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ABSTRACT 

Enhancing nitrogen (N) use efficiency is important for a sustainable food production. Measuring 
shoot biomass and N pool across growth stages is critical to calculate N use efficiency, but relies 
on slow, costly and destructive sampling. This paper presents a non-destructive allometric approach 
developed for cereals; in this study, we assessed wheat (Triticum aestivum) for crop shoot biomass 
and N pool. Our methodology considered tiller height and number, and the estimates of leaf 
chlorophyll content (SPAD) as non-destructive measures to predict shoot biomass and N pool by 
using a multiple linear and a non-linear regression (R2 = 0.71 and R2 = 0.89, respectively) on the data 
from 72 samples of 16 recombinant inbred spring wheat lines (RILs) field-grown in central Sweden 
during 2 years with contrasting weather. Model parameters are estimated separately for different 
years to accommodate environmental variations between them. The regressions obtained were 
applied to estimate critical N use efficiency traits of 80 randomly selected wheat lines from the same 
RIL population. The method developed here provides a promising novel tool for the cost-effective 
estimation of critical N use efficiency parameters in cereals, with reduced destructive sampling, and 
a first step toward automated phenotyping for rapid N use efficiency assessment in cereal breeding 
populations. 

Keywords: allometry, crop modelling, grain nitrogen concentration, nitrogen accumulation 
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Plants develop allometric patterns reflecting adaptations to selection pressures and 
constraints (Müller et al. 2000). Thus, allometric analyses have been applied to study 
plant architecture and size-dependencies of many processes (Niklas 1994; Gould 1966), 
including size-dependencies in resource allocation and reproductive allocation (Samson 
and Werk 1986; Schmid et al. 1994). In general, an allometric approach can be described 
as a specific result derived from scaling measurements of relative sizes in plant and animal 
structures or processes (Sadras and Egli 2008); it outlines the relative growth of a structure 
compared to other structures as a whole (Bakhshandeh et al. 2012). Allometry has also been 
used to analyse the relationship between reproductive and vegetative biomass, which has 
been suggested to have a genetic basis (Du et al. 2020). Similarly, Shipley and Meziane 
(2002) used allometry to test ecological models of plant growth based on the ideas by 
Müller et al. (2000), specifically examining the relationship between biomass allocation 
to different resource capturing structures such as roots and leaves, and fitting them to 
allometric equations. It has been known for a long time that structure development 
frequently follows a well-defined allometric route, where plants create allometric patterns 
to face different selection pressures (Weiner 2004; Lemaire et al. 2019), such as the 
relationship between plant height or stem diameter and shoot biomass (Sileshi et al. 2023). 
Consequently, a quantitative positive correlation is often found between plant growth 
measures and allocation to different plant parts (West et al. 1997; Enquist et al. 1999; 
Weiner 2004; Luo et al. 2020). Whilst allometric equations are most commonly used in 
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forestry as a tool to estimate tree volume or biomass from 
forest inventory data (e.g. tree diameter and height), the 
application of allometric equations is rarely used in agricul-
ture. Plant height is a key factor in allometric approaches 
for crop plants such as wheat (Triticum aestivum), as it plays 
a crucial role for both producers and breeders in cultivar 
development (Bakhshandeh et al. 2012). From a modelling 
perspective, plant height can be used to estimate canopy conduc-
tance and the attenuation of radiation fluxes. Additionally, 
the relationship between stem mass and height helps land 
managers determine how much standing biomass can be 
removed while still maintaining protection against erosion. 
These applications highlight the significance of plant height 
in relation to a plant’s vegetative structures. Bakhshandeh 
et al. (2012) focused on developing relationships between 
plant height, leaf number, and stem biomass in seven wheat 
cultivars field-grown under rainfed and irrigated conditions 
for a single growing season in Iran. Whilst the investigation 
by Bakhshandeh et al. (2012) demonstrates the successful 
application of an allometric approach for predicting shoot 
biomass from simple plant height measurements in wheat, it 
is limited by the low number of varieties and environments 
(one growing season) considered, and the lack of including 
any N-related traits that are relevant for the assessment of 
N use efficiency. 

Monitoring crop biomass and yield usually requires 
frequent destructive sampling, which is unsuitable for high-
throughput phenotyping due to the large sampling popula-
tions, labour requirements, and methodological challenges 
(one plant or plant part cannot be sampled twice). Including 
important growth and yield drivers, such as plant nutrients, 
involves additional plant sampling and chemical analysis, 
with associated labour and costs. Methodological approaches, 
which reduce destructive sampling, and are amendable to 
high-throughput phenotyping, are therefore highly desired 
(Zhao et al. 2016; Lemaire et al. 2019; Yang et al. 2022). 
Hence, feasible allometric approaches can have an impact 
on agronomic research in plant production systems as they 
can be used to non-destructively estimate yield components 
and biomass production (Weiner 2004; Qin et al. 2013). In 
addition, since breeding programs require extensive populations 
(Bernardo 2004), the estimation of crop biomass and nitrogen 
(N) contents without any destructive sampling is essential for 
evaluating plant development (Zhao et al. 2016). 

