
Vol.:(0123456789)

Regional Environmental Change           (2025) 25:62  
https://doi.org/10.1007/s10113-025-02403-y

ORIGINAL ARTICLE

Modeling the impact of climate change on maize (Zea mays L.) 
production at the county scale in Kenya

Harison K. Kipkulei1,2,3,4 · Sonoko D. Bellingrath‑Kimura2,3 · Marcos Lana5 · Gohar Ghazaryan2,6 · Roland Baatz2 · 
Katharina Löhr2,3,12  · Custodio Matavel7 · Mark K. Boitt8 · Charles B. Chisanga9 · Brian Rotich10,11 · Stefan Sieber2,3

Received: 19 December 2023 / Accepted: 18 April 2025 
© The Author(s) 2025

Abstract
Global climate change is projected to disproportionately impact cereal crop yields in developing regions, such as Kenya, due 
to increased vulnerability and limited adaptation capacity of the population. This study examines the current and projected 
influence of climate change on maize yields in two major maize-producing counties of Kenya. Utilizing the calibrated and 
evaluated DSSAT-CERES-Maize model (where DSSAT is Decision Support Systems for Agrotechnology Transfer and 
CERES stands for Crop and Environment REsource Synthesis) for the H614 maize cultivar, we investigated the projected 
impact of climate change on maize production with reference to a baseline period (1984–2013). Simulations were conducted 
for the mid-century period (2041–2070) and end-of-century period (2071–2100) using projected climate data from regional 
climate models (RCMs) under two Representative Concentration Pathways (RCPs; 4.5 and 8.5) scenarios. Our findings 
indicate a substantial decline in maize yields, ranging from 7 to 20% for the mid-century period and between 22 and 41% for 
the end-of-century period, with increased temperature during critical growth phases identified as the primary driver. Spa-
tial clustering and hotspot analysis reveal differential climate impacts across the region. In the end-of-century period, both 
scenarios revealed that the counties will be marked by hotspots and adaptation spots, areas where climate change adaptation 
should be intensified. The study underscores the urgency for tailored, location-specific adaptation measures such as maize-
legume intercropping, drought-resistant crops, soil water conservation and optimum sowing to mitigate future yield losses 
and adapt maize production to climate change.
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Introduction

Climate change is a significant threat to global crop produc-
tion and food security. Its impact is particularly alarming, 
especially for staple food crops such as maize, wheat and 
rice, which are critical sources of protein and caloric intake 
worldwide (Shiferaw et al. 2011; Erenstein et al. 2022). 
Maize is a dominant crop and a vital source of nutrition 
and livelihood security in developing regions, particularly 
in Asia and sub-Saharan Africa (SSA). As the main staple in 
SSA, maize is extensively cultivated for human consumption 
(Reynolds et al. 2015). Despite its importance in alleviat-
ing food insecurity, maize production remains relatively low 
compared to other parts of SSA. Maize productivity averages 

approximately 2 tons per hectare (Leitner et al. 2020), which 
is five times less than the productivity in developed regions 
of Europe and North America (Schils et al. 2018; Edger-
ton 2009). Increasing maize production is therefore critical, 
given that the population in the country is rising, similar to 
the larger SSA region (van Ittersum Martin et al. 2016). The 
challenge of increasing production is complicated by other 
factors such as climate variability, pests, diseases and poor 
soils, among other yield constraints (Tittonell and Giller 
2013; Mugabe et al. 2024). Furthermore, intense human 
activities threaten crucial ecosystem services such as pol-
lination for sustainable agricultural production (Rehman 
et al. 2022).

The effects of climate change on agriculture in the SSA 
region are well documented in the literature. The region is 
experiencing rapid global warming, with seasonal tempera-
tures predicted to exceed previously recorded extreme tem-
peratures in the past (Cairns et al. 2013). Kenya, like other 
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nations in the SSA region, is similarly expected to experi-
ence adverse effects of climate change. Despite being the 
largest economy in East Africa and having a highly grow-
ing population rate, Kenya is characterized by vast arid and 
semiarid zones (World Bank 2020). Moreover, its proximity 
within the equatorial zone and the Indian Ocean and the 
Intertropical Convergence Zone (ITCZ) influence exposes 
it to extreme climate risks such as droughts and intense pre-
cipitation events (Mamalakis et al. 2021).

