Snead et al., 2017). Conversely, COPII 
drives anterograde transport, carrying nascent proteins from the ER to 
the Golgi. CLATHRIN-coated vesicles (CCVs) mediate vesicular trans-
port, including both Golgi-to-endosome/plasma membrane trafficking 
and endocytosis. CLATHRIN-coated vesicles (CCVs) mediate transport 
from the Golgi to the endosomes and plasma membrane. At the plasma 
membrane, CLATHRIN is essential for receptor-mediated endocytosis, 
forming CLATHRIN-coated pits that invaginate and bud off as vesicles 
(Gollapudi et al., 2023). Yet, as discussed later, other types of endocy-
tosis exist.

The family of N-ETHYLMALEIMIDE-SENSITIVE FACTOR ATTACH-
MENT PROTEIN RECEPTOR (SNARE) proteins ensures vesicular fusion 
specificity (Park et al., 2023). v-SNAREs reside on the vesicle membrane, 
while t-SNAREs are on the target membrane. The interaction between 
complementary v-SNAREs and t-SNAREs brings the vesicle and target 
membrane into close proximity, enabling membrane fusion. In addition 
to SNAREs, the HOMOTYPIC FUSION AND PROTEIN SORTING (HOPS) 
and the EXOCYST complexes act as crucial tethering factors (Takemoto 
et al., 2018; Synek et al., 2021; Michalopoulou et al., 2022). Composed 
of six subunits (VACUOLAR PROTEIN SORTING ASSOCIATED11, 
VPS16, VPS18, VPS33, VPS39, and VPS41), HOPS bridges the vesicle 
and target membrane, bringing them close enough for SNARE-mediated 
fusion. The EXOCYST complex is composed of eight subunits: SEC3, 
SEC5, SEC6, SEC8, SEC10, SEC15, EXO70, and EXO84, which also 
facilitate fusion. Finally, the intracellular transport of vesicles relies on 

actin filaments and microtubules, which, in conjunction with motor 
proteins like myosin and kinesin, provide the tracks along which vesicles 
are transported (Ruan et al., 2018; Liu et al., 2023b).

Both endocytosis and the secretory pathway play crucial roles in 
regulating the composition of the plasma membrane and influencing 
cellular signalling. They achieve this by modulating the trafficking of 
receptors, channels, and hormone-receptor complexes to and from the 
cell surface. This dynamic regulation directly impacts the initiation and 
strength of cellular responses during stress (Dragwidge et al., 2024). 
Beyond signalling components, these pathways also manage the delivery 
of stress-related proteins, such as antioxidant enzymes and heat shock 
proteins, equipping the cell to respond to environmental challenges 
(Driedonks et al., 2015). Endocytosis further contributes to cellular 
homeostasis by removing damaged or modified proteins from the 
plasma membrane, such as oxidised proteins, ensuring proper receptor 
function and preventing aberrant signalling. In addition to these func-
tions, the secretory pathway is essential for delivering key structural 
components to the cell’s exterior, including cell wall components like 
cellulose synthase complexes (CESA), and polysaccharides, such as 
pectin (Sinclair et al., 2018).

Another regulator of membrane trafficking involves the Endosomal 
Sorting Complex Required for Transport (ESCRT) (Mosesso et al., 2024; 
Liu et al., 2024a; Liu et al., 2023a). This machinery comprises several 
cytosolic protein complexes, including ESCRT-0, -I, -II, and -III, along 
with accessory proteins like VPS4, LYSOSOMAL TRAFFICKING REGU-
LATOR INTERACTING PROTEIN-5 (LIP5), and ALG2-INTERACTING 
PROTEIN X (ALIX) (Hu et al., 2022). While plants possess most ESCRT 
components (ESCRT-I, -II, -III, and VPS4/ SUPPRESSOR OF K+
TRANSPORT GROWTH DEFECT 1), they lack canonical ESCRT-0 sub-
units. However, they compensate for ESCRT-0 lack with a plant-specific 
ESCRT protein, FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL 
SORTING 1 (FREE1). ESCRT-I complex assembly initiates with in-
teractions between VPS23, VPS37, and VPS28. VPS28 is crucial for 
binding to protein cargo that has been tagged with ubiquitin and its 
associated adaptor proteins. This interaction effectively links the ubiq-
uitinated cargo destined for degradation with the ESCRT machinery. 
Following cargo binding, the ESCRT-I complex undergoes further as-
sembly, involving the association of additional subunits like VPS46. 
These components contribute to stabilising the complex and enhancing 
its interaction with membranes. Furthermore, the ESCRT-I complex in-
teracts with other ESCRT complexes, particularly ESCRT-II (VPS36, 
VPS22, VPS25) and ESCRT-III (SNF7, VPS20), to coordinate the cargo 
sorting process (Christ et al., 2016).