As N is often growth-limiting in crops (Gastal and Lemaire 
2002), it is a key element in the evaluation of nutrient use 
efficiency. The development of plant N pools (plant biomass 
multiplied by plant N content) and N accumulation (net 
increase in N content) over time are central aspects in various 
nutrient use efficiency quantification approaches, such as that 
conceived by Weih et al. (2011a). This approach includes 
three components regarding N use efficiency, which are 
related to initial seed N content, the efficiency of transforming 
plant N to harvested grain biomass, and N re-translocation to 

harvested grain. In agriculture, N is usually provided to the 
crop in large quantities through fertilizers and in combination 
with other nutrients to guarantee high grain yields. 
Furthermore, N use efficiency has become a relevant param-
eter in the estimation and development of sustainability in 
food production. Therefore, improving the capacity of crop 
plants to gain, uptake, distribute, and metabolise N is the 
most favourable alternative to produce sustainable crops 
and cropping systems with enhanced efficiency in the use of 
N (Gastal and Lemaire 2002; Weih et al. 2018). Moreover, 
improved N use efficiency is expected to enhance crop 
production and reduce environmental pollution caused by N 
losses (Gaju et al. 2011; Zhao et al. 2016; Ravier et al. 2017). It 
is therefore desirable to develop methods to estimate plant-
internal N accumulation reducing the destructive plant 
sampling and chemical N analysis. Chlorophyll meters (such 
as SPAD meters) are popular tools to non-destructively assess 
the relative chlorophyll and, indirectly, N content in plant 
leaves (Peltonen et al. 1995; Le Bail et al. 2005; Asplund 
et al. 2016). Regression models and correlation analyses are 
mostly used to establish statistical relationships between 
dependent and independent variables in crop agricultural 
systems (Park et al. 2005; York 2019). However, there are 
currently no models or methods available that link the 
plant height–plant biomass allometry with both the leaf N 
concentration (assessed non-destructively with the use of 
chlorophyll meters) and the plant N pool. Linking plant 
height, plant biomass, and plant N pool based on predictable 
allometric relationships will enable the assessment of 
important aspects of N use efficiency. This relationship is 
explored in this study through the N accumulation efficiency 
concept (Weih et al. 2018) by using non-destructive methods. 

This study aimed to develop a simple methodology, based 
on spring wheat, that uses specific allometric associations to 
reduce the amount of destructive plant sampling in studies 
requiring data on plant biomass and N content, such as 
investigations on crop N use efficiency. Specifically, we 
aimed to estimate: (1) plant biomass from measurements 
that can be performed non-destructively (plant height and 
number of tillers); and (2) plant N pools from non-
destructive chlorophyll meter measurements coupled with 
the plant biomass estimates. The methodology can then be 
used to non-destructively assess crucial aspects of N use 
efficiency using the concept of N accumulation efficiency 
(Weih et al. 2018) (Fig. 1). We hypothesised that the stem 
height at the flowering stage and the number of tillers are 
good predictors of aboveground biomass (H1), and that 
relative leaf chlorophyll amount during flowering, combined 
with the corresponding biomass, is a good predictor of plant N 
pool (H2). To test these hypotheses, we assessed a large 
number of spring wheat lines grown in two field experiments 
over 2 years. 
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(a) 

Initial seed Tillering Flowering Maturity 
N content N content N content N content 

All samples All samples All samples All samples 

(b) 

Initial seed Tillering Flowering Maturity 
N content N content N content 

All samples 72 samples All samples 
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Fig. 1. Illustration of the estimation of N accumulation efficiency (NAE) and its components. (a) NAE 
calculation based on destructive sampling in four developmental stages suggested by Weih et al. (2018). 
(b) Presents what has been done in this study. Initial seed and maturity analysis required destructive 
sampling for 80 lines (four repetitions). At tillering, no samples were taken, and at anthesis, 72 destruc-
tive samples were harvested for calibrating the equations for an allometric approach based on non-
destructive sampling. 

Materials and methods 

Conceptual approach 

The detailed assessment of N use efficiency, according to the N 
accumulation efficiency (NAE) concept (Weih et al. 2018), 
requires the estimation of plant N pools in various develop-
mental stages of the crop. It is desirable to reduce the 
number of destructive samplings and maintaine accuracy of 

the NAE component estimations. The attempt here was to 
calculate the shoot (tiller) biomass and N pools at anthesis, 
which are needed for estimating the NAE components, by 
identifying the allometric relationships between some non-
destructively assessable traits (tiller number, height, and 
leaf chlorophyll content) and the biomass and N pools that 
normally are assessed after destructive sampling. To establish 
the allometric relationships, 72 destructive samples from 14 
semi-randomly selected wheat (Triticum aestivum L.) lines 
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and the parental lines of the total recombinant inbred spring 
wheat lines (RIL) population of 183 wheat lines were 
collected to determine shoot biomass and shoot N contents at 
anthesis. These samples consisted of three tillers per plant for 
14 lines (42 samples) and the two parental lines (one plant per 
block; 30 samples). In addition to the destructive assessments, 
three non-destructive assessments were performed on the 
same material: (1) shoot (tiller) height; (2) number of tillers; 
and (3) leaf chlorophyll content. These three non-destructively 
assessable traits were also measured (at anthesis) in all lines of 
the RIL population for 2 years. Once the data from the 
destructively and non-destructively assessed traits were 
collected, both a linear and a non-linear regression model 
using height and tiller number per plant were developed to 
predict the shoot biomass using the most suitable model. In 
order to allow for the accommodation of year-to-year 
variability in environmental conditions (e.g. weather), model 
parameters were allowed to be estimated separately for each 
year. A second set of linear and non-linear regressions was 
then performed using leaf chlorophyll values and the shoot 
biomass estimates obtained from the previous regression to 
predict the shoot N pool at anthesis. The two regressions 
were applied to all the lines in the RIL population. Thus, 
the allometric equations were used only for the prediction of 
shoot biomass and N pools at anthesis. For the corresponding 
data at the initial seed and maturity stages (needed to 
calculate NAE components), the calculations were made based 
on the destructive sampling of a subset of 80 lines that were 
randomly selected out of the 183 RIL in total. 

