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A B S T R A C T

Probiotic lactic acid bacteria (LAB) are widely used in fermented food products and as feed additives for live-
stock, poultry, and fish. Fermented rice presents significant potential as an alternative carrier for probiotics. 
Therefore, this study aimed to isolate, identify, and characterize potential probiotic LAB strains from fermented 
traditional rice cultures. After primary isolation on De Man, Rogosa, and Sharpe (MRS) agar, presumptive iso-
lates were first phenotypically characterized using Gram staining, catalase assay, endospore staining, and 
motility tests. Preliminary phenotypic tests identified 48 isolates as presumptive LAB. 16S rRNA sequencing 
analysis confirmed the presence of five species; Lacticaseibacillus casei, Lacticaseibacillus paracasei, and Lactica-
seibacillus rhamnosus, notably, Schleiferilactobacillus harbinensis, and Liquorilactobacillus vini were identified for the 
first time in fermented rice. In the biochemical characterization, none of the isolates produced H2S, and all 
exhibited a homofermentative glucose utilization pattern. The majority (71 %) demonstrated detectable growth 
at 15 ◦C and 45 ◦C and tolerated NaCl concentrations up to 6.5 %. Regarding probiotic potential, the isolates 
were sensitive to widely used therapeutic antibiotics and exhibited strong antimicrobial activity against Staph-
ylococcus aureus, Escherichia coli, Salmonella enteritidis, and Candida glabrata. They also showed bile tolerance up 
to 0.3 % (w/v) and possessed milk coagulation ability. Our findings suggest these LAB strains have potential for 
use in fermented foods and livestock feed due to their probiotic properties, including antimicrobial activity, bile 
tolerance, and milk coagulation. They may serve as natural alternatives to antibiotics and additives, but further 
in vivo studies are needed to confirm their efficacy and stability.

1. Introduction

The majority of probiotic bacteria commonly used in food and feed 
are lactic acid bacteria (LAB), including Lactobacillus, Bifidobacterium, 
Enterococcus, Streptococcus, and Leuconostoc. In addition to LAB, other 
bacterial genera such as Escherichia coli and Propionibacterium, as well as 
yeast species like Saccharomyces, are frequently used as probiotics 
(Butel, 2014). While fermented dairy products and the animal intestine 
are the most common sources, probiotic bacteria can also be derived 
from various traditional fermented products made from diverse 

substrates (Rivera-Espinoza & Gallardo-Navarro, 2010). Additionally, 
non-dairy, plant-based foods such as fruits, vegetables, grains, and le-
gumes have proven to be effective probiotic carriers (Rasika et al., 
2021).

Fermented rice has the potential to serve as an alternative non-dairy 
probiotic carrier (Jeygowri et al., 2015). Traditional fermented 
rice-based foods, such as “Diya Bath” in Sri Lanka, offer several health 
benefits, including enhanced micronutrient bioavailability. The pres-
ence of LAB in fermented rice aids in breaking down anti-nutritional 
factors, further improving nutrient absorption (Karunaratne, 2018; 
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Perera et al., 2010).
Various Lactobacillus species isolated from fermented rice have 

demonstrated probiotic properties, including antimicrobial activity, bile 
tolerance, and acid resistance (Victor-Aduloju et al., 2018). Recent 
studies on fermented rice from India identified functionally active 
Lactobacillus fermentum and Lactobacillus plantarum strains with strong 
gut-survival and health-promoting properties. Their key functional at-
tributes, such as galactosidase activity and antibacterial effects, suggest 
potential applications in functional foods for lactose-intolerant in-
dividuals and immune support products (Bhatt et al., 2024). Therefore, 
assessing fermented rice as a traditional non-dairy probiotic source is 
essential.

The production of fermented dairy products relies on lactic acid, the 
primary metabolic end-product of LAB (Fernández et al., 2015). Pro-
biotic microbes are widely incorporated into these products to enhance 
nutrient digestion and bioavailability, inhibit pathogenic bacteria in the 
gut, and improve sensory attributes like texture (Patrignani et al., 2020). 
Therefore, exploring unconventional sources of probiotic LAB is essen-
tial for identifying potential starter cultures and functional probiotics 
suitable for fermented milk products.

The use of probiotics as feed additives in livestock production has 
increased following the ban on Antibiotic Growth Promoters (AGPs) in 
the livestock and poultry industry (Mingmongkolchai & Panbangred, 
2018). Probiotics offer numerous benefits, including improved growth, 
feed conversion efficiency, immune response, and protection against 
enteric pathogens (Yousaf et al., 2022). Further research is needed to 
identify promising probiotic strains and optimize their application in 
livestock, poultry, and fish as AGP alternatives. This study aims to 
isolate and characterize potential probiotic LAB species from fermented 
rice cultures, evaluating their physiological, biochemical, and probiotic 
properties. We hypothesize that fermented rice cultures harbor diverse 
LAB species with probiotic potential suitable for various applications.

2. Materials and methodology

2.1. Isolation of lactic acid bacteria

2.1.1. Sample preparation
Fermentation was conducted by soaking raw Pachchaperumala rice, a 

popular traditional heirloom variety in Sri Lanka, in sterile distilled 
water (1:3 rice-to-water ratio) overnight (12–16 h) at 27 ◦C with 70–80 
% relative humidity. Sterilized cow milk and bee honey were then added 
as enrichment ingredients. After one week of fermentation, cultures 
were collected for analysis. The study included four replicates per 
sample, each prepared in separate batches.

