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Making better use of sample data: 
estimation of plant abundance and 
associated uncertainties 

Abstract 
Environmental monitoring has become increasingly important in the current context 
of global ecological change. More directives and reporting guidelines are issued, 
hence the need for additional methods for exploiting data from environmental 
monitoring programmes in order to obtain relevant information about the current 
state of forests and landscapes. National monitoring programmes, such as the 
Swedish National Forest Inventory and the National Inventory of Landscapes in 
Sweden, are core infrastructures for describing and analysing state and change in 
terrestrial ecosystems. These programmes have large, but not fully exploited 
potential as a basis for basic and applied research. This thesis aims to develop and 
apply novel tools for analysing presence/absence (P/A) data from environmental 
monitoring programmes. Although the area of spatial statistics has been extensively 
studied, the issue of relating P/A data to plant abundance is an underdeveloped field 
that needs further attention. The primary goal of this thesis is thus to estimate plant 
abundance both locally and across large regions for various species. Such plant 
abundance estimators are derived through models for spatial distribution of plants, 
by using inhomogeneous point process models that are capable of modelling various 
categories of point patterns across the landscape, taking geographical covariate 
information into account. The methods are applied to data collected in the field as 
well as simulated data to assess the performance of the estimators of plant abundance 
and associated estimators of uncertainty. The results are promising and show the 
potential of P/A data in environmental analyses. Another objective of this thesis is 
to provide reliable estimators of uncertainty in different contexts, with a particular 
study that takes into account several sources of uncertainty when applying model-
based inference (Paper IV). That study shows that the variance of a predictor is a 
fairly good approximation of uncertainty in large-area surveys, whereas other 
components come into play when the study area is decreased.   

Keywords: Presence/absence data, plant density, model-based inference, generalised 
linear models, forest inventory data, spatial point processes, uncertainty analysis 



Effektivare användning av stickprovsdata: 
skattning av planttäthet och tillhörande 
osäkerhet 

Sammanfattning 
Miljöövervakning har fått allt större betydelse i samband med globala miljö-
förändringar. Ett ökande antal direktiv och rapporteringskrav utfärdas, vilket kräver 
utveckling av metoder som stärker användandet av data från miljöövervaknings-
program och som ger relevant information om statusen för skogar och landskap. 
Nationella övervakningsprogram, som Riksskogstaxeringen och Nationell 
Inventering av Landskapet i Sverige (NILS), fungerar som viktiga infrastrukturer för 
att beskriva och analysera tillstånd och förändringar som sker i miljön. Dessa 
program representerar stora men underutnyttjade möjligheter som bas för grund-
läggande och avancerad forskning. Det primära målet med denna avhandling är att 
skapa och implementera nya verktyg för att analysera närvaro-/frånvaro-data (N/F-
data) som härrör från miljöövervakningsprogram. Även om området för rumslig 
statistik har utforskats i stor utsträckning, kvarstår utmaningar med att koppla N/F-
data till planttäthet, vilket motiverar ytterligare studier. Ett syfte med denna 
avhandling är därför att skatta planttäthet både lokalt och över större geografiska 
regioner för olika arter baserat på N/F-data. Planttäthet skattas via modeller för den 
rumsliga fördelningen av växter, med ickehomogena punktprocessmodeller som kan 
ta hänsyn till olika typer av punktmönster över landskapet, samt genom att integrera 
geografisk kovariatinformation i beräkningarna. För att utvärdera skattningar av 
planttäthet och tillhörande osäkerhet i skattningar tillämpas metoderna på såväl 
faktiska fältdata som simulerade data. Resultaten är lovande och belyser potentialen 
hos N/F-data inom miljöanalys. Ett annat mål med avhandlingen är att ta fram 
tillförlitliga skattningar av osäkerhet i olika sammanhang, med en specifik studie 
som behandlar olika osäkerhetskällor inom modellbaserad inferens (papper IV). Den 
studien visar att för t.ex. en predikterad mängd biomassa ger variansen en bra 
approximation av osäkerhet vid storskaliga undersökningar, medan andra 
komponenter kan få större betydelse ifall studieområdet är mindre. 

Nyckelord: Närvaro- och frånvarodata, planttäthet, modellbaserad inferens, 
generaliserade linjära modeller, skoglig inventering, punktprocesser, 
osäkerhetsanalys 
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1. Introduction 

1.1 Motivation 
Vegetation monitoring has long played a central role in the study of 
ecosystem processes (Elzinga et al. 1998; Bonham 2013). In the context of 
the current environmental crisis, the study of plant populations is more 
important than ever as part of ecological assessments, including biodiversity 
quantification, tracking of threatened or invasive species, and evaluation of 
restoration effectiveness. In particular, it is of interest to understand the 
current state of plant populations and communities and how they evolve with 
time. Plant occurrence and abundance are good indicators of biodiversity 
status and can be used to evaluate state and change that are relevant for 
ecosystem function and resilience. In this thesis, emphasis is made on non-
tree vegetation in Papers I, I and III, and on vegetation in a broader sense (in 
the form of biomass) in Paper IV.  

Legal directives (e.g., the EU’s Habitats Directive (Commission of the 
European Communities 2003); or the EU's Biodiversity and Forestry 
strategies (The European Commission 2020, 2021)) were instituted and 
require the regularity of reports of vegetation characteristics. Hence, one of 
the primary objectives is to estimate the number of plants (i.e., plant 
abundance) in forests. 

Environmental monitoring programs such as the Swedish National Forest 
Inventory (NFI, Fridman et al. 2014) and the National Inventory of 
Landscapes in Sweden (NILS, Ståhl et al. 2011a) perform different types of 
inventories in order to collect data on the current state of forests and 
landscapes in the entirety of Sweden. Similar programs exist in other 
countries (Tomppo et al. 2010). These infrastructures have large, but not 
fully exploited potential for performing environmental analyses. Therefore, 
this thesis aims at developing new methods to make better use of the largely 
untapped data in the environmental monitoring programmes’ databases, with 
an emphasis on presence/absence (P/A) data. 

Monitoring data can be gathered in several ways. For instance, using 
sample plots is a widespread method to register information on plants in the 
field (Gregoire & Valentine 2007). Sample plots, generally of circular shape 
(although they can also be of, e.g., quadratic shape), are placed in a region 
of interest according to some sampling design. Then, registrations and 
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measurements are made at individual plot level. Sampling designs can be 
quite simple, like simple random sampling (SRS) or systematic sampling 
(Thompson 2012), or take more aspects into consideration, like spatially 
balanced sampling (Grafström et al. 2012; Grafström & Matei 2018). Other 
methods to make measurements in the field include distance and line transect 
methods (see Bonham (2013) for an overview).  

1.2 How to register plant information? 
The basis for vegetation monitoring is well established, but fundamental 
problems remain. Trees are relatively easy to count and monitor, but this is 
far from being the case for ground vegetation (Elzinga et al. 1998). How to 
correctly define a plant individual? The definition differs depending on the 
kind of plant under study (Bonham 2013). In addition, some plants grow in 
numbers so high that it is no simple task to count them accurately, not to 
mention species with clonal growth pattern, or clustering. All these reasons 
could explain why so many inventories rely on alternatives to counting plant 
individuals. 

There are several alternatives to simple count data. Vegetation cover 
estimation is relatively common in vegetation studies and inventory 
programmes (Godínez-Alvarez et al. 2009; Bonham 2013). However, this 
method is impacted by a phenomenon called observer judgement bias 
(Gallegos Torell & Glimskär 2009). Surveyors might interpret cover 
percentage differently, and it is difficult to derive reasonably accurate 
estimates of plant cover with only the naked eye. This is similar to what could 
happen with counting plants. Some surveyors could miss individuals, 
especially if the plants are numerous in a given sample plot. Traditional cover 
estimates through ocular assessment are prone to significant observer errors, 
and hence estimates may vary between surveys. This entails a serious risk 
that results from monitoring are misinterpreted and may result in reported 
changes that have not occurred in reality. Potentially equally problematic is 
the fact that the observer-generated variation in cover estimates can become 
so large that trends are missed due to low power in analyses – in theory, even 
when there is no bias. As highlighted by Ståhl (2003), these spurious 
conclusions need to be avoided, stressing the importance of developing 
improved methods that limit observer bias. 
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An alternative to vegetation cover estimation is the point intercept 
method, where a thin device is used to assess what species cover randomly 
selected points (Rochefort et al. 2013). The proportion of points where the 
species occurs is used as a measure of plant cover, but since the device cannot 
be made infinitesimally thin, the methods will usually overestimate cover 
(Ståhl 2003). Point intercept methods are less prone to judgement bias than 
ocular assessments, but require large samples and are time-consuming and 
costly to conduct (Ringvall et al. 2005). 

A simpler, cost-effective alternative to all the methods mentioned above 
is P/A sampling (Elzinga et al. 1998). All that is required with this kind of 
survey is to verify whether a specific species is present in a given sample 
plot. In case the species of interest is present, the surveyor enters “1”, 
otherwise they enter “0”. No accurate counts or cover estimation are 
necessary, hence the advantage of the method cost- and time-wise (Ståhl et 
al. 2017). In addition, the method is less susceptible to surveyor judgement 
bias compared to the aforementioned types of survey (Ringvall et al. 2005). 
All the surveyor needs to know is how the species looks like. On the other 
hand, P/A sampling presents several challenges. For example, P/A data 
usually do not provide direct information on plant density (defined as the 
mean number of individuals per unit area, usually square metres or hectares), 
and plant occurrence frequencies are difficult to interpret due to their 
dependence on spatial occurrence patterns and plot size (Ståhl et al. 2017). 
Hence, one of the main motivations for the present thesis is to find new ways 
to make use of P/A data to obtain information related to plant density, based 
on model assumptions regarding the spatial distribution of plant individuals. 
The very same question has been continually studied, recently by, e.g., 
Fithian et al. (2015), Ståhl et al. (2017, 2020), Gelfand & Shirota (2019) and 
Ekström et al. (2020). Earlier references are presented in the next subsection.   

1.3 Modelling plant locations and estimating plant 
density: earlier developments  

The concept of frequency, which is closely linked to the concept of density, 
was first used by Raunkiaer in 1909 (English translation in Raunkiaer 
(1934)). That researcher observed the presence of plant species in a number 
of sample plots placed in an area of interest. Plant frequency is then defined 



16 
 

as the number of sample plots where the species is present divided by the 
total number of sample plots. 

However, plant frequency estimates are dependent on the spatial 
distribution of individuals. Poisson point process (PPP) models are often 
used, explicitly or implicitly, to model locations of plants and other species. 
PPP models consider the plant locations as randomly distributed and 
independent of each other. A closely related point process is the binomial 
point process, where the point locations are considered random but the 
process will always generate a fixed number of points (Baddeley et al. 2016). 

Works that attempt to find suitable ways to estimate plant density from 
P/A data assuming random populations date back from at least the start of 
the twentieth century, with the pioneering article by Arrhenius (1921). There, 
the author considered P/A data under a binomial point process and estimated 
the number of species in an area of interest. Later, Kylin (1926) derived a 
formula for the expected proportion of sampling plots in which the species 
would be absent, assuming individuals are randomly distributed in the study 
area. Under the same assumption, Blackman (1935) stated that if the 
percentage of absence is known then the density can be deduced. In the 
discussion of the same article by Bartlett, an estimate of the probability of 
absence in a plot was derived, followed by an estimator for the density as 
well as a corresponding estimate of variance, based on plant occurrence 
proportions. Bartlett further stated that the most efficient plot size for density 
estimation corresponds to around 20% absence of the species under study 
(Bartlett 1948). Aberdeen (1958) developed a formula that links sample plot 
size, plant size, plant density and frequency under the assumption of a PPP 
for plant positions and SRS for the sampling design. Later, Greig-Smith 
(1983) proposed a model that describes the relationship between frequency 
and density when plant individuals are randomly distributed. Swindel (1983) 
determined the optimal size and number of plots to estimate density from 
P/A data when the plant locations are supposed to be at random. Later, Ståhl 
et al. (2020) estimated plant density from P/A data with an explicit 
assumption about a homogeneous PPP in the special case where sample plot 
sizes vary. 

However, plant individuals are rarely randomly distributed (Bonham 
2013). Additional assumptions might be needed, as some plant patterns 
exhibit spatial dependence. Clustered patterns began to be studied around the 
second half of the twentieth century, although the following studies did not 



17 
 

necessarily handle P/A data. Thomas (1949) proposed a method to estimate 
density for clustered plant populations based on abundance data. The 
(generalised) Thomas process was named in recognition of Thomas’ 
contribution (Diggle et al. 1976). A little later, Neyman & Scott (1952) 
studied clustering of galaxies, although the model developed therein has also 
been applied to model clustered plant populations (e.g., Batista & Maguire 
1998; Ogata 2020). Neyman and Scott also gave their names to a type of 
clustered point process, and the generalised Thomas process is actually a 
special case of Neyman-Scott process (NSP). A list of all special subcases of 
Neyman-Scott processes that have been studied around that time is provided 
by Guttorp & Thorarinsdottir (2012). During the same decade, Pielou (1957) 
studied the effect of plot size when estimating parameters from a Neyman-
Scott and a Thomas process.  

Another type of Neyman-Scott cluster process that is sometimes used for 
the modelling of clustering in plant populations is the Matérn cluster process 
(Matérn 1960, 1986), that differs from the generalised Thomas process 
regarding the distribution of plants in the clusters. Matérn focused on 
applications of point processes in forestry. Applications of Matérn cluster 
processes in forest studies include Fleischer et al. (2006), Eichhorn (2010) 
and Ekström et al. (2020). Out of these references, only the latter presented 
estimators of expected plant density using P/A data. 

Other models for plant populations have also been applied for studying 
associated properties. One of the most popular models for plant abundance 
is the negative binomial model, especially when plants are known to exhibit 
clustering. He & Gaston (2000, 2007) proposed a method for estimating plant 
abundance based on occurrence data based on the assumption that plant 
abundance follows a negative binomial distribution. Similarly, Hwang & He 
(2011) showed how to estimate plant abundance based on P/A maps using a 
Gamma-Poisson model, which is a generalisation of the negative binomial 
model. However, the method presented in He & Gaston (2000) tends to 
overestimate species abundance (Conlisk et al. 2007). In addition, the 
negative binomial model does not appear to be very suitable for studying 
plant populations (Holt et al. 2002; Gaston et al. 2011), especially since only 
two known homogeneous point processes produce the negative binomial 
distribution for plot abundances, and both of them are extreme cases (Daley 
& Vere-Jones 2008). For an overview of applications of the negative 
binomial model in ecology, see Stoklosa et al. (2022). Some other studies, 
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such as Chang & Huang (2024), used techniques such as kernel estimation 
to estimate plant abundance from P/A data under several population 
assumptions. Holt et al. (2002) provided an overview of other models to 
model plant abundance and density from P/A data. 

1.4 Use of additional data in the modelling 
In for example Ståhl et al. (2020) or Ekström et al. (2020), the  intensity of 
the point process, defined as the expected number of points per unit area 
(Baddeley et al. 2016), was supposed to be constant at every point of the 
region of interest (i.e., homogeneous). However, this is an oversimplification 
of the reality in most cases. Plant density is known to vary depending on 
environmental factors such as soil moisture, ambient humidity, chemical 
composition in the soil, tree cover, and many more (Schulze et al. 2019). As 
a consequence, it would be an advantage to take such factors into account 
when modelling abundance and deriving estimates of plant density, in order 
to make the latter more accurate. Thus, it is suitable to introduce explanatory 
variables, also called covariates, in the point process models (that are thus 
called inhomogeneous point process models) and the generalised linear 
models (GLMs, McCullagh 1989) implied by the point processes. Based on 
available knowledge, no previous study has suggested large-area estimators 
of plant density from P/A data and inhomogeneous PPPs, including 
corresponding variance estimators; nor has any study presented estimators of 
plant density based on P/A data and inhomogeneous NSPs. 

There exists several possible sources for obtaining covariates, either from 
field surveys or from remote sensing (RS). Covariates from field surveys are 
collected by surveyors when they visit the different sample plots in a specific 
region of interest. On the one hand, the main advantage of field covariate 
registrations is that they usually are very thorough since a lot of 
environmental aspects are taken into account. On the other hand, a major 
drawback of auxiliary data taken locally at plot level is that they are generally 
not available in the whole region of interest. Another consequence is that it 
is not possible to apply the standard model-based framework if only field-
based covariate data are used (Ståhl et al. 2016). This drawback can be 
counteracted by using RS covariate data, also called “wall-to-wall” data, 
since they are available for any point of the region of interest. Nowadays, 
such remotely-sensed covariate information for modelling is currently 
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increasing in amount, resolution and quality (e.g., Kangas et al. 2018; 
Dubayah et al. 2022). Moreover, some of them are being made available at 
short intervals of time (Lindgren et al. 2021). Remotely-sensed covariate 
data such as airborne laser scanning (ALS) are made less frequently but 
contain a plethora of useful information on vegetation sites that can be used 
for modelling (Lidberg et al. 2020).  The availability and ready-to-use nature 
of this kind of covariate information has made the modelling of species 
abundance depending on environmental factors easier compared to 
yesteryear. 

Another factor that could potentially contribute to the improvement of 
species modelling is the increasing availability of presence data offered by 
citizen science data, i.e. spontaneous, voluntary species registrations made 
outside of structured monitoring programmes and research projects. Most of 
citizen data are in the form of presence-only data, i.e. only the presence of 
species is registered. Such data can be used in connection with P/A data from 
planned surveys to create a more incorporating framework (Fithian et al. 
2015; Bradter et al. 2018; Gelfand & Shirota 2019; Mäkinen et al. 2024). 
However, one should keep in mind that such modelling offers substantial 
challenges, mostly because of preferential bias, where observers tend to 
focus on the species they know or appreciate and usually make observations 
at easily accessible sites (Robinson et al. 2018; Johnston et al. 2020, 2023; 
Cretois et al. 2021). 

The maximum entropy method (shortened as MaxEnt, Phillips et al. 
(2017)), first mentioned by Jaynes (1957) in a more global context, is 
equivalent to a regression model based on an inhomogeneous PPP (Renner 
& Warton 2013), except for the intercept. It has become extremely popular 
in ecology (e.g., Dudík et al. 2005), although it is rather used with presence-
only data instead of P/A data and is often applied uncritically (Royle et al. 
2012).  

For modelling binary response data, GLMs can be used with an 
appropriate choice of link function (Mehtätalo & Lappi 2020). In ecology, 
the most commonly chosen link function is the logit link, which leads to the 
logistic regression model (see, e.g., Wintle et al. 2005; Foody 2008; Pellissier 
et al. 2013; Sipek et al. 2022). However, Baddeley et al. (2010) warn that the 
logistic regression model might not be appropriate when tessellating the 
region of interest if plant locations are considered as a realisation of an 
inhomogeneous PPP. On the other hand, binary regression models with 
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complementary log-log link are not affected by this issue (Baddeley et al. 
2010),  hence their use in Paper I where a cell grid is used to tessellate the 
area of interest. See Fortin et al. (2008), Lindenmayer et al. (2009), Yee & 
Dirnböck (2009), Fithian et al. (2015) or Fiorentin et al. (2019) for other 
examples of ecological studies based on P/A data and a complementary log-
log link function. 

1.5 Other considerations 
In papers I, II and III, model-based inference is used, which implies that the 
variable under study is considered as random. Hence, the plant density is 
considered as a random variable. However, to facilitate the derivations, the 
expected value of the plant density, which is fixed, is estimated instead of 
the actual plant density being predicted. Not much is lost by making this 
adjustment, since the relative difference between the actual and expected 
values for the plant density are small in large-area surveys if the model used 
is approximately correct (Ståhl et al. 2016).  