Attention to climate change impacts on the produc-
tion and suitability of various crops has gained traction 
in Kenya and SSA. Studies have been conducted across 
the region, albeit at different times and scales. Most of 
the studies cover regional and national scales, mainly due 
to the coarse availability of modelling data (Falconnier 
et al. 2020; Kogo et al. 2019; Chemura et al. 2022). On 
the other hand, some studies are limited to the field scale, 
majorly utilizing field and on-farm experiments (Chisanga 
et al. 2020, 2021; Volk et al. 2021). Studies at small scales 
provide aggregated findings, which obscure underlying 
influences of production patterns. On the other hand, 
experimental studies at the farm or plot level are usually 
generalized across the region where the experiments were 
conducted. The assumption is that conditions affecting 
production are less variable across the region of interest. 
Detailed assessments that capture production responses 
to underlying climates at decision-making units are still 
scarce. Furthermore, analyzing climate change impacts on 
crop production at spatial explicit levels is necessary for 
context-specific agronomic planning. At spatial explicit 
scales, existing research has covered extensively on cli-
mate suitability for various crops geospatial techniques 
and species distribution models (Ojara et al. 2021; Kogo 
et al. 2019; Chemura et al. 2022).

There is a considerable focus on the impact of climate 
change on crop production using process-based models 
in the SSA region, albeit on a regional scale (Stuch et al. 
2021; Falconnier et al. 2020; Sultan et al. 2014). Moreo-
ver, most of the studies have provided a regional perspec-
tive and covered crops such as sorghum and millet, which 
are increasingly promoted due to their drought-resistant 
nature and adaptability to climate change effects (Sultan 
et al. 2013; Alimagham et al. 2024; Adhikari et al. 2015). 
Process-based crop models have increasingly emerged 
as useful tools to assess the impact of climate change on 
crop production due to their strength in capturing plant, 
atmosphere and soil interactions to mimic crop growth 
as accurately as possible (Tian et al. 2020; Dokoohaki 
et al. 2021). These tools offer enormous opportunities for 
assessing agricultural production under the baseline and 
future climate scenarios. They are, however, demanding in 
terms of data requirements to robustly and precisely model 

climate and production feedback (Silvestro et al. 2017). 
As simplifications of reality, crop models possess inherent 
uncertainties that result from the synergistic nature of mod-
elled processes or environmental variabilities (Chapagain 
et al. 2022). Nonetheless, crop models have demonstrated 
enormous potential in assessing crop, environmental and 
management interactions across diverse climatic gradients 
(Stöckle and Kemanian 2020). Additionally, these models 
can be applied in other environments with precise account-
ing of underlying growth, water and nutrient transport pro-
cesses (Batchelor et al. 2002). Furthermore, the models can 
robustly integrate mathematical descriptions of the mecha-
nism of plant growth and thus can account for nonlinear 
and complex processes by simulating them (Pasquel et al. 
2022). The application of crop simulation models has seen 
an exponential rise, especially in documenting production 
beyond the current climates to develop optimal adaptation 
options in climate-volatile regions.

This study applies the DSSAT-CERES-Maize model 
to analyze the future maize productivity across two major 
maize-growing areas in Kenya. The study also investigates 
the differential impacts of climate change across the region. 
The assessment is conducted at a grid-scale using high-res-
olution climatic and soil data, and spatial analysis was incor-
porated to assess yield variation across the key production 
zones/units. The study identifies how various regions within 
the area will likely respond to future climate change, thus 
laying the foundation for further analysis of region-specific 
strategies and interventions for sustaining production under 
increased warming and variable precipitation.

Materials and methods

Study area description

The study area is situated in the northwestern part of Kenya 
between latitudes 3° 5′ to 5° 5′ south and longitudes 33° 9′ 
to 35° 3′ east. The area comprises two counties, Trans Nzoia 
and Uasin Gishu (Fig. 1), which constitute the major maize-
producing zones in Kenya. The region lies in the highland 
plateaus of the Rift Valley province. Both counties have 
high agricultural potential within subhumid to humid agro-
ecological zones (AEZs) (Sombroek et al. 1982). The region 
experiences annual precipitation ranging from 1100 to 1800 
mm, characterized by a bimodal distribution rainfall pat-
tern. The long rainy season occurs from March to May and 
is typically more intense and frequent than the short rainy 
season, which falls between October and December. The 
study region lies in the highly favourable climatic conditions 
zone and can have long rainy seasons extending to August 
(Kwambai et al. 2024).
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DSSAT‑CERES‑Maize model and input data