2.1.2. Inoculation and incubation
The inoculation of bacteria from fermented rice cultures was per-

formed according to the method described by Kowsaly et al., (2022)
with modifications. Commercial de Man, Rogosa, and Sharpe (MRS) agar 
(HiMedia, India, M641I) was prepared following the manufacturer’s 
instructions. A dilution series of fermented rice cultures was prepared up 
to 10⁻⁷ for four replicates. From each dilution, 100 µL was inoculated 
into prepared Petri dishes and incubated at 37 ◦C for in anaerobic jars 
(Oxoid Ltd, Hampshire, UK) with an anaerobic environment (<1 % O₂, 
9–13 % CO₂) generated using AnaeroGen® sachets (AN0025A, Oxoid 
Ltd, Hampshire, UK).

2.1.3. Purification
Morphologically distinct and well-isolated colonies were selected 

based on colony morphology and suspended in MRS broth (HiMedia, 
India, GM369). Gram-positive, rod-shaped colonies were then streaked 
onto MRS agar plates and incubated at 37 ◦C under anaerobic conditions 
for 48 h. Distinct colonies were sub-cultured on fresh agar plates to 
obtain pure cultures.

2.2. Morphological identification of lactic acid bacteria isolates

The macroscopic characteristics of the isolates, including colony size, 
shape, color, and texture, were examined. Tests were conducted 
following the procedures outlined by the American Society for Micro-
biology (Hussey, 2016; Patricia Shields & Cathcart, 2011a; Reiner, 
2013; Smith & Hussey, 2016).

2.2.1. Gram’s staining
Air-dried and heat-fixed smears of pure cultures were sequentially 

stained with crystal violet, Gram iodine, a decolorizing agent, and 
safranin, with gentle washing after each step. The slides were then blot- 
dried with absorbent paper and examined under an oil immersion mi-
croscope (Optika, Italy B-190).

2.2.2. Catalase test
A small amount of a fresh, well-isolated colony was transferred onto 

a microscope slide using a sterile inoculating loop. A drop of 3 % H₂O₂ 
was then added. The rapid formation of air bubbles indicated a positive 
catalase test (Reiner, 2013).

2.2.3. Endospore test (spore staining)
A bacterial smear was prepared on a microscope slide and covered 

with 10 % aqueous malachite green, then steamed for 2 min. After 
washing, the smear was flooded with 0.5 % aqueous safranin, rinsed, 
dried, and examined under oil immersion for the presence or absence of 
green-stained spores (Hussey, 2016).

2.2.4. Motility test
The hanging drop method was used to assess the motility (Patricia 

Shields & Cathcart, 2011b). A loopful of fresh, overnight-grown broth 
culture was placed at the center of a coverslip. A cavity slide was then 
inverted and gently placed over the coverslip, creating a depression over 
the culture drop. The slide was carefully inverted, allowing the drop to 
hang freely in the cavity. The cells were observed under medium power 
(× 40) with reduced light for the presence or absence of movement.

2.3. Long-term preservation of isolates

Presumptive LAB isolates were preserved for future experiments by 
suspending bacterial cells in a cryoprotectant medium with 15 % (v/v) 
glycerol to minimize freezing damage. MRS broth was prepared ac-
cording to the manufacturer’s instructions, inoculated with pure culture 
colonies, and incubated at 37 ◦C for 24 h. After incubation, sterilized 
glycerol was added, and the samples were stored at -20 ◦C for further 
experiments.

2.4. Physiological and biochemical characterization of the isolates

2.4.1. Hydrogen sulfide production
Hydrogen sulfide (H₂S) production was assessed using Triple Sugar 

Iron (TSI) agar (HiMedia, India, M021). TSI agar slants were prepared 
according to the manufacturer’s instructions. Fresh colonies from each 
isolate were separately inoculated into the butt and streaked on the 
slant. The tubes were incubated at 37 ◦C for 24 h, and H₂S production 
was indicated by the development of a black color in the butt due to 
ferrous sulfide formation.

2.4.2. Gas production from glucose fermentation
Fermentation patterns aid in bacterial classification. Each isolate was 

inoculated into test tubes containing MRS broth with glucose (20 g/L) 
and inverted Durham tubes, then incubated at 37 ◦C for 24 h. Gas 
accumulation in Durham tubes indicated CO₂ production from glucose 
fermentation.
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2.4.3. Evaluating temperature tolerance
LAB temperature tolerance was assessed following Putri et al. (2020)

with modifications. Test tubes containing MRS broth were inoculated 
with 1% (v/v) fresh overnight culture and incubated at 5, 15, 37, and 45 
◦C for 48 h. Growth was measured using a UV spectrophotometer 
(V-1100D, M.R.C LTD, Israel) at OD620, with tolerance expressed as 
ΔOD620 from 0 to 48 h.

2.4.4. Evaluating NaCl tolerance
NaCl tolerance of LAB isolates was assessed following Putri et al. 

(2020), with few modifications. MRS broth was adjusted to 2, 4, and 
6.5% NaCl and inoculated with 1 % (v/v) fresh overnight culture. After 
incubation at 37 ◦C for 48 h, growth was measured using a UV spec-
trophotometer at OD620, with tolerance expressed as ΔOD620 from 0 to 
48 h.