The ESCRT assembly is key in membrane remodelling, a process 
crucial for various cellular events, including the formation of multi-
vesicular bodies (MVBs). MVBs function as sorting stations that deliver 
cargo to the vacuole for degradation or storage (Simon et al., 2016). 
MVBs are enclosed by a single membrane that originates from endo-
somes and contains numerous smaller vesicles, known as intraluminal 
vesicles (ILVs), within their lumen. IVLs contain proteins and other 
molecules; this cargo is often ubiquitinated. MVBs mature into late 
endosomes (LE), also known as pre-vacuolar compartments (PVCs). 
FREE1, a plant-specific ESCRT protein, collaborates with ESCRT-I to 
regulate the sorting of endosomes to MVBs and the subsequent forma-
tion of ILVs, and, ultimately, MVB delivery to the vacuole (Wang et al., 
2024a). ILV formation depends on membrane scission, mediated by 
membrane-bound ESCRT-III, which results in ILV release into the MVB 
lumen (Pfitzner et al., 2021).

Beyond the well-established mechanism of vesicular transport, 
membrane trafficking also relies on direct and dynamic connections 
between organelles (Perez-Sancho et al., 2015; Scorrano et al., 2019). 
The contact sites where organelle membranes come into proximity are 
not merely points of physical contact but rather functional hubs. Specific 
proteins and lipids localize to these regions, creating microenvironments 
that facilitate the exchange of molecules and signals between the 
interacting organelles. This direct communication plays a crucial role in 
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coordinating cellular processes and maintaining organelle homeostasis.

The basics of biomolecular condensates

Partitioning biomolecules into distinct compartments (e.g., mem-
branous organelles) is crucial for the cellular stress response, impacting 
key processes such as protein synthesis, RNA processing, and signal 
transduction. Biomolecular condensates also form in various cell com-
partments, carrying various biomolecules (Fig. 1A). These condensates 
can be categorised as constitutive (always present, like nucleoli (Feric 
et al., 2016)) or inducible (formed in response to stress, like the con-
densates known as stress granules (Solis-Miranda et al., 2023)). Bio-
molecular condensation is often driven by Liquid-Liquid Phase 
Separation (LLPS), a physical process where a homogeneous solution 
separates into two distinct phases: a dense, solute-rich phase (the 
condensate) and a dilute, solute-poor phase (the surrounding cytoplasm, 

organellar lumen, or apoplast) (Fig. 1B) (Holehouse and Alberti, 2025). 
In cellular condensates, the solutes are typically proteins and sometimes 
include RNA, ions, small molecules, cell wall polymers, and even lipids. 
Several factors influence LLPS, including the concentration of the 
participating polymers (like proteins), their valency (the number of 
binding sites on each polymer), and the binding affinities between them. 
Intriguingly, despite lacking a traditional membrane boundary, con-
densates often behave like membrane-bound organelles undergoing 
fusion or fission, also exhibiting dynamic material properties ranging 
from liquid-like (droplet fusion, fission) to gel-like or even solid-like 
(Yeong et al., 2022).

As previously mentioned, many biomolecular condensates exhibit 
liquid-like properties at certain length and time scales, although it is 
important to note that liquidity is not essential for their function. While 
often initially liquid-like, condensates are dynamic structures that can 
evolve over time, acquiring a range of material properties (Liu et al., 