The DSSAT-CERES-Maize model is one of the extensively 
utilized process-based maize simulation models among 
crop modelling simulation systems. The model uses various 
input data, including weather, soil, management and cultivar 
information, to simulate maize growth and development on 
a daily temporal scale (Noriega-Navarrete et al. 2023). Daily 
precipitation, radiation and temperature data from 1984 to 
2013 were extracted from various databases to constitute 
the baseline data. The precipitation data were obtained from 
Climate Hazard Group Infrared Precipitation with Station 
version 2 (CHIRPS2) (https:// data. chc. ucsb. edu/ produ 
cts/ CHIRPS- 2.0/). The product has a spatial resolution of 
approximately 5.5 km and a daily temporal scale, with cover-
age from 1981 to the present (Funk et al. 2015). On the other 
hand, the Climate Hazards Center Infrared Temperature with 
Stations (CHIRTS) data are provided at the same resolutions 
but with different time coverage (Funk et al. 2019). Both 
CHIRPS and CHIRTS combine satellite and station-based 
observations to provide robust estimates that are important 
in monitoring weather extremes and supporting early warn-
ing systems (Funk et al. 2019). Soil physical and chemical 

variables are also needed as inputs to the model. The vari-
ables include soil texture (percentage of clay, sand and silt), 
bulk density, total nitrogen, total organic carbon, pH and 
cation exchange capacity). We derived the variables from 
the global high-resolution soil profile database for crop 
modelling applications. The database provides global spatial 
soil profile information at a spatial resolution of approxi-
mately 0.1° × 0.1° (∼10 km). The global high-resolution soil 
product was synthesized from the International Soil Refer-
ence and Information Centre (ISRIC) and the Africa Soil 
Information Service (AfSIS) SoilGrids and provides ready 
DSSAT soil input data (Han et al. 2015).

Other needed information, including sowing depth and 
density, was specified based on the recommended local prac-
tices. The sowing density for each simulation season was 
approximated to be 50,000 plants per hectare with intra and 
inter-row spacing at 25 cm and 75 cm, respectively. The 
DSSAT-CERES-Maize model was configured with sowing 
dates assessed from a combination of techniques, such as 
the conventional practices in the region and analysis of time 
series normalized difference vegetation index (NDVI) profile 
derived from remote sensing data (Kipkulei et al. 2024b), 
and conditions for germination under dry sowing and rainfall 

Fig. 1  Map of Trans Nzoia County and Uasin Gishu County and agro-ecological (Baeza et al.) zones characterizing the region (left) and the con-
text of the study area in Kenya. A cropland mask from Digital Earth Africa is superimposed on the Kenyan map

https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
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onset, which considers the soil water balance as specified by 
Kipkorir et al. (2007). The DSSAT-CERES-Maize model 
runs on a daily time step and simulates leaf, root and stem 
growth, phenology, and canopy development (Jones et al. 
2003). The model outputs include water and nitrogen bal-
ance, leaf area index, biomass and grain yield (Liu et al. 
2011). In this study, the model was initiated to run on the 
first day of each year to provide a steady state of the soil 
water balance (Volk et al. 2021), and the harvest date in the 
model was automatically set when the crop reached physi-
ological maturity (Tofa et al. 2020).

Model calibration and evaluation and yield 
simulations

The calibration process involves estimating the cultivar 
parameters for the simulated cultivar in the region. These 
cultivar parameters govern the growth and development 
of maize from germination to physiological maturity 
(Table S1). Typically, the process approximates the cumu-
lative heat units that the crop requires to transition from one 
phenological cycle to the other. In addition to the heat units, 
other parameters, such as the kernel filling rate (mg/day) 
and the maximum number of kernels, are estimated for a 
specific cultivar. The model parameters used for calibration 
are default values reported in Kipkulei et al. (2022). The 
model was evaluated for performance at the field scale level 
in a different season. The study documented the satisfactory 
accuracy of the model in representing the growth and devel-
opment of the cultivar (Table S2). We adopted the calibrated 
cultivar coefficients over the entire spatial extent of the study 
area. The selection of the cultivar was guided by its popular-
ity due to its high resistance to biotic stresses and production 
stability. The cultivar is also widely grown across the study 
region, with climatic conditions favouring its growth. We 
simulated the yield for every grid for 30 years (reference 
period) and future periods (2041–2070) for the mid-century 
period and (2071–2100) for the end-of-century period. The 
reference period was selected as a baseline for assessing the 
future impacts of climate change on maize production in the 
mid and end-of-century periods.

