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Abstract: Genomic selection (GS) accelerates plant breeding by predicting complex traits us-
ing genomic data. This study compares genomic best linear unbiased prediction (GBLUP),
quantile mapping (QM)—an adjustment to GBLUP predictions—and four outlier detec-
tion methods. Using 14 real datasets, predictive accuracy was evaluated with Pearson’s
correlation (COR) and normalized root mean square error (NRMSE). GBLUP consistently
outperformed all other methods, achieving an average COR of 0.65 and an NRMSE reduc-
tion of up to 10% compared to alternative approaches. The proportion of detected outliers
was low (<7%), and their removal had minimal impact on GBLUP’s predictive performance.
QM provided slight improvements in datasets with skewed distributions but showed no
significant advantage in well-distributed data. These findings confirm GBLUP’s robustness
and reliability, suggesting limited utility for QM when data deviations are minimal.

Keywords: quantile mapping; GBLUP; outlier detection methods; plant breeding;
genomic prediction

1. Introduction
Genomic selection (GS) has changed plant breeding over the past decade, fundamen-

tally transforming genetic evaluation and selection. By integrating genomic data into
predictive models, GS has accelerated breeding cycles, improved selection precision, and
enhanced genetic gains [1,2]. Unlike traditional methods reliant on extensive phenotypic
evaluations, GS leverages genome-wide markers to predict genotype performance, reduc-
ing the costs and time associated with field trials [3]. This innovation has been pivotal in
addressing global challenges such as food security and climate change by enabling the
rapid development of high-yielding, resilient crop varieties [4]. Today, GS is a cornerstone
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of modern plant breeding, integrating cutting-edge technologies and big data analytics to
drive sustainability and innovation.

GS has been successfully applied across diverse crops, enhancing yield potential
and disease resistance in maize and wheat [2], accelerating the development of stress-
tolerant rice varieties [5], and shortening breeding cycles in perennials like sugarcane
and oil palm [6]. Its ability to predict genetic potential using genome-wide markers has
significantly reduced the need for extensive phenotypic evaluations. Additionally, GS
has improved genetic gains for complex traits such as drought tolerance and nutrient use
efficiency, underscoring its transformative impact on modern agriculture [7].

The GBLUP (genomic best linear unbiased prediction) statistical model remains one of
the most popular and widely used approaches in genomic prediction due to its simplicity,
robustness, and interpretability. Despite the emergence of modern machine learning meth-
ods, GBLUP is preferred in many cases because it is computationally efficient and provides
reliable predictions, especially for traits controlled by many small-effect loci [8]. Its linear
mixed-model framework accounts for genetic relationships using genomic relationship
matrices, making it particularly suitable for plant and animal breeding programs [1]. While
machine learning methods like random forests and deep learning can capture complex
non-linear interactions, they often require large datasets, extensive hyperparameter tuning,
and are prone to overfitting when data are limited [2]. In contrast, GBLUP provides a
balance between accuracy and simplicity, ensuring stable performance across a variety of
traits and environments [9,10]. Its widespread adoption by GS underscores its reliability
and practical advantages, particularly in agricultural contexts where interpretability and
computational feasibility are critical.

Given the computational efficiency and widespread use of GBLUP in genomic pre-
diction, there is significant interest in exploring strategies to enhance its predictive power.
Combining GBLUP with quantile mapping (QM) and outlier detection techniques offers
a promising avenue for improvement. Quantile mapping can address biases in the distri-
bution of predicted values by aligning them more closely with the observed data, thereby
increasing prediction accuracy and ensuring a better calibration [11]. Outlier detection, on
the other hand, enhances the robustness of the model by identifying and removing data
points that disproportionately influence predictions, which is especially crucial in genomic
datasets prone to noise and inconsistencies [12]. Together, these methods can, in theory,
synergistically improve GBLUP by refining its inputs and outputs, ultimately leading to
more reliable predictions. This combined approach not only leverages the interpretabil-
ity and computational advantages of GBLUP but also integrates advanced techniques to
address limitations inherent to genomic datasets, making it a powerful tool for plant and
animal breeding.

QM is widely utilized across disciplines for bias correction and improving data align-
ment. In climate science, QM adjusts biases in model outputs, enhancing the accuracy of
temperature and precipitation projections for reliable climate assessments [13]. In hydrol-
ogy, it refines streamflow and rainfall-runoff predictions, crucial for flood and drought
evaluations [14]. In remote sensing, QM harmonizes satellite-derived data with ground-
based observations, improving environmental dataset utility [15]. Beyond environmental
sciences, QM is applied in genomics for aligning predicted values with observed data,
enhancing prediction accuracy, and in economics for bias correction in income and risk
assessments. Its versatility makes QM a critical tool across multiple fields.

Outlier detection plays a critical role in improving predictions in machine learning
by identifying and mitigating the impact of anomalous data points that can distort model
performance. By detecting and removing outliers, models achieve a better generalization,
reduced bias, and enhanced accuracy, especially in regression and classification tasks.
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Methods such as statistical thresholds, clustering, and advanced algorithms like isolation
forests are commonly applied to detect outliers in diverse datasets. Outlier detection
has shown effectiveness in applications such as genomic prediction, fraud detection, and
environmental modeling, where precise predictions are essential for decision-making [16].
These approaches refine training data quality and ultimately lead to more robust and
reliable machine learning models [17,18]. These studies underscore the importance of
addressing outliers to enhance the reliability of genomic prediction models.

As already mentioned, previous studies have shown that quantile mapping (QM)
and outlier detection can enhance GBLUP for genomic predictions, which motivated this
study. QM improves calibration by aligning predicted values with observed distributions,
addressing biases from GBLUP’s normality assumptions. Outlier detection enhances
robustness by mitigating the impact of extreme values that could distort variance estimates
and bias predictions. Given these prior findings, this study aimed to further evaluate their
effectiveness. To strengthen the rationale, it is important to explicitly reference previous
studies, clarify how these methods theoretically improve predictions, and demonstrate
their impact through comparative analyses.

By leveraging QM for bias correction and four outlier detection methods (Invchi,
Logit, Meanp, and SumZ) to refine the training set, this study aims to maximize the
predictive potential of GBLUP across diverse datasets. The benchmark analysis, conducted
on 14 real datasets, evaluates predictive accuracy using Pearson’s correlation (COR) and
normalized mean square error (NRMSE), showcasing the synergistic effects of combining
these complementary methods. However, for simplicity, we present full results below
for three datasets, Disease, EYT_1, and Wheat_1, as well as results across datasets. We
studied GBLUP alone and GBLUP in combination with quantile mapping (QM) and four
outlier detection models (Invchi, Logit, Meanp, and SumZ) making a total of 10 genomic
prediction models. Several results for datasets are shown in Appendices A–C.

2. Results
The results are presented in four sections. Sections 1–3 present the results for the

datasets Disease, EYT_1, and Wheat_1. Section 4 provides the results across datasets.
Appendix A provides the tables of results corresponding to datasets Disease, EYT_1,
Wheat_1, and across datasets. Appendixes B and Cprovide the figures and tables of results
for the other datasets included in the study: Maize, Japonica, Indica, Groundnut, EYT_2,
EYT_3, Wheat_2, Wheat_3, Wheat_4, Wheat_5, and Wheat_6. The results are provided
in terms of the metrics of Pearson’s correlation (COR) and normalized mean square error
(NRMSE). The assignment of datasets to the appendices was random, that is, not based on
any specific criteria.

As described in the Section 4 below, we compared the genomic prediction accuracy of
10 different model options: GBLUP alone; GBLUP combined only with quantile mapping
(QM); GBLUP combined with the four outlier detection methods (Invchi, Logit, Meanp, and
SumZ); and GBLUP combined with the four combinations of quantile mapping (QM) with
the four outlier detection methods (QM_Invchi, QM_Logit, QM_Meanp, and QM_SumZ).

2.1. Disease

Figure 1 presents the results for the Disease dataset under a comparative analysis of the
GBLUP, Invchi, Logit, Meanp, Sumz, QM, QM_Invchi, QM_Logit, QM_Meanp, QM_Sumz,
and Sumz models in terms of their predictive efficiency measured by COR and NRMSE.
For more details, see Table A1 (in Appendix A).
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Figure 1. Comparative performance of genomic prediction methods in terms of Pearson’s correlation
(COR) (A) and normalized root mean square error (NRMSE) (B) for Disease dataset.

The analysis of Pearson’s correlation between observed and predicted values
(Figure 1A) for the Disease dataset reveals that the GBLUP method stands out as the
most effective approach, achieving a correlation of 0.1766, which is 0.8567% greater than
QM’s correlation of 0.1751. In comparison to other methods, GBLUP significantly outper-
forms Meanp (0.1728, 2.1991% less effective), QM_Meanp (0.1661, 6.3215% less effective),
SumZ (0.1630, 8.3436% less effective), QM_Sumz (0.1586, 11.3493% less effective), Logit
(0.1559, 13.2777% less effective), Invchi (0.1552, 13.7887% less effective), QM_Invchi (0.1530,
15.4248% less effective), and QM_Logit (0.1528, 15.5759% less effective).

Regarding the NRMSE metric between observed and predicted values (Figure 1B) for
the Disease dataset, the results indicate that the GBLUP method achieves the lowest average
NRMSE, making it the most effective option. GBLUP yields a value of 0.4313, which is
0.1159% better than Meanp (0.4318) and 0.5565% better than SumZ (0.4337). Additionally,
GBLUP outperforms Logit (0.4345) by 0.7419% and Invchi (0.4346) by 0.7651%. Notably,
GBLUP also shows significant advantages over QM_Logit (0.4984) by 15.5576%, QM_Invchi
(0.4986) by 15.604%, QM_Sumz (0.4987) by 15.6272%, QM_Meanp (0.5072) by 17.598%, and
QM (0.5234) by 21.354%.

Overall, the analysis of the Disease dataset indicates that the GBLUP method is the
most effective approach, demonstrating a higher Pearson’s correlation compared to other
methods, including QM and Meanp. This trend is also reflected in the NRMSE metric,
where GBLUP achieves the lowest average NRMSE, confirming its superior performance.
Its advantages over a range of alternative methods, including various quantile mapping
strategies, further solidify the reliability and effectiveness of GBLUP for predictive tasks in
this context.

2.2. EYT_1

The results for the models evaluated on the EYT_1 dataset (Figure 2) were assessed
using the same metrics, COR and NRMSE. For more details, see Table A2 (in Appendix A).
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The evaluation of Pearson’s correlation between observed and predicted values
(Figure 2A) for the EYT_1 dataset indicates that the GBLUP method emerges as the most
effective strategy, attaining a correlation of 0.4659, which is 3.9955% greater than Meanp’s
correlation of 0.4480. In relation to other approaches, GBLUP significantly surpasses QM
(0.4429, 5.193% less effective), Invchi (0.4417, 5.4788% less effective), Logit (0.4414, 5.5505%
less effective), SumZ (0.4389, 6.1517% less effective), QM_Meanp (0.4273, 9.0335% less effec-
tive), QM_Sumz (0.4270, 9.1101% less effective), QM_Logit (0.4257, 9.4433% less effective),
and QM_Invchi (0.4193, 11.1138% less effective).