Study location 
Field trials were carried out in Uppsala, Sweden (59°45 0N, 
17°42 0E) during May–September in 2022 and during June– 
September in 2023. The two trials were carried out at 
different sites at the same experimental farm and the soils had 
a silty clay texture (44–48% clay, 45–51% silt, <4–5% sand), 
with a pH of 6.5, an organic matter content of 2.6–3.4% in the 
top 0.3 m layer and a total N content of 2.3 g kg−1 in the same 
layer. A commercial nutrient fertiliser was used after sowing 
in 2022 and before sowing in 2023, containing 500 kg ha−1 

and 540 kg ha−1 NPK 24-4-5 (2022 and 2023, respectively). 

Plant material and experimental design 
In 2022, the field trial consisted of a population of 183 spring 
wheat RILs, and 179 of the same RILs in 2023. The RILs were 
developed from a cross between the commercial cultivars 
‘Happy’ and ‘Boett’. F2 plants were advanced to the F6 

generation by the single-seed descent procedure so that one 
seed from each plant was used to produce the next offspring 
generation (Acquaah 2009). In addition to the RILs, plants of 
the F1 hybrid and the two parental cultivars were included in 
the trial. The field experiment consisted of a randomised split-
plot design with five blocks. In 2022, each block contained 

60 micro-plots (0.62 m × 0.75 m) with six linear arrays, the 
centre four were used for the RILs and Boett was used as 
border plants along the two sides. Each line had 45 seeds 
per repetition in a plot (550 seeds per m2) and, depending 
on the seed quantity of each line, 3–5 repetitions were 
distributed across the blocks. All the lines were sown on the 
10 May 2022. The field trial in 2023 held 179 lines (including 
both parents and F1) arranged in a split-plot design with five 
blocks, each consisting of 200 plots (0.62 m × 0.75 m) with six 
linear arrays. Each plot was sown with separate lines, at a rate 
of 550 seeds per m2 on 30 May 2023. 

Non-destructive and destructive analysis 
In the field, at the anthesis stage, height was measured from 
ground level to the tip of the spike on the main tiller using 
measuring tape, recording three plants per replication. The 
chlorophyll content of the second leaf of the main tiller was 
assessed at the same stage on the same three plants, using a 
SPAD meter (SPAD-502, Konica Minolta Sensing Inc., Japan) 
to take the mean of three measurements in the middle of the 
leaves for three plants per replication. Additionally, 72 
destructive samples were harvested from 14 semi-randomly 
selected wheat lines and the parental lines from a total 
population of 183 wheat lines to determine shoot biomass 
and shoot nitrogen content at anthesis. These 14 lines were 
chosen from the 183 lines in total based on the criteria that 
they had five replicates across the blocks, and that they 
represented the height variability range in the population. 
The samples were three tillers (a tall, medium and short 
tiller to capture height variation) per plant for the 14 lines, 
in total 42 samples. For each parental line, we collected three 
tillers per plant from five plants (one per block), totalling 30 
samples per year. Non-destructive traits, such as shoot height, 
number of tillers, and SPAD, were measured in all lines of the 
population over 2 years at anthesis. All measurements were 
done within a period of 5 days. 

Destructive sampling of shoots for measuring straw and 
grain biomass was done at full maturity for all the 183 (2022) 
and 179 (2023) lines (where all plots were sampled), cutting 
at ground level five plants in the centre of each plot. Samples 
were dried at 70°C for 48 h in a drying oven and then weighed. 
The spikes were threshed, and the grains were weighed. 
Eighty RILs (including both parental lines and F1) were  
randomly selected to determine total N content using a 
LECO CNS72000 analyser (standard method SS-ISO13878). 
The N content was also analysed in the initial seeds of 80 
selected lines, the 72 shoot samples, and the 80 lines (four 
replicates) at the maturity stage (Fig. 1). 

Nitrogen accumumation efficiency (NAE) 
calculations 
NAE and related components were calculated based on the N 
pool of the five sampled plants per plot according to the 
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method by Weih et al. (2018). The NAE (g g−1) is determined 
by multiplying three components: 

NAE = UN × EN;g × CN;g (1) 

where UN (g g−1) is the mean N uptake efficiency, which is 
calculated as the ratio of the mean N amount during the 
entire plant growth period (N’) and the N amount in the 
initial seed; EN,g (g g−1) is the grain-specific N efficiency, 
which is calculated by dividing the grain yield by N’; and 
CN,g (g g−1) is the grain N concentration at the final harvest, 
which is calculated by dividing the N content of produced 
grain by grain biomass at harvest. 

In our study, two out of three N accumulation efficiency 
components (UN and EN) require estimates of the plant N 
pools during different stages of the entire growth period. To 
estimate it, the shoot N pool per growth stage is required (Eqn 
7 was applied at the flowering stage). In Weih et al. (2018), 
four growth stages were considered to represent the entire 
growth season: (1) initial seed; (2) tillering: (3) flowering; 
and (4) maturity. In this study, due to the restricted amount 
of seeds available for the RILs, we did not consider taking 
destructive samples during the tillering stage. We used an 
allometric approach to predict shoot biomass and N pool 
with only 72 destructive samples for the model development, 
and harvested 80 lines at the maturity stage to calculate the 
NAE components. Taken together, the NAE components were 
calculated by applying Eqn 1 for 80 lines that had complete 
values (i.e. destructive and non-destructive samples from all 
sampling stages in Fig. 1) for the three components. 

