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Abstract European forests are being shaped by active human use and management, and by harvesting of
wood in particular. Yet, our understanding of how forests are harvested across Europe is limited, as the real
harvest regimes are not well described by currently available data. Here, we analyse recent harvests, as observed
in permanent plots of forest inventories in 11 European countries, totaling to 182,649 plots and covering all
major forest types. We (a) characterize harvest regimes through the frequency and intensity of harvest events
spatially across Europe, and (b) build models for the probability and intensity of harvest events at the plot‐level
and examine the links to potential drivers of harvest, including the pre‐harvest forest structure and composition,
climatic, topographic and socio‐economic factors, and past natural disturbances. The results revealed notable
variation in harvest regimes across Europe, ranging from high‐frequency and low‐intensity harvests in eastern
Central Europe to low‐frequency and high‐intensity harvests in the north, with different strategies emerging in
regions with similar total harvest rates. The harvest regimes were strongly driven by country‐level variation,
emphasizing the role of national‐level factors. Pre‐harvest forest properties were important drivers for the
intensity of harvest, whereas the probability of harvest was more related to socio‐economic factors and natural
disturbances. The presented quantification of the forest harvesting regimes provides much needed detail in our
understanding of the contemporary forest management practices in Europe, providing a baseline against which
to assess future changes in management and strengthening the knowledge‐base for decision‐making on
European level.

Plain Language Summary In Europe, forest management strongly shapes forest ecosystems and the
ecosystem services they provide. Accounting for forest management is therefore crucial in any large‐scale
assessment of European forests, but information about management practices is limited. Here, we have
quantified Europe's forest harvesting regimes with forest inventory data from 11 countries, consisting of over
180,000 sample plots from the boreal to the Mediterranean. We characterized harvest regimes spatially in terms
of harvest frequency and intensity and built plot‐level models for the probability and intensity of harvest events.
The results show considerable variation in harvest strategies across Europe and provide insight into the different
drivers behind harvesting regimes. Our results offer much needed detail in our understanding of the
contemporary forest management practices in Europe and can act as a baseline against which future changes in
management can be compared to.
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1. Introduction
The majority of forests in Europe are under human management and harvest dominates over natural mortality as
the main cause of tree death (Schelhaas et al., 2018; Senf & Seidl, 2021a). Harvesting of wood is a major process
through which human activities shape forests (Duncker et al., 2012). The applied harvesting strategies funda-
mentally impact the extent to which forests may act as a carbon sink (Daigneault et al., 2022; Dalmonech
et al., 2022; Kauppi et al., 2022; Soimakallio et al., 2022), provide ecosystem services (Gregor et al., 2022;
Triviño et al., 2023), maintain or enhance biodiversity (Savilaakso et al., 2021) or be vulnerable to natural dis-
turbances and stress (Manrique‐Alba et al., 2022; Pukkala et al., 2016; Wallentin & Nilsson, 2014). These all are
key elements of the EU forest strategy (European Commission, 2021). If European‐scale assessments of current
and future forest‐based services are to be accurate, it is essential that they are grounded in the actual harvesting
regimes, that is, the frequencies and intensities applied to these forests.

It is crucial to understand harvest in order to understand European forests. Yet, a detailed quantification of the
contemporary harvest regimes does not currently exist. The quantitative studies of harvest at European level have
so far been limited to the total amount of wood harvested (Levers et al., 2014; Verkerk et al., 2015). While the
total harvest amount is important, these studies contain little detail on the harvest strategies applied, thus are not
providing the full detail on how harvesting affects forest structure and functioning. Remote sensing methods
provide a promising approach for quantifying harvests, but they have faced challenges in separation of harvest
from natural disturbances and identification of less intensive harvest events (e.g., Ceccherini et al., 2020, and
responses by Breidenbach et al., 2022; Palahí et al., 2021). To move beyond the harvested amount of wood or
forest area and toward understanding management regimes, several efforts have been made to map different
management approaches in European or at global scales using remote sensing, forest statistics and expert
knowledge—or some combinations of these (Lesiv et al., 2022; Nabuurs et al., 2019; Schulze et al., 2019).
However, these studies describe management through qualitative categories and lack quantifications of how
harvests are actually carried out. More detailed information on harvest strategies can be found in forest man-
agement plans and guidelines, which are typically available at national or smaller scales. Compilations of these,
together with expert knowledge, have been used to describe harvests across Europe (Aszalós et al., 2022; Car-
dellini et al., 2018; Mason et al., 2021) and to characterize harvests in modeling efforts (Härkönen et al., 2019;
Nabuurs et al., 2001; Vauhkonen et al., 2019). Yet, guidelines and management plans are not always adhered to in
reality, which leaves the real harvest practices deviating significantly from the guidebook (Schelhaas et al., 2018).
Thus, despite a considerable amount of research attention on European forest management, we are still lacking a
quantification of harvest regimes that characterizes the variation in harvesting across different countries and is
based on direct empirical observations.

The need for a consistent observational basis in describing the harvest regimes in Europe is emphasized by the
large variation in harvesting practices between countries and regions (Aszalós et al., 2022; Schelhaas et al., 2018).
This spatial variation stems from many factors. The variation of the natural environment, including the climatic,
edaphic and topographic conditions, gives the basic framework governing how forests can grow and be managed
by humans. Superimposed on this are the nationally and regionally varying legislations, regulations and subsidies
steering the extraction of wood for human use (Bauer et al., 2004; Haeler et al., 2023; Nichiforel et al., 2018;
Orazio et al., 2017), as well as different goals people have for forest management and forest use (Westin
et al., 2023; Winkel et al., 2022). These affect which types of harvest strategies are applied by the forest managers.
Harvest also does not occur in isolation, but depends on the dynamic natural and socio‐economic environment.
Natural disturbances lead to increased harvest rates and different harvest strategies when salvaging damaged
wood (Verkerk et al., 2015), and fluctuations in the economy drive harvest levels through the prices and demand
for wood (Beach et al., 2005). All these factors lead to diverse patterns of forest harvest across Europe. Yet, the
individual contributions of these different factors are not well understood.

To understand how harvest is carried out, national forest inventories (NFIs) provide a powerful source of data, as
they systematically and extensively sample Europe's forests. Several studies have used NFI data to give detailed
characterization of harvest regimes at regional and national extents (Antón‐Fernández & Astrup, 2012; Kilham
et al., 2019; Thompson et al., 2017), but the approach has only rarely been applied across larger spatial extents.
Schelhaas et al. (2018) compared the harvest probability of individual trees in subsets of inventory data from 13
European regions, providing important insight into differences in tree‐level harvest rates across Europe. An in-
tegrated and consistent analysis of NFI data across larger areas can allow going beyond the extent of individual
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countries or regions, while a focus on frequencies and intensities of harvest events, rather than general tree‐level
harvest probabilities can help in understanding how harvests are actually carried out, and thus close a major gap in
understanding Europe's harvesting regimes.