Climate models and projection

Future climatic data for the study region were obtained using 
the Coordinated Regional Climate Downscaling Experiment 
(CORDEX) Africa simulation data. Six regional climate 
model (RCM) simulation data (Table S3) were obtained at 
a spatial resolution of ~ 50 km (0.44°). Based on this resolu-
tion, the entire study area was covered by a 4 × 4 square grid, 
resulting in 16 derivation grids for climate modelling analy-
sis. The RCMs were developed for the mid-century period 
(2041–2070) and the end-of-century period (2071–2100) 

under the Representative Concentration Pathways (RCP4.5 
and RCP8.5). GCM downscaling is an effective strategy for 
obtaining high-resolution future climate simulations on a 
local scale. Downscaling assumes that weather dynamics 
at a large scale exert influences at local scales, but disre-
gards reverse local effects. In this study, we used a dynamic 
downscaling approach with the assumption that the observed 
predictor and prediction relationships will remain realistic 
under future climatic forcing conditions. Dynamic down-
scaling employs a transformation algorithm for adjusting 
climate model output with the assumption that the correc-
tion algorithm and its parametrization for current climate 
conditions are to be valid for future conditions as well. The 
climate data was downscaled to merge the resolution of the 
soil grids used to derive the soil parameters for further yield 
simulation.

Quality control and evaluation of climate models

The performance of the RCMs for the precipitation and 
temperature variables was evaluated against the CHIRPS 
and CHIRTS data (Fig. S1). The accuracy metrics were rep-
resented using the Taylor diagram. The diagram provides 
correlation measures (r), centered root mean square error 
(RMSE) and standard deviation (SD) measures (Kiprotich 
et al. 2021). The six RCMs were evaluated for model skill, 
and the best-performing model was subsequently adopted 
for bias correction of the precipitation and temperature 
variables. The Climate Model data for hydrological model-
ling (CMhyd) (Rathjens et al. 2016) was used to perform 
the bias correction of the simulated daily precipitation and 
maximum and minimum temperature datasets for the study 
area. The bias correction was performed to minimize pos-
sible bias for accurate climate projections (Tan et al. 2020). 
Various bias correction methods have been evaluated and 
recommended in the literature (Boé et al. 2007; Johnson 
and Sharma 2011). In this study, we applied local intensity 
scaling (LOCI) because of its best performance in correcting 
time-based precipitation indices (Kiprotich et al. 2021). We 
applied the distribution mapping (DM) technique to correct 
the temperature variables due to its better performance than 
other bias correction methods (Zhang et al. 2018). In per-
forming the bias correction, we used the overlapping period 
of observed data to compute the correction parameters. The 
patterns and trends of climate projections for the study area 
are indicated in Figs. S2 and S3 in the supplementary file.

Simulating climate change impact on maize 
production

Climate modelling data and soil grids were intersected in 
a GIS environment to retrieve the desired variables for each 
grid. Solar radiation data was also retrieved using the soil 
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grid centroid. Solar radiation values for the study region 
were increased by 10% to account for increased intensity 
under climate change (Jabeen et al. 2017). The soil grid 
centroids with unique soil physical and chemical charac-
teristics were further used to extract the climate data using 
the extract-by-points tool in ArcGIS. The process enabled 
a unique database for each grid centroid to be created for 
yield projection in the DSSAT environment. Finally, yield 
was interpolated, as detailed by Kipkulei et al. (2024a). The 
potential change in maize productivity under climate change 
was determined by comparing the baseline simulated yield 
and the future projected yield. Therefore, the relative yield 
change was calculated from Eq. 1.

where ∆Yield is the relative yield change,  Yield_futurei,j is 
the future yield for the period i and scenario j and  Yield_
baselineref is the reference yield for the baseline period.