2.5. Molecular identification of lactic acid bacteria isolates

Molecular identification of selected isolates followed Adikari et al. 
(2021). Pure cultures were grown in MRS broth at 37 ◦C for 24 h, then 
centrifuged at 12,500 × g for 10 min. The supernatant was discarded, 
and pellets were stored at -20 ◦C for DNA extraction using a QIAamp® 
DNA mini kit (QIAGEN, USA). Extracted DNA was stored at -20 ◦C. The 
16S rRNA gene was amplified using primers TH008 (forward 5′ 
AGRGTTYGATTMTGGCTCAG 3′) and PH1522 (reverse 5′ AAGGAGGT-
GATCCAGCCGCA 3′). PCR conditions included an initial denaturation 
(94 ◦C, 3 min), followed by 35 cycles of denaturation (94 ◦C, 45 s), 
annealing (50 ◦C, 60 s), elongation (72 ◦C, 90 s), and a final extension 
(72 ◦C, 10 min). PCR products (2 µL) were electrophoresed on a 1% 
agarose gel with ethidium bromide, using a 1 kb DNA ladder, and 
visualized with a Gel Documentation System (Vilber Lourmat®, France).

2.5.1. Sequencing of 16S rRNA gene
The total amplified product was electrophoresed on a 1 % agarose 

gel, excised, and purified using the Wizard® SV Gel and PCR Clean-Up 
System (Promega, USA). Purified products were sequenced via Sanger 
dideoxy sequencing by Genelabs® Medical Private Limited (Colombo, 
Sri Lanka). Resulting gene sequences were trimmed, cleaned, and 
compared using the BLAST algorithm in GenBank (NCBI, Bethesda, MD, 
USA). Identification was confirmed based on sequence similarity scores. 
The 16S rRNA gene sequences were deposited in the GenBank nucleo-
tide database under the accession numbers: PV133518 (LAB-1), 
PV133524 (LAB-2), PV133521 (LAB-3), PV133523 (LAB-4), and 
PV133519 (LAB-5).

2.6. Determination of probiotic properties of lactic acid bacteria isolates

2.6.1. Determination of antibiotic sensitivity of the isolates
The disc diffusion method, standardized by Kirby and Bauer, was 

used to assess antibiotic sensitivity, following the American Society for 
Microbiology guidelines with minor modifications (Hudzicki, 2012). 
McFarland 0.5 standard solutions were prepared for each isolate. A 
sterile swab was dipped into the inoculum tube, and Mueller-Hinton 
(MH) agar (Oxoid, England, CM0337B) plates were inoculated by 
streaking the swab across the entire agar surface. The following anti-
biotics were tested: Ampicillin (25 µg/disc), Chloramphenicol (10 
µg/disc), Ciprofloxacin (10 µg/disc), Cefotaxime (30 µg/disc), Erythro-
mycin (15 µg/disc), Tetracycline (30 µg/disc), and Vancomycin (30 
µg/disc) (MASTDISCS®, Mast Group Ltd.). Antibiotic-impregnated discs 
were placed on the agar and incubated at 37 ◦C for 16–18 h. After in-
cubation, inhibition zones were measured and classified as sensitive or 
resistant based on American Society for Microbiology standards 
(Hudzicki, 2012).

2.6.2. Determination of antimicrobial properties of the isolates
The antimicrobial properties of the isolates were evaluated using the 

agar well diffusion assay, following the method described by Balouiri 
et al. (2016). McFarland 0.5 standard solutions were prepared for 
pathogenic species, including Candida albicans, Candida glabrata, 
Staphylococcus aureus (ATCC 29,213), E. coli (ATCC 25,922), and Sal-
monella enteritidis. Two milliliters of each prepared pathogen culture 
were flood-inoculated onto MHA plates (90 mm). Sterile cork borers (9 
mm) were used to create wells on the MHA plates, which were then 
loaded with 180 μL of cell-free supernatants from overnight-grown broth 
cultures. Uninoculated MRS broth served as the negative control. 
Following incubation at 37 ◦C for 24 h, the inhibition zones around each 
well were measured. An inhibitory zone diameter exceeding 1 mm was 
considered indicative of significant antibacterial activity (Balouiri et al., 
2016).

2.6.3. Determination of bile tolerance of the isolates
Bile tolerance of the isolates was assessed following the method of 

Hu et al. (2018). Each isolate was inoculated into two test tubes: one 
containing MRS broth with 0.3 % (w/v) bile salts (SRL, India, 50,362) 
and another without bile salts (control). Both tubes were incubated at 37 
◦C for 24 h. Bacterial growth was measured using a UV spectropho-
tometer, and bile tolerance was expressed as the percentage of OD620 in 
the presence of bile salts relative to the control.

2.6.4. Determination of milk coagulation ability of the isolates
McFarland 0.5 standard solutions were prepared for each isolate. 

One milliliter of the suspension was added separately to 10 mL of ster-
ilized cow and buffalo milk and incubated at 45 ◦C for 16 h. Milk 
coagulation was assessed at the end of the incubation period. The pH of 
the milk was measured before inoculation and after incubation using a 
pH meter (Trans Instruments, Singapore, BP 3001, Range: 0 to 14 pH, 
Accuracy: ± 0.02 pH, Operating temperature: 5 to 40⁰ C).

2.7. Statistical analysis

All data were analyzed using one-way ANOVA. A Two-Factor 
Factorial CRD model was applied to experiments such as temperature 
tolerance, NaCl tolerance, antibiotic sensitivity, and antimicrobial 
property testing. Statistical analysis was conducted using Minitab® 
version 21.2, with mean comparisons performed using Tukey’s range 
test. Differences were considered statistically significant at P < 0.05.