Here, our goal is to improve the current understanding of contemporary harvest regimes across Europe by
extracting information about harvests from re‐measured plots of national forest and landscape inventories in 11
European countries, totaling to 182,649 plots and representing 123 million hectares of forest across all major
forest types from boreal to Mediterranean forests. Our specific aims are to (a) characterize harvest regimes
spatially across Europe, and (b) build models for the probability and intensity of harvest events at the plot‐level
and examine the links to potential drivers of harvest, including the pre‐harvest forest structure and composition,
climatic, topographic and socio‐economic factors, and past natural disturbances.

2. Materials and Methods
2.1. Forest Inventory Data

We used a collection of data from permanent plots of national forest inventories and landscape inventories from
11 European countries (Table 1 and Table S1 in Supporting Information S1). This data set consisted of a total of
182,649 plots and 2,123,952 trees across over 123 million hectares of forest (70% of the EU forest area, plus
Norway and Switzerland). From each plot we used two consecutive measurements, recording the species,
diameter, and status (alive/dead/harvested) of each tree. The first measurement was used to describe the pre‐
harvest status of the forest and from the second measurement we took the information about tree status,
describing which trees had been harvested between the two measurements (Figure 1a). Only trees alive in the first
measurement were considered. Each plot came with coordinates accurate to ca. kilometer scale. Plots with no
trees in the first measurement were excluded, together with plots with a census interval of more than 15 years.

2.1.1. Data Processing and Harmonization

In Europe, each country conducts their forest inventory independently, and the sampling design and thus mea-
surement interval differ between countries and need to be harmonized. Here, we harmonized the differing
diameter‐at‐breast‐height (DBH, measured at 1.3 m height) threshold for the minimum size of measured trees by
setting a common threshold of 10 cm, which was used for all countries except for Switzerland, where the
threshold in the data was 12 cm. To account for the different sample plot designs, we weighted each tree by the
inverse of their sampling probability on a hectare when calculating the plot level variables from the tree data (see
details of sampling designs in Table S1 in Supporting Information S1). The sampling probability was calculated

Table 1
Data Set Details and Years of Data Used for Pre‐Harvest Status (1st Measurement) of Forests and the Harvest Information (2nd Measurement) and the Average
Measurement Interval for Each Country, Including the Total Number of Plots and Those With Harvest Recorded

Country Data source 1st measurement 2nd measurement Average interval (years) Number of plots Number of plots with harvest

Belgium NFI Wallonia 1994–2003 2008–2011 10.4 1,140 639

Czechia CzechTerra 2008–2009 2014–2015 5.9 575 267

Finland NFI 2009–2013 2014–2018 5 9,928 1,884

France NFI 2010–2014 2015–2019 5 29,730 5,801

Germany NFI 2000–2003 2011–2013 10.3 45,199 24,663

Netherlands NFI 2012–2013 2017–2020 5.8 927 300

Norway NFI 2012–2016 2017–2021 5 11,176 627

Poland NFI 2010–2014 2015–2019 5 19,061 8,430

Spain NFI 1985–1999 1997–2008 11.2 45,566 11,049

Sweden NFI 2008–2012 2013–2017 5 14,977 2,512

Switzerland NFI 2004–2006 2009–2017 8.1 4,370 1,274

Total 182,649 57,446
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by comparing the plot area from which a tree would be measured (which, depending on the plot design, can
depend on the tree size) to the area of a hectare.

As the time interval between the two measurements varied across the data, we annualized the data by transforming
the two observations from each plot into annual data points (Figure 1b). This annualized version of the data set
was used for calculating the harvest frequencies for the 1° grid (Section 2.1.2) and for the model for harvest
probability (Section 2.2). The annualization was done by, first, converting a single plot into data points repre-
senting each of the years between the measurements, and then assigning harvest to the middle year of the
measurement interval. While harvest can occur in any of the years between the measurements, the harvest events
are independent of the measurements and therefore in a large data set harvest can be approximated to occur on
average in the middle (see Figures S1 and S2 in Supporting Information S1 for assessment of impacts for setting
harvest to mid‐interval). This approach is often used with forest inventory data (Gschwantner et al., 2024).
Finally, the data points representing the post‐harvest years after harvest were updated to represent changed forest
structure. This update is relevant for the random forest predicting harvest probability, as it affects the forest
structure variables used in the prediction (see Section 2.2.2). For example, tree basal area per hectare would be
calculated from all trees in the first measurement for the annualized data points before harvest, and only from the
non‐harvested trees in the first measurement for data points after harvest (Figure 1b). The updated post‐harvest
data points were excluded if they did not fit the original inclusion criteria (i.e., did not contain any trees above the
10 cm threshold). For example, in the case of a clear cut occurring between the measurements, the final annualized
data set would contain data points for the pre‐harvest years and the harvest year, but the post‐harvest years would
be excluded as they would not have any trees left. This does not affect the calculation of harvest intensity, as the
post‐harvest years do not contain a harvest event and therefore do not have harvest intensity specified (see
illustration of the annualization process in Figure 1b). The final annualized data set contained 1,430,221 data
points.

Sampling density (plots per forest area unit) varied between countries and, in some cases, within countries. We
therefore calculated weights for each observation based on the forest area represented by the plot. This was either
provided to us with the inventory data (Germany and Sweden), calculated following the national protocol
(Finland) or calculated by dividing the forest area in the country by the number of plots included in the analysis,
(see details in Table S1 in Supporting Information S1). The weights were used for the harvest variables

Figure 1. Visualization of the data structure (a) and the data annualization process (b). Subfigure (a) shows the data structure with tree‐level information from two
measurements at the same plot. The first measurement describes the pre‐harvest status of the forest and the second measurement provides information about which (if
any) trees were harvested between the measurements (marked with gray color and a cross). Note that the density and configuration of the plots within a cell and the exact
type of the plot depend on the sampling design in each country (see Table S1 in Supporting Information S1 and references therein). Subfigure (b) provides a
demonstration of the data annualization process with an example where a plot with a 5‐year measurement interval is transformed into annual data points where harvest
was approximated to occur in the middle and the post‐harvest forest structure (basal area) was updated by removing the harvested trees.
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aggregated on the 1‐degree grid (Section 2.1.2, Text S1 in Supporting Information S1) and as observation weights
in the random forest training and for calculating the partial dependence plots (Section 2.2).

2.1.2. Characterizing Harvesting Regimes

Harvesting regimes were characterized in terms of the frequency and intensity of harvest events and aggregated
on a 1‐degree grid to explore general spatial patterns of harvest across Europe. The 1‐degree grid was chosen to
have a sufficient number of observations per grid cell (Figure S3 in Supporting Information S1). A harvest event
was defined on plot‐level as a case where at least one of the trees alive in the first measurement had been harvested
in the second measurement (Figure 1a). Harvest therefore includes any event where trees are cut, including
thinnings, selective harvests and clear cuts, as well as salvage loggings after natural disturbances.