Allometric models and statistical analysis 
We contrasted a linear, two multiple linear, and a non-linear 
regression model with up to three parameters to determine 
the most suitable equation for shoot biomass prediction from 
plant height and tiller number. For the prediction of shoot N 
pool from SPAD measurements, we compared a multiple 
linear and non-linear regression analysis with up to three 
parameters, using the 72 destructive samples to build and 
calibrate the model equation. Each parameter used in the 
suggested regression equations was estimated separately for 
each year to account for environmental (e.g. weather) varia-
tions between the years, ensuring that the models remained 
receptive to environmental changes. This possibility for annual 
(or seasonal) recalibration makes the suggested equations 
adaptive regression models, capable of adjusting to different 
growing conditions. By incorporating this adaptability, the 
models can be applied more broadly across different climate 
and weather scenarios, improving their robustness and 
predictive accuracy in different field conditions. 

After applying the suggested equation to estimate shoot 
biomass to the complete population, the shoot biomass 
estimates and the observed SPAD values were used to predict 
the shoot N pool at anthesis. Finally, as validation of the 

generated data from the equations, a linear regression 
between the predicted and observed values was performed to 
calculate the coefficient of determination (R2) and residual 
sum of squares (RSS). 

The NAE values were calculated for 80 lines (out of 183 in 
total) using the observed initial seed N contents and plant N 
contents at crop maturity, together with the predicted plant N 
contents at flowering. 

Additionally, NAE components were estimated only using 
the initial seed N pool (observed) and shoot N pool at anthesis 
(estimated) to test if omitting destructive sampling at 
maturity will produce reliable predictions; while considering 
only the major growth period ending at anthesis (instead of 
the entire growth period ending at maturity), as suggested 
by Weih et al. (2011a). 

All statistical analyses were performed using SPSS ver. 29. 
ANOVA were used for the estimation of the probabilities of 
significant differences between lines and between the 2 years 
in the three traits used for allometry, using fixed effects of 
year, line, and block including the interaction between year 
and line. Non-linear and linear model regressions were used to 
suggest a suitable equation and parameters for the allometry 
relationships and for its confirmation and representation, 
respectively. 

Results 

Prediction of shoot biomass by plant height and 
number of tillers at anthesis 
To calibrate the model, non-destructive measurements of 
stem height and tiller number from 72 samples during 
2 years were used together with the corresponding destruc-
tive samples of shoot biomass. A linear regression model, two 
multiple linear regression models, and a non-linear regression 
model were calculated and compared to determine the most 
suitable equation for shoot biomass prediction (Table 1). In 
the first attempt, the linear model included only plant height 
as a constant parameter (R2 = 0.701, RSS = 1.551). To include 
the number of tillers per plant, a multiple linear model 
was needed. The multiple linear model showed a significant 
difference in the regression regarding depending and indepen-
dent variables (P < 0.001), a higher predictive value 
(R2 = 0.723), and a smaller residual sum of squares = 1.438. 
After that, a non-linear regression was performed (R2 = 0.731, 
RSS = 1.394). The three models produced similar outcomes. 
However, the linear and the multiple linear models generated 
negative constants (Table 1), which is not favourable when 
missing data or small data values are to be expected. In the 
case of the non-linear regression, missing data can also present 
a difficulty to the analysis. A fourth regression was performed 
using a multiple linear model (as Eqn 3), fixing the constant 
value to zero (a = 0) in order to avoid subtraction, this 
model showed a significant difference between dependent 
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Table 1. Summary of statistics from the equations’ parameters of Shoot biomass at anthesis for 2022 and 2023 at Uppsala, Sweden. 

Model equation Regression model Year Parameter Parameter s.e. R2 RSS F-value P-value 
value 

Linear regression – Eqn 2 Linear regression 2022 a −0.535 0.452 0.519 1.066 

b 0.32 0.007 

2023 a −0.203 0.435 0.331 0.485 

b 0.22 0.007 

Linear regression 2022 and 2023 0.701 1.551 107.838 <0.001 

Multiple linear regression – Eqn 3 Multiple linear regression 2022 a −0.699 0.45 0.569 0.954 

b 0.031 0.006 

c 0.043 0.028 

2023 a −0.212 0.447 0.332 0.484 

b 0.021 0.007 

c 0.004 0.19 

Linear regression 2022 and 2023 0.723 1.438 119.859 <0.001 

Non-linear regression – Eqn 4 Non-linear regression 2022 a 0.005 0.005 0.588 0.914 

b 1.323 0.259 

c 0.136 0.078 

2023 a 0.009 0.013 0.338 0.48 

b 1.161 0.362 

c 0.044 0.106 

Linear regression 2022 and 2023 0.731 1.394 125.229 <0.001 

Multiple linear Multiple linear regression (a = 0) 2022 b 0.022 0.02 0.52 1.064 
regression (a = 0) – Eqn 5 c 0.033 0.028 

2023 b 0.018 0.02 0.325 0.489 

c 0.003 0.018 

Linear regression 2022 and 2023 0.705 1.553 109.913 <0.001 

R2, coefficient of determination; RSS, residual sum of the squares for the different regression models per year; F-value and P-value, sigificance for the linear regression 
model. 

and independent traits (P < 0.001), an R2 of 0.705, and an RSS 
of 1.553 (Eqn 5). The latter model (Eqn 5), which is a special 
case of Eqn 3, was chosen as it brought more flexibility for the 
analysis of our data as it can manage small data and did not 
show negative constants. The model parameters for the regres-
sions were calculated separately for the 2 years (Table 1) and  
thereby accommodated the great variation between the 2 years. 
Additionally, a linear regression from the predicted biomass 
mean by Eqn 5 and the shoot biomass mean from the observed 
data were plotted to visualise the accuracy of our model (Fig. 2). 