Fig. 1. Diverse forms and functions of biomolecular condensates in plants. 
(A) Cellular Localization and Interactions. This schematic depicts a plant cell showcasing the diverse localisation of biomolecular condensates. Condensates, 
depicted in various colours and shapes, are shown in the cytoplasm (stress granules (Wang et al., 2024b; Gutierrez-Beltran et al., 2021), P-bodies (Lee et al., 2020), 
edge condensates (Liu et al., 2024b; Liu et al., 2023a), vacuolar condensates (e.g., LATE EMBRYOGENESIS ABUDANT (Belott et al., 2020)) interacting with the 
vacuole membrane via wetting), nucleus (nuclear pore (Celetti et al., 2019), nucleolus (Feric et al., 2016), transcriptional condensates (Feric et al., 2022), DNA 
damage foci (Fijen and Rothenberg, 2021), and chloroplast (pyrenoid (Wang et al., 2019a) or STT1/2 (Ouyang et al., 2020)). The ESCRT-I component FREE1 is 
shown localised to a membrane, illustrating a condensate-membrane interface (Zeng et al., 2023; Wang et al., 2024a). The question mark close to the mitochondrion 
indicates that biomolecular condensates have not been studied for this organelle in plants. However, many relevant condensates have been found in non-plants (for 
example (Long et al., 2021; Hou et al., 2023; Rey et al., 2020; Peng et al., 2021)). 
(B) Material Properties and Phase Behavior. This panel illustrates the different material properties and phase behaviour observed in biomolecular condensates. 
The left series demonstrates the transition from a dilute solution (light green) to a percolated network (intermediate green; (Mittag and Pappu, 2022)) and, finally, a 
gel-like state (dark green; (Iserman et al., 2020; Fuller et al., 2020; Kato et al., 2012; Franzmann et al., 2018)) with increasing polymer concentration. The right series 
shows the process of phase separation, where increasing polymer concentration leads to the formation of coexisting phases: a dilute phase (light green) and a dense, 
condensate-rich phase (dark green droplet). The schematic representations below each graph depict the arrangement of molecules in each state. 
(C) Domain Architecture of Condensate Components: Inset highlighting the modular domain architecture commonly found in proteins that form biomolecular 
condensates. These proteins often contain intrinsically disordered regions (IDRs), shown as flexible loops, interspersed with globular domains, shown as more 
structured shapes. IDRs facilitate phase separation, while globular domains provide specific functions or interactions.
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2024b). This dynamic behaviour likely stems from the increasing 
confinement of proteins within low-energy conformations as the 
condensation process progresses (Kulkarni et al., 2022). As a result, 
condensates can transition through a spectrum of states, ranging from 
semifluid gels to more rigid glass-like or even solid-like states (Woodruff 
et al., 2018; Jawerth et al., 2020) (Fig. 1B). To encompass this dynamic 
nature and avoid potential ambiguities, we will use the term "phase 
separation" (and not LLPS) to describe the process that leads to the 
formation of these condensates (Musacchio, 2022).

Intrinsically disordered proteins (IDPs), characterised by significant 
conformational flexibility, play a prominent role in phase separation. 
These proteins contain intrinsically disordered regions (IDRs) that 
rapidly interconvert between multiple conformations, forming an 
ensemble of structures (Fig. 1C). This dynamic nature makes IDRs highly 
sensitive to environmental changes, such as those encountered during 
cellular stress, allowing proteins and other biomolecules to be entrapped 
in the low-energy conformations mentioned above. The stress-induced 
structural fluctuations of IDRs can promote interactions with other 
molecules, thereby promoting condensate formation. This ability sug-
gests that IDPs act as stress sensors and thus can be considered as stress 
receptors (Wang et al., 2024b; Hsiao, 2022; Field et al., 2023; Riback 
et al., 2017).

While IDRs are often associated with low-complexity sequences, this 
is not always the case (Martin and Mittag, 2018). Although initially 
believed to be primarily driven by IDRs, recent evidence indicates that 
folded protein domains can also contribute to phase separation (Hess 
and Joseph, 2025). Computational analysis has further revealed distinct 
characteristics of IDRs and low-complexity regions in proteins that un-
dergo phase separation. Proteins that can independently induce phase 
separation (without partner molecules) exhibit different IDR and 
low-complexity region profiles compared to the general proteome 
(Ozawa et al., 2023). Conversely, proteins that require partner proteins 
or other molecules for phase separation do not show such a clear dif-
ference in their IDR composition compared to the reference proteome. 
For example, the folded domains of some RNA-binding proteins, like the 
non-plant HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1, 
can contribute to phase separation through multivalent interactions 
(Martin et al., 2021).

Basics of membranes-condensates interfaces

Membrane lipids, such as anionic lipids and sterols, can anchor and 
thus modulate condensate-associated molecules, influencing their 
spatiotemporal organisation, shape, and properties. These condensate- 
membrane interactions can selectively recruit or concentrate lipids 
and proteins (or RNA) into specific membrane domains, impacting cell 
polarity and signalling pathways (Snead et al., 2022). The increase in 
condensate research has resulted in a scenario where various definitions 
are often used interchangeably, obstructing precise communication. 
Acknowledging this issue, a recent initiative has aimed to establish a 
framework for classifying plasma membrane-associated condensates 
based on function, distinguishing nanodomains and polar domains 
(Jaillais et al., 2024).