We calculated the frequency of harvest events for the grid cells from the annualized data (see details of the
annualization process in Section 2.1.1 and Figure 1b) as the percentage of annual data points containing harvest in
the grid cell. The intensity of harvest event was defined as the percentage of the tree basal area removed in harvest
between the measurements (Figure 1b). For the grid cell, we calculated the mean intensity of harvesting in the
plots, and also the share of harvest events in different intensity classes (<25%, 25%–50%, 50%–75%, and >75% of
basal area removed). In addition, we calculated a total harvest rate, which integrates the frequency of harvest
events and their intensity. This was defined as the percentage of the total tree basal area in the grid cell that was
harvested annually. Weights based on the represented forest area of each plot were used in all calculations.
Additional detail on the calculation of the harvest variables is included in Supporting Information S1 (Text S1).

Grid cells were only included in the results when there were at least 20 inventory plots in the cell. For harvest
intensity variables only grid cells with at least five harvest events were included (Figure S3 in Supporting
Information S1).

All the analyses were conducted in R (R Core Team, 2021, versions 4.0.4 and 4.1.0).

2.2. Random Forest Models

2.2.1. Implementation

Modeling was carried out on plot‐level using random forest models (RF). RF is a well‐established machine
learning method, that builds a large number of regression (or classification) trees from bootstrap subsets of the
data and averages over them (Breiman, 2001; Hastie et al., 2009). RF has been successfully applied in forest
research, often with higher predictive power compared to parametric statistical models (Hart et al., 2019; Kilham
et al., 2019). RF can handle interactions between variables without pre‐defining them, and non‐linear responses
between the predictors and the response, making it particularly useful for modeling complex phenomena such as
forest harvesting.

Models were built in two steps using the plot‐level forest inventory data. In the first step, a random forest model
was trained to predict the probability of a harvest event in the annualized data set, with the binary response
variable of harvest or no‐harvest (RFProbability). In the second step, a random forest model was trained to predict
the intensity of harvest, defined as the percentage of basal area removed in the harvest event, thus having a
continuous response variable ranging from 0 to 1 (RFIntensity). For RFIntensity, only the data points where harvest
was present were used, and no annualization was needed.

Both models used the same set of predictor features (described in Section 2.2.3 and Table 2) and were fitted with
the number of trees in the random forests set to 300, the other hyperparameters kept to their default values. For
both RFs, the categorical predictors were handled by ordering the classes based on the proportion of observations
falling into the harvest class (for RFProbability) or the mean intensity of harvest events (for RFIntensity), and treating
the predictor as an ordered factor, using this order in the binary splits of the regression/classification trees (Hastie
et al., 2009; Wright & Ziegler, 2017).

The random forests were trained with the R package ranger (Wright & Ziegler, 2017, version 0.12.1), while the
overall workflow was constructed with the mlr3 package (Lang et al., 2019, version 0.13.3).

Earth's Future 10.1029/2024EF005225

SUVANTO ET AL. 5 of 20

 23284277, 2025, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024E

F005225 by Sw
edish U

niversity O
f A

gricultural Sciences, W
iley O

nline L
ibrary on [08/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Ta
bl
e
2

D
es
cr
ip
tio

ns
of

Fe
at
ur
es

U
se
d
as

Pr
ed
ic
to
rs

in
th
e
Ra

nd
om

Fo
re
st
M
od

el
s,
Tr
ai
ne
d
W
ith

th
e
Pl
ot
‐L
ev
el

D
at
a

A
bb

re
vi

at
io

n
U

ni
t

D
es

cr
ip

tio
n

Ta
rg

et
ye

ar
Ty

pe
So

ur
ce

Q
M

ea
nD

ia
m

et
er

cm
Q

ua
dr

at
ic

m
ea

n
di

am
et

er
of

th
e

fo
re

st
pr

e‐
ha

rv
es

t
Th

e
1s

tm
ea

su
re

m
en

t
Fo

re
st

Fo
re

st
in

ve
nt

or
y

da
ta

B
as

al
A

re
a

m
2

ha
−

1
To

ta
lt

re
e

ba
sa

la
re

a
of

th
e

fo
re

st
pr

e‐
ha

rv
es

t,
th

at
is

,t
he

to
ta

lc
ro

ss
‐s

ec
tio

na
la

re
a

of
tre

es
at

br
ea

st
he

ig
ht

pe
r

he
ct

ar
e

Th
e

1s
tm

ea
su

re
m

en
t

Fo
re

st
Fo

re
st

in
ve

nt
or

y
da

ta

Si
ze

St
ru

ct
ur

e
In

de
x

0
to

1
G

in
ii

nd
ex

of
tre

e
di

am
et

er
s

pr
e‐

ha
rv

es
t

Th
e

1s
tm

ea
su

re
m

en
t

Fo
re

st
Fo

re
st

in
ve

nt
or

y
da

ta

Sp
ec

ie
sD

om
in

an
ce

Pe
rc

en
t

Pe
rc

en
ta

ge
of

tre
e

ba
sa

la
re

a
co

ve
re

d
by

th
e

do
m

in
an

t
sp

ec
ie

s
Th

e
1s

tm
ea

su
re

m
en

t
Fo

re
st

Fo
re

st
in

ve
nt

or
y

da
ta

Sp
ec

ie
sG

ro
up

C
at

eg
or

ic
al

Eu
ca
ly
pt
us

sp
.;
Pi
nu

s
pi
na

st
er

;o
th

er
pi

ne
s;

sp
ru

ce
s;

be
ec

h
an

d
oa

ks
;o

th
er

co
ni

fe
rs

;o
th

er
br

oa
dl

ea
ve

s
Th

e
1s

tm
ea

su
re

m
en

t
Fo

re
st

Fo
re

st
in

ve
nt

or
y

da
ta

N
PP

10
g

ca
rb

on
m
−

‐2
yr
−

‐1
N

et
pr

im
ar

y
pr

od
uc

tio
n,

A
ve

ra
ge

of
20

00
–2

01
2

En
vi

ro
nm

en
t

N
eu

m
an

n
et

al
.(

20
16

)

El
ev

at
io

n
m

El
ev

at
io

n
as

m
et

er
s

ab
ov

e
se

a
le

ve
l

–
En

vi
ro

nm
en

t
A

m
at

ul
li

et
al

.(
20

18
)

To
po

R
ou

gh
ne

ss
In

de
x

To
po

gr
ap

hi
c

ro
ug

hn
es

s
in

de
x

–
En

vi
ro

nm
en

t
A

m
at

ul
li

et
al

.(
20

18
)

Po
pu

la
tio

nD
en

si
ty

In
ha

bi
ta

nt
s

km
−

‐2
Po

pu
la

tio
n

de
ns

ity
in

10
km

re
so

lu
tio

n
20

15
H

um
an

Sc
hi

av
in

a
et

al
.(

20
22

)