The equations for a linear, multiple linear, and non-linear 
regression were: 

Shoot biomass = a + b × shoot height (2) 

Shoot biomass = a + b × shoot height + c × number of tiller 
(3) 

Shoot biomass = a × ðshoot heightbÞ × ðnumber of tillercÞ 
(4) 

The suggested fitting equation was: 

Shoot biomass = b × shoot height + c × number of tiller 
(5) 

where b = 0.022 and c = 0.033 are the parameters suggested 
to fit in the equation for 2022; and b = 0.018 and c = 0.003 are 
the parameters suggested to fit in the equation for 2023 
(Table 1). 

Prediction of shoot N pool by shoot biomass 
and SPAD 
To predict the shoot N pool (straw N content flowering × shoot 
biomass flowering), shoot biomass (Eqn 5 was applied to 
calculate shoot biomass) and SPAD mean values at anthesis 
were used. A total of 72 straw samples at anthesis were 
collected in 2022 and 2023 to obtain N contents to convert 
to shoot N pools. Multiple linear and non-linear regressions 
were performed and compared to identify the most suitable 
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Fig. 2. Linear regression from predicted values for shoot biomass from mean stem height and 
mean tiller number and observed values from mean shoot dry biomass. Predicted values were 
calculated from a multiple linear regression model (Eqn 5). Statistics results were R2 = 0.705, 
RSS = 1.553, and P < 0.001. The solid one-to-one line at the origin represents the ideal prediction, 
and the dashed line shows our model prediction. Different colours represent data from different 
years (blue, 2022; red, 2023). The shapes differentiate the 14 RILs (circles, ●), from the parent lines 
‘Boett’ (squares, ■) and ‘Happy’ (triangles, ▲), each point represents the mean from three samples. 
Data was collected in 2022 and 2023 for 72 samples in Uppsala, Sweden. 

equation for the shoot N pool. The multiple linear model 
(Eqn 6) showed a RSS = 271.98, a high coefficient of deter-
mination (R2 = 0.886), and a significant difference between 
dependent and independent traits P < 0.001 (Table 2). The 
non-linear model (Eqn 7) obtained slightly better values, with 
a smaller RSS = 266.908, higher R2 = 0.888, and significant 
(P < 0.001). Therefore, the non-linear model (Eqn 7) was the 
selected one. The parameters for the regressions were also 
calculated separately for the years 2022 and 2023 (Table 2) 
to accommodate the great inter-annual variation. 

The equation for multiple linear regression was: 

Shoot N pool = a + ðb × shoot biomassÞ + ðc × SPADÞ (6) 

The suggested non-linear regression model was: 

Shoot N pool = a × ðshoot biomassbÞ × ðSPADcÞ (7) 

where a = 10.673, b = 0.928, and c = 0.181 are the parameters 
suggested to fit the equation for 2022; and a = 27.353, 
b = 1.292, and c = −0.074 are the parameters suggested to 
fit the equation for 2023 (Table 2). 

After the non-linear regression (Eqn 7), the predicted shoot 
N pool obtained from the shoot biomass flowering mean 
(calculated by the previous Eqn 5) and mean SPAD values 

were calculated and plotted against the observed shoot N 
pool values in a linear regression model (Fig. 3). 

Means and s.d. of shoot, height, SPAD, number of tillers 
(non-destructive traits), shoot biomass, and shoot N pool 
(predicted traits) were also calculated for 183 lines in 2022 
and 179 lines in 2023 (Table 3). 

Estimation of NAE and components 
To address our main aim, two NAE components, N uptake 
efficiency (UN) and grain-specific N efficiency (EN), were 
calculated using observed data from all sampling stages, and 
compared against the predicted values from the allometric 
equations for the estimation of the plant N content at 
anthesis, detailed above. The predicted data closely reflected 
the observed data (Fig. 4). Then, NAE was estimated using the 
predicted UN and EN according to Eqn 1 for the subset of 80 
lines (see Supplementary Table S1, Fig. 5). 

Although our estimation of NAE components using 
allometry associations and less destructive samples was highly 
accurate, we also tested if omitting destructive sampling 
at maturity would produce good predictions. For this step, 
we plotted the observed values of UN and EN against their 
predicted values based only on the initial seed N pool and the 
non-destructively assessed estimates at anthesis (Fig. 6). The 
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Table 2. Summary of statistics from the equation’s parameters of shoot N pool at anthesis in wheat lines grown in Uppsala, Sweden in 2022 and 2023. 

Model equation Regression model Year Parameter Parameter value s.e. R2 RSS F-value P-value 

Multiple linear regression – Eqn 6 Multiple linear regression 2022 a −2.571 12.379 0.827 184.173 

b 19.301 2.730 

c 0.102 0.315 

2023 a −2.470 9.897 0.864 87.807 

b 28.099 2.534 

c −0.106 0.213 

Linear regression 2022 and 2023 0.886 271.98 357.701 <0.001 

Non-linear regression – Eqn 7 Non-linear regression 2022 a 10.673 17.493 0.827 183.703 

b 0.928 0.131 

c 0.181 0.436 

2023 a 27.353 40.96 0.871 83.205 

b 1.292 0.104 

c −0.074 0.386 

Linear regression 2022 and 2023 0.888 266.908 365.527 <0.001 

R2, coefficient of determination (R2); RSS, residual sum of the squares (RSS) for the different regression models per year; F-value and P-value, significance for the linear 
regression model. 