Collectively, the phenomenon of biomolecular condensation on 
membranes is known as wetting (Kusumaatmaja et al., 2021b; Kusu-
maatmaja et al., 2021a). The interactions that underpin wetting suggest 
stereospecific binding between chemical groups within the condensates 
and the lipids. For instance, in animals, the ARGONAUTE proteins 
(AGOs) phase separate atop phosphatidylinositol lipids of the ER (Gao 
et al., 2022), whereas the human condensate known as TIS granule in-
teracts with ER lipids through RNA bridges (Ma and Mayr, 2018). 
Notably, our research provided the first evidence of a specific plant 
condensate, the SFH8 (SEC14 HOMOLOG LIKE 8), binding to anionic 
membrane lipids, revealing also that these interactions modulate the 
condensate’s properties (Liu et al., 2023b).

As condensate wetting can also influence the lipid composition of 

membrane nanodomains, this process could impact regions beyond 
these localised areas. This phenomenon can lead to alterations in 
membrane dynamics (i.e., tension and elasticity (Kusumaatmaja et al., 
2021b)). In some cases, external mechanical forces, such as those 
generated by the cytoskeleton, can contribute to the spreading of the 
condensate. Given the critical dependence of plant cell membrane 
function on fluidity and its dynamics, which is itself influenced by fac-
tors like lipid composition (e.g., fatty acid saturation), protein compo-
sition, and overall lipid content (Mangiarotti and Dimova, 2024), 
condensate wetting has the potential to significantly modulate stress 
signalling. Yet, this hypothesis remains to be experimentally validated in 
stress scenarios where membrane composition, damage, and other dy-
namic properties (e.g., tension) are important (e.g., wounding or cold 
stress).

Membrane-condensate interfaces in plant stress

Environmental stresses like drought, salinity, extreme temperatures, 
and pathogen attacks can significantly compromise both membrane 
integrity and the function of biomolecular condensates (reviewed in 
(Solis-Miranda et al., 2023)), potentially disrupting the crucial interface 
between them and consequently affecting stress signalling. The 
following sections will explore specific examples of 
membrane-condensate interfaces with established roles in plant stress 
responses.

Endoplasmic reticulum

As the central hub of the endomembrane system, and due to its 
extensive connections with the plasma membrane, the ER acts as a 
primary sensor of extracellular cues and plays a crucial role in coordi-
nating cellular responses to adverse conditions. The ER integrates a 
multitude of environmental stimuli and can itself experience stress. ER 
stress arises when the ER’s protein folding and modification capacity is 
overwhelmed. In response to this stress, cells activate a signalling 
pathway known as the unfolded protein response (UPR) (reviewed in 
(Strasser, 2018)).

In plants, ER stress comprises two major pathways: IRE-bZIP60 and 
bZIP17/bZIP28. Like in animals, the plant IRE1-bZIP60 pathway uses 
the endoribonuclease INOSITOL-REQUIRING ENZYME 1 (IRE1) that 
splices the mRNA of bZIP60, a transcription factor. This unconventional 
splicing event generates an active transcription factor that translocates 
to the nucleus and regulates the expression of genes involved in protein 
folding (e.g., by chaperones such as BiP, calnexin, calreticulin), protein 
modifications (e.g., by folding enzymes such as protein disulfide isom-
erase), and ER-associated degradation (ERAD) of misfolded proteins 
(Shin et al., 2018; Van Hoewyk, 2018; Cui et al., 2019; Ling et al., 2019; 
Wang et al., 2019c; Zhang et al., 2022; Tang et al., 2023; Liu et al., 
2024a). In bZIP17/bZIP28 pathway, plant-specific membrane-bound 
transcription factors, bZIP17 and bZIP28, are activated in response to ER 
stress and translocate to the nucleus to regulate gene expression. Beyond 
splicing bZIP60 mRNA, IRE1 also performs Regulated IRE1-Dependent 
Decay (RIDD) (Srivastava et al., 2018; Park and Horton, 2019). RIDD 
entails the degradation of specific mRNAs through IRE1’s endor-
ibonuclease activity. This mechanism assists in alleviating the overall 
protein synthesis burden on the ER.

Despite the ER’s critical role in stress responses, our understanding of 
condensate-membrane interfacing at the ER remains limited. In Arabi-
dopsis dry seeds, metacaspases (a class of proteases) form condensate- 
like structures on both the ER and the ER-associated organelles known 
as lipid droplets (Liu et al., 2024a). However, the mechanisms under-
lying the specific recruitment of metacaspases to the ER remain elusive, 
although functional interactions between metacaspases and ERAD 
components were reported in the same study. In animal cells, processing 
bodies (P-bodies), conserved mRNA regulatory condensates, interact 
with the ER and influence P-bodies’ fission (Lee et al., 2020). While the 
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functional significance of this interaction is not fully understood, recent 
evidence suggests that ER stress induced by pathogens can modulate 
P-body dynamics in plants (González-Fuente et al., 2025). Given the role 
of P-bodies and RIDD in mRNA turnover regulation, the P-body-ER 
interaction raises the possibility of P-body/RIDD cooperation in 
stress-induced mRNA degradation. Furthermore, ER membrane domains 
may also host other signalling protein condensates (e.g., kinases, phos-
phatases) for signal transduction through condensates produced by 
P-bodies or other condensates.