Regarding the NRMSE metric between observed and predicted values (Figure 2B) for
the EYT_1 dataset, the findings reveal that the GBLUP method achieves the lowest average
NRMSE, establishing it as the most effective choice. GBLUP has a value of 0.0450, which is
0.8889% greater than Meanp (0.0454) and 1.1111% better than Invchi (0.0455). Additionally,
GBLUP outperforms Logit (0.0456) and SumZ (0.0456) by 1.3333%. Notably, GBLUP also
exhibits significant advantages over QM_Sumz (0.0512) by 13.7778%, QM_Logit (0.0519)
by 15.3333%, QM_Invchi (0.0533) by 18.4444%, QM_Meanp (0.0534) by 18.6667%, and QM
(0.0545) by 21.1111%.

Overall, the analysis of the EYT_1 dataset indicates that the GBLUP method con-
sistently outperforms other strategies, displaying both the highest Pearson’s correlation
and the lowest NRMSE. This establishes GBLUP as the most effective choice compared to
Meanp, Invchi, and the various quantile mapping methods. Its superior performance across
both metrics underscores its reliability and potential for the enhancement of predictive
accuracy in related applications.

2.3. Wheat_1

This section presents the results of the genomic prediction models evaluated on the
Wheat_1 data, considering the same metrics as before. For more details, see Table A3 (in
Appendix A).

The assessment of Pearson’s correlation between observed and predicted values
(Figure 3A) for the Wheat_1 dataset shows that the GBLUP method emerges as the most
effective strategy, achieving a correlation of 0.4682, which is 3.8598% greater than Meanp’s
correlation of 0.4406. In comparison to other methods, GBLUP significantly outperforms
QM (0.4508, 6.2642% less effective), SumZ (0.4400, 6.4091% less effective), Logit (0.4387,
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6.7244% less effective), Invchi (0.4314, 8.5304% less effective), QM_Meanp (0.4299, 8.909%
less effective), QM_Invchi (0.4256, 10.0094% less effective), QM_Sumz (0.4214, 11.1058%
less effective), and QM_Logit (0.4187, 11.8223% less effective).
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(COR) (A) and normalized root mean square error (NRMSE) (B) for Wheat_1 dataset.

Regarding the NRMSE metric between observed and predicted values (Figure 3B) for
the Wheat_1 dataset, the findings indicate that the GBLUP method achieves the lowest
average NRMSE, establishing it as the most effective option. GBLUP has a value of 0.887,
which is 1.5671% better than Logit (0.9009) and 1.6347% greater than Meanp (0.9015).
Additionally, GBLUP outperforms SumZ (0.9016) by 1.646% and Invchi (0.9047) by 1.9955%.
Notably, GBLUP also presents significant advantages over QM_Invchi (0.9866) by 11.2289%,
QM_Meanp (0.9895) by 11.5558%, QM_Logit (1.0148) by 14.4081%, QM_Sumz (1.0238) by
15.4228%, and QM (1.0293) by 16.0428%.

The assessment of the Wheat_1 dataset reveals that the GBLUP method is the most
effective strategy, achieving a higher Pearson’s correlation compared to other approaches,
including Meanp and remaining methods. The performance of GBLUP is not only supe-
rior in correlation but also presents the lowest average NRMSE, further establishing its
effectiveness. It significantly outperforms other methods, such as Logit and SumZ, as well
as a range of quantile mapping strategies, indicating its reliability for predictive tasks.
Overall, the consistent advantages of GBLUP reinforce its position as the preferred method
in this context.

2.4. Across Data

In this section, the analysis of the results presented across datasets is given under the
same model and metrics as before. For more details, see Table A4 (in Appendix A).

The assessment of Pearson’s correlation between observed and predicted values
(Figure 4A) across datasets highlights the GBLUP method as the most effective strategy,
achieving a correlation of 0.4834, which is 3.9794% greater than Meanp’s correlation of
0.4649. In comparison to other methods, GBLUP significantly outperforms QM (0.4659,
3.7562% less effective), SumZ (0.4584, 5.4538% less effective), Logit (0.4569, 5.8% less effec-
tive), and Invchi (0.4533, 6.6402% less effective). Notably, GBLUP also shows advantages
over various quantile mapping methods, including QM_Meanp (0.4458, 8.4343% less effec-
tive), QM_Logit (0.4412, 9.5648% less effective), QM_Sumz (0.4405, 9.7389% less effective),
and QM_Invchi (0.4355, 10.9989% less effective).
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The assessment of the NRMSE metric between observed and predicted values (Figure 4B)
across datasets indicates that the GBLUP method achieves the lowest average NRMSE,
establishing it as the most effective option. GBLUP has a value of 0.6954, which is 0.7046%
better than Meanp (0.7003) and 0.9347% greater than SumZ (0.7019). Additionally, GBLUP
outperforms Logit (0.7019) and Invchi (0.7043) by 0.9347% and 1.2798%, respectively. No-
tably, GBLUP also presents significant advantages over various quantile mapping methods,
including QM_Logit (0.7928) by 14.0063%, QM_Meanp (0.7976) by 14.6966%, QM_Invchi
(0.8018) by 15.3005%, QM_Sumz (0.8110) by 16.6235%, and QM (0.8160) by 17.3425%.

The assessment of Pearson’s correlation across datasets reveals that the GBLUP method
is the most effective approach, achieving a higher correlation compared to other methods,
including Meanp and various quantile mapping strategies. GBLUP not only excels in
correlation but also records the lowest average NRMSE, solidifying its status as the most
reliable option. Its performance surpasses that of Logit and SumZ, as well as several
quantile mapping methods, indicating a clear advantage. Overall, GBLUP’s consistent
effectiveness across both metrics reinforces its preference for predictive tasks in this context.

3. Discussion
The successful implementation of GS in plant breeding faces several challenges, in-

cluding the need for high-quality genomic and phenotypic data, appropriate statistical
models, and robust validation strategies. One key hurdle is the limited availability of
large, diverse datasets required to capture the genetic architecture of complex traits and
account for genotype-by-environment interactions, which are critical in breeding programs
targeting multiple environments [2,19]. Additionally, computational demands increase
significantly with the inclusion of high-dimensional genomic data, requiring advancements
in algorithms and computational resources. Another challenge lies in translating GP predic-
tions into actionable breeding decisions, demanding integration with traditional breeding
practices and decision-support tools [20]. Addressing these issues involves interdisciplinary
collaboration and significant investment in training, data curation, and infrastructure to
fully leverage the potential of GP in enhancing genetic gains and breeding efficiency.

Improving the efficiency of GS in plant breeding relies on strategies that enhance
prediction accuracy, optimize resource allocation, and integrate GS into breeding pipelines.
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One successful approach is the use of multi-environment trials (MET) to capture genotype-
by-environment interactions, enabling better predictions across diverse target environ-
ments [2]. Sparse testing schemes, which involve phenotyping only a subset of genotypes
in certain environments, are also effective in reducing costs while maintaining prediction
accuracy when paired with robust statistical models [21,22]. Additionally, leveraging
complementary data sources such as high-throughput phenotyping and environmental
covariates can further enhance GS accuracy by providing insights into complex trait ar-
chitectures [23]. Implementing these strategies requires investment in advanced data
management systems and interdisciplinary collaboration to fully integrate GS into breeding
programs and maximize genetic gains.

Despite its potential, the practical application of GS in plant breeding remains highly
challenging due to complexities such as the need for high-quality genomic and phenotypic
data, the variability in genotype-by-environment interactions, and the computational
burden of analyzing large datasets. The effectiveness of GS often depends on the accuracy
of prediction models, which can be hindered by limited training data, especially for less-
studied traits or environments [24]. Furthermore, the integration of GS into breeding
programs requires adapting existing workflows and overcoming economic and logistical
barriers, such as the cost of genotyping and the need for skilled personnel [2]. To address
these limitations, researchers are actively exploring novel approaches, including integrating
environmental data, leveraging machine learning techniques, and developing strategies
like sparse testing to improve the efficiency and scalability of GS [25]. These efforts aim to
refine GS methodologies and make them more applicable to real-world breeding scenarios.

For this reason, this study explored the use of quantile mapping and the removal of
outlier observations within a GBLUP framework to improve the predictive accuracy of the
conventional GBLUP model. In theory, these combinations have the potential to enhance
the prediction accuracy of GBLUP by addressing critical issues such as the influence of
extreme values and non-normality in the data. Quantile mapping, by transforming the
distribution of predictions to better align with observed values, can correct systematic biases
that often undermine model performance. Simultaneously, outlier removal helps reduce
noise and ensures that the model focuses on patterns representative of the majority of the
data, which is particularly important when dealing with genomic data characterized by
high dimensionality and complex interactions. These adjustments aim to refine the training
dataset and statistical assumptions of the model, ultimately resulting in more robust and
reliable predictions. Furthermore, integrating these strategies within the GBLUP framework
offers an opportunity to adapt this widely used genomic prediction method to varying
data qualities and environmental conditions, addressing persistent challenges in plant
breeding programs.

However, our results combining the GBLUP method with quantile mapping and
outlier detection techniques did not meet expectations. In terms of Pearson’s correlation,
across all datasets and within each individual dataset, the GBLUP method proved to be the
most effective, consistently achieving higher correlations than the alternative approaches.
This superior performance of GBLUP is further supported by its ability to minimize errors,
as evidenced by lower NRMSE values. Compared to other methods, including any outlier
detection method, quantile mapping, and resulting combinations of quantile mapping
with outlier detection techniques, GBLUP consistently delivers more accurate predictions,
reaffirming its reliability and robustness in the context of breeding programs.

Our results emphasize the benefits and robustness of the GBLUP method, which
remains one of the most popular approaches for genomic prediction. Its popularity stems
from several key factors. Firstly, GBLUP is computationally efficient and relatively simple
to implement, making it accessible for a wide range of breeding programs. Secondly, it
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leverages genomic relationships to predict breeding values, effectively capturing additive
genetic effects, which are crucial for many quantitative traits. Additionally, GBLUP is
grounded in a solid statistical framework, offering reliable and interpretable results. Its
ability to handle high-dimensional genomic data without overfitting further contributes to
its widespread use. Moreover, the compatibility of GBLUP with extensions, such as the
incorporation of environmental covariates or non-additive effects, enhances its adaptability
to complex breeding scenarios. These advantages collectively solidify the position of
GBLUP as a cornerstone method in genomic prediction.

Finally, we want to emphasize that our results are specific to the datasets used in
this study, which reflect genetic and environmental conditions. The observed lack of
improvement in predictive accuracy when combining GBLUP with quantile mapping and
outlier detection techniques may be influenced by the nature of the datasets, such as their
size, genetic architecture, or level of noise. While these combinations did not outperform
the conventional GBLUP method in this context, it is important to acknowledge that their
effectiveness could vary under different circumstances. For instance, in datasets with
pronounced outliers or non-normal distributions, quantile mapping and outlier removal
may play a more significant role in improving model performance. Additionally, these
techniques might offer advantages in scenarios in which specific traits exhibit strong non-
linear patterns or in which genotype-by-environment interactions are highly complex.
Therefore, while our findings reaffirm the robustness of the standard GBLUP method, they
also suggest the need for further exploration of these combinations across diverse datasets
to fully understand their potential.