Instead of focusing on specific plant species and P/A data, one could 
register continuous variables, for example aboveground biomass (AGB). 
Biomass is the variable under study in Paper IV. AGB, or its density, can be 
estimated by field data (Næsset et al. 2016) or coupled with ALS methods, 
for example via the Global Ecosystem Dynamics Investigation (GEDI, 
Dubayah et al. 2022). 

Whenever an estimation is made, uncertainty comes into play and must 
be taken into account. Reporting of estimates usually comprises associated 
measures of uncertainty, for example variance estimates, mean squared error 
(MSE) values, or confidence intervals. Indeed, errors can come from 
different sources, such as the mathematical modelling, the map products 
produced by remote sensing tools, or the measurements done in the field. In 
this thesis, it is supposed that the covariate and field data (including the P/A 
registrations) are devoid of errors, although this is a simplification of reality. 

A large number of studies utilising model-based inference use solely the 
variance of the predictor of the target variable as a measure of uncertainty. 
Some studies (e.g., McRoberts et al. 2018) suggest that the variance 
estimator alone can be a sufficient estimator to quantify uncertainty in large-
area surveys. However, the variance estimator alone does not take into 
account all the potential sources of error, largely because it does not directly 
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factor in the fact that the true value of the target variable is a random variable. 
A more thorough measure to estimate uncertainty is the MSE, which takes 
into account the variance and model bias of the predictor, the variance of the 
true value and the covariance between the predicted and true value. Thus, in-
depth uncertainty assessments in model-based inference should use the MSE 
rather than the variance of the predictor (Cassel et al. 1977). Estimating 
different components in a broadened uncertainty analysis is the main subject 
of Paper IV. 
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2. Aims and objectives 

The main objective of this thesis is to propose new ways to make better use 
of sample data in assessing characteristics of plant populations. A particular 
emphasis is made on P/A data, which are believed to have an underexploited 
potential. By proposing new methods and models to facilitate the use of this 
kind of data, it is believed that researchers and monitoring programmes will 
be able to get more extensive understanding of the data they are working 
with, and increase the possibilities of interpretation as well as analytic 
capacities. 

More specifically, the use of model-based and hybrid inference in relation 
to inhomogeneous spatial point processes and P/A data is investigated in 
order to estimate plant density taking environmental factors into account. 
Corresponding variance estimators are also derived.  

Additionally, a widened uncertainty analysis is performed in one of the 
articles, where the variance is one of the components of the MSE formula 
when model-based inference is used and AGB is the target variable. The 
extent of the error components in the MSE formula is studied in different 
subcases. 

The specific objectives for each of the papers were as follows: 
1. To develop a model-based method in combination with P/A data 

collected in the field, remotely-sensed covariate data and 
inhomogeneous PPP in order to derive large-area estimates of 
expected plant density for a selection of plant species, as well as 
corresponding estimators of variance, and to apply a residual-
based test to test whether the derived GLM implied by the 
inhomogeneous PPP model has independent response variables 
given the covariates (Paper I); 

2. To develop a method that makes use of hybrid-based inference 
together with P/A data and covariate data collected in the field 
and inhomogeneous PPP in order to obtain large-area estimates 
of expected plant density for a selected species, as well as 
corresponding estimators of variance (Paper II); 

3. To develop a method that makes use of model-based inference 
jointly with P/A data collected in the field, remotely-sensed 
covariate data and inhomogeneous NSPs in order to estimate 
parameters from the process and to get local estimates of 
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expected plant density for some selected species, as well as 
corresponding estimators of variance (Paper III); 

4. To widen the uncertainty analysis in a model-based framework, 
and thus to investigate the extent of the different components of 
the MSE formula in a model-based inference framework, using 
simulated data and biomass as the target variable (Paper IV). 
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3. Material and Methods 

3.1 Data 

3.1.1 Field data 
Data collected from four different locations were used in the papers 
contained in this thesis, including a field study that was performed especially 
for Paper III. For the other papers, data were collected for other purposes, 
such as registrations as part of forest inventories and monitoring.  

For Papers I and II, the data were collected in Northern Sweden, more 
precisely in the Lappland region of Norrbotten County (Fig. 1). In Paper I, 
the data, collected during the years 2011 to 2013, originated from the 
permanent plots of the Swedish NFI (Fridman et al. 2014). The P/A data in 
the study were originally available for 293 plots. Other covariates related to 
field and terrain properties were also registered as part of the survey. P/A 
data for Luzula pilosa (L.) Willd. (hairy woodrush), and Lysimachia 
europaea (L.) U. Manns & Anderb. (arctic starflower) were used. 

In Paper II, the variable of interest was P/A data of Vaccinium vitis-idaea 
L. (lingonberry). Two samples, both from the Swedish NFI, were considered 
in the study. The first sample, called 𝑆𝑆1, consisted of the centres of the small 
vegetation plots included in permanent plots in the Lappland region of 
Norrbotten during the years 2008 to 2012. Sample 𝑆𝑆1 had a size 𝑛𝑛1 equal to 
724 plots. Cluster sampling was used to obtain the second sample, called 𝑆𝑆2. 
This sample had a size of 𝑛𝑛2 = 111 tract centres, which corresponds to 1132 
temporary sample plots in total. 

In Paper III, the data were collected in the forest connected to the SLU 
field station at Kulbäcksliden (Västerbotten County, Sweden, Fig. 2) during 
the month of September 2022. In total, P/A data for 559 sets of concentric 
circular plots were obtained (Fig. 3). P/A data for the following plant species 
were recorded: L. pilosa, Maianthemum bifolium (L.) F.W. Schmidt (false 
lily of the valley), and L. europaea. 

Concerning Paper IV, the data were collected in the field in Liwale 
District in Southeast Tanzania, originally as part of another study (Næsset et 
al. 2016). The sample survey in Tanzania was conducted according to a 
systematic single-stage cluster design. Each of the 11 clusters consisted of 
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Figure 1. Position of the Lappmark region of Norrbotten County in Sweden.        

eight plots, forming an L-shape. The circular plots had a radius of 15 metres, 
and the data were collected in 2014. AGB was calculated for each tree and 
then summed at sample plot level. Several tree measurements (for example 
diameter at breast height) were also conducted on the plots. Data that mimic 
conditions in Western USA (Saarela et al. 2025) were also used in Paper IV.  

3.1.2 Remote sensing data 
For papers I, II and III, covariates were obtained from several forest raster 
map products: the SLU Forest Map (Reese et al. 2003; Wallerman et al. 
2021), the National Forest Attribute Map (NFAM, Nilsson et al. 2017), and 
a soil moisture map produced by Ågren et al. (2021).The SLU Forest Map is 
made of raster maps of the Swedish forest state, generated from satellite 
images using the Swedish NFI sample plots as reference data. A similar 
method was used in the NFAM to create forest raster maps from airborne 
laser scanning data collected in Sweden between 2009 and 2016. The soil 
moisture map by Ågren et al. (2021) was derived from terrain indices 
generated from a national ALS digital elevation model and environmental 
features. 
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Figure 2. Map of Sweden showing the position of the Kulbäcksliden research park. 

 
Figure 3. Example of a plot design with four concentric circular sample plots. 

For Paper IV, the remotely sensed data came from different sources, the 
first one being ALS (or GEDI (Dubayah et al. 2022) in the case with 
simulated USA data), and the other one being satellite image data from the 
Landsat 8 sensor. The Western USA data were obtained through copula 
modelling (Ene et al. 2013) based on RS data available from a previous study 
(Saarela et al. 2025). 



28 
 

3.2 Estimation frameworks 

3.2.1 Model-based inference 
Model-based inference relies on model assumptions rather than sampling 
designs. The values that are linked to the elements in the population of 
interest are realisations of random variables (Ståhl et al. 2016). The 
realisations come from a so-called superpopulation model that attributes new 
values to every population unit (in particular values of the response variable) 
every time it is run. When model-based inference is applied to real data, it is 
assumed that the real population is a realisation of an invisible, unknown 
superpopulation model (Cassel et al. 1977). Alternatively, if model-based 
inference is applied as part of a simulation study, it is relatively easy to make 
realisations out of a superpopulation model since the latter is assumed to be 
known. Covariates that originate from, e.g., RS can be used as auxiliary data 
when creating a model based on a realisation of the superpopulation model. 
Inference is then based on this model, and estimators of fixed quantities are 
constructed (alternatively, predictions of random variables are made). In this 
thesis, model-based inference is used in Papers I, III and IV, as well as 
partially in Paper II. 

Examples of application of model-based inference in forestry include 
Askne et al. (2013), in which AGB was estimated with models that include 
RS auxiliary data; Hou et al. (2017), that estimated firewood volume while 
relying on auxiliary data; Saarela et al. (2018), that developed a hierarchical 
model-based framework for the estimation of biomass based on ALS and 
GEDI data; and Mukhopadhyay et al. (2024), that predicted AGB based on 
GLMs and computed associated prediction intervals. Contrary to the 
aforementioned studies, that focus on AGB or volume estimation, Papers I, 
II and III are among the rare ones (including, e.g., Ekström et al. (2020)) that 
used model-based inference and plant P/A data as a response variable. 

3.2.2 Design-based inference 
Design-based inference relies on specific sampling designs. Contrary to 
model-based inference, the randomness in design-based inference comes 
from the sampling process, while the population is assumed to be fixed. The 
sample is random for each realisation, while the population parameters (for 
example the population total or population mean) do not vary. Estimations 
of population parameters are then made based on these samples, using so-
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called design-based estimators. The probability of inclusion of each unit in 
the sample must be known. In this thesis, design-based inference is used 
partially in Paper II. 

Examples of applications of design-based inference in forestry include 
Fattorini et al. (2019), Marcelli et al. (2019) and Di Biase et al. (2022), that 
concentrate on estimating diverse forest attributes. The latter study focused 
on the estimation of several plant indicators, including plant presence. 

3.2.3 Hybrid inference 
Hybrid inference is a mixture of both model-based and design-based 
inference. Two samples are involved in the process. The first sample is used 
to fit a model, and thus covariate data (that do not need to be wall-to-wall but 
only available at field plot level) as well as response data are needed. The 
second sample, which is a sample of covariate data and on which the model 
fitted on the first sample is applied, is used exclusively to estimate a 
population parameter, for example expected plant density or biomass per 
hectare in an entire region. Thus, while covariate data at plot level are 
required even for the second sample, no response data are needed. Inclusion 
probabilities for all sampling units in the second sample need to be known, 
since most of the design-based estimators, for example the Horvitz-
Thompson estimator (Horvitz & Thompson 1952), involve inclusion 
probabilities of some sort. 

The term “hybrid” inference was first introduced in an article by Corona 
et al. (2014) about estimation of standing wood volume in Italy, even if the 
method itself was already in use before (for example in Ståhl et al. (2011)). 
Most applications of hybrid inference in forestry concern biomass estimation 
and prediction. For example, Ståhl et al. (2011) and Gobakken et al. (2012) 
used a hybrid inference framework to estimate biomass based on ALS 
sample data in a Norwegian county. A similar study, based in North America, 
was performed by Margolis et al. (2015). Likewise, Bullock et al. (2023) 
used GEDI data in combination with NFI data to estimate biomass in 
Paraguay. Prediction of biomass based on hybrid inference has also been 
done for larger regions, for example by Saarela et al. (2022), using GEDI 
data. McRoberts et al. (2019) used that type of inference to compare forest 
biomass estimates at different resolutions in the USA. Hybrid inference has 
also been applied to estimate growing stock volume in Finland (Saarela et al. 
2015) and Spain (Condés & McRoberts 2017). Hybrid inference can also be 
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used with mixed-effects models (e.g., Fortin et al. 2016). Note that all the 
aforementioned studies used hybrid inference through models with a 
continuous response variable, contrary to Paper II where the response 
variable was binary. Based on available knowledge, Paper II is the first study 
that involves GLMs in hybrid inference. 

3.3 Spatial point processes 
Spatial point processes are, as the name indicates, processes that randomly 
generate points in space (Møller & Waagepetersen 2003). Spatial point 
processes are generally denoted by capital letters, such as X. In the following, 
a point pattern generated by a spatial point process X will be denoted by x. x 
is a set of points 𝐱𝐱𝑖𝑖, 𝑖𝑖 = 1, … , 𝑛𝑛, in the two-dimensional space ℝ2. It can be 
written as 

𝐱𝐱 = {𝐱𝐱1,𝐱𝐱2, … , 𝐱𝐱𝑛𝑛}. 
Let 𝑈𝑈 be a region of ℝ2. The subset that consists of the points generated by 
x that fall in 𝑈𝑈 is denoted by 𝐱𝐱 ∩ 𝑈𝑈. 

The intensity of a point process, which can be defined as the average 
number of points per unit area (Baddeley et al. 2016), will be denoted by 𝜆𝜆. 
Examples of spatial point processes studied in this thesis are presented 
below. 

3.3.1 Poisson point processes 
Homogeneous PPPs are sometimes called Complete Spatial Randomness 
(Baddeley et al. 2016). They fulfil two main properties: first, the 
homogeneity property, which states that the points have no preference for 
any spatial location, and thus that the intensity of the process is constant in 
the whole region of interest. A homogeneous PPP verifies the independence 
property as well. The latter states that the positions of points do not impact 
each other. In short, point locations are independent of each other. When the 
process is inhomogeneous, the homogeneity property is not respected 
anymore and 𝜆𝜆 varies, for example, depending on external factors such as 
environmental covariates. However, the process still fulfils the independence 
property. 

Let 𝜷𝜷 denote a vector of model coefficients and denote its transpose by 
𝜷𝜷T. Let 𝒛𝒛(𝒖𝒖) denote the vector of covariate data, of size 𝑞𝑞, at location 𝒖𝒖. The 
intensity of a PPP (Baddeley et al. 2010) can be modelled as 
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𝜆𝜆(𝒖𝒖) = exp �𝜷𝜷T𝒛𝒛(𝒖𝒖)� ,𝒖𝒖 ∈ 𝑈𝑈 ⊂ ℝ2, (1) 
as in Paper II. This implies that the expected total number of plants in region 
𝑈𝑈 is 

Λ(𝜷𝜷) = �𝜆𝜆(𝒖𝒖)𝑑𝑑𝒖𝒖
𝑈𝑈

= � exp �𝜷𝜷T𝒛𝒛(𝒖𝒖)�
𝑈𝑈

. (2) 

In case a grid tessellation over 𝑈𝑈 is used, as in Paper I, the intensity of the 
PPP in cell 𝑖𝑖, 𝑖𝑖 = 1, … ,𝑁𝑁, can be expressed as 

𝜆𝜆𝑖𝑖 = exp�𝜷𝜷T𝒛𝒛𝑖𝑖�, (3) 
where 𝒛𝒛𝑖𝑖 denotes the covariate vector in grid cell 𝑖𝑖, assuming that the 
covariate vector inside a cell is constant. Then, the expected total number of 
plants in 𝑈𝑈 can be expressed as 

Λ = 𝑎𝑎𝑃𝑃� exp�𝜷𝜷T𝒛𝒛𝑖𝑖�
𝑁𝑁

𝑖𝑖=1

, (4) 

where 𝑎𝑎𝑃𝑃 is the size of the cells tessellating 𝑈𝑈.  

3.3.2 Neyman-Scott processes 
NSPs are part of a larger family of point processes called cluster processes 
(Baddeley et al. 2016). Cluster processes involve two mechanisms: the first 
one generates points (called parent points) according to a given process (e.g., 
a PPP) in the region of interest. Subsequently, a second process creates points 
(also called offspring points) around each and every parent point. Parent 
points are then removed to produce the realisation of the cluster process. 
Clustered point processes have the potential to mimic reality pretty well 
when it comes to plant locations, since offspring plants usually grow in 
clusters around some parent plant (Schulze et al. 2019). In fact, this kind of 
model might be more appropriate than PPP models to model plant 
populations since random populations seldom exist in nature, although 
individual species in most plant communities may be randomly scattered 
(Bonham 2013). 

The unobserved parent points in NSPs follow a PPP with a given intensity 
𝜏𝜏. Each parent point will produce a cluster of offspring points, and these 
clusters will be independent and identically distributed (i.i.d.) (Baddeley et 
al. 2016). Offspring points are generated by another point process and are 
independent within a cluster. The point process that generates the offspring 
points has an average number of points per cluster 𝜇𝜇. The intensity of the 
NSP as a whole thus becomes 𝜏𝜏𝜏𝜏.  
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Some NSPs are characterised by a positive third parameter, 𝛾𝛾, that refers 
to the size of the clusters (e.g., their radius). In that case, for each parent point 
𝐱𝐱𝑖𝑖 ∈  ℝ2, the offspring points 𝒚𝒚𝑖𝑖𝑖𝑖 ∈ ℝ2 are i.i.d. with a spatial offspring 
probability density 𝑓𝑓𝛾𝛾(𝒚𝒚 − 𝐱𝐱𝑖𝑖) that depends on 𝛾𝛾. 

There are several ways to make the above process inhomogeneous. In this 
thesis (as well as in Paper III), the method proposed by Waagepetersen 
(2007) is applied. For a parent point at location 𝐱𝐱𝑖𝑖, the offspring follow a 
PPP with intensity 𝜇𝜇(𝒖𝒖)𝑓𝑓𝛾𝛾(𝒖𝒖 − 𝐱𝐱𝑖𝑖), 𝒖𝒖 ∈ ℝ2. The mean number of points in 
the clusters 𝜇𝜇 varies according to environmental covariates, while the 
intensity of the parent process 𝜏𝜏 stays constant. More precisely, 

𝜇𝜇(𝒖𝒖) = exp�𝛽𝛽0 + �𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖(𝒖𝒖)
𝑞𝑞−1

𝑖𝑖=1

� , (5) 

where each 𝑧𝑧𝑖𝑖(𝒖𝒖) denotes an environmental spatial covariate from vector 
𝑧𝑧(𝒖𝒖), 𝑖𝑖 = 1, … , 𝑞𝑞 − 1. Other methods to make a NSP inhomogeneous are 
mentioned in subsection 7.2. 

If 𝑓𝑓𝛾𝛾(𝒖𝒖) is a uniform density function in a disc of radius 𝛾𝛾, then the point 
process can be seen as an inhomogeneous Matérn cluster process. If, instead, 
𝑓𝑓𝛾𝛾(𝒖𝒖) is the density function of an isotropic Gaussian distribution 𝑁𝑁(0, 𝛾𝛾2𝐼𝐼), 
where 𝛾𝛾 is a standard deviation parameter and 𝐼𝐼 is the identity matrix, then 
the point process can be seen as an inhomogeneous generalised Thomas 
cluster process. The inhomogeneous Matérn cluster process is studied in 
Paper III, while both Matérn and Thomas are used as subcases in Paper I, 
where non-Poisson processes were generated to investigate the power of the 
correlation tests. 