Spatial clustering and climate impact spots

Future climates are expected to induce heterogeneous effects 
of production across locations. Spatial clustering techniques 
provide powerful visualizations for such analysis. In the 
present study, we used Moran’s I and hotspot analysis to 
characterize the pattern and distribution of yield values in 
the baseline and simulated future periods. Therefore, we 
employed Moran’s I to test whether the yield distribution 
was clustered, randomly distributed or dispersed with a 95% 
confidence threshold. Moran’s I was calculated using Eq. 2.

where N is the number of observations, x is the variable of 
interest (yield in our case), x ̅ is the mean of the variable, 
wij represents the spatial weights and W is the sum of the 
weights. Moran’s I ranges between − 1 and + 1. Positive val-
ues indicate spatial clusters and negative values depict dis-
similar values. A zero value indicates a random distribution.

Once the distribution of data in clusters was established, 
distance statistics were employed to identify high-impact 
spots. We utilized function hotspot analysis (Getis-Ord Gi 
*) based on Gi* spatial statistics (Getis and Ord 1992). The 
function estimates a Z score and p values to reject or not 
reject the null hypothesis that the features are structured in 
complete spatial randomness. The distance statistics analyze 
the degree of spatial association among neighboring pixels 
and identify features of pronounced clustering. A high Z 
score denotes a hotspot, and a low Z score denotes a cold 
spot. In this study, the analysis was performed based on the 

(1)ΔYield =
Yield_futurei,j − Yield_baselineref

Yield_baselineref
x100

(2)I =
N

W

∑

i

∑

j wij

�

xi − x
�

(xj − x)

∑

i (xi − x)
2

yield difference between the future climatic scenarios and 
the baseline (future yield-baseline yield).

To distinguish climate impacts across the study area, we 
applied thresholds set in the study of Eitzinger et al. (2017) 
to classify hotspots, adaptation spots, stable zones and more 
stable zones. In the study, hotspots were defined as pixels 
with negative Z values greater than two standard deviations 
of the mean (95%). These are considered areas with very 
high deviations between the future yield and the baseline 
yield and, therefore, significant low-yield zones. In these 
areas, reduced suitability for maize production might occur 
due to highly reduced yield. Adaptation spots are areas 
whose negative Z values of spatial association were equal 
to or greater than one standard deviation of the mean. These 
spots show a slight difference between the future yield and 
the baseline yield. Maize production is expected to decline 
in these zones. However, appropriate adaptation mechanisms 
are likely to overcome further yield decline. The stable zones 
are considered neutral, where average production in the 
baseline period will likely be maintained. The more stable 
areas are areas whose positive Z values are greater than one 
standard deviation of the mean. These regions show a high 
positive difference between the future yield and the baseline 
yield. Yield in these areas is likely higher than the average 
due to the accrued benefits of climatic conditions.

Results

Projections and trends in yield in the mid‑ 
and end‑of‑century periods

The DSSAT-CERES-Maize model characterized maize 
yield under the RCP scenarios based on the baseline and 
future climate data (Fig. 2). The model simulated yield 
decline from the baseline in all future scenarios and across 
the RCPs. The average modelled yields across the baseline 
period (1984–2013) ranged from 2.9 to 5.8 t  ha−1. This yield 
range corresponds to the average measured yield reported 
in the annual government statistics (GOK 2020). The devia-
tion in maize yield from the baseline differed across sce-
narios and periods. For the mid-century period, the model 
projected an average decline in yields by 7.9% under the 
RCP4.5 scenario, whereas the yield decline was approxi-
mately 25% under the RCP8.5 scenario. The end-of-century 
period was even marked with projected higher declines rela-
tive to the mid-century period. The yield decline relative to 
the baseline period is approximately 12% under the RCP4.5 
scenario and 36% under the RCP8.5 scenario.

Maize yield was also found to be variable across the dif-
ferent warming levels. The mid-century period depicted 
high variability in yields in comparison to the end-of-
century period, as indicated by the width of the box plots. 
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Despite the significant decline, the yield under the RCP4.5 
scenario will likely become higher than the yield under the 
RCP8.5 scenario. The results indicate that the yield will 
range between 2.50 and 4.50 t  ha−1 across the years under 
RCP4.5. However, under RCP8.5, the minimum yield will 
remain the same, whereas the maximum yield will decrease 
to approximately 3.90 t  ha−1.