Fig. 3. Linear regression from predicted and observed values for Shoot N pool (mean) at anthesis 
for 16 spring wheat lines (72 destructive samples) grown in Uppsala, Sweden in 2022 and 2023. 
Predicted values were obtained after a non-linear regression model (Eqn 7). Statistics results were 
R2 = 0.888, RSS = 266.908, and P < 0.001. The solid one-to-one line at the origin represents the ideal 
prediction; the dashed line shows our model prediction. Different colours represent data from 
different years (blue, 2022; red, 2023). The shapes differentiate the 14 RILs (circles, ●), from the 
parent lines ‘Boett’ (squares, ■) and ‘Happy’ (triangles, ▲), each point represents the mean from 
three samples. 

estimations were poorly accurate, confirming that the use 
of allometry models at anthesis with non-destructive 
sampling and only very limited destructive sampling (for 

model calibration) should be followed by f ull destructive  
sampling at plant maturity for reliable predictions of NAE 
and its components. 
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Table 3. Mean values and s.d. of three non-destructive (shoot height, 
number of tillers, and SPAD) and two estimated traits (shoot biomass 
and shoot N pool) for both years (2022 and 2023) in a total of 183 
(2022) and 179 (2023) spring wheat lines at Uppsala, Sweden. 

Year Shoot Number SPAD Shoot Shoot 
height (cm) of tillers biomass (g) N pool 

per plant (mg N) 

2022 Mean 72.03 5.17 47.55 1.72 35.48 

s.d. 7.76 1.8 3.03 0.19 3.7 

2023 Mean 66.07 7.72 48.93 1.2 26.02 

s.d. 8.88 2.14 3.52 0.13 3.6 

Discussion 

Similar to others (e.g. Bakhshandeh et al. 2012), we found a 
close relationship between shoot height and biomass in wheat. 
By integrating additional information on leaf chlorophyll 
content (SPAD), we were able to connect non-destructively 
assessable traits with the normally destructively assessed 
traits of shoot biomass and N pool. Moreover, by introducing 
another easy-to-assess trait (shoot or tiller number) along 
with a series of parameters that can be calculated separately 
for different years, we were able to allow for the accommoda-
tion of year-to-year variability in environmental conditions 
(e.g. weather). By incorporating this adaptability the models 
can be applied more broadly across different environmental 
conditions, improving their predictive accuracy in different 
field situations and using different plant material. In the 
specific case of this investigation, we used our adaptive 
regression models to significantly reduce the need for 
destructive sampling in our detailed N use efficiency concept 
developed previously (Weih et al. 2011a, 2018). Thus, this 
study builds on the NAE approach developed by Weih et al. 
(2018), and develops it further. While Weih et al. (2018) 
developed the NAE conceptual approach, solely relying on 
multiple destructive sampling, and tested it with several 
examples, our study complements that approach and enhances 
its practicality, reducing the destructive sampling and chemical 
analysis efforts needed without compromising accuracy. The 
suggested simplifications make the NAE concept (Weih et al. 
2011a, 2018) more accessible and adaptable for broader 
applications. Similar to other N use efficiency approaches, 
the NAE concept (Weih et al. 2011a, 2018) is based  on  
nutrient and biomass ratios, and the calculation basis is the 
N pool in a plant and/or seed (a critical discussion of 
different calculation bases is found in the above two papers). 
Technically, these ratios can also be expressed per unit 
land area to make the calculations appear more relevant 
for practical agriculture considerations, although we here 
refrained from doing so, due to the very small micro-plot 
size (0.47 m2) used in this study. 

Allometric relationships between traits 
Allometric relationships between plant height and shoot 
biomass of wheat have been reported in previous studies 
showing a strong relationship (Bakhshandeh et al. 2012; 
Sileshi et al. 2023). Bakhshandeh et al. (2012) showed an 
allometric pattern between stem dry weight and plant height 
in seven wheat cultivars under two different conditions 
(irrigated and rainfed) but they did test their equations only 
during one growing season and on a limited plant material. In 
our study we established a close relationship between plant 
height and shoot biomass, confirming hypothesis 1; and 
developed a more generalisable equation by incorporating 
tiller number as an additional easy-to-measure trait, along 
with a serious of parameters that allow adaptation to different 
environmental conditions that are known to strongly affect 
shoot number and shoot growth in wheat. With these adjust-
ments, we achieved a greater flexibility and precision of the 
model, improving its predictive power, especially when 
data from different years with contrasting weather are used. 

Optical methods for assessing plant N contents have also 
been in use for a long time (Saberioon et al. 2014), common 
is the use of chlorophyll meter (SPAD) readings to predict leaf 
N-concentration by measuring leaf greenness; or also the 
evaluation of genetic variability in leaf greenness across 
cereal populations (Giunta et al. (2002). These SPAD readings 
are faster and more practical compared to conventional N 
testing, in which plant samples need to be dried and further 
prepared for analysis (Parvizi et al. 2004). In contrast to the 
applications where SPAD measurements are used to evaluate 
genetic variability in leaf N or to provide fertiliser recom-
mendations, we combined the SPAD measurements with 
the non-destructively assessed biomass data and applied 
them as an elegant tool to get an easy-to-measure but still 
representative estimate of the N pool in a shoot. The 
predictive power (R2) of the equations generated was again 
satisfying (Fig. 3), supporting our second hypothesis (H2). 
In these equations, we also incorporated several parameters 
that can be calculated separately for each year in order to 
allow for the flexible adaptation to different plant material 
and environments. 