3.3.3 Other cluster processes 
NSPs are not the only examples of processes that generate clustered patterns. 
For example, the log-Gaussian Cox process (LGCP), which is also employed 
in Paper I during the simulation study, is part of this family. Cox processes 
are basically PPPs with a random intensity function (Baddeley et al. 2016), 
the latter varying depending on unobservable external factors (and possible 
environmental covariates). No offspring and parent points are involved in the 
process, contrary to Neyman-Scott cluster processes. A LGCP is a Cox 
process whose driving intensity is of the form 

Λ(𝒖𝒖) = exp𝐺𝐺(𝒖𝒖), 
where 𝐺𝐺(𝒖𝒖) is a Gaussian random field.  
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4. Estimation of plant density based on 
spatial point processes and P/A data 

4.1 Using inhomogeneous Poisson point processes 
Both Paper I and Paper II make use of inhomogeneous PPP and P/A data for 
obtaining estimates of expected plant density and associated variance 
estimators within large regions. The difference between these two papers is 
that a tessellation of the study area 𝑈𝑈 is used in conjunction with wall-to-wall 
covariate date for Paper I, while Paper II makes use of hybrid inference 
where the covariate data come from sampling plots in 𝑈𝑈. Paper I makes use 
of tessellation cells, while circular field plots are the main sampling units in 
Paper II (cluster sampling is also studied in that paper). For the sake of 
simplicity, it is supposed henceforth that all grid cells or circular plots are 
entirely inside the region of interest 𝑈𝑈. In Paper II, this is not necessarily the 
case and a buffer is used around 𝑈𝑈 to mitigate potential edge effects 
(Gregoire & Valentine 2007). 

Let 𝑁𝑁𝑖𝑖 denote the number of plants in grid cell 𝑖𝑖 or in circular plot 𝑖𝑖 (called 
unit 𝑖𝑖 henceforth) in 𝑈𝑈. Assume that the area of every unit is constant and 
equal to 𝑎𝑎𝑃𝑃. If the values of the covariate vector 𝒛𝒛𝑖𝑖 are assumed to be constant 
within unit 𝑖𝑖, then the expected number of plants in unit 𝑖𝑖 can be expressed 
as 

𝐸𝐸(𝑁𝑁𝑖𝑖) = 𝑎𝑎𝑃𝑃𝜆𝜆𝑖𝑖, 
with 𝜆𝜆𝑖𝑖 as defined in (3). 𝑁𝑁𝑖𝑖 is Poisson distributed, which implies that the 
probability of presence in unit 𝑖𝑖 can be expressed as 

𝑝𝑝𝑖𝑖 = 1 − 𝑃𝑃(𝑁𝑁𝑖𝑖 = 0) = 1 − exp�−𝑎𝑎𝑃𝑃 exp�𝜷𝜷T𝒛𝒛𝑖𝑖��. 
It follows that the loglikelihood for the binary response variables 𝑌𝑌𝑖𝑖 (that 
denote presence or absence of plant individuals in unit 𝑖𝑖) becomes the 
loglikelihood of a complementary log-log regression model (Baddeley et al. 
2010) with an offset equal to the log of the area of unit 𝑖𝑖 

log(− log(1 − 𝑝𝑝𝑖𝑖)) = log(𝑎𝑎𝑃𝑃) + 𝜷𝜷T𝒛𝒛𝑖𝑖. (6) 
The estimator of the model parameter vector 𝜷𝜷, denoted 𝜷𝜷�, is obtained from 
the model above.  

In Paper I, there is no need for a second sample since the covariates are 
available in the entirety of the region of interest. Thus, the expected plant 
density in 𝑈𝑈 can be expressed as 
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𝑅𝑅𝑈𝑈 =
Λ
𝑁𝑁𝑎𝑎𝑃𝑃

, 

with Λ defined as in (4). Note that 𝑅𝑅𝑈𝑈 is the expected total number of plants 
in 𝑈𝑈 divided by the total area of 𝑈𝑈, which follows from the definition of the 
density. 𝑅𝑅𝑈𝑈 can be estimated by 

𝑅𝑅�𝑈𝑈 =
Λ�
𝑁𝑁𝑎𝑎𝑃𝑃

=
1
𝑁𝑁
� exp�𝜷𝜷�T𝒛𝒛𝑖𝑖�
𝑁𝑁

𝑖𝑖=1

, (7) 

where Λ� is the estimator of Λ, obtained by replacing 𝜷𝜷 by 𝜷𝜷� in (4).  
The next step is to derive the associated variance of 𝑅𝑅�𝑈𝑈 and its estimator. 

Using the computation rules of the variance, it follows that Var�𝑅𝑅�𝑈𝑈� =
(𝑁𝑁𝑎𝑎𝑃𝑃)−2Var(Λ�). Let 𝑛𝑛 denote the sample size. For estimating the variance 
of Λ, one may use the fact that for large samples and under mild conditions, 
𝜷𝜷� is asymptotically normally distributed, i.e. 

                   𝑛𝑛
1
2�𝜷𝜷� − 𝜷𝜷�

𝐷𝐷
→ 𝑁𝑁𝑞𝑞(0,𝚺𝚺),  

where 𝑁𝑁𝑞𝑞 designates the q-variate normal distribution. The covariance matrix 
𝚺𝚺 (whose definition can be seen in Paper I) is assumed to be positive definite 
(Sen & Singer 1993). This implies that 𝜷𝜷�T𝒛𝒛𝑖𝑖 is approximately normally 
distributed with mean 𝜷𝜷T𝒛𝒛𝑖𝑖 and variance 𝑛𝑛−1𝒛𝒛𝑖𝑖TΣ𝒛𝒛𝑖𝑖. It follows that 

Var�Λ�� ≈ 𝑎𝑎𝑃𝑃2���exp �
𝒛𝒛𝑖𝑖𝑇𝑇𝚺𝚺𝒛𝒛𝑗𝑗
𝑛𝑛

− 1�� exp �𝜷𝜷T�𝒛𝒛𝑖𝑖 + 𝒛𝒛𝑗𝑗� +
𝒛𝒛𝑖𝑖T𝚺𝚺𝒛𝒛𝑖𝑖 + 𝒛𝒛𝑗𝑗T𝚺𝚺𝒛𝒛𝑗𝑗

2𝑛𝑛
�

𝑁𝑁

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

, 

which is estimated by replacing 𝜷𝜷 by 𝜷𝜷� and 𝚺𝚺 by 𝚺𝚺� (see Paper I for details). 
Now, the variance of 𝑅𝑅�𝑈𝑈 can be estimated by 

𝜎𝜎�𝑈𝑈2 =
1
𝑁𝑁2���exp �

𝒛𝒛𝑖𝑖T𝚺𝚺�𝒛𝒛𝑗𝑗
𝑛𝑛

− 1�� exp �𝜷𝜷�T�𝒛𝒛𝑖𝑖 + 𝒛𝒛𝑗𝑗� +
𝒛𝒛𝑖𝑖T𝚺𝚺�𝒛𝒛𝑖𝑖 + 𝒛𝒛𝑗𝑗T𝚺𝚺�𝒛𝒛𝑗𝑗

2𝑛𝑛 �
𝑁𝑁

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

. 

The above method can be applied when one has access to wall-to-wall 
covariate data that cover the entire region of interest 𝑈𝑈. However, this might 
not be the case in every study. In such cases, hybrid inference may be 
preferred (as in Paper II), and additional steps are required to obtain 
estimators of expected plant density and associated variance estimators. 

Let 𝑓𝑓 be the joint probability density function (p.d.f.) for the plot centres 
in sample 𝑆𝑆2, and 𝑓𝑓𝑖𝑖(𝒖𝒖) the marginal p.d.f. for plot centre 𝒖𝒖𝑖𝑖 in 𝑆𝑆2, 𝑖𝑖 =
1, … ,𝑛𝑛2. The inclusion density function is 

𝜋𝜋(𝒖𝒖) = �𝑓𝑓𝑖𝑖(𝒖𝒖),
𝑛𝑛2

𝑖𝑖=1

(8) 
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and can be considered as a local measure of the number of sample points to 
be selected per unit area (Cordy 1993). The generalised Horvitz-Thompson 
estimator of the expected number of plants in 𝑈𝑈 is then given by 

Λ�(𝜷𝜷) = �
𝜆𝜆(𝒖𝒖𝑖𝑖)
𝜋𝜋(𝒖𝒖𝑖𝑖)

= �
exp�𝜷𝜷T𝒛𝒛𝑖𝑖�
𝜋𝜋(𝒖𝒖𝑖𝑖)

𝑛𝑛2

𝑖𝑖=1

,
𝑛𝑛2

𝑖𝑖=1

(9) 

where 𝜋𝜋(𝒖𝒖) is given by (8) and 𝜆𝜆(𝒖𝒖𝑖𝑖) is the average expected intensity in 
sample plot 𝑖𝑖 with centre 𝒖𝒖𝑖𝑖. If the covariate data are supposed to be constant 
in sample plot 𝑖𝑖, then 𝜆𝜆(𝒖𝒖𝑖𝑖) is the same as 𝜆𝜆(𝒖𝒖) as defined in (1), with 
𝒛𝒛(𝒖𝒖) = 𝒛𝒛𝑖𝑖, 𝒛𝒛𝑖𝑖 being equal to the value of the covariate vector in sample plot 
𝑖𝑖. Since the parameter vector 𝜷𝜷 is usually unknown, Λ�(𝜷𝜷�) is used as an 
estimator of the expected number of plants instead. 

It is of necessity to know the area of 𝑈𝑈, or to estimate that area, to get an 
estimate of the expected plant density. In case the area of 𝑈𝑈 is known (denote 
this area by 𝑎𝑎𝑈𝑈), the expected density in 𝑈𝑈 is expressed as 

𝑅𝑅(𝜷𝜷) =
Λ(𝜷𝜷)
𝑎𝑎𝑈𝑈

, 

where Λ(𝜷𝜷) is defined in (2). This expected density can be estimated by 

𝑅𝑅��𝜷𝜷�� =
Λ�(𝜷𝜷�)
𝑎𝑎𝑈𝑈

, 

where Λ�(𝜷𝜷) is defined in (9). The case where 𝑎𝑎𝑈𝑈 is unknown and estimated 
is presented in detail in Paper II. 

In order to get an estimate of the variance of  Λ�(𝜷𝜷), the Sen-Yates-Grundy 
variance formula defined in Cordy (1993) is applied (see Paper II). Let 
Δ(𝒖𝒖,𝒖𝒖′) = 𝜋𝜋(𝒖𝒖)𝜋𝜋(𝒖𝒖′) − 𝜋𝜋(𝒖𝒖,𝒖𝒖′) and 𝜋𝜋(𝒖𝒖,𝒖𝒖′) = � � 𝑓𝑓𝑖𝑖𝑖𝑖(𝒖𝒖,𝒖𝒖′),

𝑗𝑗∈𝐽𝐽𝑛𝑛,𝑖𝑖𝑖𝑖∈𝐼𝐼𝑛𝑛

 

the latter being the pairwise inclusion density function with 𝐼𝐼𝑛𝑛 =
{1, … ,𝑛𝑛2}, 𝐽𝐽𝑛𝑛,𝑖𝑖 = {1, … ,𝑛𝑛2}\{𝑖𝑖}, and 𝑓𝑓𝑖𝑖𝑖𝑖 is the joint p.d.f. of 𝒖𝒖𝑖𝑖 and 𝒖𝒖𝑗𝑗. 
According to Cordy (1993), if 𝜋𝜋(𝒖𝒖) and 𝜋𝜋(𝒖𝒖,𝒖𝒖′) are strictly positive for all 
(𝒖𝒖,𝒖𝒖′) ∈ 𝑈𝑈, an unbiased estimator of Var(Λ�(𝜷𝜷)) is given by 

Var� �Λ�(𝜷𝜷)� =
1
2
� �

Δ�𝒖𝒖𝑖𝑖,𝒖𝒖𝑗𝑗�
𝜋𝜋�𝒖𝒖𝑖𝑖,𝒖𝒖𝑗𝑗�

�
exp�𝜷𝜷T𝒛𝒛𝑖𝑖�
𝜋𝜋(𝒖𝒖𝑖𝑖)

−
exp�𝜷𝜷T𝒛𝒛𝑗𝑗�
𝜋𝜋�𝒖𝒖𝑗𝑗�

�
2

.
𝑗𝑗∈𝐽𝐽𝑛𝑛,𝑖𝑖𝑖𝑖∈𝐼𝐼𝑛𝑛

 

When the model coefficients are unknown, 𝜷𝜷 is estimated by 𝜷𝜷� and an 
estimate of the variance of Λ�(𝜷𝜷�) can be written as 
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Var� �Λ��𝜷𝜷��� =
1
2
� �

Δ�𝒖𝒖𝑖𝑖 ,𝒖𝒖𝑗𝑗�
𝜋𝜋�𝒖𝒖𝑖𝑖,𝒖𝒖𝑗𝑗�

�
exp�𝜷𝜷�T𝒛𝒛𝑖𝑖�
𝜋𝜋(𝒖𝒖𝑖𝑖)

−
exp�𝜷𝜷�T𝒛𝒛𝑗𝑗�
𝜋𝜋�𝒖𝒖𝑗𝑗�

�
2

𝑗𝑗∈𝐽𝐽𝑛𝑛,𝑖𝑖𝑖𝑖∈𝐼𝐼𝑛𝑛

+ ��Cov� 𝑆𝑆1�𝛽̂𝛽𝑘𝑘 , 𝛽̂𝛽𝑙𝑙�
𝑞𝑞

𝑙𝑙=1

𝑞𝑞

𝑘𝑘=1

𝑣𝑣�𝑘𝑘𝑣𝑣�𝑙𝑙 , 

with  

𝑣𝑣�𝑘𝑘 = �
1

𝜋𝜋(𝒖𝒖𝑖𝑖)
𝜆𝜆(𝑘𝑘)(𝐮𝐮𝑖𝑖) 

𝑛𝑛2

𝑖𝑖=1

, 

where 𝛽̂𝛽𝑘𝑘 denotes the 𝑘𝑘th component of the 𝜷𝜷� vector and 

𝜆𝜆(𝑘𝑘)(𝒖𝒖𝑖𝑖) =
𝜕𝜕𝜆𝜆(𝒖𝒖𝑖𝑖)
𝜕𝜕𝛽̂𝛽𝑘𝑘

= 𝑧𝑧𝑖𝑖𝑖𝑖 exp�𝜷𝜷�T𝒛𝒛𝑖𝑖�, 

with 𝑧𝑧𝑖𝑖𝑖𝑖 denoting the 𝑘𝑘th component of 𝒛𝒛𝑖𝑖. 
Then, it follows that the variance estimator of the estimator of expected 

plant density with known area 𝑎𝑎𝑈𝑈 is 

𝑉𝑉𝑉𝑉𝑉𝑉� �𝑅𝑅��𝜷𝜷��� =
𝑉𝑉𝑉𝑉𝑉𝑉� (Λ��𝜷𝜷��)

𝑎𝑎𝑈𝑈2
. 

A variance estimator in the case where the area 𝑎𝑎𝑈𝑈 is unknown is given in 
Paper II. 

4.2 Using inhomogeneous Neyman-Scott processes 
In Paper III, plant locations are supposed to be generated by cluster point 
processes, in particular Matérn cluster processes. A design with sampling 
plots is applied, and the inference is based on the plant registrations (more 
specifically, P/A data of plants) done within these sampling plots. The 
estimation of the parameters of the inhomogeneous NSP cannot be done in 
the same way as in Papers I and II, i.e. a binary regression model cannot be 
used. It will be shown below that a multinomial regression model is used to 
estimate the parameter vector 𝜽𝜽 = (𝜏𝜏,𝛽𝛽0, … ,𝛽𝛽𝑞𝑞−1,𝛾𝛾). For a Matérn cluster 
processes, 𝜏𝜏 denotes the intensity of the parent process, 𝜇𝜇(𝒖𝒖) is defined as in 
(5) as a function of a parameter vector 𝜷𝜷 = (𝛽𝛽0, … ,𝛽𝛽𝑞𝑞−1), and 𝛾𝛾 denotes the 
cluster radius parameter. 

It is necessary to know about the disposition of plots in a given sampling 
design in order to calculate the probabilities of presence in the different plots 
(or in the different configurations of plots). The following design with 
concentric circular plots, used in Paper III, can be taken as an example (see 
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Fig. 3). The use of sampling designs with concentric plots when spatial 
patterns are to be expected is recommended by Morrison et al. (1995). 
Assume that there are 𝑛𝑛 sets of (concentric) plots 𝐶𝐶𝑖𝑖,𝑗𝑗, 𝑖𝑖 = 1, … ,𝑛𝑛, 𝑗𝑗 =
1, … ,𝑘𝑘. Suppose that the 𝑛𝑛 sets of concentric plots are so far apart that the 
point patterns within these sets can reasonably be considered as independent. 
In main plot 𝑖𝑖, the 𝑗𝑗th innermost circle 𝐶𝐶𝑖𝑖,𝑗𝑗 has a radius 𝑟𝑟𝑗𝑗, 𝑗𝑗 = 1, … ,𝑘𝑘. Let 
𝐵𝐵𝑖𝑖,1 = 𝐶𝐶𝑖𝑖,1 and 𝐵𝐵𝑖𝑖,𝑗𝑗 = 𝐶𝐶𝑖𝑖,𝑗𝑗\𝐶𝐶𝑖𝑖,𝑗𝑗−1, 𝑖𝑖 = 1, … ,𝑛𝑛, 𝑗𝑗 = 2, … , 𝑘𝑘, and let 𝑁𝑁𝐶𝐶𝑖𝑖,𝑘𝑘 
denote the number of plants in plot 𝐶𝐶𝑖𝑖,𝑘𝑘 . A survey of such set of plots is done 
from the innermost plot outwards, and is over as soon as a plant is 
encountered on one of the 𝐵𝐵𝑖𝑖,𝑗𝑗s or if no plants at all are registered in the 𝑘𝑘 
concentric circular plots. Thus, the events corresponding to this survey are 
the following: 

𝐴𝐴𝑖𝑖,0 = �absence in 𝐶𝐶𝑖𝑖,𝑘𝑘� = �𝑁𝑁𝐶𝐶𝑖𝑖,𝑘𝑘 = 0�, 
𝐴𝐴𝑖𝑖,1 = �presence in 𝐶𝐶𝑖𝑖,1� = �𝑁𝑁𝐶𝐶𝑖𝑖,1 > 0�, 

𝐴𝐴𝑖𝑖,𝑗𝑗 = �presence in 𝐵𝐵𝑖𝑖,𝑗𝑗 but not in 𝐶𝐶𝑖𝑖,𝑗𝑗−1� = �𝑁𝑁𝐶𝐶𝑖𝑖,𝑗𝑗−1 = 0 and 𝑁𝑁𝐵𝐵𝑖𝑖,𝑗𝑗 > 0�,  
for 𝑖𝑖 = 1, … ,𝑛𝑛 and 𝑗𝑗 = 2, … ,𝑘𝑘.  