Plasma membrane and cell wall

The plasma membrane and the cell wall are critical players in a cell’s 
ability to sense and respond to stress. Acting as the first line of defence, 
they detect changes in the external environment and trigger intracellular 
signalling pathways that promote adaptation and survival. Similar to the 
phase separation observed in biomolecular condensates, cell wall com-
ponents and lipids within biological membranes can also undergo a form 
of phase separation (Zhao and Zhang, 2020). This results in the clus-
tering and lateral segregation of lipids and proteins into distinct, 
receptor-rich domains. These nano- and polar domains can be enriched 
in sphingolipids, cholesterol, and/or saturated lipids, exhibiting tighter 
lipid packing (Agarwal et al., 2024; Liu et al., 2023b; Dragwidge et al., 
2024; Wang et al., 2023; Ma et al., 2022b; Chen et al., 2023; Yuan et al., 
2021; Sun et al., 2021; Day et al., 2021; Su et al., 2020; Kulich et al., 
2020). Nano- and polar domains may also be rich in phosphatidylino-
sitol lipids. Although these lipids usually constitute <1 % of the mem-
brane, they exhibit a high affinity for certain molecules which are 
concentrated on them, facilitating the formation of condensates (Gao 
et al., 2022; Jaqaman and Ditlev, 2021).

Emerging evidence suggests that interactions between membrane 
nano- or polar domains and specific molecules facilitate the formation of 
condensates, which coordinate signal transduction. Within these do-
mains, membrane-bound receptors, such as pattern recognition re-
ceptors (PRRs), can perceive various signals. For instance, the 
perception of extracellular signals by receptor-like kinases (RLKs) can 
initiate intracellular signalling that leads to stress adaptation (Elliott 
et al., 2024; Chen et al., 2024). A key element of these signalling cas-
cades is phosphorylation, catalysed by PRRs or associated kinases, along 
with the generation of secondary messengers (Yu et al., 2023; Li et al., 
2022; Zhou et al., 2020; Yu et al., 2019). Usually, PRRs perceive 
extracellularly secreted peptides, like the RAPID ALKALINIZATION 
FACTOR1 (RALF1). RALF1 can undergo phase separation with pectin. 
This phase separation concentrates RALF1, which then binds to the 
FERONIA (FER) receptor and its coreceptor LORELEI-LIKE glyco-
sylphosphatidylinositol-anchored protein 1 (LLG1) complex, further 
promoting their phase separation (Liu et al., 2024c). The 
pectin-RALF1-FER-LLG1 condensates lead to receptor clustering and 
trigger endocytosis. Environmental stressors, such as salt and high 
temperature, enhance the RALF1-pectin condensation, amplifying re-
ceptor clustering. RALF can also condense pectin by interacting with the 
cell wall-anchored LEUCINE-RICH REPEAT EXTENSIN (LRX) (Dunser 
et al., 2019; Moussu et al., 2023), suggesting the potential participation 
of LRX in the condensation process.

Intriguingly, Lee et al. demonstrated that protein phase separation 
on one side of a membrane can induce lipid phase separation on the 
opposite side (Lee et al., 2023). This “cross bilayer coupling” suggests a 
potential mechanism for signal transduction across membranes. These 
findings raise the compelling question of whether extracellular con-
densates, like pectin-RALF-FER-LLG1, are coupled with cytosolic con-
densates, such as stress granules or P-bodies, to regulate cell signalling. 
This line of inquiry is further supported by the reported links between 
cellular condensates formed by GLYCINE-RICH RNA BINDING PROTEIN 
7 (GRP7), a component of both stress granules and P-bodies, and FER 
(Wang et al., 2020a; Ma et al., 2022a). The RALF1-FER-GRP7 module 
regulates RNA splicing upon stress, by promoting the relocation of GRP7 

to the nucleus. Hence, it is tempting to speculate that condensates are 
coupled across membranes to orchestrate stress responses.