A
cc

es
s1

M
N

um
er

ic
,m

in
ut

es
Tr

av
el

tim
e

to
a

po
pu

la
tio

n
ce

nt
er

w
ith

>
1M

in
ha

bi
ta

nt
s

20
15

H
um

an
N

el
so

n
et

al
.(

20
19

)

A
cc

es
s5

0k
N

um
er

ic
,m

in
ut

es
Tr

av
el

tim
et

o
ap

op
ul

at
io

n
ce

nt
er

w
ith

>
50

k
in

ha
bi

ta
nt

s
20

15
H

um
an

N
el

so
n

et
al

.(
20

19
)

Pu
bl

ic
O

w
ne

rs
hi

p
Pe

rc
en

ta
ge

Pe
rc

en
ta

ge
of

pu
bl

ic
ow

ne
rs

hi
p

by
co

un
try

20
15

(2
01

0
fo

rN
or

w
ay

)
H

um
an

Fo
re

st
Eu

ro
pe

20
20

C
ou

nt
ry

R
eg

io
n

C
at

eg
or

ic
al

A
dm

in
is

tra
tiv

e
un

it
–

H
um

an
Fo

re
st

in
ve

nt
or

y
da

ta

St
or

m
B

ee
tle

Pr
ob

ab
ili

ty
Pr

ob
ab

ili
ty

of
di

st
ur

ba
nc

ep
at

ch
to

or
ig

in
at

ef
ro

m
st

or
m

s
an

d
ba

rk
be

et
le

s
Y

ea
rs

fr
om

th
e

1s
tt

o
th

e
2n

d
m

ea
su

re
m

en
tp

er
pl

ot
D

is
tu

rb
an

ce
Se

nf
an

d&
Se

id
l(

20
21

a)

Fi
re

Pr
ob

ab
ili

ty
Pr

ob
ab

ili
ty

of
di

st
ur

ba
nc

e
pa

tc
h

to
or

ig
in

at
e

fr
om

fir
e

Y
ea

rs
fr

om
th

e
1s

tt
o

th
e

2n
d

m
ea

su
re

m
en

tp
er

pl
ot

D
is

tu
rb

an
ce

Se
nf

an
d&

Se
id

l(
20

21
a)

Earth's Future 10.1029/2024EF005225

SUVANTO ET AL. 6 of 20

 23284277, 2025, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024E

F005225 by Sw
edish U

niversity O
f A

gricultural Sciences, W
iley O

nline L
ibrary on [08/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2.2.2. Features Predicting Harvest

Harvest is driven by factors relating to the forest characteristics, as well as the natural and human environment.
We identified variables in these three categories (forest structure and composition, natural environment, and
human environment) potentially affecting the probability and intensity of harvest events (Table 2, Figures S4 and
S5 in Supporting Information S1).

Harvest depends on the forest characteristics as harvest operations are typically planned at certain developmental
stages of stand rotation and different species are harvested with different strategies and intensities. We describe
the pre‐harvest state of the forest using forest structure (quadratic mean diameter, total tree basal area per hectare,
tree size structure described with the Gini coefficient of tree diameters) and species composition (dominant
species group, the percentage of basal area covered by the dominant species, which was chosen to ensure
robustness across different sample plot designs). These variables were calculated using the first census at each
plot, that is, pre‐harvest conditions of the forest. The dominant species was defined as the species with the highest
basal area in the plot and characterized by species groups modified from Verkerk et al. (2015, Table 2).

The growth conditions of the site provide the basic framework for how forests can be grown and managed. In our
analysis, we used the average net primary production (NPP) from 2000 to 2012 to describe the variety of growth
conditions across the study area (Neumann et al., 2016). Topographic conditions are also related to growth
condition, but can also affect harvest through increased costs of harvest (Orazio et al., 2017; Spinelli et al., 2017)
and through specific forest management goals, for example, protection against rockfall and avalanches (Dorren
et al., 2004). The importance of topography for harvesting is shown in it being is used in the definition of “forests
not available for wood supply” (FNAWS) due to the economic restrictions that high altitudes, steep slopes and
challenges in accessibility pose for wood supply in mountainous regions (Alberdi et al., 2020). Here, topography
is described through elevation and topographic roughness, which is an index that describes the variability of local
topography and is defined as the largest inter‐cell difference between a cell and its eight neighbors in a digital
elevation model (DEM). These were extracted from a data set by Amatulli et al. (2018), calculated from the 1 km
base resolution, which was itself aggregated as median values of the original 250 m resolution GMTEDmd DEM.

Harvest practises are also affected by the cost of harvest and the goals of forest management, which are repre-
sented here by variables related to population density and accessibility (but also related to topography, as
mentioned above). The distance from population centers can have either increasing or reducing effects on harvest
pressures. Increasing distance from population centers and lower population density is likely to imply increased
transportation costs, and many protected areas are located in regions with more difficult accessibility, thus
supporting a hypothesis of lower harvest pressure in regions with difficult accessibility. On the other hand,
proximity of large human settlements can lead to higher pressure from other forest use types than wood pro-
duction due to for example, recreational use of forests, potentially leading to lower harvest pressure. We estimated
population density using the Global Human Settlement Layer (GHSL) 2015 data (Schiavina et al., 2022)
aggregated to mean density in a 10 km resolution. The distance from population centers was estimated with the
global accessibility data by Nelson et al. (2019). From their data we calculated two variables describing travel
time to human settlements with more than 50,000 and more than 1 million inhabitants. These population sizes
were chosen to represent different types of human settlements that we expected to potentially have different
effects on forest use.

The policy environment affects forest harvest regimes through legislation and regulations limiting the manage-
ment decisions of the forest owner and by subsidies supporting certain types of management operations. To
represent these factors, we included administrative unit as a categorical variable. In most cases this was the
country, except for Germany (state) and Spain (autonomous community), where significant legislative power also
on forest relates issues is on sub‐national government levels. The policy environment is also described in our
analysis with a variable of country‐level share of forest area in public ownership in year 2015 (2010 for Norway,
where values for 2015 were not available; FOREST EUROPE, 2020). While different types of owners can have
different management approaches (Schelhaas et al., 2018; Živojinović et al., 2015), the general ownership
structure is also found to be correlated with the regulative environment, with countries with higher shares of
public forest ownership also having more strict regulation on management of private forests (Nichiforel
et al., 2018).
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To cover the probability of harvest occurring due to salvaging wood after natural disturbances, we included
variables describing the fraction of natural disturbances out of all disturbances (incl. harvest) in the surrounding
area. For this, we used the data set from Senf and Seidl (2021a), which identifies disturbances from Landsat
satellite images from years 1986 to 2020 and attributes each disturbance polygon to its probable cause, either
storm and bark beetles, fire or background disturbance, where harvests are included in the last category. From this
data we calculated separately the fractions of disturbances caused by storm and bark beetles and by fire within a
hexagonal grid with 50 km sides and assigned these values to the plots in the forest inventory data located within
the grid cells. The disturbance polygons were included in the grid cell in which the center point of the polygon fell.
For each inventory plot, only the disturbances within the same country and occurring in the years between the two
measurements were considered (Table 2).