Let 𝐼𝐼𝑖𝑖,𝑗𝑗 be the indicator of the event 𝐴𝐴𝑖𝑖,𝑗𝑗 and 𝜋𝜋𝑖𝑖,𝑗𝑗(𝜽𝜽) the associated 
probabilities for every 𝐴𝐴𝑖𝑖,𝑗𝑗, computed using Theorem 1 in Paper III. Set 𝑌𝑌𝑖𝑖 
equal to 𝑗𝑗 if the event 𝐴𝐴𝑖𝑖,𝑗𝑗 occurs, 𝑖𝑖 = 1, … , 𝑛𝑛. The variable 𝑌𝑌𝑖𝑖 then becomes 
the dependent variable in a multinomial regression model (cf. Amemiya 
1985), for which 

𝑃𝑃{𝑌𝑌𝑖𝑖 = 𝑗𝑗} = 𝑃𝑃�𝐴𝐴𝑖𝑖,𝑗𝑗� = 𝜋𝜋𝑖𝑖,𝑗𝑗(𝜽𝜽). 
Let 𝜽𝜽0 denote the true value of 𝜽𝜽. This parameter vector is estimated by 
maximum likelihood. The maximum likelihood estimator 𝜽𝜽� of 𝜽𝜽0 is any 
parameter vector in Θ = {𝜽𝜽 = �𝜏𝜏,𝛽𝛽0, … ,𝛽𝛽𝑞𝑞−1,𝛾𝛾�T: 𝜏𝜏, 𝛾𝛾 > 0} that maximises 
the log-likelihood function 

𝑙𝑙(𝜽𝜽) = ��𝐼𝐼𝑖𝑖,𝑗𝑗log𝜋𝜋𝑖𝑖,𝑗𝑗(𝜽𝜽)
𝑘𝑘

𝑗𝑗=0

.
𝑛𝑛

𝑖𝑖=1

 

By standard arguments (cf. Rao 1973; Amemiya 1985), 

𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟(𝜽𝜽) = 𝐸𝐸𝜽𝜽 �
𝜕𝜕𝜕𝜕(𝜽𝜽)
𝜕𝜕𝜃𝜃𝑟𝑟

𝜕𝜕𝜕𝜕(𝜽𝜽)
𝜕𝜕𝜃𝜃𝑠𝑠

� = ��
1

𝜋𝜋𝑖𝑖,𝑗𝑗(𝜽𝜽)
𝜕𝜕𝜋𝜋𝑖𝑖,𝑗𝑗(𝜽𝜽)
𝜕𝜕𝜃𝜃𝑟𝑟

𝜕𝜕𝜋𝜋𝑖𝑖,𝑗𝑗(𝜽𝜽)
𝜕𝜕𝜃𝜃𝑠𝑠

,
𝑘𝑘

𝑗𝑗=0

𝑛𝑛

𝑖𝑖=1

 

where 𝜃𝜃1 = 𝜏𝜏,𝜃𝜃𝑘𝑘 = 𝛽𝛽𝑘𝑘−2,𝑘𝑘 = 2, … , 𝑞𝑞 + 1,𝜃𝜃𝑞𝑞+2 = 𝛾𝛾. Let 𝐼𝐼𝑛𝑛(𝜽𝜽) = (𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟(𝜽𝜽)).  
It is assumed that the limiting matrix lim

𝑛𝑛→∞
𝑛𝑛−1𝐼𝐼𝑛𝑛(𝜽𝜽) = 𝐼𝐼(𝜽𝜽) exists, is finite 

and positive definite (Sen & Singer 1993). The maximum likelihood 



38 
 

estimator 𝜽𝜽� is supposed to be consistent and asymptotically normally 
distributed, i.e. 

𝑛𝑛
1
2�𝜽𝜽� − 𝜽𝜽0�

𝐷𝐷
→  𝑁𝑁(0, [𝐼𝐼(𝜽𝜽0)]−1). (10) 

Let 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟(𝜽𝜽), 𝑟𝑟, 𝑠𝑠 = 1,2, … , 𝑞𝑞 + 2, denote the elements of the inverse of the 
matrix 𝐼𝐼𝑛𝑛(𝜽𝜽). An approximate 95% confidence interval for the individual 
parameters 𝜃𝜃𝑟𝑟 is given by 
 

𝜃𝜃�𝑟𝑟 ± 1.96�𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟�𝜽𝜽��, 𝑟𝑟 = 1,2, … , 𝑞𝑞 + 2. (11) 

An approximate confidence interval can also be constructed for the intensity 
𝜆𝜆𝜽𝜽(𝒖𝒖) = 𝜏𝜏𝜏𝜏(𝒖𝒖) = 𝜏𝜏exp (𝛽𝛽0 +∑ 𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖(𝒖𝒖)𝑞𝑞−1

𝑖𝑖=1 ) of the point process at a spatial 
location 𝒖𝒖. By (10) and the delta-method (e.g., Shao 2003),  

𝑛𝑛
1
2 �𝜆𝜆𝜽𝜽�(𝒖𝒖) − 𝜆𝜆𝜽𝜽0(𝒖𝒖)�

𝐷𝐷
→ 𝑁𝑁 �0,∇𝜆𝜆𝜽𝜽0(𝒖𝒖)T[𝐼𝐼(𝜽𝜽0)]−1∇𝜆𝜆𝜽𝜽0(𝒖𝒖)�, 

where ∇𝜆𝜆𝜽𝜽(𝒖𝒖) denotes the gradient, i.e., the vector formed by the partial 
derivatives 𝜕𝜕𝜆𝜆𝜽𝜽(𝒖𝒖)

𝜕𝜕𝜃𝜃𝑟𝑟
, 𝑟𝑟 = 1, … , 𝑞𝑞 + 2. Then, an approximate 95% confidence 

interval for the intensity at a given spatial location 𝒖𝒖 is given by 

𝜆𝜆𝜽𝜽�(𝒖𝒖) ± 1.96���𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟�𝜽𝜽��
𝜕𝜕𝜆𝜆𝜽𝜽(𝒖𝒖)
𝜕𝜕𝜃𝜃𝑟𝑟

�
𝑞𝑞+1

𝑠𝑠=1

𝑞𝑞+1

𝑟𝑟=1 𝜽𝜽�

𝜕𝜕𝜆𝜆𝜽𝜽(𝒖𝒖)
𝜕𝜕𝜃𝜃𝑠𝑠

�
𝜽𝜽�

. (12) 

The estimated standard errors for the estimators 𝜃𝜃�𝑟𝑟 and 𝜆𝜆𝜽𝜽�(𝒖𝒖) are provided 
by the square root expressions of (11) and (12), respectively. 

4.3 Assessing the models  
There is no guarantee that the regression models presented in 4.1 and 4.2 are 
directly applicable. These models, that are implied by their respective types 
of point processes, need to be evaluated for suitability. First, standard 
methods for model selection and validation of the regression models were 
applied. In addition, in Paper I, the correlation between the residuals in the 
fitted model (6) was investigated. If spatial correlation was found between 
the paired residuals (obtained from the paired observations in the sampling 
design in Fig. 4), this indicated that the assumption of independence of the 
response variables—given the covariates—in the binary regression model 
(6), as implied by the inhomogeneous PPP model, was violated. This would 
then make the underlying hypothesis of inhomogeneous PPP invalid. The 
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Figure 4. Disposition of the paired vegetation plots in a pixel, based on the design used 
in the Swedish NFI. 

regression model residuals that were studied were the Pearson, working and 
randomised quantile residuals (Dunn & Smyth 1996, 2018). Additionally, 
the Pearson and Spearman correlation coefficients were the coefficients that 
were studied. 

In Paper III, randomised quantile residuals as defined in Trijoulet et al. 
(2023) were used to evaluate the fitted multinomial regression models. 

4.4 Simulation studies 
Simulation studies are an essential part of this thesis. Indeed, Monte Carlo 
simulations are convenient in order to evaluate the performance of the 
developed estimators and their estimators of variance. They are also practical 
to investigate the actual significance levels (i.e., the percentage of times the 
null hypothesis is rejected when the data are generated according to the null 
hypothesis) and the power (i.e., the percentage of times the null hypothesis 
is rejected when the data are generated according to the alternative 
hypothesis) of the tests. All the simulations in this thesis were performed in 
R (R Core Team 2025). 

In Paper I, simulation studies were conducted in order to investigate the 
power and actual significance levels of the correlation tests. The actual 
significance levels should ideally be close to the nominal significance level, 
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i.e. 0.05 as it was set, and the power should be close to 1 the more the studied 
point processes differ from an inhomogeneous PPP (e.g., when investigating 
processes that produce strong clustering). Different point processes were 
generated: log-Gaussian Cox, Matérn cluster and Thomas processes. The 
parameters for these processes were adjusted to express different strength of 
clustering. A GLM was then fitted on the P/A data coming from the 
generated point data and the covariates associated with each sample plot 
under the assumption that the process was generated by an inhomogeneous 
PPP, which was then used to produce residuals to use for the considered tests.  

In Paper II, simulations were performed in order to evaluate the 
performance of the derived density estimators and their associated variance 
estimators. This was done for two cases, both when the area of the region of 
interest was known and when it was unknown. Covariates were created 
artificially based on the ones that were included in the V. vitis-idaea model. 
P/A data were generated from an inhomogeneous PPP for each replicate. The 
plot centres for samples 𝑆𝑆1 and 𝑆𝑆2 were randomly selected for each replicate. 
A model was then created on 𝑆𝑆1 and model coefficients 𝜷𝜷� were estimated. 
Then, the expected plant density and corresponding variance were estimated 
based on 𝑆𝑆2.  

In Paper III, the main objective of the simulation study was to verify the 
performance of the parameter estimators and their associated variance 
estimators. This involved computing the actual confidence level (ACL) of 
the derived confidence intervals for the individual parameters included in 
vector 𝜽𝜽. The ACL should ideally be close to the nominal confidence level, 
set to 95% for this study. The design used during the Monte Carlo study was 
the design with concentric circles presented in subsection 3.1, with 6 
concentric circular plots. Realisations of Matérn cluster processes were 
generated and maximum likelihood estimates of 𝜽𝜽0 were produced. The 
models investigated were the ones for the 3 plant species introduced in 
subsection 3.1, with covariates based on the actual covariates in the study 
area. The intensity of the process when the covariate was equal to its 𝑖𝑖th 
sample quartile, 𝑖𝑖 = 1,2,3, was estimated, and the performance of these 
intensity estimators was also evaluated.  
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5. Estimation of the components of the 
MSE based on simulations  

In Papers I to III, the measure of uncertainty was uniquely the variance 
estimator for the estimator of expected plant density. However, it can be of 
interest to investigate a more thorough measure of uncertainty in some cases, 
if each of the components of said measure of uncertainty can be estimated. 
The MSE can be applied as a measurement of uncertainty when model-based 
inference is used. The MSE gives an expression for the expected squared 
deviation between predicted and actual values, and takes several relevant 
uncertainty factors into consideration, in addition to the variance of the 
estimator/predictor. 

Let 𝑌𝑌 be the (random) targeted response variable (e.g., AGB 
measurement in ton/ha) and 𝑌𝑌� be its predictor. In the model-based inference 
case, the MSE of the predictor is expressed as  

   MSE�𝑌𝑌�� = Var�𝑌𝑌��+ Bias2�𝑌𝑌��+ Var(𝑌𝑌)− 2Cov�𝑌𝑌� ,𝑌𝑌�,                  
where Var(𝑌𝑌�) is the variance of the predictor, Bias�𝑌𝑌�� = E(𝑌𝑌� − 𝑌𝑌) is the 
model bias of the predictor, Var(𝑌𝑌) is the variance of the target variable and 
Cov(𝑌𝑌� ,𝑌𝑌) is the covariance of the target variable and its predictor. 

In a number of model-based studies that make use of remotely sensed 
data, the formula of the MSE is believed to be used wrongly (Ståhl et al. 
2024). Indeed, some studies use the design-based version of the MSE 
formula instead of the model-based version. In other words, the variance of 
the target variable, the model bias and the covariance term are omitted. 
However, these terms can be non-negligible in some cases. Looking at the 
magnitude of each term of the model-based MSE in different cases is the 
main objective of Paper IV. 

For large areas, the MSE can reasonably be approximated by the variance 
of the predictor solely (McRoberts et al. 2018). This is not the case anymore 
when the area of study is small, as can be seen in the results of Paper IV. 

Paper IV relied entirely on simulations. For each combination of study 
area (Tanzania or USA) and RS data source (ALS/GEDI or Landsat 8), a 
proxy of the superpopulation model was estimated and applied to generate a 
large number of population realisations. For each population and field data 
sample size, a new prediction model was created based on a fixed systematic 
sample, and the biomass density predicted for the target area. Thus, for each 
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replicate, a true and a predicted biomass density values were obtained. Based 
on these, all the terms constituting the MSE formula could be empirically 
estimated. 

In order to make the simulations more realistic, a spatial autocorrelation 
structure was introduced. It was applied to the error terms in the 
superpopulation model. The strength of the spatial autocorrelation could be 
controlled (no autocorrelation, mild autocorrelation, moderate 
autocorrelation and strong autocorrelation), and several subcases were 
examined. The benchmark case in the simulations had moderate 
autocorrelation and a sample size of 150 cells. 
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6. Results from the empirical data studies 
and simulations 

6.1 Large-area estimation of plant density using 
presence/absence data and binary regression, and 
correlation tests of the binary regression model 
(Paper I) 

The results were separated into two categories for this paper. First, an 
application with field data was conducted, and then a simulation study was 
performed to evaluate the performance of the proposed estimators and 
associated variance estimators.  

A model was first constructed on field data, i.e. P/A data of L. europaea 
and L. pilosa, in the Lappland region of Norrbotten county in Sweden. Both 
binary regression models based on data from these species passed the 
correlation test at the 5% significance level. Both models contained two 
explanatory variables: the first model, for L. europaea, comprised the 
proportion of tree stem volume of deciduous trees and basal area; whereas 
the second model, for L. pilosa, comprised the basal area-weighted mean tree 
DBH and an index of soil moisture. The expected plant density was estimated 
for both species in the region of interest. The estimate of expected plant 
density, as defined in (7), was 0.111 individuals per square metres for L. 
europaea and 0.054 individuals per square metres for L. pilosa. The 
associated estimated variances were respectively 0.00125 and 0.00052. 

In the Monte Carlo simulation study, the variant with the Pearson 
residuals and Pearson correlation test was the one that produced the largest 
power, whereas the variant with randomised quantile residuals was the one 
that produced actual significance levels closer to the nominal level of 5%. It 
was clear that the larger the sample, the higher the power. The power 
increased monotonously for the LGCP with increasing standard deviation 
parameter from 0 to 3, whereas it increased and then decreased with the two 
types of NSPs (i.e., Matérn cluster and generalised Thomas) with increasing 
cluster size. It was also apparent that when the distance between the 
vegetation plots in a same pair was reduced, the power of the test increased 
(as can be seen in Fig. 5). 
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Figure 5. Examples of power curves, with Matérn and Thomas processes, for different 
types of residuals (quantile, Pearson, working) and correlation coefficients (Pearson, 
Spearman), with varying 𝛾𝛾. The curves with solid lines represent the cases with a distance 
of 0.62 metres between the plot centres, and the curves with dashed lines represent the 
cases with a distance of 5 metres between the plot centres. 

6.2 Estimation of plant density based on 
presence/absence data using hybrid inference 
(Paper II) 

The results were separated into two categories for this paper as well, in the 
same way as in Paper I. A model was first constructed based on real data, i.e. 
P/A data of V. vitis-idaea in the Lappland region of Norrbotten county in 
Sweden. The model comprised two explanatory variables: the number of tree 
stems per hectare, and an indicator variable indicating whether the soil was 
humid or wet. The density of V. vitis-idaea was estimated to be 
approximately 7.5 individuals per square metre in the whole Lappland region 
of Norrbotten county. If only the areas consisting of productive forests were 
considered, this estimated density increased to approximately 9.7 individuals 
per square metre. The associated estimated variances were respectively 0.209 
and 0.411. 
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A Monte Carlo study was also performed to see whether these estimators 
and associated variance estimators performed satisfactorily. In both cases 
with known and unknown area, the estimator of expected density presented 
slight negative bias and the associate variance estimators showed small bias 
(see Paper II). 

6.3 Estimation of parameters in inhomogeneous 
Neyman-Scott processes using presence/absence 
data (Paper III) 

There were two parts in the results section in this paper as well. Models were 
first created on field data collected in the Kulbäcksliden research park in 
Västerbotten County, Sweden. Three species were selected to apply the 
proposed method: M. bifolium, L. pilosa and L. europaea. Only one covariate 
variable was used for each model. All the models passed the Shapiro-Wilk 
test of normality based on the model residuals, and the parameters for the 
underlying NSPs were estimated. Local estimates of plant density when the 
covariate was equal to specific, meaningful values were also provided in the 
article. The estimated process intensities (as well as the associated 95% 
confidence interval) when the covariates equal their sample median values 
were respectively 0.052 (0.034, 0.071), 0.11 (0.063, 0.17) and 0.026 (0.018, 
0.035) for M. bifolium, L. pilosa and L. europaea.  

In the Monte Carlo study, it was apparent that the (mean and median) 
biases and standard deviations of the estimators decreased as the sample size 
increased. For the largest sample size considered, the biases were very small 
and the ACLs were pretty close to the nominal level of 95%. However, for 
the smallest sample size considered, the ACLs were notably lower than the 
nominal level 95% for several parameters and estimates of plant density. The 
standard error estimators exhibited some biases, but they were not severe for 
any of the sample sizes considered. 

6.4 A closer look at uncertainties in forest ecosystem 
surveys using remotely sensed data and model-
based inference (Paper IV) 

In the simulation study of Paper IV, several cases were investigated. In the 
first case, variability due to study area size was studied. The sample size was 
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held constant at 150 cells, while the study area (i.e. the area where the models 
are applied) varied between very small area, small area, intermediate area 
and very large area (the whole grid). The main observation from that subcase 
was that the variance of the true value decreased with study area size, 
whereas the other components of the MSE did not appear to be particularly 
affected (Fig. 6). A particularly interesting observation when the area of 
application was the entire grid was that the MSE was smaller than the 
variance of the predictor due to the non-negligible covariance term. 

The second case was variability due to field sample size. The study area 
was the whole grid in both regions, and the field sample size varied between 
50, 150 and 500 sample units. This change in sample size principally affected 
the variance of the predictor (Fig. 7). More specifically, the larger the sample, 
the smaller the variance of the predictor. 

The third case was variability due to spatial autocorrelation of the error 
terms. The sample size was set to 150 sample units, the study area was set to 
the whole grid, and the strength of the autocorrelation varied between no 
autocorrelation, mild autocorrelation, moderate autocorrelation and strong 
autocorrelation. The results showed that both the variance of the true value 
and the covariance term increased significantly with the strength of spatial 
autocorrelation (Fig. 8). A similar change occurred for the variance of the 
predictor, albeit less obviously. However, this had the effect of decreasing 
the MSE with autocorrelation strength, mostly because of the covariance 
term. 

The fourth case was the effect of model transfer on the components of the 
MSE. The model constructed on Tanzania data was applied on USA data and 
vice versa. Significant model bias occurred in both cases, and the squared 
model bias component made up for approximately 95% of the total MSE. 
This can be explained by strong extrapolation that occurs when applying a 
model from one region to another, since these regions might not have the 
same range for the target variable. 
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Figure 6. Effect of area size on the different MSE components in the different areas of 
study and for each kind of RS data. 

 
Figure 7. Effect of sample size on the different MSE components in the different areas 
of study and for each kind of RS data. 
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Figure 8. Effect of autocorrelation strength on the different MSE components in the 
different areas of study and for each kind of RS data. 
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7. Discussion and future research 

7.1 Some reflections and conclusions 
In this thesis, several methods intended for application in ecological research 
and environmental monitoring programmes were developed. A particular 
emphasis was made on P/A data, which are oftentimes registered as part of 
these programmes but are only occasionally used in analyses. The methods 
presented in this thesis for estimating plant density from P/A data show 
versatility, since they can be adapted to different assumptions regarding plant 
populations (more precisely, plant locations) and different types of covariate 
information (wall-to-wall or at plot sample level). The results were 
promising but additional research is needed.  