This study evaluates the impact of quantile mapping and outlier detection on the
accuracy of genomic predictions using GBLUP. However, confidence intervals for accuracy
metrics, such as Pearson’s correlation and root means square error, were not computed,
which limits the ability to assess the statistical uncertainty associated with the observed
improvements. Additionally, formal hypothesis testing, such as paired statistical tests
to compare GBLUP with and without these enhancements, was not conducted. While
the study primarily focused on practical predictive improvements rather than statistical
inference, future research should incorporate bootstrapping or cross-validation techniques
to estimate confidence intervals and apply appropriate statistical tests, such as paired
t-tests or Wilcoxon signed-rank tests, to determine whether the observed differences are
statistically significant. Implementing these approaches would strengthen the robustness of
the conclusions and provide a clearer understanding of the reliability and generalizability
of the proposed methods across different datasets and breeding populations.

Furthermore, computational time was not systematically evaluated, which is an impor-
tant factor when implementing these methods in large-scale genomic selection programs.
Future studies should assess the trade-off between improved prediction accuracy and the
additional computational cost associated with quantile mapping and outlier detection,
particularly in large datasets where efficiency is a key consideration. Implementing these
approaches would strengthen the robustness of the conclusions and provide a clearer
understanding of the reliability, scalability, and generalizability of the proposed methods
across different datasets and breeding populations.

4. Methods and Materials
4.1. Datasets

A detailed overview of the 14 datasets used in this study is provided in Table 1.
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Table 1. Brief data description. RCBD denotes randomized complete block design, while alpha-lattice
denotes the alpha lattice experimental design.

Data No. Lines No. Markers Multi-Environment
Data

BLUEs Across
Environments

Experimental
Design

Indica 327 16,383 YES YES RCBD

Japonica 320 16,383 YES YES RCBD

Groundnut 318 8268 YES YES Alpha-lattice

Maize 722 54,113 YES YES RCBD

Wheat_1 1301 78,606 YES YES Alpha-lattice

Wheat_2 1403 78,606 YES YES Alpha-lattice

Wheat_3 1403 78,606 YES YES Alpha-lattice

Wheat_4 1388 78,606 YES YES Alpha-lattice

Wheat_5 1398 78,606 YES YES Alpha-lattice

Wheat_6 1277 78,606 YES YES Alpha-lattice

EYT_1 776 2038 YES YES Alpha-lattice

EYT_2 775 2038 YES YES Alpha-lattice

EYT_3 964 2038 YES YES Alpha-lattice

Disease 438 11,617 YES YES RCBD

4.2. Bayesian GBLUP Model

The GBLUP model implemented was:

Yi = µ + gi + ϵi (1)

where Yi represents the best linear unbiased estimates (BLUE) for the i-th genotype. The
grand mean is denoted by µ, and the random effects associated with genotypes (Lines),
gj, j = 1, . . . , J, is distributed as g =

(
g1, . . . , gJ

)T ∼ NJ

(
0, σ2

gG
)

, where G is the genomic

relationship-matrix [8] and σ2
g is the genetic variance component. The residual errors, ϵi,

are assumed to be independent and normally distributed with mean 0 and variance σ2.
This model was implemented in R statistical software version 4.4.3 [26] with the BGLR
library of Pérez and de los Campos [27].

4.3. Quantile Mapping (QM)

QM is a widely used bias adjustment technique for post-processing climate model
simulations. It addresses the mismatch between the coarse spatial resolution of model
outputs and finer spatial scales of interest [9]. QM achieves this by aligning the cumulative
density function (CDF) of the modeled data with that of reference data for each target
location. Specifically, it creates a quantile-dependent correction function to map simulated
quantiles to their corresponding reference values. This correction function is then applied
to the modeled time series, yielding bias-adjusted values that align with the distribution
of the reference data. QM operates under the assumption that the CDF of a variable in
the forecast and observational time series remains consistent in future periods [28]. Given
variable x, QM minimizes discrepancies between the CDFs of model data and reference
data over a calibration period. In practice, the algorithm maps the model output x to the
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observational output y using a transformation function h, ensuring the two CDFs become
equivalent [29]. In terms of equations, this results in:

y = h(x) → CDFy(y) = CDFx(x)

y = CDFy
−1(CDFx(x)) (2)

where CDF−1 is the inverse function of the CDF. From Equation (1) it becomes clear that
QM equates the cumulative distribution functions (CDFs) CDFy and CDFx, respectively,
of the observed data y and modeled data x, over a historical period, which results in the
transfer function (1). The implemented QM scheme was based on the R package map
version 3.4.2.1 [13].

Since the QM method relies on the observed and predicted values from the training
set to adjust predictions, it is important to emphasize that QM is specifically implemented
to refine the predicted values generated by the GBLUP method. In other words, the
conventional GBLUP results are enhanced through this QM adjustment process.

4.4. Outlier Detection Methods

The four methods used for the detection of influential measures are based on the
p-value-based meta-analysis approach proposed by Budhlakoti and Mishra [30]. A brief
description of these approaches is as follows. Let us assume there are K independent tests,
and their corresponding p-values are p1, p2,. . ., pk. Under H0, it is assumed that p-values
from different methods (for individual observations) are uniformly distributed between 0
and 1 (i.e., pk ∼ U(0, 1)). To determine the overall statistical significance of the hypothesis
under test (H0, i.e., null hypothesis vs. H1, alternative hypothesis), individual p-values for
each observation/genotype from different methods are combined. The specific methods
used for this purpose are summarized in Table 2.

Table 2. Outlier detection methods that combine p-values to calculate overall significance, where:
pk denotes the statistical significance value from kth methods for an individual or genotype; K:
different methods for which p-values can be combined; df: degrees of freedom; N: normal distribution;
t: central t-distribution; χ2: central Chi-square distribution.

Methods Authors Test Statistics Transformed Variable Dist. Under H0

Inverse Chi-Square
(Invchi)

Won, et al.
(2009) [31]. L = ∑K

k=1 Zk Zk = −2logpk χ2
2K

Logit
Mudholkar and

George
(1979) [32].

S = ∑K
k=1 Sk Sk = log

(
pk

1−pk

)
t5K+4

Meanp Sutton, et al.
(2000) [33] W = (0.5 − p)

√
12K p = ∑K

k=1 pk
K

N(0,1)

SumZ Stouffer, et al.
(1949) [34] Z = ∑K

k=1 wkz(pk)√
∑K

k=1 w2
k

NA N(0,1)

This approach (Table 2) was used to compute the final statistical significance values,
specifically the combined p-values for the selected observations or genotypes. Influential
observations were determined by applying a suitable p-value threshold. The methods
were implemented using source code available from a GitHub repository at GitHub—
BudhlakotiN/OGS: R/OGS: Outlier in Genomics Data.

It is important to note that these four outlier detection methods (Invchi, Logit, Meanp,
SumZ) were applied to the training set of each fold. After implementation, any observations
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identified as outliers were removed from the training set. The reduced training set was
then used to implement the GBLUP method, as described in Equation (1).

4.5. Combining Quantile Mapping with Outlier Detection Methods Using GBLUP

Combining the quantile mapping (QM) method with the four outlier detection meth-
ods (Invchi, Logit, Meanp, and SumZ) resulted in the development of four additional
approaches, denoted as QM_Invchi, QM_Logit, QM_Meanp, and QM_SumZ. These meth-
ods were implemented as follows: first, each of the four outlier detection methods was
applied as previously described. Subsequently, the QM method was applied using the
observed and predicted values from the training set produced by each of the four outlier
detection methods.

Therefore, a total of 10 models were employed in this study. These included: GBLUP
alone; GBLUP combined with quantile mapping (QM); GBLUP combined with the four
outlier detection methods, Invchi, Logit, Meanp, and SumZ; and, finally, GBLUP combined
with the four combinations of quantile mapping (QM) with the outlier detection methods
(QM_Invchi, QM_Logit, QM_Meanp, and QM_SumZ). Results are thus presented for a
total of 10 combinations of GBLUP-based models, incorporating various combinations with
QM and outlier detection methods.

4.6. Evaluation of Prediction Performance

To evaluate the proposed methods, we used cross-validation; more specifically, a
10-fold cross-validation approach. In each fold, 80% of the data were allocated for training
and 20% for testing. For each testing set, prediction accuracy was assessed using two
metrics: average Pearson’s correlation (COR) and normalized root mean square error
(NRMSE) [35]. These metrics were selected because they facilitate comparisons across
different traits, being independent of the trait’s scale. Both metrics were calculated using
the observed values (yi) and the predicted values [ f̂ (xi)] from the testing set of each fold.
The average performance over the 10 folds was reported. COR and NRMSE were selected
not only for their utility in genomic prediction but also because they are widely used
metrics for the evaluation of prediction performance.

5. Conclusions
Our benchmark analysis shows that the conventional GBLUP method outperforms

quantile mapping, outlier detection techniques, and their combination in the context of
genomic prediction. These findings reaffirm the effectiveness and robustness of GBLUP,
which remains one of the most widely used techniques in plant and animal breeding
for genomic selection. However, our results are not definitive, as substantial empirical
evidence suggests that removing outliers from the training data can enhance prediction
accuracy and quantile mapping can improve predictions in the testing set. Therefore,
further empirical evaluations are essential to thoroughly assess the benefits and limita-
tions of these alternative methods within the context of genomic selection. This will
provide a more comprehensive understanding of their potential to complement or improve
upon GBLUP.
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Appendix A
Results for datasets Disease (Table A1), EYT_1 (Table A2), Wheat_1 (Table A3), and

across datasets (Table A4).

Table A1. Performance comparison of genomic prediction methods in terms of Pearson’s correlation
(COR) (A) and the normalized root mean square error (NRMSE) (B) for the Disease dataset, using
quantile mapping.

Metric Method Min Mean Median Max

COR GBLUP 0.0976 0.1766 0.1977 0.2344

COR Invchi 0.0544 0.1552 0.1820 0.2293

COR Logit 0.0506 0.1559 0.1829 0.2344

COR Meanp 0.1008 0.1728 0.1755 0.2421

COR QM 0.1018 0.1751 0.1882 0.2351

COR QM_Invchi 0.0511 0.1530 0.1844 0.2234

COR QM_Logit 0.0486 0.1528 0.1841 0.2258

COR QM_Meanp 0.0842 0.1661 0.1735 0.2407

COR QM_Sumz 0.0699 0.1586 0.1855 0.2204

COR SumZ 0.0681 0.1630 0.1917 0.2291

COR_SE GBLUP 0.0169 0.0234 0.0242 0.0290

COR_SE Invchi 0.0276 0.0309 0.0323 0.0327

COR_SE Logit 0.0221 0.0317 0.0341 0.0388

COR_SE Meanp 0.0247 0.0272 0.0252 0.0318

COR_SE QM 0.0206 0.0247 0.0228 0.0307

COR_SE QM_Invchi 0.0303 0.0326 0.0323 0.0352

COR_SE QM_Logit 0.0227 0.0320 0.0328 0.0407

COR_SE QM_Meanp 0.0241 0.0267 0.0241 0.0318

COR_SE QM_Sumz 0.0201 0.0282 0.0306 0.0340

COR_SE SumZ 0.0200 0.0274 0.0295 0.0327

NRMSE GBLUP 0.4055 0.4313 0.4127 0.4757

https://github.com/osval78/Refaning_Penalized_Regression
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Table A1. Cont.