3. Results and discussion

3.1. Isolation and morphological characterization of lactic acid bacteria 
isolates

The primary isolation of LAB species was based on their growth on de 
MRS agar and colony morphology. Cell morphology was examined using 
an oil immersion objective (× 1000), revealing that most isolates from 
fermented rice cultures were rod-shaped bacilli. Five distinct morpho-
logical types were identified in this study, including short, medium, 
long, and very long rods, appearing as single cells, pairs, or short chains 
as illustrated in Table 1.

Morphologically, most LAB are coccobacilli or rod-shaped, with 
chain formation common in certain genera. They are Gram-positive, 
catalase-negative, non-spore-forming, and mostly non-motile species 
(Earnshaw, 1990). In this study, a subsequent purification process was 
carried out for catalase-negative and viable isolates. Gram-positive, 
rod-shaped bacteria were further tested for motility and endospore 
formation. A total of 48 isolates were classified as presumptive LAB 
based on their Gram-positive, catalase-negative, non-motile, and 
non-spore-forming characteristics. These isolates were preserved in MRS 
broth with 15 % (v/v) sterilized glycerol and stored at -20 ◦C for future 
investigations.
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3.2. Molecular characterization of lactic acid bacteria isolates

The identification of LAB isolates using 16S rRNA sequencing has 
emerged as a powerful molecular technique for exact identification of 
the isolates (Janda and Abbott, 2007). This method relies on sequencing 
the hypervariable regions of the bacterial 16S rRNA gene, which contain 
conserved regions suitable for primer binding as well as variable regions 
that provide species-specific sequence signatures. By comparing the 
obtained sequences with reference databases such as the National Center 
for Biotechnology Information (NCBI) GeneBank, LAB isolates can be 
accurately identified at the genus and species levels (Sun et al., 2015). 
The 16S rRNA gene sequencing identified the LAB isolates from fer-
mented rice cultures, with sequence similarities ranging from 99.03 % to 
99.56 % to reference strains in the GenBank database. The identified 
species included Lacticaseibacillus casei, Lacticaseibacillus paracasei, 
Schleiferilactobacillus harbinensis, Liquorilactobacillus vini, and Lacticasei-
bacillus rhamnosus. Detailed identification results, including sequence 
identities and accession numbers, are presented in Table 2.

The Lactobacillus casei group (recently known as Lacticaseibacillus), 
comprising L. casei, L. paracasei, and L. rhamnosus, sourced from fer-
mented foods, and dairy. They are widely used in food fermentation, 
biopharmaceuticals, and health applications, promoting gut health and 
potentially treating various diseases. (Hill et al., 2018).

Das et al. (2019) identified and characterized Lacticaseibacillus casei 
from rice beer prepared in Assam, India, as part of a study on LAB. 

Identification was confirmed through 16S rRNA sequencing, high-
lighting its potential as a probiotic and starter culture. According to 
Jarocki et al. (2023) L. casei strains are notable for their beneficial effects 
on human health and their applications in industrial processes, 
including dietary supplements and probiotics. Additionally, their pro-
phage sequences contribute to genetic diversity, facilitating colonization 
of new ecological niches and influencing bacterial metabolism. Ac-
cording to (Baliyan et al., 2021) L. paracasei was isolated from undis-
tilled lugri (traditional fermented alcoholic beverage from the 
North-Western Himalayas, using wheat, rice, and barley as substrates), 

Table 1 
Morphological characteristics of isolated lactic acid bacteria from fermented rice cultures.

Group No. of 
Isolates

Morphological Description Appearance under the Light Microscope (× 1000 
Magnification)

LAB-1 15 Long size, Gram-positive, rod-shaped bacteria, arranged as single/pair or as chains

LAB-2 15 Medium size, Gram-positive, rod-shaped bacteria, arranged as a pair/group or as chains

LAB-3 13 Small, rectangular, Gram-positive, rod-shaped bacteria, arranged as a pair/group or as 
chains

LAB-4 03 Very long size, Gram-positive, rod-shaped bacteria, arranged as single/pair or as a 
group

LAB-5 03 Short chains of smaller cells, Gram-positive, rod-shaped bacteria, arranged as groups or 
chains

Table 2 
Identification of the lactic acid bacteria isolates from fermented rice cultures by 
sequence comparisons using NCBI BLAST algorithm.

Group of 
Isolates

Identified species Identities 
( %)

GenBank ID of 
reference 
strain

Accession 
number

LAB-1 Lacticaseibacillus casei 99.46 JQ412731.1 PV133518
LAB-2 Lacticaseibacillus 

paracasei
99.56 CP104303.1 PV133524

LAB-3 Schleiferilactobacillus 
harbinensis

99.27 CP041364.1 PV133521

LAB-4 Liquorilactobacillus vini 99.03 AY681132.1 PV133523
LAB-5 Lacticaseibacillus 

rhamnosus
99.07 KM513647.1 PV133519
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demonstrating superior probiotic attributes, and antioxidant activity. 
Another study isolated L. paracasei from Tapuy, an indigenous alcoholic 
beverage made from fermented glutinous white rice. The study evalu-
ated its probiotic properties, demonstrating its potential as a candidate 
probiotic strain due to various desirable attributes (Malilay et al., 
2024a). Rice-based Lugri harboring the highest number of promising 
isolates. Lacticaseibacillus paracasei LUL:01 demonstrated superior anti-
oxidant activity and successfully fermented milk while maintaining 
viable counts above legal requirements during 28 days of storage, 
making it a strong candidate for probiotic functional food applications 
(Baliyan et al., 2021).