2.2.3. Interpretation of the Random Forest Models

To understand the role of each predictor in the models, we calculated variable importance scores as the per-
mutation importance (Strobl et al., 2007). The relationships of the predictors with the response variables were
assessed with partial dependence plots (PDP). PDPs show the effect of a predictor on the response variable,
marginalized over the combinations of the other input variables. To calculate a PDP for one predictor variable,
predictions are calculated for each data point by changing the value of the variable of interest to cover the full
range of its values in the data, while other variables are kept untouched. Then, the predictions are averaged for
each value of the variable of interest (Molnar, 2018). We calculated the PDPs from a subset of 50,000 data points,
sampled randomly with the represented forest area as weights. The subset was used to reduce the computation
time and weights were used to balance the different sampling densities in different regions, as otherwise the
densely sampled regions could dominate the averaging done in the PDP calculation.

In addition to looking at the marginal effects over the whole data set, we explored how the model predictions
behaved in relation to pre‐harvest tree diameter (QMeanDiameter) in subsets of the study area to understand
variations in the predicted harvest patterns between regions. For this, we selected plots with dominant species
belonging to the “other pines” group (all pine species except P. pinaster) in three regions representing different
management approaches and growing conditions: southern Finland (below latitude 65°N), Poland and Spain.
Then we calculated the PDPs for these subsets, using only data points in each subset.

The PDP plots were calculated using the R package iml (Molnar et al., 2018, version 0.10.1) and the variable
importance was calculated during the training of the RFs with the R package ranger (Wright & Ziegler, 2017).

2.2.4. Validation

Spatial autocorrelation in data can lead to overly optimistic cross‐validation results when the assumption of
independence between data points is violated (Roberts et al., 2017). Therefore, we set up cross‐validation with
spatial folds, where testing and training sets were always spatially separated from each other. This was done by
constructing spatial blocks by overlaying a 10× 10 cell grid on the extent of the plot data, assigning the data points
to the grid cells in which they were located. Then each cell containing data points was assigned to one of the ten
cross‐validation folds systematically, with each fold then consisting of 3 and 4 spatial blocks in different parts of
the study area. We also wanted to evaluate the ability of the models to predict to new countries with no training
data and, therefore, set up a cross‐validation where each of the 11 countries in the data was considered as a cross‐
validation fold, thus using 10 countries to train the model in each iteration and testing with data from one country
at a time.

Performance of the models was assessed with the area under the receiver operating characteristic curve (ROC
AUC) for the RFProbability. The ROC curve plots the true positive rate (sensitivity) and true negative rate
(specificity) of the model with all potential thresholds for classifying the data points into the binary classes. The
area under the curve ranges from 0 to 1, with 0.5 representing a model that cannot discriminate between harvest
and no harvest any better than a random classifier and value 1 meaning a perfect discriminatory ability of the
model (Hosmer et al., 2013). For the RFIntensity, model performance was assessed with root mean squared error
(RMSE).

The cross‐validation of the RF models was compared to null models without any co‐variates. For harvest
probability (RFProbability) the null model was set to always predict the proportion of harvest events in the full data
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set and for the harvest intensity (RFIntensity), the null model always predicted the mean value of harvest intensity in
the full data set.

The overall cross‐validation workflow and the null models were set up with R package mlr3, (Lang et al., 2019, p.
3). Spatial cross‐validation was carried out using R packages blockCV, (Valavi et al., 2019, version 2.1.4) and
mlr3spatiotempcv (Schratz & Becker, 2021, version 1.0.1).

3. Results
3.1. Harvest Patterns Across Europe

The results showed substantial variation in harvest regimes across Europe, and the spatial patterns of total harvest
rates (Figure 2a) deviated from the patterns found for the frequency and average intensity of harvest events
(Figures 2b and 2c). The total harvest rate in the grid cells was positively correlated with the frequency of harvest
events (r = 0.67, p < 0.001), while the correlation with intensity of harvest events was weak (r= 0.09, p = 0.042,
Figure S6 in Supporting Information S1). Harvest frequencies were found to be highest in eastern Central Europe
and decrease toward the north and toward the Mediterranean. High harvest frequencies were found especially in
Poland and Czechia, as well as in south‐western France (Figure 2b). Average intensities of harvest events (i.e., the
fraction of tree basal area harvested in each plot) showed different spatial patterns, with more intensive harvest
events in northern Europe and parts of Spain and France, and low average intensity of harvest events especially in
Poland and Czechia (Figure 2c). These differences in the spatial patterns of frequencies and intensities of harvest
events were also supported by a negative correlation between the grid‐cell level values of frequency and intensity
of harvest events (r = − 0.49, p < 0.001; Figure S6 in Supporting Information S1).

We observed a continuum from high‐frequency and low‐intensity harvests (Poland, Czechia) toward low‐
frequency and high‐intensity harvests (parts of Finland, Sweden, Norway and France), with the total harvest
rate of the grid‐cell staying on similar level, between 1% and 3% of the grid cell basal area per year (Figure 3).
Conversely, the gradient of total harvest rate moves from low‐frequency and low‐intensity (parts of Spain) toward
the few grid cells with either high‐frequency and high‐intensity (outliers in France and Spain) or high frequency
(outliers in Poland).

Figure 2. Harvest regimes across Europe, quantified as the total harvest rate (a, percentage of BA harvested in the grid cell per year), the frequency of harvest events (b,
percentage of plots harvested per year) and intensity of harvest events (c, average percentage of tree basal area removed in a harvest event).
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Very low intensity harvests (<25% of tree basal area removed) are driving the high frequency of harvests in
Poland and Czechia (Figure 4). While the low intensity harvests cover a considerable part of harvest events in
most of Europe, in Poland and Czechia their share is clearly larger than in other countries. In mid‐intensity

Figure 3. Frequency versus average intensity of harvest events in the grid cells for the 11 European countries together (upper‐left corner) and separately per country. The
color of the points represents the total harvest rate in the grid cell (% of tree basal area removed annually from the grid cell).

Figure 4. Percentage of harvest events within different intensity classes: harvest events removing 25% or less (a), 25%–50% (b), 50%–75% (c), and more than 75% (d) of
the original basal area.
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harvests (25%–50% and 50%–75%) the pattern is reversed. The share of high‐intensity events from all harvests
(>75% of BA harvested, Figure 4d) is the highest in northern Europe, southern France, and north‐western Spain.