Metric Method Min Mean Median Max

NRMSE Invchi 0.4066 0.4346 0.4136 0.4837

NRMSE Logit 0.4060 0.4345 0.4135 0.4840

NRMSE Meanp 0.4044 0.4318 0.4149 0.4761

NRMSE QM 0.4670 0.5234 0.5028 0.6005

NRMSE QM_Invchi 0.4464 0.4986 0.4728 0.5767

NRMSE QM_Logit 0.4439 0.4984 0.4750 0.5762

NRMSE QM_Meanp 0.4464 0.5072 0.4954 0.5798

NRMSE QM_Sumz 0.4463 0.4987 0.4741 0.5756

NRMSE SumZ 0.4063 0.4337 0.4127 0.4820

NRMSE_SE GBLUP 0.0032 0.0063 0.0065 0.0092

NRMSE_SE Invchi 0.0039 0.0066 0.0064 0.0095

NRMSE_SE Logit 0.0043 0.0065 0.0058 0.0093

NRMSE_SE Meanp 0.0036 0.0062 0.0058 0.0093

NRMSE_SE QM 0.0076 0.0091 0.0090 0.0107

NRMSE_SE QM_Invchi 0.0077 0.0100 0.0105 0.0119

NRMSE_SE QM_Logit 0.0069 0.0089 0.0099 0.0101

NRMSE_SE QM_Meanp 0.0076 0.0102 0.0111 0.0118

NRMSE_SE QM_Sumz 0.0059 0.0091 0.0098 0.0116

NRMSE_SE SumZ 0.0043 0.0066 0.0062 0.0093

Table A2. Performance comparison of genomic prediction methods in terms of Pearson’s correlation
(COR) (A) and the normalized root mean square error (NRMSE) (B) for the EYT_1 dataset, using
quantile mapping.

Metric Method Min Mean Median Max

COR GBLUP 0.4282 0.4659 0.4727 0.4901

COR Invchi 0.4037 0.4417 0.4445 0.4741

COR Logit 0.3937 0.4414 0.4477 0.4765

COR Meanp 0.4028 0.4480 0.4570 0.4753

COR QM 0.3542 0.4429 0.4633 0.4908

COR QM_Invchi 0.3588 0.4193 0.4283 0.4617

COR QM_Logit 0.3715 0.4257 0.4306 0.4698

COR QM_Meanp 0.3393 0.4273 0.4477 0.4746

COR QM_Sumz 0.3794 0.4270 0.4292 0.4702

COR SumZ 0.3963 0.4389 0.4438 0.4717

COR_SE GBLUP 0.0096 0.0164 0.0151 0.0256

COR_SE Invchi 0.0162 0.0196 0.0178 0.0264

COR_SE Logit 0.0153 0.0184 0.0181 0.0220

COR_SE Meanp 0.0126 0.0179 0.0167 0.0257

COR_SE QM 0.0109 0.0234 0.0197 0.0432
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Table A2. Cont.

Metric Method Min Mean Median Max

COR_SE QM_Invchi 0.0193 0.0279 0.0291 0.0339

COR_SE QM_Logit 0.0156 0.0226 0.0233 0.0284

COR_SE QM_Meanp 0.0122 0.0226 0.0222 0.0338

COR_SE QM_Sumz 0.0120 0.0225 0.0236 0.0308

COR_SE SumZ 0.0126 0.0190 0.0191 0.0252

NRMSE GBLUP 0.0349 0.0450 0.0448 0.0552

NRMSE Invchi 0.0355 0.0455 0.0455 0.0557

NRMSE Logit 0.0354 0.0456 0.0456 0.0556

NRMSE Meanp 0.0353 0.0454 0.0453 0.0558

NRMSE QM 0.0386 0.0545 0.0575 0.0646

NRMSE QM_Invchi 0.0428 0.0533 0.0538 0.0628

NRMSE QM_Logit 0.0377 0.0519 0.0536 0.0629

NRMSE QM_Meanp 0.0376 0.0534 0.0571 0.0617

NRMSE QM_Sumz 0.0380 0.0512 0.0522 0.0626

NRMSE SumZ 0.0355 0.0456 0.0456 0.0558

NRMSE_SE GBLUP 0.0004 0.0006 0.0006 0.0010

NRMSE_SE Invchi 0.0005 0.0008 0.0008 0.0011

NRMSE_SE Logit 0.0006 0.0008 0.0007 0.0012

NRMSE_SE Meanp 0.0006 0.0008 0.0008 0.0010

NRMSE_SE QM 0.0003 0.0031 0.0023 0.0076

NRMSE_SE QM_Invchi 0.0010 0.0040 0.0043 0.0064

NRMSE_SE QM_Logit 0.0006 0.0033 0.0038 0.0049

NRMSE_SE QM_Meanp 0.0006 0.0032 0.0024 0.0074

NRMSE_SE QM_Sumz 0.0006 0.0026 0.0024 0.0049

NRMSE_SE SumZ 0.0006 0.0008 0.0007 0.0010

Table A3. Performance comparison of genomic prediction methods in terms of Pearson’s correlation
(COR) (A) and the normalized root mean square error (NRMSE) (B) for the Wheat_1 dataset, using
quantile mapping.

Metric Method Min Mean Median Max

COR GBLUP 0.4682 0.4682 0.4682 0.4682

COR Invchi 0.4314 0.4314 0.4314 0.4314

COR Logit 0.4387 0.4387 0.4387 0.4387

COR Meanp 0.4406 0.4406 0.4406 0.4406

COR QM 0.4508 0.4508 0.4508 0.4508

COR QM_Invchi 0.4256 0.4256 0.4256 0.4256

COR QM_Logit 0.4187 0.4187 0.4187 0.4187

COR QM_Meanp 0.4299 0.4299 0.4299 0.4299

COR QM_Sumz 0.4214 0.4214 0.4214 0.4214
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Table A3. Cont.

Metric Method Min Mean Median Max

COR SumZ 0.4400 0.4400 0.4400 0.4400

COR_SE GBLUP 0.0149 0.0149 0.0149 0.0149

COR_SE Invchi 0.0116 0.0116 0.0116 0.0116

COR_SE Logit 0.0123 0.0123 0.0123 0.0123

COR_SE Meanp 0.0122 0.0122 0.0122 0.0122

COR_SE QM 0.0175 0.0175 0.0175 0.0175

COR_SE QM_Invchi 0.0161 0.0161 0.0161 0.0161

COR_SE QM_Logit 0.0129 0.0129 0.0129 0.0129

COR_SE QM_Meanp 0.0137 0.0137 0.0137 0.0137

COR_SE QM_Sumz 0.0166 0.0166 0.0166 0.0166

COR_SE SumZ 0.0127 0.0127 0.0127 0.0127

NRMSE GBLUP 0.8870 0.8870 0.8870 0.8870

NRMSE Invchi 0.9047 0.9047 0.9047 0.9047

NRMSE Logit 0.9009 0.9009 0.9009 0.9009

NRMSE Meanp 0.9015 0.9015 0.9015 0.9015

NRMSE QM 1.0293 1.0293 1.0293 1.0293

NRMSE QM_Invchi 0.9866 0.9866 0.9866 0.9866

NRMSE QM_Logit 1.0148 1.0148 1.0148 1.0148

NRMSE QM_Meanp 0.9895 0.9895 0.9895 0.9895

NRMSE QM_Sumz 1.0238 1.0238 1.0238 1.0238

NRMSE SumZ 0.9016 0.9016 0.9016 0.9016

NRMSE_SE GBLUP 0.0092 0.0092 0.0092 0.0092

NRMSE_SE Invchi 0.0053 0.0053 0.0053 0.0053

NRMSE_SE Logit 0.0060 0.0060 0.0060 0.0060

NRMSE_SE Meanp 0.0055 0.0055 0.0055 0.0055

NRMSE_SE QM 0.0436 0.0436 0.0436 0.0436

NRMSE_SE QM_Invchi 0.0367 0.0367 0.0367 0.0367

NRMSE_SE QM_Logit 0.0363 0.0363 0.0363 0.0363

NRMSE_SE QM_Meanp 0.0367 0.0367 0.0367 0.0367

NRMSE_SE QM_Sumz 0.0461 0.0461 0.0461 0.0461

NRMSE_SE SumZ 0.0059 0.0059 0.0059 0.0059

Table A4. Performance comparison of genomic prediction methods in terms of Pearson’s correlation
(COR) (A) and the normalized root mean square error (NRMSE) (B) across the datasets, using
quantile mapping.

Metric Method Min Mean Median Max

COR GBLUP 0.0976 0.4834 0.4937 0.6941

COR Invchi 0.0544 0.4533 0.4682 0.6667

COR Logit 0.0506 0.4569 0.4728 0.6676
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Table A4. Cont.

Metric Method Min Mean Median Max

COR Meanp 0.1008 0.4649 0.4751 0.6739

COR QM 0.1018 0.4659 0.4805 0.6978

COR QM_Invchi 0.0511 0.4355 0.4406 0.6653

COR QM_Logit 0.0486 0.4412 0.4588 0.6668

COR QM_Meanp 0.0842 0.4458 0.4593 0.6751

COR QM_Sumz 0.0699 0.4405 0.4645 0.6633

COR SumZ 0.0681 0.4584 0.4709 0.6662

COR_SE GBLUP 0.0092 0.0200 0.0179 0.0503

COR_SE Invchi 0.0107 0.0228 0.0197 0.0659

COR_SE Logit 0.0073 0.0223 0.0199 0.0657

COR_SE Meanp 0.0093 0.0222 0.0199 0.0605

COR_SE QM 0.0109 0.0245 0.0225 0.0507

COR_SE QM_Invchi 0.0140 0.0278 0.0246 0.0570

COR_SE QM_Logit 0.0096 0.0255 0.0206 0.0668

COR_SE QM_Meanp 0.0088 0.0265 0.0247 0.0550

COR_SE QM_Sumz 0.0120 0.0256 0.0217 0.0502

COR_SE SumZ 0.0097 0.0219 0.0191 0.0577

NRMSE GBLUP 0.0297 0.6954 0.4210 7.9058

NRMSE Invchi 0.0305 0.7043 0.4254 7.9443

NRMSE Logit 0.0304 0.7019 0.4249 7.8848

NRMSE Meanp 0.0300 0.7003 0.4236 7.8912

NRMSE QM 0.0361 0.8160 0.4860 8.8085

NRMSE QM_Invchi 0.0312 0.8018 0.4719 8.6206

NRMSE QM_Logit 0.0377 0.7928 0.4765 8.6409

NRMSE QM_Meanp 0.0376 0.7976 0.4829 8.6800

NRMSE QM_Sumz 0.0380 0.8110 0.4701 8.6088

NRMSE SumZ 0.0300 0.7019 0.4221 7.9065

NRMSE_SE GBLUP 0.0004 0.0885 0.0064 2.7860

NRMSE_SE Invchi 0.0005 0.0885 0.0063 2.7937

NRMSE_SE Logit 0.0006 0.0882 0.0059 2.7865

NRMSE_SE Meanp 0.0006 0.0878 0.0058 2.7730

NRMSE_SE QM 0.0003 0.1316 0.0107 3.1423

NRMSE_SE QM_Invchi 0.0010 0.1282 0.0104 3.0366

NRMSE_SE QM_Logit 0.0006 0.1194 0.0102 3.0848

NRMSE_SE QM_Meanp 0.0006 0.1295 0.0112 3.0857

NRMSE_SE QM_Sumz 0.0006 0.1320 0.0124 3.0495

NRMSE_SE SumZ 0.0006 0.0887 0.0063 2.8039
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Appendix B
Figures for datasets Maize (Figure A1), Japonica (Figure A2), Indica (Figure A3),