The plant-specific REMORIN protein provides another example of 
how membrane domains and protein condensates can be linked. 
REMORIN possesses a C-terminal membrane anchor domain, a homo- 
oligomerization domain, and an N-terminal IDR, allowing it to func-
tion as a tether (Xu et al., 2024) (Fig. 1). Upon membrane association, 
REMORINs recruit specific lipids, like sterols and anionic phospholipids, 
to form membrane nanodomains. In Arabidopsis, the IDR of REMORIN 
interacts with type-I FORMINS, which are actin nucleators. This inter-
action allows REMORIN nanodomains to gradually recruit and condense 
type-I FORMINS into the same nanoclusters, enhancing actin nucleation 
and polymerisation during immune responses (Ma et al., 2022b).

Polar plasma membrane domains are characterised by the asym-
metric distribution of cellular components, such as proteins and lipids 
with functional implications (Jaillais et al., 2024). For instance, the 
SFH8 condensate mentioned above forms large domains at the plasma 
membrane of Arabidopsis root cells, playing a key role in exocytosis (Liu 
et al., 2023b). An important open question is how this pathway is spe-
cifically modulated under different stress conditions. Furthermore, it 
remains unclear how SFH8 condensates, as has been reported, promote 
exocytosis through fusion. A potential mechanism involves 
SFH8-induced localised modifications to membrane dynamics or 
composition. Accordingly, others have shown that phase separation can 
induce membrane curvature, a process crucial for membrane fusion 
(Yuan et al., 2021). The formation of protein-rich condensates can 
deform the membrane, bringing vesicle and target membranes into close 
proximity, which is a prerequisite for fusion (Liu et al., 2023b).

MVBs and vacuole

As mentioned earlier, MVBs are essential sorting organelles that 
mainly direct cargo to the vacuole. The plant-specific ESCRT-I subunit 
FREE1, which contains an IDR, undergoes phase separation to form 
condensates on the MVB surface. This phase separation is critical for 
efficient ILV formation within MVBs (Mosesso et al., 2024; Wang et al., 
2024a). Plants expressing a FREE1 mutant lacking this specific IDR show 
hypersensitivity to the stress hormone abscisic acid (ABA), suggesting 
that FREE1-mediated phase separation plays a vital role in ABA ho-
meostasis. This hypersensitivity likely results from impaired 
MVB-dependent degradation of ABA-related signalling components. In 
addition to driving its own condensation, FREE1 acts as a scaffold within 
the MVB pathway, recruiting binding partners such as soluble cargo 
proteins and other ESCRT proteins. This proposed mechanism of ILV 
scission may provide insights into the evolution of cellular compart-
mentalisation and the interplay between traditional, 
machinery-dependent (regular endocytosis) and condensate-mediated 
membrane scission (Rangachari, 2023).

Further examples where condensates are involved in membrane 
fission are the endocytic machinery condensates on yeast and plant 
plasma membranes that can support endocytosis (Dragwidge et al., 
2024) and vacuolar fission (Kusumaatmaja et al., 2021b). Apart from 
lytic vacuoles (LVs) involved in degradation, vacuoles are categorised as 
protein storage vacuoles (PSVs) (Takemoto et al., 2018). Vacuolar 
degradation in LVs, which are more abundant in vegetative tissues, is 
essential for maintaining cellular homeostasis by recycling 
non-functional or misfolded proteins and ensuring proper cell signalling. 
PSVs, on the other hand, are prevalent in storage tissues, showing higher 
pH and lower hydrolytic activity compared to LVs. Both types can 
coexist within a single cell, with LVs potentially arising from PSVs. PSVs 
form through specific trafficking to the vacuole, while abiotic stress 
alters vacuolar trafficking pathways, favouring protein delivery to PSVs 
(Ren et al., 2020).

The PSV pathway’s delivery of high concentrations of storage pro-
teins (e.g., globulins) can promote weak, multivalent protein-protein 
interactions, potentially driving the formation of protein-rich 
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biomolecular condensates and contributing to vacuolar compartmen-
talisation and fission (Fig. 1) (Kusumaatmaja et al., 2021a). Detoxifi-
cation compounds and high calcium levels within the vacuole could 
contribute to this phase separation. Cytoplasmic condensates may also 
contribute to vacuole fission by deforming the vacuolar membrane from 
the cytoplasmic side. Yet, we know little about the role of this pathway 
in stress responses, although it seems likely to regulate PSVs.