3.2. Random Forest Models

The probability of harvest was found to relate especially to variables concerning to the human environment and
natural disturbances, as these variables gained high importance for predicting harvest probability (RFProbability,
Figure 5a). Highest importance scores were found for variables related to the administrative region (represented
by variables CountryRegion and PublicOwnership). Other variables with high importance scores were natural
disturbances (StormBeetle, but also Fire), stand basal area and travel time to population centers with more than a
million people (Access1M). We observed an increasing probability of harvest (RFProbability, Figure 5a, Figure S7
in Supporting Information S1) with the country‐level share of public ownership of forests, disturbances and stand
basal area. The accessibility to large population centers (Access1M) and elevation showed a similar pattern, with
harvest probability first decreasing, followed by a gradual increase in harvest probability with higher values.

Figure 5. Variable importance plots for the probability (a, RFProbability) and the intensity of harvest event (b, RFIntensity), and partial dependence plots (PDP) for six
variables with the highest importance scores for both models. Colors are based on the type of the variable. In PDP plots the x‐axis is cut to the 99th percentile for the
numeric predictors. The subplots beneath the PDP plots show the density distribution for the variable. Descriptions of all variables are in Table 2.
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The intensity of harvest events was more driven by forest structure and composition, with basal area, quadratic
mean diameter and dominant species group all ranking within the four most important variables (RFIntensity,
Figure 5b). The administrative region was also important for harvest intensity, with country (or lower admin-
istrative region, where relevant) ranked second in variable importance. The intensity of harvest events decreased
with increase in stand basal area (Figure 5b). Higher intensities were observed for small and large quadratic mean
diameters with lowest harvest intensities found with values of approx. 20 cm. Higher harvest intensities occur in
forests dominated by eucalypt species, Pinus pinaster, or spruce species. The marginal (averaged) responses of
harvest intensity to elevation were rather modest, with increased intensities in low elevations. Country‐level share
of public ownership showed a non‐linearly decreasing trend for the harvest intensity. Results for all predictors are
found in Figure S8 in Supporting Information S1.

The random forest results showed locally different responses of the harvest variables to tree size within the same
species group (Figure 6). For example, in Poland the harvest probability was clearly higher in small‐diameter
forests compared to the other regions. In Finland the harvest probability started to increase again in stands
with quadratic mean diameter of approximately 20 cm, implying regeneration cuttings starting with this tree size,
whereas in Poland this increase only started with plots having tree diameters around 30 cm. The intensity of
harvest was higher in plots with larger tree size in most data combinations, but the pattern was more pronounced
for Finland and Poland than in Spain or the full data set (Figure 6).

The spatial blocks cross‐validation showed substantially better performance of the random forests compared to
the null models, with mean ROC AUC for RFProbability of 0.69 (0.50 for the null model) and mean RMSE for
RFIntensity of 0.27 (0.30 for the null model, Figure 7). In contrast, the country‐wise cross‐validation showed poorer
performance and higher variance in the evaluation metrics, suggesting that the models did not perform well when
predicting harvest in countries not included in the training data.

4. Discussion
4.1. Harvest Regimes and Drivers

Here we present the first consistent assessment of harvest regimes across 11 European countries, based on field
observations from forest inventory data sets. The results revealed variation in harvest strategies between regions
with similar total harvest rates, from high‐frequency and low‐intensity harvests in eastern Central Europe to low‐
frequency and high‐intensity harvests in the Nordic countries. These patterns give important new insight about
forest management in Europe compared to previous studies, which have either worked on aggregated harvest
information at larger scales (Levers et al., 2014; Schelhaas et al., 2018; Verkerk et al., 2015) or focused mainly on
high‐intensity harvests (Aszalós et al., 2022; Ceccherini et al., 2020; Senf & Seidl, 2021b).

Figure 6. Partial dependence plots (PDP) showing the effects of pre‐harvest QMeanDiameter on the annual probability of harvest (RFProbability) and the intensity of
harvest (RFIntensity). Partial dependence curves are shown as calculated from the full data (solid line) and for subsets of the data (dashed lines, pines in southern Finland,
Poland and Spain) to demonstrate how the RFs predictions differ locally. The smaller subplots show the density distribution of the variable. The x‐axis is cut to the 99th
percentile of the data.
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Northern Europe was characterized by low‐frequency but high‐intensity harvest regimes, with decreasing harvest
frequencies toward the northern parts of the region. Since the mid‐20th century, forest management in this region
has been dominated by even‐aged forestry with the stand rotation ending in a clear cut. The shift to even‐aged
management was initiated largely by state‐driven forest policies to secure the supply of wood for the forest in-
dustry, leading to half‐a‐century of increasing forest productivity and wood production (Aasetre & Bele, 2009;
Helseth et al., 2022; Kauppi et al., 2022; Korhonen et al., 2021; Lundmark et al., 2017). Other management
approaches outside of the even‐aged rotation forestry are only applied in small areas (Aszalós et al., 2022) and are
unlikely to affect the patterns of a large‐scale assessment such as ours. The even‐aged rotation management
approach is observed in our results as low frequencies but high intensities of harvest events, and a large share of
intensive harvests compared to other studied countries (Figure 4d). The lower harvest rates in Norway compared
to Finland and Sweden are likely related to the highly variable topography (Figure S4 in Supporting Informa-
tion S1), affecting both growing conditions and harvesting costs (Antón‐Fernández & Astrup, 2012; Bergseng
et al., 2013; Øyen & Nilsen, 2002), the high share of privately owned forests (Figure S4 in Supporting Infor-
mation S1; FOREST EUROPE, 2020) and a smaller role of the pulp and paper industry (Järvinen et al., 2012;
Moen, 1994).

In Poland and Czechia, the results showed a distinctive pattern of high‐frequency and low‐intensity harvesting
regimes, where the low average intensity of harvests was driven by an exceptionally large share of the low‐
intensity harvests (Figure 4a). One of the factors common for these countries is a high share of publicly
owned forests (Figure S4 in Supporting Information S1, FOREST EUROPE, 2020; Pulla et al., 2013). In Poland
80% of forests are publicly owned and mostly managed by the State Forest Holdings, leading to a centralized
coordination of forest management (Niedziałkowski & Chmielewski, 2023; Szramka & Adamowicz, 2020). This
is in contrast to, for example, Bavaria, Germany, where the decision making of forest management is more
scattered, with 54% of the forest area being owned by private owners (Statistisches Bundesamt, 2023), and where
fragmentation of the forest ownership has been identified as a barrier for wood mobilization (Orazio et al., 2017).
Thus, our results showing more active management (higher harvest frequency) in areas with more centralized
forest management compared to areas with more fragmented ownership are in line with previous research that
links ownership fragmentation to less active management (Orazio et al., 2017; Wiersum et al., 2005; Živojinović
et al., 2015). Despite the similar patterns in Poland and Czechia there are also differences: for example, the
management of publicly owned forests in Czechia is spread across a larger number of actors, as a considerable
share of these forests are owned by the municipalities, whereas the area managed by the state forest organization is
lower (44% of forest area, compared to 77% in Poland; Ministry of Agriculture of the Czech Republic,
2021; Szramka & Adamowicz, 2020). It is important to also note, that our analysis only looked at country‐level
public ownership, whereas ownership structure can vary substantially within countries (Pulla et al., 2013), and the
implications of private versus public ownership on management are not constant (Schelhaas et al., 2018), making
it challenging to cover the full complexity of the ownership‐management relationship in our large‐scale analysis.
The observed connection between ownership structure and harvest regime may also be related to other factors,

Figure 7. Cross‐validation results for harvest probability (left) and the intensity of harvest (right) for the two different cross‐
validation set‐ups: spatial blocks, and using countries as folds. Light blue boxplots show results for the null models and dark
blue boxplots for the full random forest models. The upper and lower edges of the boxes correspond to the 25th and 75th
percentiles and the horizontal line shows the median, while the whiskers extend to the largest value no further than 1.5 * the
interquartile range.
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such as regulation of forest management, that can be correlated with the ownership structure (Nichiforel
et al., 2018).