L. rhamnosus was identified among the LAB isolated from fresh 
Chinese traditional rice wines. The study utilized a culture-dependent 
method alongside denaturing gradient gel electrophoresis to success-
fully monitor LAB diversity, including L. rhamnosus (Jiao et al., 2016). 
Schleiferilactobacillus harbinensis (previously known as Lactobacillus 
harbinensis) recently identified as a novel species from traditional Chi-
nese fermented vegetables, “Suan cai,” in Harbin, Northeastern China 
(Miyamoto et al., 2005). Taxonomic analysis revealed that these strains, 
initially classified alongside Lactobacillus perolens DSM 12,745, exhibi-
ted distinct genetic and phenotypic characteristics, including facultative 
heterofermentation, lactate and ethanol production, and a DNA G+C 
content of 53–54 mol %. However, there is currently no documented 
evidence of its isolation from fermented rice sources and this study is the 
first time that we document the presence of Schleiferilactobacillus harbi-
nensis from fermented rice. L. harbinensis significantly enhances the 
organoleptic qualities and nutritional profile of fermented foods by 
converting carbohydrates into beneficial acids and hydrolyzing proteins 
into bioactive peptides, thereby increasing the overall nutritional value 
of the final product (Zheng et al., 2020).

Lactobacillus vini (recently known as Liquorilactobacillus vini) is a 
significant LAB spp. in the context of winemaking and ethanol fermen-
tation, primarily due to its unique stress responses and metabolic ca-
pabilities. This bacterium not only survives in harsh industrial 
environments but also plays a role in the fermentation process, influ-
encing both the quality and efficiency of production (Mendonça, 2018; 

Nogueira Da Silva et al., 2019) However, there is currently no docu-
mented evidence of its isolation from fermented rice sources.

3.3. Biochemical and physiological characterization of lactic acid 
bacteria isolates

3.3.1. H2S production
In the current study, none of the isolates exhibited black precipitate 

formation in triple sugar iron (TSI) agar, indicating the absence of H₂S 
production (Table 3). In contrast, E. coli and Salmonella, used as positive 
controls, displayed gas production and H₂S precipitation in the anaer-
obic region of the medium (Fig. 1). TSI agar contains three carbohy-
drates: sucrose (1 %), lactose (1 %), and glucose (0.1 %). This method 
differentiates bacteria based on their ability to produce H₂S. Black pre-
cipitate formation in the anaerobic region of the medium indicates H₂S 
production from thiosulfate. This occurs due to the reaction between H₂S 
and ferrous ammonium sulfate, forming black ferrous sulfide. Gas pro-
duction (CO₂ and O₂) was identified by agar displacement or splitting. In 
some cases, substantial gas production can cause the agar to be pushed 
upward within the tube (Lehman, 2000).

Lactobacillus spp. primarily ferment carbohydrates via the glycolytic 
pathway, in which sugars are metabolized to pyruvate and then con-
verted to lactic acid. The absence of sulfur-reducing enzymes in LAB 
precludes the production of hydrogen sulfide as a fermentation by- 
product (LeBlanc et al., 2013). Furthermore, research has shown that 
the metabolic pathways of LAB are highly conserved across different 
species and strains. This metabolic uniformity suggests that LAB does 
not possess the biochemical pathways required for hydrogen sulfide 
production (Broadbent et al., 2012).

3.3.2. Gas production from glucose fermentation
Fermentation patterns help categorize bacteria into distinct groups 

(Table 3). Fig. 1 illustrates CO2 production during glucose utilization. 
The results indicate that all isolates utilized glucose as a fermentation 
substrate. However, none produced CO2, exhibiting a homofermentative 
sugar utilization pattern. This process primarily yields acid or, in some 

Table 3 
Physiological characteristics of isolated lactic acid bacteria from fermented rice cultures.

Group Isolates H2S production Gas production from glucose fermentation Growth at different conditions

Temperatures ( ◦C) NaCl concentration ( %)

5 15 37 45 2 4 6.5

LAB-1 1 – – – + + + + + +

2 – – – + + + + + +

3 – – – – + + + + +

4 – – – + + + + + +

5 – – – + + + + + +

6 – – – – + + + + –
LAB-2 7 – – – + + + + + +

8 – – – + + + + + –
9 – – – + + + + + –
10 – – – + + + + + +

11 – – – + + + + + +

12 – – – + + + + + +

LAB-3 13 – – – + + + + + +

14 – – – + + + + + –
15 – – – + + – + + +

16 – – – + + + + + +

17 – – – – + + + + +

18 – – – + + + + + +

LAB-4 19 – – – – + + + + +

20 – – – + + + + + +

21 – – – + + – + + –
LAB-5 22 – – – – + + + + +

23 – – – + + + + + –
24 – – – + + + + + –

+ Positive reaction
- Negative reaction

D. Madushanka et al.                                                                                                                                                                                                                          Applied Food Research 5 (2025) 100865 

5 



cases, acid with gas production (CO2). The specific end-products vary 
based on the substrate, microbial species, enzymatic activity, and 
environmental conditions such as pH and temperature (Reiner, 2012).

According to Buron-Moles et al. (2019) the Lacticaseibacillus casei 
group exhibits homofermentative characteristics, primarily fermenting 
carbohydrates to lactic acid. It lacks key enzymes like 1-phosphofructo-
kinase for D-mannose degradation and has limited metabolic diversity 
compared to heterofermentative species. Schleiferilactobacillus harbi-
nensis also efficiently utilizes glucose via glycolysis, resulting in high 
lactic acid yields, a characteristic feature of homofermentative LAB 
(Buron-Moles et al., 2019). Similarly, L. vini is homofermentative, 
exclusively fermenting pentoses to produce DL-lactate as the sole end 
product. It does not generate gas from glucose and employs an inducible 
pentose phosphate pathway, distinguishing its metabolic pathway from 
heterofermentative lactobacilli (Rodas et al., 2006).