Influence of environmental variability on model 
predictions 
A specific characteristic of the regression equations developed 
here is that the parameter estimations of the multiple linear 
and non-linear equations were allowed to be calculated 
differently for different years, which enabled us to account 
for the differential weather conditions for the 2 years of the 
experiment. While temperatures and precipitation patterns 
were similar to long-term means during 2022, 2023 had an 
extended dry period that occurred in June, which was followed 
by intense rains in July and August. The intense drought in the 
middle of the growing season in 2023 affected the height of the 
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Fig. 4. Linear regressions from predicted and observed values for (a) N uptake efficiency (UN). 
Statistics results were R2 = 0.986, RSS = 304.951, and P < 0.001, and (b) grain-specific N efficiency 
(EN), R2 = 0.873, RSS = 908.149 and P < 0.001 for wheat lines grown in Uppsala, Sweden in 2022 and 
2023. Predicted values were obtained after applying Eqn 7 and maturity data. The solid one-to-one 
line at the origin represents the ideal prediction; the dashed line shows our model prediction. 
Different colours represent data from different years (blue, 2022; red, 2023). The shapes differentiate 
the 14 RILs (circles, ●), from the parent lines ‘Boett’ (squares, ■) and ‘Happy’ (triangles, ▲), each point 
represents means from three samples. 

wheat lines, a result that is in line with other reports on the 
effect of water stress on stem and tiller height (Destro et al. 
(2001). In spite of the very contrasting weather conditions 
in the 2 years of our study, and the corresponding effects 
on stem height and tiller number, our model was able to 
accommodate these differences when tiller number was 

assessed and parameters were calculated separately for 
the 2 years. 

The contrasting weather conditions were also greatly 
reflected by the leaf chlorophyll (SPAD) values assessed in 
the 2 years. Thus, the SPAD values were higher and shoot 
biomasses were lower in 2023 than in 2022. These results 
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Fig. 5. Estimated mean values of N accumulation efficiency (NAE) in each of 80 spring wheat lines grown in Uppsala, Sweden in (a) 2022 and 
(b) 2023. The dark blue bars correspond to the parental lines ‘Happy’ and ‘Boett’. The chequered bar in (b) represents the mean of F1 plants 
grown in 2023. 
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Fig. 6. Linear regressions from predicted and observed values for (a) N uptake efficiency (UN). 
Statistics result were R2 = 0.171, RSS = 97.169, and P = 0.003, and (b) grain-specific N efficiency (EN), 
R2 = 0.113, RSS = 148289.89, and P = 0.019 in 2022 and 2023 for 16 wheat lines (72 destructive samples at 
anthesis) grown in Uppsala, Sweden. Predicted values were obtained after taking into account only 
the seed N pool and the predicted shoot N pool at anthesis (Eqn 7). The solid one-to-one line at the 
origin represents the ideal prediction; the dashed line shows our model prediction. Different colou 
represent data from different years (blue, 2022; red, 2023). The shapes differentiate the 14 RILs 
(circles, ●), from the parent lines ‘Boett’ (squares, ■) and ‘Happy’ (triangles, ▲), each point represents 
the mean from three samples. 

indicate that the leaf chlorophyll content, thus N content, 
increased in 2023, possibly as a consequence of acclimation 
to drought stress (Weih et al. 2011b). Taken together, the 

separate calibration and estimation of parameter values for 
each season provided a greater accuracy and adjustability 
to our models, making them adaptable to a greater set of 
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plant material and environmental conditions than was used in 
this investigation. However, these equations need to be 
further validated in different plant material and environ-
mental contexts. 

Implications for breeding 
Previous studies have reported the usefulness of SPAD 
measurements in breeding, especially for the estimation of 
grain protein content (Matsunaka et al. 1997; Rharrabti et al. 
2001). Additionally, in the study of Debaeke et al. (2006), 
SPAD values were shown to be cultivar dependent, due to 
differences in leaf weight between cultivars. SPAD measure-
ments at flag leaves were also shown to be indicative of N 
use efficiency differences seen between wheat cultivars and 
treatments (Asplund et al. 2016). 

Despite being seen as a valuable breeding goal, wheat 
varieties with improved N use efficiency mechanisms 
currently lack dedicated breeding programs. This might be 
influenced by the large quantity of data needed during the 
complete phenotyping and breeding process. Large populations 
of lines, such as RILs, are common in pre-breeding and 
breeding, and the amount of trait data analysis required for 
the selection of desirable candidate lines to continue in the 
breeding process can be vast. As a more accurate alternative 
to simpler N use efficiency approaches only requiring N data 
at maturity (e.g. Moll et al. 1982), the allometry approach 
proposed here maintains the higher accuracy of the N use 
efficiency concept by Weih et al. (2011a) and Weih et al. 
(2018), whilst significantly reducing destructive sampling 
by eliminating the need for such sampling at anthesis. The 
evaluation of traits that can be assessed non-destructively, 
combined with an allometry approach, offers an opportunity 
to efficiently assess the various NAE-related traits across a 
large number of breeding lines without damaging many 
samples at anthesis. The destructive sampling would only 
be needed to calibrate and parameterise the corresponding 
model equations on a subset of samples to account for the 
environmental conditions. 