P/A data are known for being hard to interpret (Ståhl et al. 2017). It is 
difficult to get ecologically valuable measurements directly from P/A data 
(for example total cover area or number of plants per hectare), and the 
occurrence proportions obtained from P/A data analyses are usually 
comparable only within monitoring inventories as long as the sample plot 
sizes are the same. In this thesis, several methods that mitigate these aspects 
have been presented. Inhomogeneous point process models, i.e. point process 
models that take environmental covariates into account, were used to model 
plant positions. These point process models imply GLMs that create a link 
between these environmental covariates and P/A data of plants. Based on 
these GLMs, estimates of plant density can be obtained locally and in large 
regions when P/A data are registered at sample plot level. Thus, if the 
assumed point process model is approximately correct, the proposed 
methodology provides estimates of plant density that are more easily 
interpretable than, for example, occurrence proportions. Such estimates can 
be used for state and trend analyses, as well as for reporting by environmental 
monitoring programmes within the scope of the habitat directives mentioned 
in Section 1. 

In a way, this thesis can be seen as an argument for the more frequent use 
of P/A data in environmental monitoring analyses. The cost- and time-
effectiveness of P/A sampling, in combination with the readily-available 
nature of RS data, can be reasonable arguments in favour of the wide-
spreading of GLMs with binary response variables in ecology, especially for 
environmental analyses. This thesis has hopefully demonstrated that model-
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based and hybrid inference can be used efficiently to derive meaningful and 
construable characteristics of plant populations – in particular, plant density 
and abundance – using spatial models to represent the locations of plants as 
well as P/A data in connection with auxiliary environmental data. 

One should keep in mind that inference from model-based estimators 
always rely on some model assumptions, and these should be tested. 
Different ways to assess the GLMs implied by the underlying spatial point 
process models have been suggested in this thesis. The tests presented herein, 
as well as in Papers I and III, are based on model residuals. Randomised 
quantile residuals appear to be useful for assessing binary regression models, 
although their randomness could cause problems in the correlation tests. 
Indeed, as stated in Paper I, the test statistic and associated p-value will vary 
each time the test is run, even for the exact same values of response variable 
and covariate data. Moreover, it has been shown in the simulation study in 
Paper I that the test variant with Pearson residuals is more powerful than the 
one making use of randomised quantile residuals, although the actual 
significance levels for the former variant were a little less satisfactory. 

One relevant observation with regard to environmental monitoring 
programmes based on the analyses in Paper I is that the method developed 
within would detect deviations from random populations better if the 
distance between the plots in a same pair of vegetation plots would be 
decreased to its minimum possible without any overlap occurring (in case 
such a sampling design is used, for example in the Swedish NFI). This aspect 
could be taken into account for future planning in the monitoring 
programmes.  

The derived estimators and corresponding variance estimators in Papers 
I, II and III were evaluated through Monte Carlo simulations. The results 
indicated that these estimators performed relatively well, with only slight 
bias and reasonable orders of magnitude for the variance estimates, 
particularly when the sample size increased. In addition, the confidence 
intervals in Paper III were relatively narrow for the larger sample sizes 
considered, which shows that the method used therein is rather precise. 

In Papers I and II, some estimates of expected density for several plant 
species in an entire region of Sweden were produced. However, it is difficult 
to see if these values are reasonably accurate, since there exists no reference 
data to compare with. In spite of that, these values do not appear to be too 
far-fetched, since for example V. vitis-idaea is a relatively common plant 
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species in the whole of Sweden, and thus relatively high densities are to be 
expected. 

An important aspect to take into consideration when performing plant 
surveys is to decide what constitutes a presence registration for a given 
species. In other words, it has to be decided what part of the plant is sufficient 
for the plant to be considered as present on a sample plot. In Paper III, 
presence is recorded if a predetermined part of the plant is located on the 
vegetation plot (i.e., their root points), as advised by, e.g., Cain & Castro 
(1959), whereas in Papers I and II, presence was recorded if any part of the 
plant was located in the vegetation plot. As a consequence, the plot radii 
needed to be adjusted in the calculations by adding a presumed average 
radius for the plant, in accordance with Ståhl et al. (2017). 

In Paper IV, the MSE and its different components were estimated in a 
model-based context. The results showed that the variance of the estimator 
(or predictor) is not the only component that can be significant, especially in 
small-area surveys. In the latter case, the variance of the true value of the 
variable under study can be largely influential. Moreover, if a spatial 
autocorrelation structure exists, the covariance between the predicted value 
and the true value can impact the MSE and contribute to it negatively. Model 
bias can be an issue if one applies a model to another region compared to 
where said model was constructed. Thus, the conclusion is that one should 
be aware of other uncertainty components than the variance of the predictor 
when performing model-based inference. This conclusion has consequences 
for Papers I, II and III, as will be explained in subsection 7.2. 

The models presented in Papers I, II and III contain at most two 
explanatory variables. As a consequence, these models can be considered too 
simplistic, and can be criticised for failing to capture the complexity of the 
environment and the different processes within it that can affect the presence 
of plants at a given location. It would have been interesting to consider 
models with more explanatory variables, although this might necessitate an 
increase of the sample size as well. However, the methods presented in these 
papers are computationally demanding, and the complexity rises when the 
number of explanatory variables increases, especially in Paper III. Hence, 
future attempts at such modelling should take computer efficiency as a 
factor. 



52 
 

7.2 Ideas for future research 
An interesting area to look further into is the estimation of change of plant 
density between two time points in case plant data are assumed to be 
generated from inhomogeneous point processes. Ståhl et al. (2017) have 
already studied this issue for homogeneous PPP. Modelling of P/A data from 
two different point processes are needed: one from the process at the first 
time point and another one at the second time point. If the time between the 
two considered time points is long enough, these two processes can be 
considered independent, and then the extension from the methods in, e.g., 
Paper I can be relatively straightforward. However, if this time interval is 
relatively short, then the two point processes will probably be dependent, and 
adjustments would be needed in the modelling.  

In Paper II, hybrid inference is applied to data that are supposed to be 
realisations of an inhomogeneous PPP. It could be feasible to develop the 
method for other kinds of point processes as well, not least Neyman-Scott 
cluster processes, that is to expand the methods presented in Paper III to 
obtain an estimator of expected plant density in an entire region. 

In Paper III, inhomogeneity in the NSPs was introduced by letting 𝜇𝜇 vary 
by environmental covariates. The idea followed from Waagepetersen (2007). 
Nevertheless, this is far from being the only way to make a NSP 
inhomogeneous. Baddeley et al. (2016) make the intensity of the parent 
process, 𝜏𝜏, vary with covariates. Other methods to include non-homogeneity 
in cluster processes include second order intensity reweighted stationarity 
(Baddeley et al. 2000), which is another way to make 𝜇𝜇 vary through thinning 
the offspring points. This is similar to dependent thinning (Prokešová 2010). 
Other methods make 𝛾𝛾 vary. Such examples include inhomogeneous space-
location dependent scaling (in which 𝜏𝜏 varies as well (Hahn et al. 2003)) or 
the “growing clusters” approach developed in (Mrkvička 2014). In the latter, 
𝜇𝜇 varies as well. It would be interesting to expand the methods derived in 
Paper III by applying these other techniques to make NSPs inhomogeneous, 
as well as different other types of NSPs such as Thomas processes, although 
this would complicate the numerical calculations. 

Takashina et al. (2018) propose a framework to estimate abundance from 
count data using SRS and cluster sampling while making assumptions about 
an underlying homogeneous Thomas process. An area of interest could be to 
develop the method presented therein so that it takes into account 
inhomogeneous point processes as well. Several other models already exist 
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to estimate population abundance or density based on abundance data. 
Design-based methods that make use of, e.g., adaptive cluster sampling have 
been used to estimate abundance for rare plant species that are known to 
grow in clusters, using, for example, a Horvitz-Thompson estimator as in 
Philippi (2005). Abrahamson et al. (2011) compared the performance of 
several sampling designs, including adaptive cluster sampling, to estimate 
understory plant abundance. 

The measure of uncertainty in Papers I, II and III is solely the variance of 
the estimator of the variable of interest. However, it has been shown in Paper 
IV that other uncertainty components (that constitute the formula for the 
MSE) can be significant in model-based studies. Moreover, the MSE is more 
suitable as a measurement of uncertainty compared to the variance of the 
estimator/predictor alone, since it takes into account the deviation between 
the true and estimated/predicted value. A problem is that it seems to be 
difficult to estimate the model bias for the cases studies in Papers I, II and 
III, since there are no registrations of plant abundance available at sample 
plot level. Instead, the bias is estimated by a simulation study. Likewise, a 
possible further development of the studies regarding plant density can be to 
specify predictors for actual plant density at regional level and perform 
simulations similar to the ones conducted in Paper IV for a wider uncertainty 
analysis of the estimations of plant density. 

In the simulation study in Paper IV, the biomass values in each cell were 
supposed to be strictly positive. This is not always the case in reality, where 
some areas, even inside forests, can have an absence of biomass (for example 
in Næsset et al. (2016)). Further simulations would be needed where zero 
values can be accepted, for example by adopting a two-part modelling 
approach (Duan et al. 1983), where the 0-data are first generated from a 
specific model (e.g., a logistic regression model), and then the non-0 data are 
generated according to another model, e.g., a GLM (cf. Min & Agresti 2002). 

There is a growing need for methods that integrate multiple data types 
into a single analytical framework. Over the past decade, initial efforts have 
been made to combine unbiased P/A data from structured monitoring 
programs with abundant presence-only data from citizen science sources; 
see, e.g., Fletcher et al. (2019) for a review. Using an inhomogeneous PPP 
model for multispecies data, Fithian et al. (2015) propose pooling presence-
only and P/A data to simultaneously estimate and correct for the sampling 
bias affecting the presence-only data. A key assumption of their model is that 
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the sampling bias is consistent across all species considered. Under these 
assumptions, they argue that unbiased or nearly unbiased estimates of plant 
density can be obtained for all species, including rare ones. Pacifici et al. 
(2017), Gelfand & Shirota (2019), and Ahmad Suhaimi et al. (2021) 
developed similar frameworks that also account for spatial dependence. 
However, because these models do not incorporate a multispecies setting, 
they are less suitable for rare species. 
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Popular science summary 

As the environment continues to change due to global warming, land use, 
and other human impacts, keeping an eye on plant populations has become 
increasingly important. Environmental monitoring programmes, such as the 
Swedish national forest inventory (NFI) and the national inventory of 
landscapes in Sweden (NILS), regularly collect large amounts of data 
pertaining to forests and landscapes that can be used in meaningful 
environmental analyses. 

A particular sampling method that is used in such programmes and that 
has a large, but not fully exploited potential is the one where only presence 
or absence of a specific plant species is registered in each sample plot. That 
method is called presence/absence (P/A) sampling. This method is simple, 
time- and cost-effective, and easier to carry out compared to many traditional 
survey methods. 

By combining mathematical models with P/A data and environmental 
covariate data from the NFI or remote sensing, plant density (defined as the 
number of plants per unit area) is estimated for several forest species, both 
locally and for entire regions. Different assumptions about the plant 
populations are considered (whether the plant individuals are randomly 
scattered or grow in groups). The developed approaches can also account for 
how environmental factors, such as surrounding trees or soil moisture, might 
influence the abundance of plants. In short, these techniques help turn simple 
yes-or-no data into valuable insights about where plants are likely to grow 
and how they interact with their environment. The methods were applied to 
both real-world and simulated data and showed promising results.  

Nevertheless, the proposed estimates of plant density cannot be trusted 
blindly. There is some uncertainty at play whenever such values are 
presented. Errors can emerge from the mathematical models, the remote 
sensing products, the field measurements, and many more. That is why it is 
important that a measure of uncertainty is presented in connection with these 
estimates. In this thesis, it is supposed that the P/A and covariate data are 
error-free, for instance that there were no measurement errors and that the 
presences or absences of plants were registered correctly, although this is a 
simplification of reality. 

In most studies, as in Papers I, I and III in this thesis, uncertainty is 
presented by means of the variance of the estimator. The variance expresses 
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how an estimator can vary. However, more uncertainty sources can arise 
when applying mathematical models. The study of the extent of these 
uncertainty components is the main objective of Paper IV, with a case study 
focused on biomass based on simulations. The results show that the variance 
can be used as a suitable approximation of uncertainty when the studies occur 
on a large area, whereas additional measures of uncertainty need to be taken 
into account when the study area is small. 
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Populärvetenskaplig sammanfattning 

När miljön förändras på grund av global uppvärmning, markanvändning 
och annan mänsklig påverkan har övervakning av växtpopulationer blivit allt 
viktigare. Miljöövervakningsprogram, som Riksskogstaxeringen och 
Nationella Inventeringar av Landskapet i Sverige (NILS), samlar 
rutinmässigt in omfattande datamängder relaterade till skogar och landskap 
som kan användas för värdefulla miljöanalyser. 

En specifik inventeringsmetod som används i sådana program och som 
har stora men relativt outnyttjade fördelar kallas närvaro/frånvaro. Den 
innebär att det i varje provyta endast registreras om en viss växtart registreras 
förekommer eller inte. Metoden är enkel, tidseffektiv och med mindre risk 
för att olika personer gör sinsemellan olika bedömningar än för många andra 
konventionella inventeringsmetoder. 

Genom att kombinera matematiska modeller med data om 
närvaro/frånvaro samt andra data som beskriver miljön uppskattas 
planttätheten (definierad som antalet plantor per ytenhet) för flera skogsarter, 
både lokalt och för stora områden. Miljödata kommer från olika källor som 
t.ex. Riksskogstaxeringen eller fjärranalys. Olika förhållanden avseende 
växtpopulationer beaktas, t.ex. om växterna är slumpmässigt utspridda eller 
grupperade. De utvecklade metoderna kan också ta hänsyn till hur 
miljöfaktorer, såsom omgivande träd eller markfuktighet, påverkar 
planttätheten. I korthet kan dessa metoder, baserade på inventeringar som 
registrerar närvaro/frånvaro av arter, ge värdefulla insikter om planttäthet 
och hur den påverkas av sin omgivning. Metoderna har tillämpats på både 
faktiska fältdata och simulerade data och har gett lovande resultat. 

De erhållna skattningarna av planttäthet bör dock inte ses som sanningar 
utan vidare granskning. Det finns osäkerheter i skattningarna och fel kan 
uppstå från matematiska modeller, kartprodukter framtagna med hjälp av 
fjärranalysdata, fältmätningar och från andra källor. Det är därför det är 
viktigt skattningarna också presenteras tillsammans med en uppskattning av 
osäkerheten, vilket också är en viktig del av avhandlingen. I denna 
avhandling antas dock att utnyttjade data är utan fel, exempelvis att de inte 
är behäftade med mätfel och att det inte finns några felregistreringar av 
frånvaro och närvaro av växtarter, vilket är en förenkling av verkligheten. 

För många studier, inklusive papper I, II och III i denna avhandling, 
presenteras osäkerheten genom skattningars varians. En varians ger ett mått 
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på hur en skattning kan variera. Dock kan fler osäkerhetskällor förekomma 
när matematiska modeller tillämpas. Att undersöka omfattningen av dessa är 
i huvudfokus i papper IV, som är en fristående studie med fokus på biomassa 
och som bygger på simuleringar. Den studien visar att variansen för t.ex. en 
uppskattad mängd biomassa ger en rätt god approximation av osäkerhet vid 
storskaliga undersökningar, medan andra osäkerhetskomponenter kan få 
större betydelse ifall studieområdet är mindre.   
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A B S T R A C T   

Monitoring of plant populations has become more and more important, especially in the current context of 
environmental change. In this paper, we propose methods to estimate plant density from presence/absence 
surveys, wherein the presence or absence of each species is recorded on sample plots. Presence/absence sampling 
is a useful and relatively simple method for monitoring state and change of plant communities. Moreover, it has 
advantages compared to traditional plant cover assessment, the latter being more prone to observer bias. We 
present a hybrid estimation framework, that combines model- and design-based inference features, in which a 
generalised linear model (for binary presence/absence data) and an inhomogeneous Poisson model (for plant 
locations) are used to estimate plant density in a region of interest. We look at two different cases, the first one 
with a known area and the second one where the area is unknown and must be estimated. Our methods are 
applied to real data on Vaccinium vitis-idaea from the Swedish National Forest Inventory as well as simulated data 
to assess the performance of our estimators of plant density and corresponding variance estimators. The results 
obtained are promising and indicate that this method has a potential to add considerable analytic strength to 
monitoring programmes that collect presence/absence data.   

1. Introduction 

Collecting data on ground vegetation in forests is an important part 
of environmental monitoring, e.g., as part of initiatives for assessing 
trends in biodiversity (e.g., Pain et al. 2020; CBD 2002) or reporting 
within international agreements, such as the EU’s Habitats Directive 
(Commission of the European Communities 2003). The demands for 
such monitoring programmes are currently increasing (e.g. O’Connor 
et al. 2020). However, monitoring plant populations is far from trivial. 
The methods applied should preferably be cost-efficient, easy to apply, 
and use protocols that avoid assessment errors. Methods based on 
assessing plant cover fulfil the first two requirements, but they tend to be 
prone to observer bias and variability due to phenology (e.g., Gallegos 
Torell & Glimskär 2009; Futschik et al. 2020; Kennedy & Addison 1987; 
Kercher et al. 2003). 

In some cases, especially if the sample plots are not too large, 
methods based on presence/absence (P/A) sampling are less prone to 
errors of the kinds mentioned above (e.g., Ringvall et al. 2005; Kercher 

et al. 2003), since only the presence or absence of target species within 
plots needs to be registered. Some studies also suggest that P/A-data 
could be more useful than cover data in characterizing plant commu
nities (e.g., Bastow Wilson 2012). On the other hand, whereas state and 
change in terms of vegetation cover or plant density are straightforward 
to interpret, state and change in terms of presence or absence fre
quencies are vaguer measures, which depend on sample plot size (e.g., 
Ståhl et al. 2017). However, if plant spatial occurrences are modelled, 
large-area estimates in terms of state and change of plant density or 
vegetation cover can be derived from P/A data (Ekström et al. 2020; 
Ståhl 2003) through application of model-based inference (e.g., Cassel 
et al. 1977; Warton et al. 2015). In addition, if a model for the proba
bility that at least one plant will occur on a given plot (or pixel) depends 
on one or more auxiliary variables, then the model-based inferential 
framework assumes the availability of wall-to-wall auxiliary variables 
(cf. Fortin et al. 2023). 

Auxiliary information is becoming increasingly available through 
different remote sensing techniques (e.g., Olsson 2020; Baena et al. 
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2018; Dubayah et al. 2022) and so are data about presence of species 
through citizen science data collection programs (e.g., the Species 
Observation System in Sweden (Artdatabanken 2022) or the Atlas of 
Living Australia and its citizen science data portal (Belbin 2011)), which 
can be combined with P/A data (Fithian et al. 2015). Thus, opportunities 
for modelling plant occurrence are much better today compared to some 
decades ago. This type of modelling, with the availability of wall-to-wall 
auxiliary information from, e.g., remote sensing, can offer information 
in terms of both estimates and maps. Estimates are needed, e.g., for trend 
analysis and reporting to agreements such as the Habitats Directive 
mentioned above. Maps are useful for implementing management plans 
related to preserving threatened species (Baena et al. 2018) or limiting 
the impact of invasive species. 

As the degree of detail in the auxiliary data increases, it will be 
possible to develop better models for plant occurrences, thus facilitating 
model-based estimation of plant density with higher precision. 
Dense networks of field plots from National Forest Inventories (NFI, 
e.g., Fridman et al. 2014; Tomppo et al. 2010) could provide such 
auxiliary data, because very detailed descriptions of biotic and abiotic 
conditions, including soil variables, are made on such plots. However, 
with sample plot data alone, i.e. without wall-to-wall data, it is not 
possible to apply the standard theory of model-based inference. Instead, 
hybrid inference can be an alternative (e.g., Corona et al. 2014; Ståhl 
et al. 2016), where features of model-based and design-based inference 
are combined. 