3.3.3. Evaluating temperature tolerance of lactic acid bacteria isolates
According to the temperature tolerance test, most isolates (71 %) 

exhibited detectable growth at both 15 and 45 ◦C, while 21 % grew only 
at 45 ◦C, and 8 % only at 15 ◦C. None of the isolates grew at 5 ◦C 
(Table 3). The effects of isolate groups and temperature on growth are 
shown in Fig. 2. LAB isolates exhibited optimal growth at 37 ◦C, with 
limited growth at 5 ◦C. However, no significant differences (P > 0.05) 
were observed between isolate groups and their growth at different 
temperatures.

According to Adu et al. (2018) Lacticaseibacillus strains endure pro-
longed heat stress (30–45 ◦C) by downregulating energy-intensive 

pathways and upregulating nitrogen and carbon transport systems. 
Heat shock proteins play a key role in their thermal stress response. 
Wang et al. (2015) highlighted that thermophiles like L. harbinensis 
adapt to extreme temperatures through genomic stability, protein di-
sulfide bonding, heat shock responses, and thermostable protein 
expression. These mechanisms enhance their thermal tolerance and 
functional acclimatization. The temperature tolerance of Lactobacilli 
supports their viability during food processing, ensuring effective pro-
biotic properties and stability for pathogen suppression in industrial 
probiotic foods (Fossi et al., 2017).

3.3.4. Evaluating NaCl tolerance of lactic acid bacteria isolates
The effect of different NaCl concentrations on isolate growth is 

shown in Fig. 2. Most isolates (71 %) tolerated NaCl concentrations up to 
6.5 %, while the rest tolerated up to 4 % (Table 3). Growth decreased 
with increasing NaCl concentrations, but no significant differences (P >
0.05) were observed between isolate groups. Lacticaseibacillus spp. 
exhibit physiological and biochemical adaptations that enhance survival 
under osmotic stress. L. casei shows increased NaCl tolerance through 
enhanced biofilm formation and cation binding at high salt concentra-
tions (0.8 M NaCl), with modifications in lipoteichoic acid aiding sur-
vival (Palomino et al., 2013). L. rhamnosus thrives at 4 % NaCl, 
indicating its potential for probiotic applications, particularly in vaginal 
microbiome restoration Silva et al. (2019). L. paracasei withstands up to 
9 % NaCl in MRS broth, demonstrating its resilience in food environ-
ments and the gastrointestinal tract (Malilay et al., 2024b).

Fig. 1. H₂S and gas production from glucose fermentation by LAB isolates recovered from fermented rice cultures. The top row shows TSI slants inoculated with 
Salmonella (A), LAB isolates (B), E. coli (C), and a negative control (uninoculated tube). The bottom row illustrates carbon dioxide production patterns in E. coli as the 
positive control (D), LAB isolates from fermented rice cultures (E), and the negative control (F).
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3.4. Determination of probiotic properties of lactic acid bacteria isolates

3.4.1. Antibiotic sensitivity of lactic acid bacteria isolates
The sensitivity of the isolates to commonly used antibiotics was 

tested by observing inhibition zones (Fig. 3). All five groups of isolated 
LABs were sensitive to all the antibiotics used (Table 4). According to the 
test results, the highest mean diameter inhibition zone was observed for 
erythromycin, and the lowest for chloramphenicol and ciprofloxacin. 
However, there were no significant differences (P > 0.05) among 
different groups of isolates and their inhibition zones.

Anisimova & Yarullina (2019) found that 90 % of Lactobacillus 
strains, including Lacticaseibacillus spp. demonstrated sensitivity to 
clindamycin, while 95 % were susceptible to tetracycline, erythromycin, 
and rifampicin. All strains were resistant to vancomycin, and amino-
glycosides. According to Sharma et al. (2017) L. casei exhibited sus-
ceptibility to imipenem, meropenem, chloramphenicol, and 
erythromycin, with intermediate susceptibility to cefotaxime. Mangia 
et al. (2019) found that L. paracasei is susceptible to chloramphenicol, 
clindamycin, penicillin, amoxicillin, erythromycin, tetracycline, and 
ampicillin, as indicated by clear inhibition zones in antibiotic disc 
diffusion tests. L. rhamnosus also displayed sensitivity to ampicillin, 
tetracycline and erythromycin (Van Toi, Bao Toan Truong Quang Dang 
Khoa, & Ha Lien Phuong, 2023).

The assessment of antibiotic sensitivity in LAB is crucial for 

evaluating their safety and potential as probiotic candidates. LAB are 
Generally Regarded As Safe (GRAS) microorganisms. However, deter-
mining their susceptibility to antibiotics is essential to ensure that they 
do not harbor antibiotic-resistance genes or transfer resistance to path-
ogenic bacteria (Luerce et al., 2014). Strains that exhibit broad-spectrum 
sensitivity and minimal resistance to clinically relevant antibiotics are 
preferred for probiotic application. (Dicks & Botes, 2010).

Antibiotic resistance in probiotics can be beneficial if it is intrinsic, as 
it may help restore gut microbiota during antibiotic therapy. However, 
acquired resistance poses a significant risk due to the potential hori-
zontal transfer of resistance genes to pathogens, which can lead to 
increased antibiotic resistance in harmful bacteria. Therefore, while 
intrinsic resistance may be advantageous, the presence of acquired 
resistance in probiotics raises safety concerns that necessitate careful 
evaluation of their antibiotic resistance profiles (Seyirt et al., 2023).