Groundnut (Figure A4), EYT_2 (Figure A5), EYT_3 (Figure A6), Wheat_2 (Figure A7),
Wheat_3 (Figure A8), Wheat_4 (Figure A9), Wheat_5 (Figure A10), and Wheat_6
(Figure A11).
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Figure A9. Comparative performance of genomic prediction methods in terms of Pearson’s correlation
(COR) (A) and the normalized root mean square error (NRMSE) (B) for the Wheat_4 dataset, using
quantile mapping.
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Figure A10. Comparative performance of genomic prediction methods in terms of Pearson’s correla-
tion (COR) (A) and the normalized root mean square error (NRMSE) (B) for the Wheat_5 dataset,
using quantile mapping.
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Table A5. Comparative performance of genomic prediction models in terms of Pearson’s correlation 
(COR and COR standard error COR_SE) and the normalized root mean square error (NRMSE and 
NRMSE standard error, NRMSE_SE) for Maize, Japonica, Indica, Groundnut, EYT_2, EYT_3, 
Wheat_2, Wheat_3, Wheat_4, Wheat_5, and Wheat_6 datasets. 

Data Metric Method Min Mean Median Max 
Maize COR GBLUP 0.4225 0.4225 0.4225 0.4225 
Maize COR Invchi 0.4106 0.4106 0.4106 0.4106 
Maize COR Logit 0.4276 0.4276 0.4276 0.4276 
Maize COR Meanp 0.4235 0.4235 0.4235 0.4235 
Maize COR QM 0.3748 0.3748 0.3748 0.3748 
Maize COR QM_Invchi 0.3691 0.3691 0.3691 0.3691 
Maize COR QM_Logit 0.3809 0.3809 0.3809 0.3809 
Maize COR QM_Meanp 0.3741 0.3741 0.3741 0.3741 
Maize COR QM_Sumz 0.3792 0.3792 0.3792 0.3792 
Maize COR SumZ 0.4264 0.4264 0.4264 0.4264 
Maize COR_SE GBLUP 0.0180 0.0180 0.0180 0.0180 
Maize COR_SE Invchi 0.0173 0.0173 0.0173 0.0173 
Maize COR_SE Logit 0.0176 0.0176 0.0176 0.0176 
Maize COR_SE Meanp 0.0174 0.0174 0.0174 0.0174 
Maize COR_SE QM 0.0229 0.0229 0.0229 0.0229 
Maize COR_SE QM_Invchi 0.0237 0.0237 0.0237 0.0237 
Maize COR_SE QM_Logit 0.0201 0.0201 0.0201 0.0201 
Maize COR_SE QM_Meanp 0.0218 0.0218 0.0218 0.0218 
Maize COR_SE QM_Sumz 0.0206 0.0206 0.0206 0.0206 

Figure A11. Comparative performance of genomic prediction methods in terms of Pearson’s correla-
tion (COR) (A) and the normalized root mean square error (NRMSE) (B) for the Wheat_6 dataset,
using quantile mapping.
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Appendix C
Table of results for datasets Maize, Japonica, Indica, Groundnut, EYT_2, EYT_3,

Wheat_2, Wheat_3, Wheat_4, Wheat_5, and Wheat_6.

Table A5. Comparative performance of genomic prediction models in terms of Pearson’s correlation
(COR and COR standard error COR_SE) and the normalized root mean square error (NRMSE and
NRMSE standard error, NRMSE_SE) for Maize, Japonica, Indica, Groundnut, EYT_2, EYT_3, Wheat_2,
Wheat_3, Wheat_4, Wheat_5, and Wheat_6 datasets.

Data Metric Method Min Mean Median Max

Maize COR GBLUP 0.4225 0.4225 0.4225 0.4225

Maize COR Invchi 0.4106 0.4106 0.4106 0.4106

Maize COR Logit 0.4276 0.4276 0.4276 0.4276

Maize COR Meanp 0.4235 0.4235 0.4235 0.4235

Maize COR QM 0.3748 0.3748 0.3748 0.3748

Maize COR QM_Invchi 0.3691 0.3691 0.3691 0.3691

Maize COR QM_Logit 0.3809 0.3809 0.3809 0.3809

Maize COR QM_Meanp 0.3741 0.3741 0.3741 0.3741

Maize COR QM_Sumz 0.3792 0.3792 0.3792 0.3792

Maize COR SumZ 0.4264 0.4264 0.4264 0.4264

Maize COR_SE GBLUP 0.0180 0.0180 0.0180 0.0180

Maize COR_SE Invchi 0.0173 0.0173 0.0173 0.0173

Maize COR_SE Logit 0.0176 0.0176 0.0176 0.0176

Maize COR_SE Meanp 0.0174 0.0174 0.0174 0.0174

Maize COR_SE QM 0.0229 0.0229 0.0229 0.0229

Maize COR_SE QM_Invchi 0.0237 0.0237 0.0237 0.0237

Maize COR_SE QM_Logit 0.0201 0.0201 0.0201 0.0201

Maize COR_SE QM_Meanp 0.0218 0.0218 0.0218 0.0218

Maize COR_SE QM_Sumz 0.0206 0.0206 0.0206 0.0206

Maize COR_SE SumZ 0.0175 0.0175 0.0175 0.0175

Maize NRMSE GBLUP 7.9058 7.9058 7.9058 7.9058

Maize NRMSE Invchi 7.9443 7.9443 7.9443 7.9443

Maize NRMSE Logit 7.8848 7.8848 7.8848 7.8848

Maize NRMSE Meanp 7.8912 7.8912 7.8912 7.8912

Maize NRMSE QM 8.8085 8.8085 8.8085 8.8085

Maize NRMSE QM_Invchi 8.6206 8.6206 8.6206 8.6206

Maize NRMSE QM_Logit 8.6409 8.6409 8.6409 8.6409

Maize NRMSE QM_Meanp 8.6800 8.6800 8.6800 8.6800

Maize NRMSE QM_Sumz 8.6088 8.6088 8.6088 8.6088

Maize NRMSE SumZ 7.9065 7.9065 7.9065 7.9065

Maize NRMSE_SE GBLUP 2.7860 2.7860 2.7860 2.7860

Maize NRMSE_SE Invchi 2.7937 2.7937 2.7937 2.7937

Maize NRMSE_SE Logit 2.7865 2.7865 2.7865 2.7865
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Table A5. Cont.

Data Metric Method Min Mean Median Max

Maize NRMSE_SE Meanp 2.7730 2.7730 2.7730 2.7730

Maize NRMSE_SE QM 3.1423 3.1423 3.1423 3.1423

Maize NRMSE_SE QM_Invchi 3.0366 3.0366 3.0366 3.0366

Maize NRMSE_SE QM_Logit 3.0848 3.0848 3.0848 3.0848

Maize NRMSE_SE QM_Meanp 3.0857 3.0857 3.0857 3.0857

Maize NRMSE_SE QM_Sumz 3.0495 3.0495 3.0495 3.0495

Maize NRMSE_SE SumZ 2.8039 2.8039 2.8039 2.8039

Japonica COR GBLUP 0.5681 0.5914 0.5803 0.6366

Japonica COR Invchi 0.5266 0.5461 0.5412 0.5753

Japonica COR Logit 0.5372 0.5602 0.5602 0.5831

Japonica COR Meanp 0.5478 0.5662 0.5637 0.5896

Japonica COR QM 0.5246 0.5633 0.5691 0.5905

Japonica COR QM_Invchi 0.4955 0.5333 0.5320 0.5737

Japonica COR QM_Logit 0.5171 0.5430 0.5364 0.5821

Japonica COR QM_Meanp 0.5164 0.5473 0.5421 0.5884

Japonica COR QM_Sumz 0.5068 0.5430 0.5378 0.5895

Japonica COR SumZ 0.5376 0.5609 0.5580 0.5901

Japonica COR_SE GBLUP 0.0182 0.0233 0.0198 0.0352

Japonica COR_SE Invchi 0.0167 0.0279 0.0262 0.0426

Japonica COR_SE Logit 0.0201 0.0285 0.0272 0.0395

Japonica COR_SE Meanp 0.0218 0.0297 0.0270 0.0428

Japonica COR_SE QM 0.0187 0.0337 0.0328 0.0507

Japonica COR_SE QM_Invchi 0.0178 0.0278 0.0272 0.0390

Japonica COR_SE QM_Logit 0.0197 0.0370 0.0307 0.0668

Japonica COR_SE QM_Meanp 0.0217 0.0329 0.0319 0.0460

Japonica COR_SE QM_Sumz 0.0173 0.0301 0.0270 0.0490

Japonica COR_SE SumZ 0.0175 0.0287 0.0276 0.0422

Japonica NRMSE GBLUP 0.0297 0.1274 0.0524 0.3752

Japonica NRMSE Invchi 0.0305 0.1322 0.0546 0.3891

Japonica NRMSE Logit 0.0304 0.1313 0.0540 0.3869

Japonica NRMSE Meanp 0.0300 0.1303 0.0538 0.3837

Japonica NRMSE QM 0.0413 0.1427 0.0598 0.4100

Japonica NRMSE QM_Invchi 0.0312 0.1424 0.0606 0.4171

Japonica NRMSE QM_Logit 0.0409 0.1413 0.0558 0.4126

Japonica NRMSE QM_Meanp 0.0487 0.1430 0.0558 0.4117

Japonica NRMSE QM_Sumz 0.0392 0.1448 0.0622 0.4157

Japonica NRMSE SumZ 0.0300 0.1312 0.0541 0.3866

Japonica NRMSE_SE GBLUP 0.0010 0.0045 0.0030 0.0110

Japonica NRMSE_SE Invchi 0.0009 0.0049 0.0038 0.0110
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Table A5. Cont.