Examples of applications of hybrid inference include biomass sur
veys based on LiDAR sample data in Norway (Ståhl et al. 2011) and 
North America (Margolis et al. 2015), biomass prediction for temperate 
and pan-tropical regions in the context of the Global Ecosystem Dy
namics Investigation project (Saarela et al. 2022), comparison of forest 
biomass estimates based on coarse and fine resolution data in the USA 
(McRoberts et al. 2019), and estimation of growing stock volume in Italy 
(Corona et al. 2014), Finland (Saarela et al. 2015), and Spain (Condés 
and McRoberts 2017). It has been applied to a broad variety of models, 
such as mixed-effect models (Fortin et al. 2016) and more complex 
models where variance estimation requires resampling methods such as 
the parametric bootstrap (Fortin et al. 2018). 

Using conventional model-based inference, Ekström et al. (Unpub
lished results) investigated the use of P/A data for regional estimation of 
plant density for a selection of plant species occurring mainly in forests. 
The main components of the study were inhomogeneous Poisson point 
processes for modelling the spatial locations of plants and generalised 
linear models (GLMs) with a complementary log-log link function for 
associating P/A data with the intensity of the point process, taking 
auxiliary remotely sensed data into account. As will be described in 
detail later, a similar modelling approach is used in the present study, 
with the important difference that auxiliary data were obtained from a 
large probability sample rather than from wall-to-wall remote sensing. A 
GLM with a complementary log-log link function for modelling P/A data 
has also been used in other studies, such as Yee & Mitchell (1991), Royle 
& Dorazio (2008), Lindenmayer et al. (2009), Baddeley et al. (2010) or 
Fithian et al. (2015). However, contrary to these articles, which focus on 
pixel-wise estimation for, e.g., producing maps, our study focuses on 
obtaining large-area estimates of plant density based on data collected 
exclusively from sample plots. To our knowledge, no previous studies 
that make use of hybrid inference have been conducted based on GLMs. 

A complementary log-log link function has also been used for 
modelling of presence-only data (e.g., Phillips et al. (2017); Wan et al. 
(2017); Sreekumar & Nameer (2022)), although none of them make use 
of hybrid inference. In addition, it should be mentioned that the stan
dard logit link is frequently used in studies analysing P/A data of species 
occurrences (e.g., Foody 2008; Ekström et al. 2018; Esseen et al. 2022; 
Esseen & Ekström 2023). However, for the case where the locations of 
plants are regarded as a realisation of an inhomogeneous Poisson point 
process, Baddeley et al. (2010) provide an explanation of why the 
complementary log-log link function should be preferred for modelling 

P/A data. 
The objective of this study is to assess the usefulness of hybrid 

inference for estimating plant density, where GLMs estimated from a 
small sample of P/A data (and auxiliary data) were applied to a large 
sample of auxiliary data from the Swedish NFI. An important part of the 
study is to develop formal plant density estimators, variances, and 
variance estimators for this approach, because no previous studies are 
available where hybrid inference has been applied in this modelling 
context. The performance of our estimators and corresponding variance 
estimators was examined through Monte Carlo simulations and the use 
of empirical NFI data on a common dwarf shrub, Vaccinium vitis-idaea. 

We choose to focus our study on estimating the expected plant 
density (we refer to (13) for a precise definition) rather than on pre
dicting the actual plant density (which is a random quantity in our study 
setting). The main reason is that this approach simplifies the analyses to 
some extent meanwhile, for large-area surveys, the relative difference 
between actual plant density and its expected value is very small, if the 
models used are approximately correct (cf. Ståhl et al. 2016). The 
motivation for studying plant density rather than the absolute number of 
plants is that density is a more relevant measure for plants with large 
populations (in contrast to many animals), and because the measure 
allows for comparison between regions of different size. 

2. Methods 

In this section, we first explain the necessary basis for our deriva
tions, then propose estimators of the expected number of plants in a 
region of interest U, where U can be, e.g., a municipality, a province or a 
country. Furthermore, we develop variance formulas and corresponding 
variance estimators. The estimator of the expected density, defined as 
the expected number of plants per unit area, is thereafter obtained via 
the estimator of the expected number of plants and is presented for two 
cases: one with known area aU of U and one with unknown area. We also 
look at the case where we want to estimate the expected density for a 
specific domain within U, for example the forested part of U. Two 
different sampling designs are considered. In the first design, plot cen
tres are sampled according to some joint probability density function on 
U, or rather the union of U and a so-called “buffer” for handling edge 
effects (Subsections 2.2–2.4). In the second design, centres of clusters of 
plots are sampled rather than individual plot centres (Subsection 2.5). 

2.1. Models 

Assume that the plant population is generated by an inhomogeneous 
Poisson point process with intensity 

λβ(u) = exp
(
βTx(u)

)
,u ∈ U⊂ ℝ2 (1)  

(Baddeley et al. 2010), where β ∈ ℝq denotes the vector of model pa
rameters and x(u) denotes a covariate vector (of length q) at point u. The 
expected number of plants in U is then given by 

Λ(β) =
∫

U
λβ(u)du. (2)  

We consider plots C(ui), where index i designates plot i, and where the 
plot centres {ui} are selected according to some specified sampling 
design. Let Ni denote the number of plants in C(ui) ∩ U. Our assumptions 
imply that Ni is Poisson distributed, and then 

E(Ni) =

∫

C(ui)∩U
λβ(u)du =

∫

C(ui)∩U
exp
(
βTx(u)

)
du.

Unless stated otherwise, we assume, as an approximation, that x(u) is 
constant in a sample plot, and thus x(u) = x(ui) = xi for all u ∈ C(ui), and 

E(Ni) = aiexp
(
βTxi

)
, (3) 
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with ai being the area of the intersection of plot C(ui) and the region of 
interest U (cf. Baddeley et al. 2010). Since Ni is Poisson-distributed, the 
probability of presence can be expressed by 

pi = 1 − P(Ni = 0) = 1 − exp
(
− aiexp

(
βTxi

) )
(4)  

so that the loglikelihood for the binary response variables (i.e. P/A data 
from C(ui) ∩ U) becomes the loglikelihood of a complementary log-log 
regression with an offset equal to the log of the plot area, i.e. of the 
binary regression model given by 

g(pi) = log(ai)+ βTxi, where g(p) = log( − log(1 − p) ). (5)  

According to Baddeley et al. (2010), the corresponding likelihood may 
be regarded as an approximation of the likelihood that would have been 
obtained without the assumption of constant covariate data in a plot. 

2.2. Estimation of the expected number of plants in U 

Hybrid inference can be used when covariate information is not 
available everywhere in the region of interest but only at sample plot 
level, for example for budgetary reasons (Ståhl et al. 2016). As stated in 
the introduction, this hybrid method includes aspects of both design- 
based and model-based inference. As in, amongst others, the papers by 
Ståhl et al. (2011), Nelson et al. (2012), Corona et al. (2014), Saarela 
et al. (2015) or Saarela et al. (2022) on hybrid inference, we utilise two 
samples that are readily available, for instance in monitoring pro
gramme databases. Our first sample S1 of size n1 contains plot centre 
locations for plots with both binary response data and covariate data, 
while our second sample S2 of size n2 contains plot centre locations for 
plots with only covariate data. Typically, n2 is much larger than n1. 
Sample S1 is used only to establish a model and estimate the vector of 
model coefficients in a GLM (as opposed to, e.g., Ståhl et al. (2011), 
where a standard linear model is used). Thereafter, the fitted GLM and 
covariate information from S2 are used to predict expected numbers of 
plants on all plots with centres in S2, and subsequently the expected 
plant density in the region of interest, using design-based estimation and 
Horvitz-Thompson-like estimators. Sample plots with centre locations in 
S1 and S2 do not necessarily need to have the same size, and the sam
pling designs used to obtain the data in S1 and S2 are allowed to differ. 

When sampling from a finite population, the well-known Horvitz- 
Thompson estimator (Horvitz & Thompson 1952) is often used for 
obtaining estimates of population parameters. However, in our case the 
population is not finite but a continuous set of locations, and therefore 
we use Cordy’s continuous analogue of the Horvitz-Thompson estimator 
(Cordy 1993), which we introduce next. 

Let f be the joint probability density function (pdf) for sample S2 =

{u1, u2,⋯, un2}, and fi(u) the marginal pdf for point ui. The inclusion 
density function is 

π(u) =
∑n2

i=1
fi(u), (6)  

and it can intuitively be considered as a local measure of the number of 
sample points to be selected per unit area (Cordy 1993). If, for example, 
the points in S2 are independent and identically distributed (iid), this 
means that π(u) = n2 f1(u). 

The inclusion zone for a point u ∈ U consists of all points in the frame 
that would result in the inclusion of u if they were selected to the sample. 
It may be formally written as K(u) = {u′ ∈ U : u ∈ C(u′) }, where C(u′) is 
a plot centred around point u′. For simplicity purposes, we assume from 

here on that all plots C(ui), i ∈ S2, are circular and have the same area a. 
The area of the inclusion zone of u ∈ U is ãu =

∫

U I(u ∈ C(u′) )du′. If point 
u is sufficiently into the interior of U, then its inclusion zone will have 
the same shape and size as each of the circular plots. On the other hand, 
if u is close enough to the boundary of U, then its inclusion zone will 
have a smaller size than a. The Horvitz–Thompson-type estimator pre
sented below has the ability to take this into account, but would require 
the inclusion zone area to be determined for each point ui ∈ S2 near the 
edge (cf. Gregoire & Valentine 2007). A less labour-intensive way to 
solve this problem is to use the so-called buffer method, which applies to 
both the single-plot and cluster-plot designs. Thus, we suppose that a 
buffer at least as large as the plot radius is used around U (Gregoire & 
Valentine 2007). This allows sample points ui to fall outside U, i.e. in 
some larger region U•, defined as the union of U and the buffer. The use 
of a buffer impacts the definitions of ãu and K(u), in which U needs to be 
replaced by U•. The introduction of a buffer implies that all points in U 
have the same inclusion zone area, and thus ãu = au = a for all u ∈ U, 
where au denotes the area of C(u). In this setting, we set λβ(u) = 0 for all 
u ∈ U (cf. Gregoire & Valentine 2007). 

The “generalised” Horvitz-Thompson estimator of the expected 
number of plants in U is then given by 

Λ̂(β) =
∑n2

i=1

λ(ui)

π(ui)
, (7)  

where π(u) is given by (6) and 

λ(u) =
∫

C(u)

λβ(u′)

au′
du′,u ∈ U•,

is the average intensity over C(ui), where au′ = a by our assumptions 
(Cordy 1993, Grafström et al. 2017). Note that 
∫

U•

λ(u)du =

∫

U•

∫

C(u)

λβ(u′)

au′
du′du =

∫

U•

λβ(u′)

au′

∫

U•

I(u′ ∈ C(u) )dudu′

=

∫

U

λβ(u′)

au′

∫

U•

I(u′ ∈ C(u) )dudu′ =

∫

U
λβ(u′)du′ = Λ(β)

(8)  

and, according to Theorem 1 in Cordy (1993), this implies that the 
Horvitz-Thompson estimator of Λ(β) is unbiased if π(u) > 0 for all 
u ∈ U•. Hence, with a buffer for handling edge effects, we obtain an 
unbiased estimator of Λ(β). The price to be paid is that the buffer method 
tends to inflate the variance of the estimator (Gregoire & Valentine 
2007). If the area of the buffer is small relative to the area of U, this 
increase in variance can be expected to be small. Using (3), λ(ui) can be 
rewritten as 

λ(ui) =

∫

C(ui)∩U

exp
(
βTx(u)

)

au
du =

ai

a
exp
(
βTxi

)
= riexp

(
βTxi

)
= λ̃β(ui),

where ri is the ratio of the area ai of C(ui) ∩ U and the area of C(ui). With 
λ̃β(ui) defined as above, note that if C(ui) ⊆ U, then ̃λβ(ui) = λβ(ui). This 
implies that 

Λ̂(β) =
∑n2

i=1

λ̃β(ui)

π(ui)
=
∑n2

i=1

riexp
(
βTxi

)

π(ui)
.

Λ̂(β) can also be regarded as a natural predictor of the actual number of 
plants, given the available information and in the context of the inho
mogeneous Poisson point process. As β is usually unknown, we will use 
Λ̂(β̂) as our estimator of the expected number of plants, where β̂ is an 
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estimator of β obtained using model (5) based on data from S1. 

2.3. Variance estimation 

To estimate the variance of the estimator Λ̂(β) of Λ(β), we use the 
Sen-Yates-Grundy variance formula defined in Cordy (1993), 

Var(Λ̂(β) ) =
1
2

∫

U•

∫

U•

Δ(u,u′)

(
λ(u)
π(u) −

λ(u′)

π(u′)

)2

dudu′,

where 

Δ(u, u′) = π(u)π(u′) − π(u, u′) and π(u,u′) =
∑

i∈In

∑

j∈Jn,i

fij(u, u′), (9)  

the latter being the pairwise inclusion density function with In =

{1,…, n2}, Jn,i = {1,…, n2}\{i}, and fij the joint marginal pdf of ui and 
uj. As advised by, e.g., Tillé (2006), the Sen-Yates-Grundy formula 
should be used in case a fixed sample size is used. By Cordy (1993), if 
π(u) and π(u,u′) are strictly positive for all (u, u′) ∈ U•, an unbiased 
estimator of the Sen-Yates-Grundy variance is given by 

V̂ar(Λ̂(β) ) =
1
2
∑

i∈In

∑

j∈Jn,i

Δ
(
ui, uj

)

π
(
ui,uj

)

(
λ(ui)

π(ui)
−

λ
(
uj
)

π
(
uj
)

)2

=
1
2
∑

i∈In

∑

j∈Jn,i

Δ
(
ui,uj

)

π
(
ui,uj

)

(
riexp

(
βTxi

)

π(ui)
−

rjexp
(
βTxj

)

π
(
uj
)

)2

,

(10)  

and that is in effect the part of the variance due to sampling of the plot 
centres in S2, treating the model coefficients as known. With unknown β, 
i.e. where β needs to be estimated by β̂, an estimate of the variance of 
Λ̂(β̂) can be expressed as 

V̂ar(Λ̂(β̂) ) =
1
2
∑

i∈In

∑

j∈Jn,i

Δ
(
uiuj

)

π
(
uiuj

)

(
riexp

(
β̂Txi

)

π(ui)
−

rjexp
(

β̂Txj
)

π
(
uj
)

)2

+
∑q

k=1

∑q

l=1
ĈovS1 (β̂k β̂l)v̂k v̂l,

(11)  

with 

v̂k =
∑n2

i=1

1
π(ui)

λ̃
(k)
β̂ (ui), (12)  

where β̂k denotes the kth component of the β̂ vector, and 

λ̃
(k)
β̂ (ui) =

∂λ̃β̂(ui)

∂β̂k
= rixikexp

(
β̂Txi

)

with xik denoting the kth component of xi. The different ĈovS1 (β̂k, β̂ l)

terms can be obtained from statistical software, for example using the 
glm function in R. The derivation of (11) can be found in Appendix A. 
Another case, where S2 is a sample of centres of plot clusters, is 
considered in Subsection 2.5. 

2.4. Estimation of the expected plant density 

In this section, we utilise our estimator of the total number of plants 
for estimating the expected plant density. First, we assume that the area 
of the region of interest is known. In this case, the expected density R(β)
is defined as the expected number of plants in the region divided by the 
area aU of U, 

R(β) =
Λ(β)
aU

, (13)  

where Λ(β) is defined in (2). This quantity can be estimated by 

R̂(β̂) =
Λ̂(β̂)

aU
, (14)  

where Λ̂(β) is defined in (7). Its corresponding variance estimator is 
given by 

V̂ar(R̂(β̂) ) =
V̂ar(Λ̂(β̂) )

aU
, (15)  

where V̂ar(Λ̂(β̂) ) is the same as in (11). 
However, information about the area of the region of interest may 

not be available, or we may wish to estimate expected plant density in a 
subregion of unknown area, for example in the forested area of a region. 
In such cases, the area has to be estimated. Thus, Λ(β) needs to be 
modified as 

Λ⋆(β) =
∫

U
λβ(u)Iudu,

with Iu being an indicator function taking the value 1 if u is situated in 
the target part of the landscape and 0 otherwise; Iu is set to 0 outside of 
U. The area of the target part of the landscape in U can be written as 

A =

∫

U
Iudu  

and the expected plant density in the area of interest is given by 

R⋆(β) =
Λ⋆(β)

A
. (16)  

This quantity can be estimated by 

R̂⋆(β) =
Λ̂⋆(β)

Â
, (17)  

where Λ̂⋆(β) is defined as 

Λ̂⋆(β) =
∑n2

i=1

λ⋆(ui)

π(ui)
, (18)  

where 

λ⋆(ui) =

∫

C(ui)

λβ(u)Iu

au
du,

and 

Â =
∑n2

i=1

z(ui)

π(ui)
(19)  

is an estimator of the area A, with 

z(ui) =

∫

C(ui)

Iu

au
du.

Note that, if we adopt a reasoning similar to the one in (8), Â is an 
unbiased estimator of A if π(u) > 0 for all u ∈ U• (Cordy 1993). 

In Appendix A, the following estimator of the variance of R̂⋆(β̂) is 
derived: 
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where 

λ̂⋆(ui) =

∫

C(ui)

λβ̂(u)Iu

au
du,

d̂1,k(ui) =

∫

C(ui)

Iu

au
λ(k)β̂ (u)du, d̂2,k =

∑n2

i=1

Iui λ
(k)
β̂ (ui)

π(ui)
, (21)  

and 

λ(k)β̂ (ui) =
∂λβ̂(ui)

∂β̂k
= xikexp

(
β̂Txi

)
.

It can happen that sample plots are divided into several parts, for 
example if one part of the plot is in forests and other parts are in other 
landscape categories. In such cases, some adjustments of the above es
timators of the expected plant density and variance are needed. See 
Appendix B. 

2.5. Cluster sampling case 

It is also of interest to consider the case where S2 is a sample of 
centres of clusters (sometimes called tracts) of plots rather than a sample 
of centres of individual plots. Indeed, this sampling procedure is used in, 
e.g., the Swedish NFI (Anon 2014). In this case, C

(
uj
)

denotes a cluster j 
of kj plots centred around uj, and we denote the area of the plots within 
the cluster by auj = kjs, where s is the area of a single plot (all plots are 
assumed to have the same area). A buffer is also used in this case, 
although it will be larger (at least as large as the radius of the tract, see 
Grafström et al. 2017). We can still use the Horvitz-Thompson estimator 
(7) to get our estimator of the expected number of plants in U; the 
resulting expression will just be slightly different. 

Using approximation (3) and if no plot is divided, 

λ
(
uj
)
=

∫

C(uj)∩U

exp
(
βTx(u)

)

au
du =

1
kj

∑kj

i=1
riexp

(
βTxj

i
)
, (22)  

where xj
i denotes the (constant) covariate information in plot i of cluster 

j, and ri is the ratio of the area of the intersection of plot i n cluster j and U 
to the area of a single plot. Then, the Horvitz-Thompson estimator Λ̂(β)
may be written as 

Λ̂(β) =
∑

j∈In

λ
(
uj
)

π
(
uj
) =

∑

j∈In

1/kj
∑kj

i=1
riexp

(
βTxj

i
)

π
(
uj
) . (23)  

Using the same reasoning that led us to (11), we obtain the following 
variance estimators for Λ̂(β̂);  

with 

v̂k =
∑

j∈In

1
π
(
uj
)

1
kj

∑kj

i=1
rixj

ikexp
(

β̂Txj
i
)
,

where xj
ik denotes the kth component of vector xj

i. Similar changes are 
made in case we want to estimate expected plant density in (sub)regions 
with unknown area. 