Autophagy

Apart from MVBs, autophagy is another crucial cellular process that 
plays a central role in delivering cellular components to vacuoles. Often 
induced by stress, autophagy helps the cell eliminate unwanted or 
damaged components (Zhou et al., 2024; Zou et al., 2025). Macro-
autophagy, a highly conserved process, involves the formation of vesi-
cles called autophagosomes. These autophagosomes engulf cytoplasmic 
components, including organelles and macromolecules, and then deliver 
them to LVs. In contrast to macroautophagy, microautophagy bypasses 
the formation of autophagosomes. Instead, microautophagy directly 
engulfs cargo by inward folding or invagination of the vacuolar mem-
brane. Microautophagy is often associated with the formation of PSVs, 
as it delivers cargo to these storage compartments, thus potentially 
playing a role in PSV biogenesis (Plott et al., 2025). It is important to 
note that while microautophagy has been extensively studied in yeast 
and mammalian cells, the mechanisms of microautophagy in plants 
remain largely unexplored.

Macroautophagy critically depends on AUTOPHAGY-RELATED 
(ATG) proteins for autophagosome formation. Among these, the 
ubiquitin-like ATG8 proteins are essential for autophagosome expansion 
and closure (reviewed in (Minina et al., 2017)). FREE1, the 
plant-specific ESCRT-I subunit, interacts with ATG8 proteins and other 
ATG proteins, such as the ATG12-ATG5-ATG16 complex, and is itself a 
cargo for autophagosomes (Liu et al., 2023a). Similar to its role in MVB 
formation, FREE1 incorporation into autophagosomal membranes pro-
motes autophagosome membrane fission (Mosesso et al., 2024; Wang 
et al., 2024a), demonstrating the broader importance of FREE1 con-
densates. Biochemical analyses have shown that FREE1 forms a complex 
with other ESCRT-III components (Zeng et al., 2023), suggesting a more 
general link between ESCRT and autophagy, and likely condensates. 
Accordingly, upon autophagy induction during nutrient starvation, un-
sealed autophagosomes (open vesicles) accumulate in the cytoplasm of 
both autophagy and ESCRT-III mutants.

FREE1 shuttles from MVBs to autophagosomes, likely through 
modulation by the stress-related kinase KIN10 (SnRK1α1, Sucrose Non- 
Fermenting 1-Related Kinase 1) (Gutierrez-Beltran et al., 2021; Moun-
tourakis et al., 2023). KIN10 directly interacts with and phosphorylates 
FREE1, suggesting that KIN10 might act as a molecular switch, redi-
recting FREE1 from its MVB function to a role in autophagy under stress 
conditions. Further research is needed to fully elucidate the dynamic 
interplay between FREE1, ESCRT-III components, ATG proteins, and 
kinases like KIN10 in MVB biogenesis and autophagy.

FREE1 has also been shown to interact with the retromer complex 
under autophagy-inducing starvation conditions (Schepetilnikov et al., 
2017; Henriques et al., 2022). The retromer plays a crucial role in 
retrieving specific cargo proteins from endosomes and redirecting them 
to the TGN or the plasma membrane. This interaction, along with the 
presence of KIN10 in other condensates like stress granules 
(Gutierrez-Beltran et al., 2021), suggests that FREE1 may have addi-
tional functions beyond its roles in MVB and autophagosome formation. 
Beyond FREE1, the endocytic TPLATE complex has also been implicated 
in autophagy initiation at membrane contact sites (Wang et al., 2019b). 
Given that the TPLATE complex has recently been shown to form 
membrane-bound condensates (Dragwidge et al., 2024; Arora et al., 
2020), it is tempting to explore its potential connection to stress 
perception and adaptation.

Interestingly, our recent findings on P-body composition reveal their 

enrichment of FREE1, along with numerous other components of the 
ESCRT machinery and the TPLATE complex (Liu et al., 2023a). This 
suggests that FREE1 may dynamically shuttle between different 
fission-related machineries in the cell, including those potentially 
operating within P-bodies (Liu et al., 2021). This dynamic partitioning 
of FREE1 could enable the cell to rapidly reconfigure membrane traf-
ficking pathways in response to stress conditions.

Further research is needed to explore the role of condensates in 
autophagy, particularly their potential involvement in the initial as-
sembly of ATG complexes, as has been observed in other organisms 
(Licheva et al., 2025). Recent evidence indicates that VPS41, a compo-
nent of the Arabidopsis HOPS complex, undergoes a dynamic trans-
formation upon autophagy induction (Jiang et al., 2024). VPS41 
transitions from biomolecular condensates to puncta and then to 
ring-like structures called VPS41-associated phagic vacuoles (VAPVs). 
These VAPVs then enclose ATG8 s for delivery to LVs. This process is 
initiated by ARF-like GTPases (ARLs), specifically ARLA1, and occurs in 
concert with autophagy progression coupled with SNARE proteins. 
Under starvation conditions, this VAPV pathway protects plants. This 
study further elucidates the complexity of autophagy, particularly the 
role of VAPV condensate material transitions. However, the broader role 
of VAPVs in stress responses remains to be determined. It is also unclear 
whether EXOCYST, a parallel tethering complex to HOPS, is also un-
dergoing phase separation.