Regions with low total harvest rates were found in the northernmost parts of the Nordic countries, and in southern
and eastern parts of Spain (Figures 2 and 3). In the north, the low harvest rate was associated with low frequencies
of harvest events, and it relates to slow growth of trees in the cold climate, high percentage of protected areas and
increased costs from long transport distances and complex topography. In Spain, regions with low total harvest
rates had both low harvest frequency and intensity, and the inactive harvest regimes can be explained by low
productivity due to the dry climatic conditions (Neumann et al., 2016; Ruiz‐Benito et al., 2014). After the 1970s
an increased abandonment of forest management has occurred, especially in the Mediterranean forests, where the
economic profitability of timber harvesting is low (Vadell et al., 2022; Vilà‐Cabrera et al., 2023). On the other
hand, many forests in northern Spain along the Atlantic coast are intensively managed for wood or biomass in
short‐rotation cycles (Unrau et al., 2018; Vadell et al., 2022). This geographic difference in harvest intensity in
Spain can be observed in our results (Figure 2). Similarly, south‐western France stands out in the results with high
frequencies and intensities of harvest. The forests in this region consist largely of maritime pine (P. pinaster)
plantations that are actively managed in relatively short rotations (Schuck et al., 2020).

The importance of country‐level drivers was emphasized throughout our results. This large between‐country
variation was also reported by Levers et al. (2014) and it can relate to differences in the ownership structure,
legislation, regulations and subsidies for forestry (Bauer et al., 2004; Haeler et al., 2023; Nichiforel et al., 2018).
Harvest practices can also be expected to vary based on the national (or state) level variation in the guidelines for
forest management (Cardellini et al., 2018), values of the forest owners (Westin et al., 2023) and the valuation of
different ecosystem services provided by the forests (Winkel et al., 2022). On the other hand, countries also differ
in other aspects not directly related to the socio‐political environment, with, for example, climatic conditions and
topography varying notably from country to country. While this can contribute to the observed country‐effect in
our results, clear contrasts in harvest strategies were also found in regions with similar climatic conditions. In the
random forest results the variable describing the administrative region (in most cases country) gained high
variable importance scores even when variables describing topography and productivity were also included,
suggesting that these are not sufficient in explaining the variation in harvest regimes between countries.

Natural disturbances are important drivers of harvest. In the random forest results high frequencies of storm and
fire disturbances led to increased probability and intensity of harvest events (Figure 5, Figures S7 and S8 in
Supporting Information S1), as natural disturbances lead to unplanned salvage loggings. A heavy storm event in
2017 in Poland, causing damage in forests in an area of approximately 80,000 ha (Chmielewski et al., 2020), is
also the most likely cause of outlier grid‐cells in Poland with high harvest rates (Figure 3, see Figure S9 in
Supporting Information S1 for analysis of storm year impact). The impact of natural disturbances on harvest was
demonstrated also by Verkerk et al. (2015), who showed that largest annual deviations in wood production
compared to long‐term mean were related to major natural disturbances, such as several high‐intensity storms in
late 1990s. In the time window of the data used in our analysis (Table 1), major storm events were, for example,
the 2017 storm in Poland and the 2007 storm Kyrill in Germany. Some other major storm events, such as storm
Klaus in Southern France in 2009 (Schuck et al., 2020) and storm Gudrun in southern Sweden in 2005 (Valinger
et al., 2014), occurred before the time windows of data covered here (first measurements in France in 2010 and in
Sweden in 2008). Salvage logging from these storms are not expected to have a major effect on the results,
although we note that insect outbreaks triggered by the storm events could cause salvaging even when the actual
storm event is not within the studied time window.

Pre‐harvest stand basal area was an important driver of both frequency and intensity of harvest events. Higher
basal area led to higher probability of harvest, but lower intensity of harvests. Basal area varies locally due to
factors such as forest age, species and site type, but it also has large‐scale spatial patterns across Europe, with
regions with lower basal area found especially in northern Europe and in parts of Spain (Figure S4 in Supporting
Information S1). Both of these patterns are likely to affect the relationship between basal area and the harvest
variables in our results. The higher probability of harvest events with high basal area is logical from both per-
spectives. For example, in a forest managed with an even‐aged rotation system, harvest would not be expected in a
low‐basal‐area phase of the stand rotation (see e.g., the Finnish forest management recommendations, Äijälä
et al., 2019). At the same time, regions where basal area on average is lower, such as northern parts of Europe
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(Figure S4 in Supporting Information S1) the harvest regimes are also characterized by lower harvest frequencies
(Figure 2).

Net primary productivity (NPP) was not ranked high in the variable importance results. This is seemingly in
contrast with earlier results from Verkerk et al. (2015), who showed that productivity was an important factor
driving spatial patterns of wood production in Europe. However, also in our results the total harvest rate was
positively correlated with the NPP (Figure S10 in Supporting Information S1). In random forests, correlation
between predictors can impact the variable importance scores, as the removal of a variable has a smaller impact on
the prediction when another, correlated, variable is left in the model. This can have an impact in our results, even
if the Pearson's correlation were in all cases below 0.7 (Figure S11 in Supporting Information S1). For NPP, the
variable importance results are likely affected by other variables correlated with NPP, such as population density
(r = 0.52), and fire and storm/bark beetle disturbances (r = − 0.43 and 0.60, respectively, Figure S11 in Sup-
porting Information S1). Stand basal area also shows similar large‐scale spatial patterns as NPP (Figure S4 in
Supporting Information S1), potentially catching some of the variance that could otherwise be explained by NPP.
Differences in the overall set‐up between our work and Verkerk et al. (2015) may also contribute to explaining
this difference, as the harvest variables as well as the forest productivity variables used were different.

The random forest models were able to reveal different local patterns of harvest in relation to tree size (Figure 6).
For all explored regions the response to the quadratic mean diameter shows a somewhat similar overall pattern—a
U‐shaped response with high harvest probabilities with low and high diameters, and a higher intensity of harvest
with larger diameters. This is logical, considering for example, thinnings performed at early phases of stand
rotation when trees are smaller, and more intensive regeneration cuttings later with larger diameters (e.g., Äijälä
et al., 2019). Yet, there are clear differences between the regions, such as the markedly higher harvest probability
in low diameter stands in Poland. This demonstrates the ability of the models to identify regional differences in
harvest regimes.