2.6. Statistical testing 

The estimates of the expected plant density and corresponding 
variance estimators rely on the condition that the binary regression 
model (5) is realistic. For this reason, it is of importance to assess 
whether said model, used to estimate β, holds true. In order to do that, 
we use a parametric bootstrap test suggested by Ekström et al. (Un
published results). It should be noted that if model (5) is incorrect, then 
so is the underlying Poisson model assumption. Details on how to 
perform the test are given in Appendix C. 

3. Real data study 

The Swedish NFI (Fridman et al. 2014) is a field sample plot in
ventory of Swedish forests that consists of both temporary and perma
nent tracts, each composed of several plots. The temporary plots (which 
have a radius of 7 m) are only inventoried once, while the permanent 
plots are inventoried once every 5 years. Moreover, the permanent tracts 
are separated into two subcategories, “C1”, where both terrain and 
vegetation inventories are conducted, and “C2”, which denotes all other 
tracts. At each permanent “C1” plot, P/A data for a set of plant species 
are recorded on each of two small circular “vegetation plots”; those 
small vegetation plots have an area of 0.25 m2 each and are separated 
by 5 m and located 2.5 m from the main plot centre, the main plot having 
a radius of 10 m. Those registrations are not made during each visit, but 
rather once every two visits (i.e. every tenth year). Vegetation 

V̂ar(R̂⋆(β̂) ) =
1

2Â2

∑

i∈In

∑

j∈Jn,i

Δ
(
ui,uj

)

π
(
ui,uj

)

(
λ̂⋆(ui) − R̂⋆(β̂)z(ui)

π(ui)
−

λ̂⋆( uj
)
− R̂⋆(β̂)z

(
uj
)

π
(
uj
)

)2

+
1
Â2

∑q

k=1

∑q

l=1
ĈovS1 (β̂k, β̂l)

∑

i∈In

d̂1,k(ui) − z(ui)d̂2,k
/

Â
π(ui)

∑

j∈In

d̂1,l
(
uj
)
− z
(
uj
)

d̂2,l
/

Â
π
(
uj
)

+
2
Â2

∑q

k=1

∑q

l=1
ĈovS1 (β̂k, β̂l)d̂2,l

∑

i∈In

d̂1,k(ui)

π(ui)
−

1
Â2

∑q

k=1

∑q

l=1
ĈovS1 (β̂k, β̂l)d̂2,k d̂2,l,

(20)   

V̂ar(Λ̂(β̂) ) =
1
2
∑

j∈In

∑

j′∈Jn,i

Δ
(
ui,uj

)

π
(
ui,uj

)

(
1

π
(
uj
)
kj

∑kj

i=1
riexp

(
β̂Txj

i
)
−

1
π
(
uj′
)
kj′

∑kj′

l=1
rlexp

(
β̂Txj′

l

)
)2

+
∑p

k=1

∑p

k′=1

ĈovS1 (β̂k, β̂k′)v̂k v̂k′, (24)   
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registrations are not made on temporary plots. The covariates are 
registered at main plot level for both temporary and permanent plots. 
Thus, values of the covariates are always the same in each pair of small 
vegetation plots. The registrations are performed by experienced field 
workers on plots for which the positions are defined in advance ac
cording to the given sampling design. 

We chose to study Lingonberry (Vaccinium vitis-idaea) data in the 
Norrbotten Lappmarken region (in northern Sweden) during the years 
2008–2012. According to the Swedish NFI, region Norrbotten Lapp
marken has a known area of 7,785,748 ha. The particular landscape 
category we chose for the estimation of R⋆ and its corresponding vari
ance is productive forestland (i.e. land that can produce on average at 
least 1 m3 of wood per hectare and per year and that is not significantly 
used for other purposes, according to Anon (2014)), whose area is 
unknown. 

Sample S1 consists of the centres of the small vegetation plots 
included in permanent “C1” plots, in Norrbotten Lappmarken during 
2008–2012. Sample S1 has size n1 = 724, corresponding to 362 pairs of 
vegetation plots that were used for the parametric bootstrap test. Cluster 
sampling was used to obtain sample S2. It originally consists of the 
centres of the tracts of temporary circular plots. This sample has a size of 
n2 = 111 tract centres, which corresponds to 1132 sample plots in total. 
There are one to twelve plots with available data in each (quadratic) 
tract, and the plots are separated by at least 600 m (Anon 2014). 

In Table 1, the fitted binary regression model for Vaccinium vitis-idaea 
is presented for productive forestland in Norrbotten Lappmarken for 
years 2008–2012. The model was not rejected by the parametric boot
strap test (p-value= 0.184). Its explanatory variables are a trans
formation of the number of tree stems per hectare, multiplied by 100, 
and an indicator variable stating whether the soil is humid/wet. It can be 
seen that Vaccinium vitis-idaea seem less likely to be found on humid/wet 
soil, compared to dry soils. On the other hand, the model suggests that 
the more tree stems per hectare, the higher the probability of presence of 
Vaccinium vitis-idaea. 

Table 2 contains estimated expected densities in two different cases. 
The first case is cluster sampling, where centres of clusters of plots were 
assumed to be sampled independently and uniformly on U•. In the 

second case, the computations were made by (incorrectly) assuming that 
centres of individual plots were sampled rather than centres of clusters. 
The densities were estimated using two different estimators (expected 
density estimator with known area (14) and unknown area (17), and 
their cluster sampling case counterparts). The corresponding variance 
estimates, (15) and (20) respectively (as well as their cluster sampling 
case counterparts), are also given. In both cases, the variance estimate of 
the expected density estimator in productive forestland is almost twice 
as high as the variance estimate using the whole region. It can be 
explained by the relatively small amount of plots that are situated in 
productive forestland in Norrbotten Lappmarken in the Swedish NFI 
data (approximately 50% of the total). 

4. Monte Carlo study 

The aim of the Monte Carlo study was to evaluate our estimators of 
expected plant density and variance estimators and assess whether they 
performed well. The simulations, all performed in R (R Core Team 
2022), were conducted as follows.  

• We created a quadratic grid of 1024 cells that corresponds to our area 
frame U, as well as a buffer zone around U. Each grid cell had an area 
of 1 ha and artificial covariates.  

• The created covariates were based on the ones included in the model 
for Vaccinium vitis-idaea. The indicator variable stipulating whether a 
plot is humid/wet or not was built on actual data in the Norrbotten 
Lappmarken region between 2008 and 2012, which had approxi
mately 16.85% of plots being considered as humid/wet. This 
particular covariate was created as realisations of a Bernoulli dis
tribution with parameter p = 0.1685 in each cell. As for the number 
of stems per hectare, we used fitted Weibull distributions as 
described below. Two cases were considered:  
1. In the first case, we assumed that the whole grid was productive 

forestland, and the area of the area frame (the cell grid) was 
assumed to be known. In that case, we supposed that the number 
of stems per hectare varied only depending on whether the soil 
was humid/wet or dry. Based on Swedish NFI data in productive 
forestland, Weibull distributions were fitted using the fitdist 
function from the fitdistrplus package (Delignette-Muller & 
Dutang 2015). On humid/wet grid cells, the fitted distribution 
was a Weibull distribution with shape parameter k = 1.047 and 
scale parameter λ = 3898.3. For the dry grid cells, a two-step 
procedure was used since 4% of the original data had values 
equal to 0. Therefore, a random number between 0 and 1 was 
generated for each grid cell; if this number was smaller than 0.04, 
the number of stems per hectare for that grid cell was set to 0; 
otherwise it was a realisation of a Weibull-distributed random 
variable with parameters k = 0.903 and λ = 2076.5.  

2. In the second case, we created an indicator variable which was 
assigned the value 1 if the cell was in productive forestland, and 
0 otherwise. As 49.8% of the original sample plots are in pro
ductive forestland, each cell was assigned the value 1 with a 
probability of 0.498. The number of stems per hectare was sup
posed to vary according to both humidity of the soil and type of 
landscape (productive forestland or not), which means that four 
different subcases had to be considered. The area of productive 
forestland in the grid was estimated by (19). The covariates were 
generated exclusively for the cells that are situated in productive 
forestland (which means in two of the subscases), and in such case 
were generated exactly as in case 1.  

• Each Monte Carlo simulation consisted of 2000 replicates; P/A data 
were generated from an inhomogeneous Poisson point process with 
the rpoispp function from the spatstat package (Baddeley et al. 2016) 
in each replicate; plot centres in S2 were sampled independently 
according to a uniform distribution over U•, while a two-step gen
eration procedure was used for S1: first, plot centres for the 

Table 2 
Estimated expected plant densities in m− 2 and corresponding estimates of 
variance for Vaccinium vitis-idaea in Norrbotten Lappmarken. Two cases were 
considered: one where the computations were made assuming cluster sampling 
and another where it was (incorrectly) assumed that single plots were sampled. 
R̂(β̂) and V̂ar(R̂(β̂) ) are computed for the whole Norrbotten Lappmarken re
gion, while R̂⋆(β̂) and V̂ar(R̂⋆(β̂) ) are computed for the productive forestland 
area of Norrbotten Lappmarken only.  

Case R̂(β̂) R̂⋆(β̂) V̂ar(R̂(β̂) ) V̂ar(R̂⋆(β̂) )

Tracts 7.61 9.72 0.205 0.406 
Single plots 7.49 9.73 0.209 0.411  

Table 1 
Estimated model coefficients β̂ for Vaccinium vitis-idaea in productive forestland 
in Norrbotten Lappmarken. The intercept was offset-adjusted. 1wet is an indicator 
variable stipulating whether a plot is humid/wet or not. 
((No.stems/ha + 0.6)/1000 )

− 0.5 is a non-linear transformation of the “number 
of tree stems per hectare” (in hundreds per hectare) covariate, found by using 
the mfp R package (Ambler & Benner 2015), which applies multivariable frac
tional polynomials (Sauerbrei & Royston 1999).  

Species Estimated parameters (β̂) 

Vaccinium vitis-idaea Offset-adjusted Intercept 2.423 
(Lingonberry) 1wet − 0.667  

((No.stems/ha + 0.6)/1000 )
− 0.5 − 0.025  
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permanent plots were sampled independently according to a uniform 
distribution over U, and then the small vegetation plots in S1 were 
created for each permanent plot as described in Section 3. The value 
of the vector of coefficients β was set equal to the one from the fitted 
model for Vaccinium vitis-idaea in Norrbotten Lappmarken in years 
2008–2012 (Table 1). Estimated model coefficients ̂β were computed 
for every replicate using the S1 data, while the estimated expected 
plant density and its corresponding variance estimate were 
computed for every replicate using the S2 data. The sample sizes 
were n1 = 1500 and n2 = 1500. The same plot radii as in the 
Swedish NFI were used (see Section 3). The plots in S2 were divided 
when they overlapped different grid cells (see details in Appendix B). 
In accordance with the Swedish NFI (Jonas Dahlgren, personal 
communication), the small vegetation plots within S1 were not 
divided. 

The results for the simulation study are presented in Table 3. The 
estimator R̂(β̂) was used for Case 1 and R̂⋆(β̂) was used for Case 2. In 
Case 1, the estimator R̂(β̂) was on average close to but a little lower than 
the real expected plant density. In Case 2, the estimator R̂⋆(β̂) was even 
closer to the true value, but even in that case a slight negative bias 
occurred. The two variance estimators seem to have a very small bias 
and have low values. Based on these observations, we can conclude that 
our estimators performed quite well. 

5. Discussion 

In this study, we show how P/A data can be used for modelling and 
monitoring plant population densities. We argue that this approach of
fers advantages over methods based on visual assessment of vegetation 
cover, since studies indicate that P/A sampling may not be as prone to 
observer bias as methods based on assessing vegetation cover, and since 
P/A sampling is a rapid and thus cheap method to apply (e.g., Ringvall 
et al. 2005). 

Since the auxiliary modelling data are available for both considered 
samples, but the binary response data are available for only one sample, 
we apply methods from hybrid inference (e.g., Corona et al. 2014) for 
estimating the expected value of plant density and the corresponding 
variance. This concerns taking into account both modelling and sam
pling uncertainty, and to our knowledge, our study is the first one that 
involves GLMs in hybrid inference. This type of inference is important in 
this context since, in many cases, detailed descriptions of environmental 
conditions, needed for the modelling, may not be available wall-to-wall 
but only from sampling locations, e.g., from sample plots within envi
ronmental monitoring programmes. In this article, we extend the 
already existing theory on hybrid inference to GLMs with binary 
response data. 

Our method is most suitable when n2, the sample size of S2, is much 
larger than n1, the sample size of S1. Indeed, the main purpose in 
applying this method is to gather a minimum of information to develop a 
reliable model on the smallest sample possible (principally due to 
budgetary reasons), to then apply this model in connection with cova
riates that come from a larger sample whose units do not contain the 
desired response data. However, with our available data, n2 was only a 
little larger than n1. This shows that our method works even in that 

particular case. 
In regions with high perimeter-to-area ratios, a large or very large 

proportion of the sampling plots will extend beyond the region’s 
boundary. In such cases, our suggested methodology, which uses a 
“buffer” to address edge effects, may be unsuitable and could result, for 
example, in estimators with larger variances than desired. 

An important part of the study involves making the proposed hybrid 
inference framework available for practical application in monitoring 
programmes, in which case we need to take into account that sample 
plots are often allocated in clusters and that the area of the domain of 
study is unknown (e.g., Fridman et al. 2014). This introduces several 
additional details to the general framework, which are important for the 
usefulness of the framework in practice. 

The Monte Carlo simulations we performed show that our framework 
for estimating the expected plant density provides accurate estimates 
when the modelling assumptions are valid. In the study based on 
empirical data from the Swedish NFI, we obtained estimates of expected 
Lingonberry (Vaccinium vitis-idaea) densities in Northern Sweden that 
appear to be realistic, although we cannot check them since no reference 
data are available. 

For the sake of simplicity, we assumed that the sampling design of S1 
was non-informative (see Appendix A), i.e. the design was not taken into 
account during model parameter estimation. Ignoring an informative 
sampling design may yield biased estimates of regression coefficients. 
For handling informative designs, methods using probability weighting 
may be used (e.g., Heeringa et al. 2010; Ekström et al. 2018). 

It is possible to generalise the considered hybrid inference frame
work to other types of GLMs. Instead of P/A data as a response variable, 
one could use a continuous variable (such as biomass) or a discrete 
variable such as a count variable (number of trees, birds etc.). The main 
requirement is to have two samples; one to estimate model coefficients, 
with both covariate and response data, and another one, with only co
variate data, for estimation of, e.g., expected biomass per hectare or 
expected plant density based on the estimated model coefficients. As 
long as this requirement is met, then hybrid inference should work, in 
principle, with any kind of response variable. The statistical de
velopments would, however, be different from the ones derived in the 
present paper; although with counts instead of P/A, the difference would 
not be that significant (in both cases, it would be possible to use an 
inhomogeneous Poisson model). With count data that are not subject to 
too many errors, it should be possible to obtain better estimators than 
the ones obtained from P/A data. However, the survey would be more 
expensive to conduct. 

There is one key condition for the developed technique to be appli
cable; the underlying point process should be, at least approximately, an 
inhomogeneous Poisson point process. We estimate models that utilise a 
combination of P/A and auxiliary data to estimate expected plant den
sity, assuming that the spatial distribution of plants follow an inhomo
geneous Poisson process, i.e. the plant densities vary due to the 
environmental conditions. In the article, we check the suitability of the 
binary regression model implied by the underlying inhomogeneous 
Poisson point process through a statistical test specifically developed for 
the purpose (cf. Appendix C). Recognising that plants can occur in 
clustered spatial patterns, extensions from inhomogeneous Poisson 
point processes to inhomogeneous cluster point processes serve as an 

Table 3 
Actual expected plant densities R(β) (resp. R⋆(β)), estimated mean values of the estimated expected densities Ê(R̂(β̂) ) (resp. Ê(R̂⋆(β̂) )), estimated mean value of the 
variance estimates Ê(V̂ar(R̂(β̂) ) ) (resp. Ê(V̂ar(R̂⋆(β̂) ) )) and s2, the sample variance of the R̂(β̂) (resp. R̂⋆(β̂)), for simulated Vaccinium vitis-idaea data in a grid of 1024 
cells, each cell having an area of 1 ha. In the known area case, the area is aU, the area of the grid. In the unknown area case, the area is estimated according to (19). The 
variances were estimated using formulas (15) and (20). “/” means that the formula does not apply to the specific case.  

Case R(β) R⋆(β) Ê(R̂(β̂) ) Ê(R̂⋆(β̂) ) Ê(V̂ar(R̂(β̂) ) ) Ê(V̂ar(R̂⋆(β̂) ) ) s2 

Known area 9.740 / 9.606 / 0.191 / 0.196 
Unknown area / 9.715 / 9.657 / 0.187 0.189  

L. Gozé et al.                                                                                                                                                                                                                                    



Ecological Informatics 80 (2024) 102377

8

important topic for further studies. However, if we would like to use a 
similar methodology as in Ekström et al. (2020), we would need to 
gather data on more than two subplots for each main plot. 

In our paper, the intensity of the inhomogeneous Poisson point 
process is determined via a log-linear model that involves a number of 
covariates. This model cannot be fitted directly, since no observed point 
pattern or observed values of counts of points in plots are available. This 
problem is circumvented by making use of observable P/A variables. 
Given that the pattern is a realisation of an inhomogeneous Poisson 
point process (whose intensity on the ith cell is given by (1)), it follows 
that the P/A variables satisfy a binary GLM, with complementary log-log 
link and an offset, with the same parameter vector as that which appears 
in the intensity of the inhomogeneous Poisson point process. Thus, for 
extending the current approach to other inhomogeneous point processes 
than the Poisson, the parameters of their intensities must be estimable 
from P/A data and corresponding covariate data at plot level. In addi
tion, estimates of covariance matrices of estimators of parameters are 
also needed. One possibility to achieve this is to extend the intensity 
estimator in Ekström et al. (2020) from homogeneous cluster point 
processes such as the Matérn and Thomas processes to corresponding 
heterogeneous processes, whose intensities are functions of on one or 
more covariates (Waagepetersen 2007). 

When the point pattern is generated by an inhomogeneous Poisson 
point process, the binary GLM model in (5) will have independent binary 
(P/A) response variables conditional on the covariates. For other point 
processes, responses cannot be expected to fulfill this property of con
ditional independence. Then, instead of using a standard GLM, other 
estimation methods such as generalised estimating equations (Albert & 
McShane 1995; Gotway & Stroup 1997) and a composite likelihood 
approach for spatial binary data (Heagerty & Lele 1998) can be used. 
However, as mentioned, this is not enough for extending the current 
approach to more general point processes. Most importantly, the esti
mable unknown parameters in the regression model for the P/A data 
must also include all unknown parameters in the intensity function of 
the point process model. 