Phenotyping and modelling go hand-in-hand 
Collecting the phenotype data is often the most laborious part 
of the research process. To screen valuable agricultural traits 
in a population, replicated trials in different sites and different 
years are needed. Additionally, destructive harvests during 
different growth stages are slow and costly, but often 
needed to achieve better mechanistic understanding of the 
traits determining the N use efficiency in crops (Weih et al. 
2018). In order to speed up the phenotyping, remote sensing 
technologies can be applied and make the field evaluation of 
agricultural traits faster and less dependent on extensive 
destructive sampling (Furbank and Tester 2011). 

Many traits can be measured by digital imaging, such 
as plant size and colour, which helps to quantify plant 

senescence, transpiration, toxicities, and diseases (Poorter 
et al. 2010; Furbank and Tester 2011; York 2019). Plant 
biomass and shoot biomass growth are two traits that are of 
great interest to breeders (Golzarian et al. 2011). Other 
traits such as early vigour, coleoptile length, and biomass at 
anthesis may also be correlated with plant biomass (Furbank 
and Tester 2011; Liu et al. 2021). These traits are usually 
scored manually and can be improved by using phenomics 
tools (Furbank and Tester 2011). By using the allometry 
approach of our study, two traits (plant size and plant 
biomass) can be determined non-destructively, and the 
manual workload is reduced even more. SPAD values will 
be the only measurement taken manually for the prediction 
of shoot N pool at anthesis. It should be emphasised that a 
certain number of destructive samples, representing the 
expected trait variability, have to be taken to calibrate the 
models and produce trustworthy estimations. If the informa-
tion here assessed through manual measurements (shoot 
height, tiller number, SPAD) is monitored using modern 
remote sensing technology, the allometric relationships 
developed here can be applied to calculate shoot biomasses 
and N pools in a true high-throughput approach. The 
combination of remote sensing technologies to provide data 
needed for the allometric models therefore can be considered 
as a next step for the efficient high-throughput estimation of N 
use efficiency traits such as the NAE and its components. 

Practicality and restrictions of crop models 
Different kinds of crop models are often used in agriculture to 
facilitate decision-making processes in crop management 
(Spitters 1990; Park et al. 2005). In this context, allometric 
approaches and their combination with regression models, 
as presented in this study, have been applied before, 
especially in crop growth research (Spitters 1990). A universal 
crop model that takes into account the majority of crops and 
variables in one single model would not be an appropriate 
approach, due to the specific adaptations and environmental 
conditions in a given agricultural context (Brisson et al. 
2003). Instead, a crop model should fulfil the  observations  
and hypotheses proposed in a given agricultural context, and it 
is desirable to develop different models for different objectives 
or hypotheses (as shown in this study). Additionally, crop 
models should allow context-specific calibration and parame-
terisation to allow for adjustments to different years, environ-
ments and plant materials; examples for providing this 
flexibility are the models presented here (Eqn 5, Eqn 7). 

It is important to note that although modelling is a suitable 
tool for understanding complex relations and predicting 
processes, it implies some limitations. Although linear models 
are not always suitable for predicting crop responses to 
environmental conditions (Park et al. 2005), it turned out 
that a multiple linear and a non-linear regression model were 
among the best performing for our purposes. Additionally, it 
was shown that a representative estimation of mean N pools 
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during the growing season, which is needed for the assess-
ment of NAE components, requires some sort of sampling 
(using non-destructive or destructive ones) at both flowering 
and maturity stages. By relying only on the data assessed at 
anthesis, one would assume that the majority of the N 
uptake by the plant occurs before anthesis, while our data 
showed that the spring wheat investigated here continued 
taking up significant amounts of N also after anthesis. 
Including destructively assessed data from the maturity stage 
generated thus a much higher predictive power in combina-
tion with the non-destructively assessed data from the 
flowering stage, providing a reliable working model (Fig. 4). 

Conclusions 

Shoot height and number of tillers at flowering, both easy to 
assess with non-destructive methods, can be used as reliable 
predictors for shoot biomass of wheat. The use of these traits 
in the adaptive regression model presented here, when 
parameterised separately for each year, was robust enough 
to accommodate large inter-annual variability in weather 
conditions. The shoot biomass estimate, together with non-
destructively assessed leaf nitrogen content (SPAD), can 
further be used to predict the shoot N pool of wheat at 
flowering. In addtion, the adaptive regression model devel-
oped for this purpose was capable of accommodating large 
inter-annual variability in weather, when parameterised 
separately for the 2 years. The adaptive regression models 
developed here can be applied to significantly reduce the 
need for destructive sampling in nitrogen use efficiency 
approaches, normally requiring extensive destructive sampling, 
without reducing precision; which was demonstrated in this 
study for a RIL population field-grown in Sweden for 
2 years with contrasting weather. Provided that the plant 
traits assessed through manual measurements (shoot height, 
tiller number, chlorophyll content) are monitored using 
modern phenotyping technology, the allometric relationships 
developed here can be used to estimate shoot biomasses and 
nitrogen pools in high-throughput phenotyping approaches to 
assess nitrogen use efficiency in large breeding populations of 
wheat and other cereals. Further validation of the proposed 
models using data from different plant material and environ-
ments is recommended to improve generalizability and 
precision of the adaptive regression models developed here. 

Supplementary material 

Supplementary material is available online. 
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