3.4.2. Determination of antimicrobial properties of lactic acid bacteria 
isolates

The antimicrobial properties of the LAB isolates against common 
pathogens were tested, and according to the size of the inhibition zones, 
all the isolates showed the ability to inhibit E. coli (ATCC 25,922), 
S. enteritidis, S. aureus (ATCC 29,213), and C. glabrata to different extents 
(Table 4). Cell-free supernatants of different LAB isolates gave the higher 
inhibition zones for E. coli and C. glabrata while the lower values were 

Fig. 2. Temperature (A) and sodium chloride (B) tolerance ability of different groups of isolates recovered from fermented rice cultures.
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for Salmonella and Staphylococcus. However, LAB isolates did not inhibit 
the growth of C. albicans (Fig. 3).

The key compounds responsible for the antimicrobial properties of 
probiotic bacteria include metabolites such as lactic acid, acetic acid, 

hydrogen peroxide, ethanol, diacetyl, acetaldehyde, acetone, carbon 
dioxide, and bacteriocins. These metabolites play a crucial role in 
inhibiting pathogenic microorganisms and serve as bio preservatives. 
(Monika et al., 2021). Bacteriocins secreting ability can indicate 

Fig. 3. Results of antibiotic sensitivity and antimicrobial properties of isolated lactic acid bacteria from fermented rice cultures. Inhibitory zones by LAB isolates 
against E. coli, C. glabrata, Salmonella, S. aureus and C. albicans are visualized in the bottom of the figure.

Table 4 
Probiotic properties of isolated lactic acid bacteria from fermented rice-based cultures.

Group Antibiotic sensitivity Antimicrobial property (average inhibitory zone in mm) Bile acid 
tolerance 
( % Reduction of 
ΔOD620)

pH reduction in 
cow milk

pH reduction in 
buffalo milk

AP C CIP CTX E TE E. coli C. glabrata Salmonella 
enteridica

S. aureus C. albicans

LAB-1 S S S S S S P P P P N 49.60 1.26±0.08 1.26±0.05
LAB-2 S S S S S S P P P P N 42.70 1.23±0.05 1.28±0.04
LAB-3 S S S S S S P P P P N 19.26 1.35±0.08 1.59±0.07
LAB-4 S S S S S S P P P P N 47.90 1.47±0.09 1.31±0.07
LAB-5 S S S S S S P P P P N 17.39 1.55±0.09 1.39±0.09

(AP) Ampicillin, (C) Chloramphenicol, (CIP) Ciprofloxacin, (CTX) Cefotaxime, (E) Erythromycin, (TE) Tetracycline, S: Sensitive, P: Positive, N: Negative
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potential probiotic bacteria by demonstrating selective inhibition of 
harmful gut microbiota species. (Elisa Heesemann Rosenkilde et al., 
2024). Bacteriocins produced by bacteria can be accurately detected 
through microbiological assays, confocal microscopy, and gene expres-
sion analysis of biofilm formation-related genes (Kiousi et al., 2023a).

According to Fateh et al. (2024) L. casei demonstrated antimicrobial 
properties by inhibiting the growth of Staphylococcus isolates, E. coli and 
Klebsiella pneumoniae, suggesting its potential as a complementary or 
alternative therapy to antibiotics for bacterial infections. L. paracasei 
also demonstrated significant antimicrobial activity, particularly 
inhibiting biofilm formation of Salmonella enterica. It effectively limited 
the viability of planktonic cells of Staphylococcus aureus and E. coli, 
showcasing its potential as a probiotic with antimicrobial properties 
(Kiousi et al., 2023b).

L. rhamnosus exhibits significant antimicrobial properties through its 
cell-free supernatant and cell components, demonstrating growth- 
dependent inhibition against both Gram-positive and Gram-negative 
bacteria including Streptococcus mutans and Fusobacterium nucleatum 
through the production of organic acids and bacteriocins, demonstrating 
a broad spectrum of bacterial inhibition against various pathogenic 
strains (Guan et al., 2024; Zhang et al., 2023). Mosbah et al. (2018)
found that L. harbinensis exhibits strong antifungal activity against 
various spoilage fungi in yoghurt, attributed to organic acids and newly 
identified compounds, including a spermine analogue and short cyclic 
polylactates, demonstrating potential applications in food and phar-
maceutical industries.

3.4.3. Determination of the bile tolerance of lactic acid bacteria isolates
According to the test results, all five groups exhibited over 50 % 

resistance to bile acids, with the majority of isolates demonstrating the 
ability to survive in 0.3 % (w/v) bile salts (Table 4). Bile salts, partic-
ularly bile acids, are antimicrobial compounds produced by the liver and 
released into the small intestine to aid in lipid digestion and absorption 
(Merritt & Donaldson, 2009). The ability of probiotic LAB to withstand 
bile exposure is crucial for their survival, colonization, and persistence 
in the gastrointestinal tract, where they interact with the host immune 
system, modulate gut microbiota composition, and confer health bene-
fits. Therefore, bile tolerance is a key criterion for selecting LAB strains 
for probiotic formulations, ensuring their viability and efficacy during 
transit through the digestive system (Marco et al., 2017).