Spatial clustering and climate impact spots

Moran’s I indices for future-baseline yield ranged between 
0.42 and 0.77, indicating positive spatial clustering of yield 
differences in the region. The analysis of impact spots aris-
ing from climate change effects revealed various patterns 
across the study area (Fig.  3). Hotspots under RCP4.5 
and 8.5 covered fewer areas in the mid-century period but 
increased in the end-of-century period. However, adaptation 
spots covered substantial parts of the study area under the 
two climatic scenarios and periods. Adaptation spots under 
RCP4.5 were located mostly in the southern regions of Uasin 
Gishu County. Similarly, some eastern parts of Trans Nzoia 
County revealed decreased yields in the mid-century period. 
The RCP8.5 scenario, however, revealed a slight difference 
in the representation of adaptation spots in Trans Nzoia 
County. Some northern parts of the county were mapped 
as adaptation locations. Both scenarios showed agreement 
in representing adaptation spots in Uasin Gishu County, 
where southern parts of the region revealed low yields from 
the baseline period. Stable areas in the mid-century period 
cover western parts of Trans Nzoia and northern and south-
ern parts of Uasin Gishu County. More stable zones were 

found in Trans Nzoia County and northern parts of Uasin 
Gishu County.

In the end-of-century period, both scenarios (RCP4.5 and 
RCP8.5) revealed that the counties will likely be marked 
by hotspots and adaptation spots. These zones significantly 
increased in the end-of-century period, which also reflects 
the yield distribution in the period. Hotspot zones are likely 
to increase during this period for both climate scenarios. 
The zones are concentrated in the southern parts of Uasin 
Gishu County and central western Trans Nzoia County. Sta-
ble zones were significantly reduced in the projected end-of-
century period. The zones are mapped in the western parts 
of Trans Nzoia County under RCP4.5. Similarly, more stable 
zones might be further reduced and are projected as small 
pockets in both counties under the two climatic scenarios. 
Surprisingly, the end-of-century period was marked by 
decreased hotspots under the RCP8.5 relative to the RCP 
4.5 scenario. The possible reason for the finding could be 
attributed to the increased precipitation under the RCP 8.5 
scenario. It is projected that most parts of the East Africa 
region will record increased precipitation, which could 
enhance crop growth in some parts of the region. There-
fore, yield decline as a result of increased warming could 
be compensated by rainfall increase in the high emission 
scenario (Cook and Vizy 2013; Choi et al. 2023).

Discussion

Projections and trends in yield under future climate 
scenarios

The DSSAT-CERES model was used to quantify future pro-
duction based on the projected climate of the study area. 
Crop models are powerful tools for quantifying future cli-
mate impacts. With the DSSAT-CERES-Maize model, the 
present study assessed the impact of future climates on 
maize production in key maize-growing regions in Kenya. 
The results show that the projected period will likely face 
varied magnitudes of maize yield decline in the study area. 
The study found a decline between − 7 and − 20% in the 
mid-century period and from − 22 to − 41% in the end-of-
century period. These ranges align with other studies in 
the East African region using various modelling platforms 
(Bwambale and Mourad 2021; Volk et al. 2021; Babel and 
Turyatunga 2015). Similarly, other studies in the larger 
Eastern Africa region experienced yield declines of mag-
nitudes relative to that observed in the study (Abera et al. 
2018; Chekole and Mohammed Ahmed 2023). A possible 
reason for the projected yield is the increase in temperature 
and highly varying precipitation in the future. For instance, 
the climate models projected suppressed precipitation dur-
ing the region’s main sowing window (March–May). The 

Fig. 2  Mean yields and distribution of the H614 cultivar for the base-
line (1984–2013), the future projections, mid-century period (2041–
2070) and end-of-century period (2071–2100) under RCP4.5 and 
RCP8.5 scenarios
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Fig. 3  Characterization of impact spots and stable maize yield zones for the mid-century period (2041–2070) and end-of-century period (2071–
2100) under a RCP 4.5 and b RCP 8.5
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literature suggests that water deficit at sowing significantly 
affects maize growth and development (Song et al. 2019). 
Additionally, suppressed precipitation and elevated tempera-
ture levels reduce crop growing seasonal length and affect 
maize organ development. Furthermore, important crop 
phase durations, such as flowering and maturity, are short-
ened under future climate changes, leading to yield decline 
(Lin et al. 2015; Hatfield 2016). The study reveals that the 
projected maximum rise in minimum and maximum temper-
atures will likely coincide with the sowing and reproductive 
stages. These stages are sensitive to heat stress and critical in 
maize development, as they determine the plant population 
and kernel formation (Wang et al. 2021).