A cytoplasm-to-membrane condensate shuttling mechanism 
could regulate rapid stress responses and adaptation

The evidence presented so far points to a dynamic interplay between 
biomolecular condensates, including their ability to shuttle between 
different types of condensates and interact with cellular membranes (e. 
g., FREE1). Besides, DECAPPING PROTEIN 1 (DCP1), a major compo-
nent of P-bodies, dynamically shuttles between P-bodies and the plasma 
membrane (Liu et al., 2024b; Liu et al., 2023a). This shuttling has a 
regulatory effect: DCP1 localisation at the plasma membrane disrupts its 
interaction with DCP2. This interaction is important for the formation of 
the DCP1-DCP2 complex, which is responsible for RNA degradation by 
initiating, with other effector proteins, RNA decapping. Hence, this 
decapping has downstream consequences for RNA turnover and stor-
ability in P-bodies.

Furthermore, at the plasma membrane, DCP1 preferentially localises 
to apical or basal polar domains, often concentrating at the cell edge or 
vertex. At these locations, DCP1 colocalises with actin nucleators 
(Papalazarou and Machesky, 2021) in specific condensates. This 
condensation likely facilitates actin nucleation, as was suggested for 
REMORIN. However, direct in vitro evidence of actin polymerisation by 
this complex, like the proposed mechanism for REMORIN, is currently 
lacking.

Interestingly, heat stress triggers a decrease in DCP1 levels at the 
plasma membrane, coinciding with an increase in P-body formation. 
Given that DCP1 is a key protein for P-body assembly, some of these 
newly formed, stress-induced P-bodies sequester proteins and RNAs, 
likely for long-term storage (Liu et al., 2024b). Notably, these 
heat-induced P-bodies exhibit a more solid-like material state compared 
to P-bodies under normal conditions. This increased solidity may be 
attributed to a higher abundance of IDPs in P-bodies under stress, which 
facilitate stronger and more frequent interactions with various RNAs 
and proteins (Liu et al., 2024b). Hence, such new interactions would 
effectively increase the storage capacity of these stress-induced 
P-bodies.

Conversely, when the stress signal subsides, P-bodies dissolve, with 
DCP1 shuttling back to the plasma membrane. The released RNAs are 
then available for translation, promoting cellular recovery 
(Solis-Miranda et al., 2023; Liu et al., 2024b). However, this pathway of 
transcriptional reprogramming at the cellular level is not well under-
stood, and it remains unclear whether it can be manipulated to enhance 
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stress tolerance. Given that heat stress increases the number of P-bodies 
and other condensates, such as stress granules (Gutierrez-Beltran et al., 
2015), we propose that these condensates may serve as storage sites, 
sequestering RNAs and other molecules involved in long-term cellular 
memory.

These findings collectively suggest that condensate dynamics, 
modulated by changes in material properties coupled with membrane 
domain-specific interactions, play a significant role in stress signalling 
and adaptive responses. For example, Arabidopsis mutants with 
impaired P-body dissolution show altered long-term responses to the 
stress hormone ethylene (Liu et al., 2024b; Di Fino et al., 2025). 
Considering the complex interplay and feedback mechanisms often 
observed between the plasma membrane and the cell wall, it is crucial to 
investigate how these domains might amplify or stabilise 
condensate-mediated interactions. Nevertheless, DCP1 shuttling may 
also affect FREE1 release from P-bodies and, thus, its cytoplasmic levels. 
FREE1 release may, in turn, modulate autophagy, MVB formation, and 
PSVs.

Outstanding questions

Recent studies have shed light on the role of membrane-bound 
condensates in stress. However, many critical questions remain unan-
swered, including: How widespread are membrane-bound condensates 
in plant signalling pathways? How do cells specifically orchestrate the 
formation of distinct condensates-whether extracellular, intracellular, or 
transmembrane-coupled-at the plasma membrane to transduce specific 
signals? How do cells modulate the biophysical forces generated by 
condensate-membrane interactions to regulate signalling outcomes? 
How is phase separation involved in cargo sorting? The insights gained 
from such research could provide novel strategies for manipulating 
cellular signalling and improving plant stress tolerance.
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