Data Metric Method Min Mean Median Max

Japonica NRMSE_SE Logit 0.0010 0.0047 0.0037 0.0106

Japonica NRMSE_SE Meanp 0.0009 0.0049 0.0038 0.0110

Japonica NRMSE_SE QM 0.0018 0.0078 0.0093 0.0107

Japonica NRMSE_SE QM_Invchi 0.0011 0.0054 0.0051 0.0102

Japonica NRMSE_SE QM_Logit 0.0016 0.0066 0.0072 0.0103

Japonica NRMSE_SE QM_Meanp 0.0017 0.0073 0.0078 0.0118

Japonica NRMSE_SE QM_Sumz 0.0018 0.0081 0.0086 0.0135

Japonica NRMSE_SE SumZ 0.0008 0.0047 0.0038 0.0106

Indica COR GBLUP 0.3510 0.5151 0.5283 0.6530

Indica COR Invchi 0.2863 0.4622 0.4592 0.6439

Indica COR Logit 0.2919 0.4682 0.4644 0.6523

Indica COR Meanp 0.3178 0.4874 0.4917 0.6484

Indica COR QM 0.3509 0.4982 0.5026 0.6367

Indica COR QM_Invchi 0.2783 0.4346 0.4326 0.5947

Indica COR QM_Logit 0.2903 0.4524 0.4549 0.6097

Indica COR QM_Meanp 0.3266 0.4544 0.4443 0.6025

Indica COR QM_Sumz 0.2847 0.4552 0.4584 0.6192

Indica COR SumZ 0.3072 0.4696 0.4650 0.6413

Indica COR_SE GBLUP 0.0268 0.0360 0.0334 0.0503

Indica COR_SE Invchi 0.0212 0.0423 0.0411 0.0659

Indica COR_SE Logit 0.0233 0.0392 0.0339 0.0657

Indica COR_SE Meanp 0.0284 0.0403 0.0361 0.0605

Indica COR_SE QM 0.0230 0.0359 0.0361 0.0486

Indica COR_SE QM_Invchi 0.0433 0.0493 0.0484 0.0570

Indica COR_SE QM_Logit 0.0197 0.0389 0.0386 0.0586

Indica COR_SE QM_Meanp 0.0352 0.0456 0.0462 0.0550

Indica COR_SE QM_Sumz 0.0225 0.0372 0.0381 0.0502

Indica COR_SE SumZ 0.0233 0.0376 0.0346 0.0577

Indica NRMSE GBLUP 0.0335 0.1393 0.0473 0.4293

Indica NRMSE Invchi 0.0366 0.1419 0.0468 0.4372

Indica NRMSE Logit 0.0365 0.1415 0.0465 0.4363

Indica NRMSE Meanp 0.0353 0.1405 0.0471 0.4324

Indica NRMSE QM 0.0361 0.1544 0.0561 0.4691

Indica NRMSE QM_Invchi 0.0392 0.1562 0.0573 0.4709

Indica NRMSE QM_Logit 0.0425 0.1571 0.0540 0.4780

Indica NRMSE QM_Meanp 0.0527 0.1601 0.0586 0.4704

Indica NRMSE QM_Sumz 0.0427 0.1538 0.0533 0.4661

Indica NRMSE SumZ 0.0369 0.1405 0.0468 0.4315

Indica NRMSE_SE GBLUP 0.0015 0.0070 0.0019 0.0228
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Table A5. Cont.

Data Metric Method Min Mean Median Max

Indica NRMSE_SE Invchi 0.0015 0.0074 0.0019 0.0241

Indica NRMSE_SE Logit 0.0017 0.0075 0.0018 0.0248

Indica NRMSE_SE Meanp 0.0017 0.0075 0.0019 0.0247

Indica NRMSE_SE QM 0.0014 0.0081 0.0050 0.0209

Indica NRMSE_SE QM_Invchi 0.0018 0.0096 0.0084 0.0198

Indica NRMSE_SE QM_Logit 0.0014 0.0098 0.0081 0.0217

Indica NRMSE_SE QM_Meanp 0.0081 0.0122 0.0099 0.0210

Indica NRMSE_SE QM_Sumz 0.0014 0.0087 0.0069 0.0196

Indica NRMSE_SE SumZ 0.0015 0.0073 0.0019 0.0237

Groundnut COR GBLUP 0.5928 0.6457 0.6480 0.6941

Groundnut COR Invchi 0.5673 0.6257 0.6345 0.6667

Groundnut COR Logit 0.5723 0.6257 0.6315 0.6676

Groundnut COR Meanp 0.5828 0.6311 0.6339 0.6739

Groundnut COR QM 0.5910 0.6445 0.6446 0.6978

Groundnut COR QM_Invchi 0.5588 0.6201 0.6282 0.6653

Groundnut COR QM_Logit 0.5653 0.6207 0.6253 0.6668

Groundnut COR QM_Meanp 0.5764 0.6261 0.6265 0.6751

Groundnut COR QM_Sumz 0.5595 0.6178 0.6242 0.6633

Groundnut COR SumZ 0.5664 0.6230 0.6298 0.6662

Groundnut COR_SE GBLUP 0.0117 0.0162 0.0168 0.0193

Groundnut COR_SE Invchi 0.0144 0.0182 0.0184 0.0217

Groundnut COR_SE Logit 0.0162 0.0187 0.0189 0.0206

Groundnut COR_SE Meanp 0.0174 0.0186 0.0178 0.0214

Groundnut COR_SE QM 0.0117 0.0161 0.0169 0.0187

Groundnut COR_SE QM_Invchi 0.0143 0.0190 0.0194 0.0232

Groundnut COR_SE QM_Logit 0.0157 0.0187 0.0193 0.0207

Groundnut COR_SE QM_Meanp 0.0177 0.0193 0.0191 0.0212

Groundnut COR_SE QM_Sumz 0.0172 0.0189 0.0187 0.0210

Groundnut COR_SE SumZ 0.0164 0.0188 0.0186 0.0215

Groundnut NRMSE GBLUP 0.1857 0.2185 0.2098 0.2688

Groundnut NRMSE Invchi 0.1932 0.2243 0.2140 0.2760

Groundnut NRMSE Logit 0.1927 0.2239 0.2144 0.2741

Groundnut NRMSE Meanp 0.1913 0.2225 0.2118 0.2749

Groundnut NRMSE QM 0.1852 0.2219 0.2151 0.2720

Groundnut NRMSE QM_Invchi 0.1930 0.2264 0.2170 0.2787

Groundnut NRMSE QM_Logit 0.1924 0.2264 0.2181 0.2772

Groundnut NRMSE QM_Meanp 0.1901 0.2249 0.2153 0.2790

Groundnut NRMSE QM_Sumz 0.1924 0.2271 0.2178 0.2803

Groundnut NRMSE SumZ 0.1927 0.2246 0.2148 0.2764
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Data Metric Method Min Mean Median Max

Groundnut NRMSE_SE GBLUP 0.0042 0.0064 0.0066 0.0083

Groundnut NRMSE_SE Invchi 0.0041 0.0070 0.0072 0.0095

Groundnut NRMSE_SE Logit 0.0043 0.0068 0.0073 0.0083

Groundnut NRMSE_SE Meanp 0.0043 0.0069 0.0072 0.0089

Groundnut NRMSE_SE QM 0.0045 0.0065 0.0063 0.0090

Groundnut NRMSE_SE QM_Invchi 0.0043 0.0067 0.0064 0.0097

Groundnut NRMSE_SE QM_Logit 0.0049 0.0065 0.0063 0.0083

Groundnut NRMSE_SE QM_Meanp 0.0047 0.0068 0.0067 0.0091

Groundnut NRMSE_SE QM_Sumz 0.0049 0.0066 0.0062 0.0090

Groundnut NRMSE_SE SumZ 0.0043 0.0068 0.0071 0.0088

EYT_2 COR GBLUP 0.4493 0.5320 0.5296 0.6196

EYT_2 COR Invchi 0.4341 0.5066 0.5039 0.5846

EYT_2 COR Logit 0.4358 0.5092 0.5082 0.5845

EYT_2 COR Meanp 0.4385 0.5133 0.5092 0.5961

EYT_2 COR QM 0.4135 0.5154 0.5163 0.6157

EYT_2 COR QM_Invchi 0.3956 0.4867 0.4893 0.5726

EYT_2 COR QM_Logit 0.3959 0.4946 0.5063 0.5701

EYT_2 COR QM_Meanp 0.4177 0.4881 0.4915 0.5516

EYT_2 COR QM_Sumz 0.3730 0.4807 0.4848 0.5805

EYT_2 COR SumZ 0.4373 0.5113 0.5086 0.5909

EYT_2 COR_SE GBLUP 0.0127 0.0154 0.0147 0.0193

EYT_2 COR_SE Invchi 0.0146 0.0194 0.0202 0.0228

EYT_2 COR_SE Logit 0.0160 0.0185 0.0175 0.0230

EYT_2 COR_SE Meanp 0.0153 0.0183 0.0180 0.0219

EYT_2 COR_SE QM 0.0134 0.0219 0.0223 0.0297

EYT_2 COR_SE QM_Invchi 0.0203 0.0255 0.0249 0.0319

EYT_2 COR_SE QM_Logit 0.0162 0.0209 0.0180 0.0313

EYT_2 COR_SE QM_Meanp 0.0159 0.0259 0.0261 0.0352

EYT_2 COR_SE QM_Sumz 0.0202 0.0247 0.0249 0.0287

EYT_2 COR_SE SumZ 0.0153 0.0188 0.0185 0.0231

EYT_2 NRMSE GBLUP 0.7866 0.8463 0.8508 0.8970

EYT_2 NRMSE Invchi 0.8159 0.8640 0.8674 0.9054

EYT_2 NRMSE Logit 0.8164 0.8628 0.8653 0.9043

EYT_2 NRMSE Meanp 0.8084 0.8602 0.8649 0.9027

EYT_2 NRMSE QM 0.8378 0.9930 0.9979 1.1382

EYT_2 NRMSE QM_Invchi 0.8768 0.9898 0.9869 1.1086

EYT_2 NRMSE QM_Logit 0.8777 0.9479 0.9020 1.1098

EYT_2 NRMSE QM_Meanp 0.9213 0.9863 0.9926 1.0385

EYT_2 NRMSE QM_Sumz 0.8717 1.0384 1.0440 1.1939
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Data Metric Method Min Mean Median Max