The climate models projected increased precipitation in 
September and a subsequent short rainy season in the study 
area. Considering the current standard agronomic practices 
in the study area, precipitation variability might necessi-
tate adjustment in future agronomic planning by farmers 
(Shiferaw et al. 2011). Other related studies have also found 
projected favorable climates beyond the standard growing 
periods (Dunning et al. 2018; Palmer et al. 2023) in the East 
African region, which might trigger the adjustment of agro-
nomic practices to meet future crop climatic demands. Fur-
thermore, the findings of this study indicate that crop yields 
will likely be severely affected under both emission scenario 
pathways. Under future climates,  CO2 concentration levels 
and temperatures are expected to rise, and these variables are 
projected to influence maize yields (Zhai et al. 2021). The 
mid-century period is characterized by lower precipitation 
declines than in the end-of-century period. Nonetheless, the 
study reveals that the yield for both periods will be impacted 
by climate change.

Therefore, the combined precipitation and temperature 
dynamics will affect the evapotranspiration demand and soil 
water content, posing risks to maize growth and develop-
ment. This finding is especially true in the study area where 
maize production is dominantly rainfed, leading to higher 
production risks. Therefore, changes in climatic patterns will 
necessitate the adjustment of agronomic practices, especially 
in hotspot zones, to alleviate the decline in future produc-
tion. Agronomic, vegetative and soil and water manage-
ment measures are among the feasible strategies that can be 
employed to bridge the yield gaps and curb yield declines, 
as indicated by studies in the region (Rotich et al. 2024; 
Oduor et al. 2021).

Implications of the study for future maize 
production

This article contributes to the knowledge of the impact of 
climate change on future maize production in two maize-
producing counties in Kenya. The study has demonstrated 
the usefulness of crop modelling and spatial analysis 

techniques for understanding the heterogeneous impacts 
of climate change. The combined approach allowed the 
understanding of complex relations of productivity-climate 
dynamics interactions and provided insights into future 
production patterns and trends that enable the visualization 
of the differential impacts of climate change in the study 
region. In this way, the varied yield response has been clas-
sified to depict areas of possible high-yield decline (hot-
spots), below-average yield (adaptation spots), maintained 
production (stable zones) and possible yield increase (more 
stable zones). The mapped environments provide meaningful 
information regarding tailoring strategies that can overcome 
the decline in maize productivity in the study region. Some 
useful initiatives for enhancing productivity include:

 i. Supporting efforts and projects that are aimed at creat-
ing farmers’ awareness and supporting climate-smart 
initiatives should be enhanced, especially in hotspots 
and adaptation zones;

 ii. Emphasizing the identification of context-specific tar-
geted adaptation strategies, for example, maize-leg-
ume intercropping, soil water conservation practices, 
drought-resistant varieties and optimum sowing for 
possible up- and out-scaling;

 iii. Optimizing agronomic practices, for example, sowing 
practices, nutrient management in low-yield zones and 
the selection of resilient maize cultivars to help farm-
ers better cope with climate change impacts and

 iv. Enhancing early warning systems to mitigate the antic-
ipated production declines.

Conclusions

This study is aimed at assessing the impact of climate 
change on maize yield at the county scale in Kenya using 
the DSSAT-CERES-Maize model. The study revealed possi-
ble yield declines under future climates, which also demon-
strated varied patterns across the region. The study revealed 
a projected yield decline of up to − 41% in some parts of the 
area based on future climate dynamics. Furthermore, the 
study found that hotspots and adaptation zones will expand 
in the future, compromising food demand in a substantial 
part of the study area. However, few areas were flagged as 
stable zones and more stable zones. These findings highlight 
the need for region-specific adaptation and mitigation strat-
egies such as maize-legume intercropping, soil water con-
servation practices, drought-resistant varieties and optimum 
sowing, particularly in hotspots and adaptation regions.

The implications of this research extend to agronomists 
and policy-makers at the county and national levels, inform-
ing agricultural planning and climate adaptation efforts. By 
enabling the scaling up of targeted adaptation strategies 
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and enhancing early warning systems, the study contributes 
to mitigating the anticipated production declines. Moreo-
ver, the potential reduction in maize suitability indicated 
by the expanded adaptation locations suggests the urgency 
for addressing food security in Kenya’s key food-producing 
regions.
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