4.2. Limitations

Forest management and harvesting of wood cannot be expected to be static, but change dynamically with the
changing political (Kronenberg et al., 2021; Munteanu et al., 2016), economic (Adams et al., 1991; Infante‐Amate
et al., 2022; Sjølie et al., 2019) and natural environment (Hlásny et al., 2021; Verkerk et al., 2015). The presented
results provide a snapshot of management regimes in the time‐window covered by the data, although we aim to
control for these drivers in our study (e.g., using predictors characterizing the natural disturbance frequency
during the study period). While most of the data in our study covers recent time periods, the changes in forest
disturbance regimes in Europe since 2018 (Hlásny et al., 2021; Schuldt et al., 2020; Senf & Seidl, 2021c) have
since affected harvests in some regions because of logging reactions to the natural disturbances (Toth et al., 2020).
In the future, changes to the observed harvest frequencies and intensities can be expected already from change in
forest age‐class distribution, but harvesting will also be affected by the implementation of EU bioeconomy, forest
and biodiversity strategies (European Commission, 2018, 2020, 2021), which have partially conflicting objectives
(Lerink et al., 2023), and the need of forest management strategies to adjust to better adapt to the changing climate
(Bolte et al., 2009).

The different sampling designs in each country can have an influence on the results, even though we harmonized
the diameter thresholds and accounted for the different plot designs and intervals. For example, the data sets from
different countries cover different time periods and have different time intervals between the two measurements.
The differences in sample plot size and type can affect the detection of harvest events, even despite our
harmonization efforts, as different sample plot designs would have different probabilities for none of the har-
vested trees being located within the plot, even if harvest occurred in the forest. In addition, full harmonization
was not always feasible, for example, for Switzerland where the minimum DBH threshold (12 cm) was above the
10 cm threshold we applied to the data sets. We assumed that the benefit of additional information gained from
including more trees in the other countries outweighed the disadvantage of introducing bias for one country rising
from a slightly higher threshold. In any case, major patterns observed in our results do not seem to follow dif-
ferences in sampling designs (Table S1 in Supporting Information S1). This implies that the main results are
unlikely to be affected by artifacts of sampling differences, but some effect from the sampling differences be-
tween the data sets could contribute to the observed differences between the countries.
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5. Conclusions
Our results, empirically quantifying forest harvesting regimes across Europe, revealed a range of different harvest
regimes with different harvest frequencies and intensities. These results provide a fundamental basis for un-
derstanding the management of forests that shapes these ecosystems now and in the future; to understand how
forest management practices should be changed in Europe under different climatic conditions, it is crucial first to
have a thorough understanding of how the management is currently carried out.

Our results also provided insight into the drivers of harvest regimes in Europe. Country was an important driver
for both the probability and intensity of harvest events, emphasizing the national‐level variation in harvest
practices. Otherwise the role of different drivers varied between harvest probability and intensity, with variables
related to forest characteristics being more important for the intensity of harvest events. Natural disturbances also
drive harvests, with both harvest probability and intensity increasing with increased storm and fire disturbances,
reflecting the practice of salvage and sanitary logging that is widespread after these events. The mixture of
cultural/political and biophysical drivers on the realized harvest regime reflects the complex interplay of envi-
ronment, physiology, culture and policy on these socio‐ecological systems.

The harvesting intensities and frequencies that we have quantified here, along with the random forest models for
predicting harvest probability and intensity, provide a baseline for harvest behavior at a time when practices are
likely to undergo substantial change to accommodate the impacts of climate change and a growing focus on
preserving and enhancing biodiversity (European Commission, 2020, 2021). Coupling this information with
continental‐scale demographic forest models (Lindeskog et al., 2021) has the potential to provide consistent large‐
scale assessments of recent forest productivity, harvest and carbon cycling, providing a significant step forward
over the rule‐based approaches that might otherwise be used. Similarly, they can provide an evidence‐based
counterfactual for simulations of the effect of future changes in forest harvest policy.

Our analysis covered the 11 European countries from which re‐measured inventory plot data was available.
Whilst it is reasonable to assume that harvest event regimes within other European countries fall within the
continuum identified in Figure 3, the results demonstrated the difficulties of predicting harvest in countries where
no field data is available. This is a major limitation for understanding and modeling harvest regimes at continental
scales. While data availability and access has improved in recent years (Ruiz‐Benito et al., 2020), relying on the
availability of remeasured data from field plots restricts the spatial extent that can be covered. To extend the
analysis beyond the 11 countries studied here, and thus provide the information necessary to inform large‐scale
modeling studies, will require either new arrangements to extend access to NFI data in the many additional
countries where it exists or combining information from several different sources. Such sources may include
remotely sensed information about high‐intensity harvests, national‐level statistics and information about
legislation regulating forest use, socio‐economic factors and the role of the forest sector in the country, man-
agement guidelines and plans, as well as expert knowledge from each country.

Data Availability Statement
The forest inventory data supporting this research are available from the original data producers, following the
individual access policies, restrictions and licensing of each data owner. Open access to data is available for
France (IGN), Spain (Inventario Forestal Nacional, https://www.miteco.gob.es/es/biodiversidad/temas/inven-
tarios‐nacionales/inventario‐forestal‐nacional.html), Germany (Thünen‐Institut, https://bwi.info) and the
Netherlands (Wageningen University & Research, https://www.wur.nl/en/research‐results/research‐institutes/
environmental‐research/projects/dutch‐forest‐inventory.htm, Schelhaas et al., 2014). For other countries the data
is not open access, but is only available with an agreement from the data owners: the National Forest Inventory of
Wallonia (SPW ARNE), the Finnish National Forest Inventory (Natural Resources Institute Finland, Korhonen
et al., 2021), CzechTerra (Cienciala et al., 2016), the Norwegian National Forest Inventory (Nibio, Breidenbach
et al., 2020), the Polish National Forest Inventory (Talarczyk, 2014), the Swedish National Forest Inventory
(Swedish University of Agricultural Sciences, Fridman et al., 2014), the Swiss National Forest Inventory
(WSL, 2020). The other data sets used for predictors of the random forest models are openly accessible with
access details provided in the original references of each data set: NPP (Neumann et al., 2016), topographical data
(Amatulli et al., 2018), population density (Schiavina et al., 2022), accessibility to population centers (Nelson
et al., 2019), public ownership of forests (FOREST EUROPE, 2020), and natural disturbances (Senf &
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Seidl, 2021a). The data products generated during this work, namely the harvest grids behind Figures 2–4 and
Figure S3 in Supporting Information S1, are made available with open access in Zenodo (Suvanto et al., 2025).
The codes used for calculating the results in this paper are available and archived in Zenodo (Suvanto, 2025).
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