EYT_2 NRMSE SumZ 0.8117 0.8619 0.8664 0.9032

EYT_2 NRMSE_SE GBLUP 0.0077 0.0100 0.0105 0.0114

EYT_2 NRMSE_SE Invchi 0.0090 0.0109 0.0111 0.0124

EYT_2 NRMSE_SE Logit 0.0092 0.0106 0.0104 0.0125

EYT_2 NRMSE_SE Meanp 0.0097 0.0104 0.0101 0.0118

EYT_2 NRMSE_SE QM 0.0115 0.0746 0.0611 0.1648

EYT_2 NRMSE_SE QM_Invchi 0.0170 0.0824 0.0737 0.1652

EYT_2 NRMSE_SE QM_Logit 0.0120 0.0429 0.0281 0.1036

EYT_2 NRMSE_SE QM_Meanp 0.0149 0.0783 0.0894 0.1195

EYT_2 NRMSE_SE QM_Sumz 0.0440 0.1105 0.1163 0.1654

EYT_2 NRMSE_SE SumZ 0.0092 0.0108 0.0108 0.0124

EYT_3 COR GBLUP 0.4760 0.4884 0.4881 0.5012

EYT_3 COR Invchi 0.4604 0.4689 0.4661 0.4830

EYT_3 COR Logit 0.4598 0.4695 0.4705 0.4771

EYT_3 COR Meanp 0.4648 0.4755 0.4715 0.4944

EYT_3 COR QM 0.4340 0.4618 0.4566 0.5002

EYT_3 COR QM_Invchi 0.4104 0.4383 0.4307 0.4814

EYT_3 COR QM_Logit 0.3839 0.4381 0.4474 0.4736

EYT_3 COR QM_Meanp 0.4372 0.4535 0.4420 0.4930

EYT_3 COR QM_Sumz 0.3968 0.4405 0.4486 0.4681

EYT_3 COR SumZ 0.4667 0.4730 0.4710 0.4830

EYT_3 COR_SE GBLUP 0.0137 0.0196 0.0203 0.0243

EYT_3 COR_SE Invchi 0.0138 0.0185 0.0189 0.0224

EYT_3 COR_SE Logit 0.0145 0.0184 0.0178 0.0234

EYT_3 COR_SE Meanp 0.0134 0.0181 0.0179 0.0231

EYT_3 COR_SE QM 0.0139 0.0244 0.0254 0.0329

EYT_3 COR_SE QM_Invchi 0.0140 0.0274 0.0274 0.0406

EYT_3 COR_SE QM_Logit 0.0147 0.0225 0.0200 0.0352

EYT_3 COR_SE QM_Meanp 0.0133 0.0254 0.0279 0.0325

EYT_3 COR_SE QM_Sumz 0.0158 0.0286 0.0291 0.0402

EYT_3 COR_SE SumZ 0.0151 0.0179 0.0173 0.0218

EYT_3 NRMSE GBLUP 0.8663 0.8758 0.8757 0.8854

EYT_3 NRMSE Invchi 0.8750 0.8850 0.8866 0.8919

EYT_3 NRMSE Logit 0.8787 0.8843 0.8842 0.8899

EYT_3 NRMSE Meanp 0.8694 0.8809 0.8826 0.8892

EYT_3 NRMSE QM 0.9549 1.1644 1.1869 1.3290

EYT_3 NRMSE QM_Invchi 0.9226 1.1572 1.1758 1.3544

EYT_3 NRMSE QM_Logit 0.9324 1.1272 1.0212 1.5341

EYT_3 NRMSE QM_Meanp 0.9229 1.1000 1.1039 1.2693
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Data Metric Method Min Mean Median Max

EYT_3 NRMSE QM_Sumz 0.9358 1.1875 1.1450 1.5243

EYT_3 NRMSE SumZ 0.8755 0.8824 0.8835 0.8871

EYT_3 NRMSE_SE GBLUP 0.0080 0.0116 0.0116 0.0154

EYT_3 NRMSE_SE Invchi 0.0073 0.0100 0.0104 0.0117

EYT_3 NRMSE_SE Logit 0.0076 0.0098 0.0094 0.0129

EYT_3 NRMSE_SE Meanp 0.0070 0.0100 0.0102 0.0124

EYT_3 NRMSE_SE QM 0.0128 0.1321 0.1500 0.2155

EYT_3 NRMSE_SE QM_Invchi 0.0105 0.1374 0.1307 0.2777

EYT_3 NRMSE_SE QM_Logit 0.0148 0.1040 0.0775 0.2461

EYT_3 NRMSE_SE QM_Meanp 0.0113 0.1521 0.1362 0.3246

EYT_3 NRMSE_SE QM_Sumz 0.0128 0.1383 0.1316 0.2773

EYT_3 NRMSE_SE SumZ 0.0078 0.0097 0.0096 0.0117

Wheat_2 COR GBLUP 0.3605 0.3605 0.3605 0.3605

Wheat_2 COR Invchi 0.3258 0.3258 0.3258 0.3258

Wheat_2 COR Logit 0.3236 0.3236 0.3236 0.3236

Wheat_2 COR Meanp 0.3257 0.3257 0.3257 0.3257

Wheat_2 COR QM 0.3476 0.3476 0.3476 0.3476

Wheat_2 COR QM_Invchi 0.3241 0.3241 0.3241 0.3241

Wheat_2 COR QM_Logit 0.3064 0.3064 0.3064 0.3064

Wheat_2 COR QM_Meanp 0.2999 0.2999 0.2999 0.2999

Wheat_2 COR QM_Sumz 0.3115 0.3115 0.3115 0.3115

Wheat_2 COR SumZ 0.3303 0.3303 0.3303 0.3303

Wheat_2 COR_SE GBLUP 0.0144 0.0144 0.0144 0.0144

Wheat_2 COR_SE Invchi 0.0144 0.0144 0.0144 0.0144

Wheat_2 COR_SE Logit 0.0153 0.0153 0.0153 0.0153

Wheat_2 COR_SE Meanp 0.0162 0.0162 0.0162 0.0162

Wheat_2 COR_SE QM 0.0216 0.0216 0.0216 0.0216

Wheat_2 COR_SE QM_Invchi 0.0140 0.0140 0.0140 0.0140

Wheat_2 COR_SE QM_Logit 0.0281 0.0281 0.0281 0.0281

Wheat_2 COR_SE QM_Meanp 0.0291 0.0291 0.0291 0.0291

Wheat_2 COR_SE QM_Sumz 0.0257 0.0257 0.0257 0.0257

Wheat_2 COR_SE SumZ 0.0144 0.0144 0.0144 0.0144

Wheat_2 NRMSE GBLUP 0.9340 0.9340 0.9340 0.9340

Wheat_2 NRMSE Invchi 0.9477 0.9477 0.9477 0.9477

Wheat_2 NRMSE Logit 0.9495 0.9495 0.9495 0.9495

Wheat_2 NRMSE Meanp 0.9484 0.9484 0.9484 0.9484

Wheat_2 NRMSE QM 1.1166 1.1166 1.1166 1.1166

Wheat_2 NRMSE QM_Invchi 1.0345 1.0345 1.0345 1.0345

Wheat_2 NRMSE QM_Logit 1.1027 1.1027 1.1027 1.1027
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Data Metric Method Min Mean Median Max

Wheat_2 NRMSE QM_Meanp 1.1647 1.1647 1.1647 1.1647

Wheat_2 NRMSE QM_Sumz 1.0955 1.0955 1.0955 1.0955

Wheat_2 NRMSE SumZ 0.9470 0.9470 0.9470 0.9470

Wheat_2 NRMSE_SE GBLUP 0.0053 0.0053 0.0053 0.0053

Wheat_2 NRMSE_SE Invchi 0.0039 0.0039 0.0039 0.0039

Wheat_2 NRMSE_SE Logit 0.0043 0.0043 0.0043 0.0043

Wheat_2 NRMSE_SE Meanp 0.0043 0.0043 0.0043 0.0043

Wheat_2 NRMSE_SE QM 0.0732 0.0732 0.0732 0.0732

Wheat_2 NRMSE_SE QM_Invchi 0.0090 0.0090 0.0090 0.0090

Wheat_2 NRMSE_SE QM_Logit 0.0699 0.0699 0.0699 0.0699

Wheat_2 NRMSE_SE QM_Meanp 0.0851 0.0851 0.0851 0.0851

Wheat_2 NRMSE_SE QM_Sumz 0.0659 0.0659 0.0659 0.0659

Wheat_2 NRMSE_SE SumZ 0.0039 0.0039 0.0039 0.0039

Wheat_3 COR GBLUP 0.3719 0.3719 0.3719 0.3719

Wheat_3 COR Invchi 0.3117 0.3117 0.3117 0.3117

Wheat_3 COR Logit 0.3085 0.3085 0.3085 0.3085

Wheat_3 COR Meanp 0.3224 0.3224 0.3224 0.3224

Wheat_3 COR QM 0.3486 0.3486 0.3486 0.3486

Wheat_3 COR QM_Invchi 0.2866 0.2866 0.2866 0.2866

Wheat_3 COR QM_Logit 0.2862 0.2862 0.2862 0.2862

Wheat_3 COR QM_Meanp 0.2808 0.2808 0.2808 0.2808

Wheat_3 COR QM_Sumz 0.2888 0.2888 0.2888 0.2888

Wheat_3 COR SumZ 0.3136 0.3136 0.3136 0.3136

Wheat_3 COR_SE GBLUP 0.0132 0.0132 0.0132 0.0132

Wheat_3 COR_SE Invchi 0.0107 0.0107 0.0107 0.0107

Wheat_3 COR_SE Logit 0.0073 0.0073 0.0073 0.0073

Wheat_3 COR_SE Meanp 0.0106 0.0106 0.0106 0.0106

Wheat_3 COR_SE QM 0.0194 0.0194 0.0194 0.0194

Wheat_3 COR_SE QM_Invchi 0.0200 0.0200 0.0200 0.0200

Wheat_3 COR_SE QM_Logit 0.0204 0.0204 0.0204 0.0204

Wheat_3 COR_SE QM_Meanp 0.0253 0.0253 0.0253 0.0253

Wheat_3 COR_SE QM_Sumz 0.0180 0.0180 0.0180 0.0180

Wheat_3 COR_SE SumZ 0.0097 0.0097 0.0097 0.0097

Wheat_3 NRMSE GBLUP 0.9299 0.9299 0.9299 0.9299

Wheat_3 NRMSE Invchi 0.9514 0.9514 0.9514 0.9514

Wheat_3 NRMSE Logit 0.9533 0.9533 0.9533 0.9533

Wheat_3 NRMSE Meanp 0.9483 0.9483 0.9483 0.9483

Wheat_3 NRMSE QM 1.1177 1.1177 1.1177 1.1177

Wheat_3 NRMSE QM_Invchi 1.1223 1.1223 1.1223 1.1223
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Data Metric Method Min Mean Median Max