Song et al. (2015) reported that L. casei demonstrated full tolerance 
to 0.3 % bile acid, demonstrating its ability to survive and grow in the 
presence of bile. This tolerance is attributed to specific proteins involved 
in membrane modification, cell protection, detoxification, and central 
metabolism (Hamon et al., 2012). According to de Oliveira Vogado et al. 
(2020) L. paracasei also demonstrates bile tolerance, as evidenced by its 
survival for over four hours in a bile salt solution. Its ability to hydrolyze 
bile salts further enhances its stability and growth in fermented milk. 
Similarly, L. rhamnosus displayed strong bile tolerance, with a survival 
rate exceeding 85 % after three hours of incubation in 0.3 % bile salt, 
highlighting its potential as a probiotic for gastrointestinal applications 
(Jiang et al., 2023).

In vitro assessments can identify potential probiotic strains; howev-
er, in vivo trials are necessary to confirm their efficacy and safety in a 
living organism. In vivo trials help evaluate the real-world effectiveness 
of probiotics in modifying bile acid metabolism (Neverovskyi & Pol-
ishchuk, 2023). For future use in vivo experiments, bacteria can be 
stored by freezing at -80 ◦C in a suitable cryoprotectant, such as glycerol 
or dimethyl sulfoxide (DMSO), to maintain viability. Alternatively, 
lyophilization (freeze-drying) can be employed for long-term storage, 
allowing for easier handling and reconstitution when needed for 
experimental purposes (Takanashi et al., 2014).

3.4.4. Determination of milk coagulation ability of LAB isolates
According to the test results, all five groups exhibited a decrease in 

milk pH after incubation, with most isolates demonstrating the ability to 

coagulate milk (Table 4). Milk coagulation is driven by LAB activity, 
particularly acid and exopolysaccharide production. Acidification serves 
as both a preservative and a flavour-enhancing process, while exopo-
lysaccharides contribute to texture formation (Priyashantha et al., 
2019). The milk coagulation ability of LAB is crucial for the production 
of fermented dairy products such as yoghurt, cheese, and kefir (Settanni 
& Moschetti, 2010).

According to Putranto et al. (2019), L. casei demonstrated significant 
milk coagulation activity (MCA) during a 12 h incubation, effectively 
coagulating casein and producing probiotic fresh cheese with excellent 
curd firmness. L. paracasei also exhibited MCA, indicating its potential as 
a starter culture for milk coagulation. However, MCA was not observed 
when grown in MRS broth, emphasizing the influence of growth con-
ditions (Ahmad & Hassan, 2019). Sujaya et al., (2022) reported that 
L. rhamnosus effectively coagulates milk, making it a valuable strain for 
probiotic dairy production, contributing to both texture and health 
benefits. However, variations in enzyme activity among different 
L. rhamnosus strains suggest that not all isolates exhibit the same coag-
ulation efficiency

Probiotics generally have an excellent safety profile, with mild, self- 
limiting side effects. However, caution is advised for immunocompro-
mised individuals due to potential adverse events. Monitoring adverse 
effects and selecting well-studied strains can enhance safety and efficacy 
(Qasemi et al., 2023). Therefore, future research should focus on 
long-term effects and safety protocols, addressing gaps in understanding 
probiotic-host microbiota interactions and ensuring comprehensive 
coverage of probiotic regulations to maximize health benefits and 
ensure safety for human consumption. Safety assessments for probiotics 
intended for human consumption should include genetic characteriza-
tion, antibiotic resistance analysis, pathogenicity and virulence gene 
evaluation, in vitro physiological tests, and in vivo toxicity studies (Chen 
et al., 2024).

4. Conclusions

Fermented rice cultures analyzed in this study were identified as a 
rich source of diverse LAB species. 16S rRNA sequencing revealed the 
presence of Lacticaseibacillus casei, L. paracasei, L. rhamnosus, Schleifer-
ilactobacillus harbinensis, and Liquorilactobacillus vini. Biochemical and 
physiological characterization confirmed that none of the isolates pro-
duced H₂S, and all exhibited a homofermentative glucose metabolism. 
Most isolates (71%) demonstrated growth at both 15 ◦C and 45 ◦C, while 
a similar proportion tolerated NaCl concentrations up to 6.5 %, with the 
remaining isolates tolerating up to 4 % NaCl. The isolates exhibited 
promising probiotic properties, supporting their potential application in 
fermented dairy products and livestock production. They were suscep-
tible to ampicillin, chloramphenicol, ciprofloxacin, cefotaxime, eryth-
romycin, and tetracycline. The cell-free supernatants showed strong 
antimicrobial activity against Gram-negative pathogens (S. enteritidis) 
and Gram-positive pathogens (Staphylococcus aureus, ATCC 29,213). 
They also inhibited E. coli (ATCC 25,922) and Candida glabrata while 
demonstrating good bile tolerance in vitro. Most isolates, when added at 
1 % (v/v) fresh culture, effectively coagulated cow and buffalo milk, 
reducing pH at 45 ◦C over 16 h. Given the strong market potential of 
fermented buffalo milk in Sri Lanka, where Meekiri holds cultural and 
economic significance, its commercialization is likely to be successful 
(Priyashantha et al, 2021). Further research is needed to assess addi-
tional probiotic characteristics, including acid tolerance, cell 
auto-aggregation, and surface hydrophobicity. Investigating the stabil-
ity of probiotic traits during processing, storage, and delivery will help 
optimize their industrial application. Additionally, exploring their 
immune-modulating potential through in vivo studies and encapsulation 
techniques can enhance their functionality and efficacy as probiotics in 
dairy and livestock production systems.
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