Wheat_3 NRMSE QM_Logit 1.1258 1.1258 1.1258 1.1258

Wheat_3 NRMSE QM_Meanp 1.1778 1.1778 1.1778 1.1778

Wheat_3 NRMSE QM_Sumz 1.1217 1.1217 1.1217 1.1217

Wheat_3 NRMSE SumZ 0.9517 0.9517 0.9517 0.9517

Wheat_3 NRMSE_SE GBLUP 0.0055 0.0055 0.0055 0.0055

Wheat_3 NRMSE_SE Invchi 0.0031 0.0031 0.0031 0.0031

Wheat_3 NRMSE_SE Logit 0.0022 0.0022 0.0022 0.0022

Wheat_3 NRMSE_SE Meanp 0.0033 0.0033 0.0033 0.0033

Wheat_3 NRMSE_SE QM 0.0625 0.0625 0.0625 0.0625

Wheat_3 NRMSE_SE QM_Invchi 0.0635 0.0635 0.0635 0.0635

Wheat_3 NRMSE_SE QM_Logit 0.0647 0.0647 0.0647 0.0647

Wheat_3 NRMSE_SE QM_Meanp 0.0823 0.0823 0.0823 0.0823

Wheat_3 NRMSE_SE QM_Sumz 0.0632 0.0632 0.0632 0.0632

Wheat_3 NRMSE_SE SumZ 0.0034 0.0034 0.0034 0.0034

Wheat_4 COR GBLUP 0.3629 0.3629 0.3629 0.3629

Wheat_4 COR Invchi 0.3311 0.3311 0.3311 0.3311

Wheat_4 COR Logit 0.3329 0.3329 0.3329 0.3329

Wheat_4 COR Meanp 0.3409 0.3409 0.3409 0.3409

Wheat_4 COR QM 0.3505 0.3505 0.3505 0.3505

Wheat_4 COR QM_Invchi 0.3159 0.3159 0.3159 0.3159

Wheat_4 COR QM_Logit 0.3326 0.3326 0.3326 0.3326

Wheat_4 COR QM_Meanp 0.3408 0.3408 0.3408 0.3408

Wheat_4 COR QM_Sumz 0.3422 0.3422 0.3422 0.3422

Wheat_4 COR SumZ 0.3414 0.3414 0.3414 0.3414

Wheat_4 COR_SE GBLUP 0.0149 0.0149 0.0149 0.0149

Wheat_4 COR_SE Invchi 0.0150 0.0150 0.0150 0.0150

Wheat_4 COR_SE Logit 0.0165 0.0165 0.0165 0.0165

Wheat_4 COR_SE Meanp 0.0160 0.0160 0.0160 0.0160

Wheat_4 COR_SE QM 0.0238 0.0238 0.0238 0.0238

Wheat_4 COR_SE QM_Invchi 0.0220 0.0220 0.0220 0.0220

Wheat_4 COR_SE QM_Logit 0.0167 0.0167 0.0167 0.0167

Wheat_4 COR_SE QM_Meanp 0.0159 0.0159 0.0159 0.0159

Wheat_4 COR_SE QM_Sumz 0.0157 0.0157 0.0157 0.0157

Wheat_4 COR_SE SumZ 0.0159 0.0159 0.0159 0.0159

Wheat_4 NRMSE GBLUP 0.9334 0.9334 0.9334 0.9334

Wheat_4 NRMSE Invchi 0.9448 0.9448 0.9448 0.9448

Wheat_4 NRMSE Logit 0.9444 0.9444 0.9444 0.9444

Wheat_4 NRMSE Meanp 0.9421 0.9421 0.9421 0.9421

Wheat_4 NRMSE QM 1.1115 1.1115 1.1115 1.1115
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Data Metric Method Min Mean Median Max

Wheat_4 NRMSE QM_Invchi 1.0890 1.0890 1.0890 1.0890

Wheat_4 NRMSE QM_Logit 1.0185 1.0185 1.0185 1.0185

Wheat_4 NRMSE QM_Meanp 1.0222 1.0222 1.0222 1.0222

Wheat_4 NRMSE QM_Sumz 1.0158 1.0158 1.0158 1.0158

Wheat_4 NRMSE SumZ 0.9416 0.9416 0.9416 0.9416

Wheat_4 NRMSE_SE GBLUP 0.0059 0.0059 0.0059 0.0059

Wheat_4 NRMSE_SE Invchi 0.0047 0.0047 0.0047 0.0047

Wheat_4 NRMSE_SE Logit 0.0051 0.0051 0.0051 0.0051

Wheat_4 NRMSE_SE Meanp 0.0050 0.0050 0.0050 0.0050

Wheat_4 NRMSE_SE QM 0.0758 0.0758 0.0758 0.0758

Wheat_4 NRMSE_SE QM_Invchi 0.0741 0.0741 0.0741 0.0741

Wheat_4 NRMSE_SE QM_Logit 0.0138 0.0138 0.0138 0.0138

Wheat_4 NRMSE_SE QM_Meanp 0.0148 0.0148 0.0148 0.0148

Wheat_4 NRMSE_SE QM_Sumz 0.0137 0.0137 0.0137 0.0137

Wheat_4 NRMSE_SE SumZ 0.0050 0.0050 0.0050 0.0050

Wheat_5 COR GBLUP 0.4367 0.4367 0.4367 0.4367

Wheat_5 COR Invchi 0.4140 0.4140 0.4140 0.4140

Wheat_5 COR Logit 0.4157 0.4157 0.4157 0.4157

Wheat_5 COR Meanp 0.4267 0.4267 0.4267 0.4267

Wheat_5 COR QM 0.4277 0.4277 0.4277 0.4277

Wheat_5 COR QM_Invchi 0.3976 0.3976 0.3976 0.3976

Wheat_5 COR QM_Logit 0.3998 0.3998 0.3998 0.3998

Wheat_5 COR QM_Meanp 0.4256 0.4256 0.4256 0.4256

Wheat_5 COR QM_Sumz 0.4046 0.4046 0.4046 0.4046

Wheat_5 COR SumZ 0.4189 0.4189 0.4189 0.4189

Wheat_5 COR_SE GBLUP 0.0179 0.0179 0.0179 0.0179

Wheat_5 COR_SE Invchi 0.0198 0.0198 0.0198 0.0198

Wheat_5 COR_SE Logit 0.0198 0.0198 0.0198 0.0198

Wheat_5 COR_SE Meanp 0.0195 0.0195 0.0195 0.0195

Wheat_5 COR_SE QM 0.0160 0.0160 0.0160 0.0160

Wheat_5 COR_SE QM_Invchi 0.0209 0.0209 0.0209 0.0209

Wheat_5 COR_SE QM_Logit 0.0214 0.0214 0.0214 0.0214

Wheat_5 COR_SE QM_Meanp 0.0188 0.0188 0.0188 0.0188

Wheat_5 COR_SE QM_Sumz 0.0240 0.0240 0.0240 0.0240

Wheat_5 COR_SE SumZ 0.0182 0.0182 0.0182 0.0182

Wheat_5 NRMSE GBLUP 0.9011 0.9011 0.9011 0.9011

Wheat_5 NRMSE Invchi 0.9128 0.9128 0.9128 0.9128

Wheat_5 NRMSE Logit 0.9127 0.9127 0.9127 0.9127

Wheat_5 NRMSE Meanp 0.9067 0.9067 0.9067 0.9067
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Table A5. Cont.

Data Metric Method Min Mean Median Max

Wheat_5 NRMSE QM 1.0787 1.0787 1.0787 1.0787

Wheat_5 NRMSE QM_Invchi 1.0522 1.0522 1.0522 1.0522

Wheat_5 NRMSE QM_Logit 1.0517 1.0517 1.0517 1.0517

Wheat_5 NRMSE QM_Meanp 0.9909 0.9909 0.9909 0.9909

Wheat_5 NRMSE QM_Sumz 1.0476 1.0476 1.0476 1.0476

Wheat_5 NRMSE SumZ 0.9098 0.9098 0.9098 0.9098

Wheat_5 NRMSE_SE GBLUP 0.0097 0.0097 0.0097 0.0097

Wheat_5 NRMSE_SE Invchi 0.0088 0.0088 0.0088 0.0088

Wheat_5 NRMSE_SE Logit 0.0093 0.0093 0.0093 0.0093

Wheat_5 NRMSE_SE Meanp 0.0090 0.0090 0.0090 0.0090

Wheat_5 NRMSE_SE QM 0.0527 0.0527 0.0527 0.0527

Wheat_5 NRMSE_SE QM_Invchi 0.0605 0.0605 0.0605 0.0605

Wheat_5 NRMSE_SE QM_Logit 0.0612 0.0612 0.0612 0.0612

Wheat_5 NRMSE_SE QM_Meanp 0.0211 0.0211 0.0211 0.0211

Wheat_5 NRMSE_SE QM_Sumz 0.0715 0.0715 0.0715 0.0715

Wheat_5 NRMSE_SE SumZ 0.0080 0.0080 0.0080 0.0080

Wheat_6 COR GBLUP 0.5307 0.5307 0.5307 0.5307

Wheat_6 COR Invchi 0.5167 0.5167 0.5167 0.5167

Wheat_6 COR Logit 0.5218 0.5218 0.5218 0.5218

Wheat_6 COR Meanp 0.5206 0.5206 0.5206 0.5206

Wheat_6 COR QM 0.5109 0.5109 0.5109 0.5109

Wheat_6 COR QM_Invchi 0.5001 0.5001 0.5001 0.5001

Wheat_6 COR QM_Logit 0.5192 0.5192 0.5192 0.5192

Wheat_6 COR QM_Meanp 0.5200 0.5200 0.5200 0.5200

Wheat_6 COR QM_Sumz 0.4970 0.4970 0.4970 0.4970

Wheat_6 COR SumZ 0.5183 0.5183 0.5183 0.5183

Wheat_6 COR_SE GBLUP 0.0092 0.0092 0.0092 0.0092

Wheat_6 COR_SE Invchi 0.0107 0.0107 0.0107 0.0107

Wheat_6 COR_SE Logit 0.0095 0.0095 0.0095 0.0095

Wheat_6 COR_SE Meanp 0.0093 0.0093 0.0093 0.0093

Wheat_6 COR_SE QM 0.0164 0.0164 0.0164 0.0164

Wheat_6 COR_SE QM_Invchi 0.0231 0.0231 0.0231 0.0231

Wheat_6 COR_SE QM_Logit 0.0096 0.0096 0.0096 0.0096

Wheat_6 COR_SE QM_Meanp 0.0088 0.0088 0.0088 0.0088

Wheat_6 COR_SE QM_Sumz 0.0191 0.0191 0.0191 0.0191

Wheat_6 COR_SE SumZ 0.0112 0.0112 0.0112 0.0112

Wheat_6 NRMSE GBLUP 0.8498 0.8498 0.8498 0.8498

Wheat_6 NRMSE Invchi 0.8631 0.8631 0.8631 0.8631

Wheat_6 NRMSE Logit 0.8598 0.8598 0.8598 0.8598
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Table A5. Cont.

Data Metric Method Min Mean Median Max

Wheat_6 NRMSE Meanp 0.8582 0.8582 0.8582 0.8582

Wheat_6 NRMSE QM 0.9863 0.9863 0.9863 0.9863

Wheat_6 NRMSE QM_Invchi 0.9590 0.9590 0.9590 0.9590

Wheat_6 NRMSE QM_Logit 0.8994 0.8994 0.8994 0.8994

Wheat_6 NRMSE QM_Meanp 0.9017 0.9017 0.9017 0.9017

Wheat_6 NRMSE QM_Sumz 0.9536 0.9536 0.9536 0.9536

Wheat_6 NRMSE SumZ 0.8606 0.8606 0.8606 0.8606

Wheat_6 NRMSE_SE GBLUP 0.0059 0.0059 0.0059 0.0059

Wheat_6 NRMSE_SE Invchi 0.0062 0.0062 0.0062 0.0062

Wheat_6 NRMSE_SE Logit 0.0058 0.0058 0.0058 0.0058

Wheat_6 NRMSE_SE Meanp 0.0052 0.0052 0.0052 0.0052

Wheat_6 NRMSE_SE QM 0.0676 0.0676 0.0676 0.0676

Wheat_6 NRMSE_SE QM_Invchi 0.0648 0.0648 0.0648 0.0648

Wheat_6 NRMSE_SE QM_Logit 0.0107 0.0107 0.0107 0.0107

Wheat_6 NRMSE_SE QM_Meanp 0.0089 0.0089 0.0089 0.0089

Wheat_6 NRMSE_SE QM_Sumz 0.0509 0.0509 0.0509 0.0509

Wheat_6 NRMSE_SE SumZ 0.0064 0.0064 0.0064 0.0064
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