For a Poisson point process with a homogeneous intensity λ, the 
species abundance N in a plot C of area a follows a Poisson distribution 
with mean aλ, and the probability of presence of at least one plant in the 
plot C equals p = 1 − exp( − aλ). Rearranging this equation, we can 
estimate the intensity (plant density) λ from the proportion p̂ of plots 
with plant occurrences, i.e., by λ̂ = − a− 1log(1 − p̂) (e.g., Ståhl et al. 
2017). A homogeneous spatial Poisson process is synonymous with 
complete spatial randomness. However, in nature, individuals of many 
species are typically aggregated (Pielou 1977; He & Gaston 2000). For 
plot abundance N, the model most commonly used to describe such 
aggregation is the negative binomial distribution (He et al. 2002), which 
implies the following relationship between the presence probability p 

and plant density λ, p = 1 −
(

1 + k− 1λ
)− k

, where k is referred to as a 

“clumping” parameter, with small k > 0 representing strong aggregation 
(Wright 1991; He & Gaston 2000; He et al. 2002). Under this model, 
Conlisk et al. (2007) specify the likelihood function and conclude that 
the clumping parameter cannot be estimated from P/A data, i.e., that it 

must be specified from outside the model. The suitability of the negative 
binomial distribution has also been much debated (Holt et al. 2002; 
Gaston et al. 2011) and only two known homogeneous point processes 
give the negative binomial distribution for plot abundances, and both 
are extreme cases (Daley & Vere-Jones 2003). For some further de
velopments of the negative binomial distribution model, we refer to 
Solow & Smith (2010), Hwang & Huggins (2016), Huggins et al. (2018), 
Hwang et al. (2022), and Stoklosa et al. (2022). For other suggested 
models than those based on the Poisson and the negative binomial dis
tributions for describing the relationship between the presence proba
bility p and plant density λ, see, e.g., Holt et al. (2002), He et al. (2002), 
and the references therein. Extensions of the negative binomial model 
and other related models to an inhomogeneous setting would be useful 
for extending the approach presented in the current article to more 
general settings. 

Many monitoring and citizen science programmes already have large 
amounts of P/A data in their databases (e.g., the Norwegian Biodiversity 
Information Center in Norway (Hoem 2022); the Global Biodiversity 
Information Facility GBIF (GBIF 2022)). Therefore, the techniques and 
estimators developed in the present study can be applied to already 
available data, especially since new fine-scaled covariate data are 
becoming increasingly common in such databases. Promising results 
were obtained in this study, which means that the proposed framework 
for monitoring plant population density through P/A sampling and 
modelling holds promise for future practical application, e.g., in na
tional reporting of trends in declining species. 
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Appendix A. Theoretical developments in the case of single plots 

A.1. Case with known area 

For simplicity, we assume that the sampling design of S1 is non-informative, i.e. the vector of model parameters is estimated without taking this 
sampling design into account. Under this assumption, for large samples and under mild conditions (see for example Sen & Singer 1993), 
̅̅̅̅̅
n2

√
(β̂ − β) ∼ N

(
0, I − 1(β)

)
, (A.1)  

where I(β) denotes the Fisher information matrix and can be estimated by 
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Î(β̂) =
1
n2

∑

i∈In

1
[g′(pi(β̂) ) ]2vi(β̂)

xix′
i, (A.2) 

with β̂ being the estimate of β, g defined by (5), pi defined by (4), and vi(β) = Var(Yi) = pi(1 − pi), where Yi = 1 if there is presence of plants in plot i, 
and Yi = 0 otherwise. 

Using a similar reasoning as in [Ståhl et al. 2011], we start with the decomposition 

Λ̂(β̂) − Λ(β) =
∑

i∈In

λ̃β̂(ui)

π(ui)
− Λ = D1 +D2, (A.3)  

where 

D1 =
∑

i∈In

λ̃β(ui)

π(ui)
− Λ and D2 =

∑

i∈In

λ̃β̂(ui) − λ̃β(ui)

π(ui)
.

Our objective is to compute the variance 

Var(D1 +D2) = Var(D1)+Var(D2)+ 2 Cov(D1,D2).

Using the Sen-Yates-Grundy formula presented in Cordy (1993), an unbiased estimator of Var(D1) is given by (10). If β is unknown, we estimate this 
variance with 

V̂ar(D1) =
1
2
∑

i∈In

∑

j∈Jn,i

Δ
(
ui,uj

)

π
(
ui, uj

)

(
riexp

(
β̂Txi

)

π(ui)
−

rjexp
(

β̂Txj
)

π
(
uj
)

)2

. (A.4)  

The law of total variance is used in order to compute Var(D2), i.e 

Var(D2) = VarS2 [ES1 (D2|S2) ] + ES2 [VarS1 (D2|S2) ]. (A.5)  

For non-linear models, a Taylor approximation can be applied, i.e. 

λ̃β̂(u) ≈ λ̃β(u)+
∑q

k=1
(β̂k − βk)λ̃

(k)
β (u), (A.6)  

where 

λ̃
(k)
β (ui) = rixikexp

(
βTxi

)
.

Then, 

D2 ≈
∑

i∈In

∑q

k=1

(β̂k − βk)

π(ui)
λ̃
(k)
β (ui) =

∑q

k=1
(β̂k − βk)vk,

where 

vk =
∑

i∈In

1
π(ui)

λ̃
(k)
β (ui)

and q being the number of model coefficients. Conditioned on S2, vk is a constant. Then, by (A.1), ES1 (D2|S2) ≈
∑q

k=1ES1 (β̂k − βk|S2)vk ≈ 0 for large 
samples, and thus VarS2 [ES1 (D2|S2) ] ≈ 0. Furthermore, 
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VarS1 (D2|S2) ≈ VarS1

(
∑q

k=1
(β̂k − βk)vk |S2

)

≈
∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)vkvl

=
∑

i∈In

∑

j∈In

1
π(ui)π

(
uj
)
∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)ri rj xik xjl exp

(
βT( xi + xj

) )

=
∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∑

i∈In

r2
i

π(ui)
2xikxilexp

(
2βTxi

)

+
∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∑

i∈In

∑

j∈Jn,i

rirj

π(ui)π
(
uj
)xik xjl exp

(
βT( xi + xj

) )
.

From the arguments in the proof of Theorem 2 in Cordy (1993), we get 

Var(D2) ≈ ES2 [VarS1 (D2|S2) ]

=
∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∫

U•

r2
u

π(u)x
k(u)xl(u)exp

(
2βTx(u)

)
du

+
∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∫

U•

∫

U•

π(u, u′)

π(u)π(u′)
ruru′xk(u)xl(u)exp

(
βT
(x(u) + x(u′) )

)
dudu′,

where xk(u) denotes the kth component of the x vector and ru is the ratio of the area of C(u) ∩ U and the area of C(u). Thus, Var(D2) can be estimated by 

V̂ar(D2) =
∑q

k=1

∑q

l=1
ĈovS1 (β̂k, β̂l)

∑

i∈In

r2
i

π(ui)
2 xikxilexp

(
2β̂Txi

)

+
∑q

k=1

∑q

l=1
ĈovS1 (β̂k, β̂l)

∑

i∈In

∑

j∈Jn,i

rirj

π(ui)π
(
uj
) xikxjlexp

(
β̂T( xi + xj

) )

=
∑q

k=1

∑q

l=1
ĈovS1 (β̂k, β̂l)

∑

i∈In

∑

j∈In

rirj

π(ui)π
(
uj
) xikxjlexp

(
β̂T( xi + xj

) )

=
∑q

k=1

∑q

l=1
ĈovS1 (β̂k, β̂l)v̂k v̂l,

(A.7)  

where v̂k is defined in (12). 
The next step is to compute the covariance between D1 and D2. According to the law of total covariance, 

Cov(D1,D2) = ES2 [CovS1 (D1,D2|S2) ] +CovS2 [ES1 (D1|S2) ,ES1 (D2|S2) ]. (A.8)  

It can be deduced that CovS2 [ES1 (D1|S2) , ES1 (D2|S2) ] ≈ 0 because, as argued before, ES1 (D2|S2) ≈ 0. Then, as the stochastic nature of D1 is determined 
by sample S2 and not by sample S1, ES1 (D1D2|S2) = D1ES1 (D2|S2) ≈ 0. Because of the latter, ES2 [CovS1 (D1,D2|S2) ] ≈ 0. Thus, Cov(D1,D2) ≈ 0 and we 
just need to add the variances of D1 and D2 to get an approximate variance of D1 + D2. As a result, setting (A.4) and (A.7) together, the estimate 
becomes 

V̂ar(Λ̂(β̂) ) = V̂ar(D1) + V̂ar(D2) + 2Ĉov(D1,D2)

=
1
2
∑

i∈In

∑

j∈Jn,i

Δ
(
ui, uj

)

π
(
ui,uj

)

(
riexp

(
β̂Txi

)

π(ui)
−

rjexp
(

β̂Txj
)

π
(
uj
)

)2

+
∑q

k=1

∑q

l=1
ĈovS1 (β̂k, β̂l)v̂k v̂l,

with v̂k defined in (12). 

A.2. Expected density estimator in a specific area of the landscape 

Suppose we want to estimate the number of plants exclusively in a certain landscape category, for example forests. Then, the parameter vector β 
will be estimated only from the plots that are situated in this landscape category. 

As in Result 5.6.2 in Särndal et al. (1992), for estimating the variance of R̂⋆(β) we use a Taylor linearisation by introducing R̂
⋆
0 (β), that is related to 

R̂⋆(β) by the relation 

R̂⋆(β) ≈ R̂
⋆
0 (β) = R⋆(β)+

1
A

∑

i∈In

λ⋆(ui) − R⋆(β)z(ui)

π(ui)
. (A.9)  
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Remember that the estimator of β, ̂β, is approximately normally distributed with mean β (see (A.1)). We estimate R⋆(β) with R̂⋆(β̂). The goal here is to 
derive an estimate of the variance of R̂⋆(β̂), or equivalently the variance of R̂⋆(β̂) − R⋆(β), which by the arguments in the proof of Result 5.6.2 in 
Särndal et al. (1992) is approximately the same as the one for 

D(β̂) = R̂
⋆
0 (β̂) − R⋆(β̂) =

1
A
∑

i∈In

λ̂⋆(ui) − R⋆(β̂)z(ui)

π(ui)
,

where 

λ̂⋆(u) =
∫

C(u)

λβ̂(u′)Iu′

au′
du′,u ∈ U•. (A.10)  

We can write 

R̂
⋆
0 (β̂) − R⋆(β) =

(
R̂

⋆
0 (β̂) − R⋆(β̂)

) )
+(R⋆(β̂) − R⋆(β) ) = D(β̂)+D*(β̂),

where D*(β̂) = R⋆(β̂) − R⋆(β). By the following Taylor approximation 

λβ̂(u) ≈ λβ(u)+
∑q

k=1
(β̂k − βk)λ

(k)
β (u), (A.11)  

where 

λ(k)β (u) =
∂λβ(u)

∂βk
,

we obtain 

E[R⋆(β̂) ] = ES1 [R
⋆(β̂) ] =

1
A

ES1 [Λ
⋆(β̂) ] =

1
A

∫

U
ES1 [λβ̂(u) ]Iudu

≈
1
A

∫

U
λβ(u)Iudu +

1
A
∑q

k=1
ES1 [β̂k − βk]

∫

U
λ(k)β (u)Iudu ≈

1
A

∫

U
λβ(u)Iudu = R⋆(β)

(A.12)  

and 

E
[
(R⋆(β̂) )2 ]

= ES1

[
(R⋆(β̂) )2 ]

=
1
A2ES1

[
(Λ⋆(β̂) )2 ]

=
1
A2

∫

U

∫

U
ES1 [λβ̂(u)λβ̂(u

′) ]IuIu′dudu′

≈
1
A2

∫

U

∫

U
λβ(u)λβ(u′)IuIu′dudu′ +

1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)d2,kd2,l

= (R⋆(β) )2
+

1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)d2,kd2,l,

where 

d2,k =

∫

U
Iuλ(k)β (u)du =

∂Λ⋆(β)
∂βk

.

Thus, 

E[D*(β̂) ] = ES1 [D*(β̂) ] ≈ 0 (A.13)  

and 

Var(D*(β̂) ) = VarS1 (D*(β̂) ) ≈
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)d2,kd2,l. (A.14)  

Let us go further with D(β̂). We have 

Var(D(β̂) ) = VarS2 [ES1 (D(β̂) |S2)] +ES2 [VarS1 (D(β̂) |S2)]. (A.15) 
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We see that 

ES1 (D(β̂) |S2) =
1
A

∑

i∈In

ES1 (λ̂⋆(ui) |S2) − ES1 (R⋆(β̂) |S2)z(ui)

π(ui)

and, by (A.11), we obtain 

ES1 [λ̂
⋆(u) |S2] =

∫

C(u)

1
au′

ES1 [λβ̂(u
′) ]Iu′du′

≈

∫

C(u)

1
au′

λβ(u′)Iu′du′ +
∑q

k=1
ES1 [β̂k − βk]

∫

C(u)

1
au′

Iu′λ(k)β (u′)du′

≈

∫

C(u)

1
au′

λβ(u′)Iu′du′ = λ⋆(u).

Thus, 

ES1 (D(β̂) |S2) ≈
1
A

∑

i∈In

λ⋆(ui) − R⋆(β)z(ui)

π(ui)
= R̂

⋆
0 (β) − R⋆(β) (A.16)  

and, from the Sen-Yates-Grundy formula presented in Cordy (1993), 

VarS2 [ES1 (D(β̂) |S2) ] ≈ VarS2

(
R̂

⋆
0 (β)

)

=
1

2A2

∫

U•

∫

U•

Δ
(
ui,uj

)
(

λ⋆(u) − R⋆(β)z(u)
π(u) −

λ⋆(u′) − R⋆(β)z(u′)

π(u′)

)2

.

(A.17)  

Then, we can look closer at 

VarS1 (D(β̂) |S2) = ES1

(
D2(β̂) |S2

)
− (ES1 (D(β̂) |S2))

2
,

which is a part of (A.15), where 

ES1

(
D2(β̂) |S2

)
=

1
A2

∑

i∈In

∑

j∈In

ES1

[(
λ̂⋆(ui) − R⋆(β̂)z(ui)

π(ui)

)(
λ̂⋆( uj

)
− R⋆(β̂)z

(
uj
)

π
(
uj
)

) ⃒
⃒
⃒
⃒
⃒
S2

]

. (A.18)  

From (A.11), we see that 

ES1 [λ̂
⋆(u)λ̂⋆(u′) ] ≈

∫

C(u)

∫

C(u′)
a− 1

v a− 1
v′ λβ(v)λβ(v′)IvIv′dv′dv

+
∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)d1,k(u)d1,l(u′)

= λ⋆(u)λ⋆(u′) +
∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)d1,k(u)d1,l(u′),

(A.19)  

where 

d1,k(u) =
∫

C(u)
a− 1

u′ Iu′λ(k)β (u′)du′ =

∫

C(u)
a− 1

u′ Iu′x(u′)kexp
(
βTx(u′)

)
du′,

and that 

ES1 [λ̂
⋆(u)R⋆(β̂) ] =

1
A

∫

C(u)
a− 1

v ES1 [λβ̂(v)Λ
⋆(β̂) ]Ivdv =

1
A

∫

U

∫

C(u)
a− 1

v ES1 [λβ̂(v)λβ̂(v
′) ]IvIv′dvdv′

≈
1
A

∫

U

∫

C(u)
a− 1

v λβ(v)λβ(v′)IvIv′dvdv′

+
1
A
∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∫

U

∫

C(u)
a− 1

v x(v)kexp
(
βTx(v)

)
x(v′)lexp

(
βTx(v′)

)
IvIv′dvdv′

= λ⋆(u)R⋆(β) +
1
A

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)d1,k(u)d2,l.

(A.20)  
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From (A.18), (A.19) and (A.20), we obtain 

ES1

[
D2(β̂) |S2

]
≈

1
A2

∑

i∈In

∑

j∈In

(
λ⋆(ui) − R⋆(β)z(ui)

π(ui)

)(
λ⋆( uj

)
− R⋆(β)z

(
uj
)

π
(
uj
)

)

+
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∑

i∈In

∑

j∈In

(
d1,k(ui) − z(ui)d2,k

/
A

π(ui)

)(
d1,l
(
uj
)
− z
(
uj
)
d2,l
/

A
π
(
uj
)

)

=
(

R̂
⋆
0 (β) − R⋆(β)

)2

+
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∑

i∈In

∑

j∈In

(
d1,k(ui) − z(ui)d2,k

/
A

π(ui)

)(
d1,l
(
uj
)
− z
(
uj
)
d2,l
/

A
π
(
uj
)

)

.

This, together with (A.16), gives 

VarS1 (D(β̂) |S2) ≈
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∑

i∈In

(
d1,k(ui) − z(ui)d2,k

/
A

π(ui)

)
∑

j∈In

(
d1,l
(
uj
)
− z
(
uj
)
d2,l
/

A
π
(
uj
)

)

=
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∑

i∈In

1
π(ui)

2

(

d1,k(ui) − z(ui)d2,k
1
A

)(

d1,l(ui) − z(ui)d2,l
1
A

)

+
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∑

i∈In

∑

j∈Jn,i

1
π(ui)π

(
uj
)

(

d1,k(ui) − z(ui)d2,k
1
A

)(

d1,l
(
uj
)
− z
(
uj
)
d2,l

1
A

)

.

It follows that 

ES2 [VarS1 (D(β̂) |S2) ] ≈
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∫

U•

1
π(u)

(

d1,k(u) − z(u)d2,k
1
A

)(

d1,l(u) − z(u)d2,l
1
A

)

du

+
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∫

U•

∫

U•

π(u, u)′

π(u)π(u′)

(

d1,k(u) − z(u)d2,k
1
A

)(

d1,l(u′) − z(u′)d2,l
1
A

)

dudu′.

(A.21)  

If we put (A.17) and (A.21) together, we obtain 

Var(D(β̂) ) = VarS2 [ES1 (D(β̂) |S2) ] + ES2 [VarS1 (D(β̂) |S2) ]

≈
1

2A2

∫

U•

∫

U•

Δ
(
uiuj

)
(

λ⋆(u) − R⋆(β)z(u)
π(u) −

λ⋆(u’) − R⋆(β)z(u’)

π(u’)

)2

dudu’

+
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∫

U•

1
π(u)

(

d1,k(u) − z(u)d2,k
1
A

)(

d1,l(u) − z(u)d2,l
1
A

)

du

+
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∫

U•

∫

U•

π(uu’)

π(u)π(u’)

(

d1,k(u) − z(u)d2,k
1
A

)(

d1,l(u’) − z(u’)d2,l
1
A

)

dudu’.

(A.22)  

Furthermore, 

Cov(D(β̂) ,D*(β̂) ) = CovS2 [ES1 (D(β̂) |S2) ,ES1 (D*(β̂) |S2) ]+ ES2 [CovS1 (D(β̂) ,D*(β̂) |S2) ].

From earlier calculations, we know that ES1 (D(β̂) |S2) ≈ R̂
⋆
0 (β) − R⋆(β) and ES1 (D*(β̂) |S2) ≈ 0, and thus CovS2 [ES1 (D(β̂) |S2) ,ES1 (D*(β̂) |S2) ] ≈ 0. In 

addition, using (A.16), 

CovS1 (D(β̂) ,D*(β̂) |S2) ≈ ES1 (D(β̂)D*(β̂) |S2) = ES1 (D(β̂)R⋆(β̂) |S2) − R⋆(β)ES1 (D(β̂) |S2)

≈ ES1 (D(β̂)R⋆(β̂) |S2) − R⋆(β)
(

R̂
⋆
0 (β) − R⋆(β)

)

and, from (A.12) and (A.20), 
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ES1 (D(β̂)R⋆(β̂) |S2) =
1
A

ES1

(
∑

i∈In

λ̂⋆(ui)R⋆(β̂) − (R⋆(β̂) )2z(ui)

π(ui)

⃒
⃒
⃒
⃒
⃒
S2

)

≈ R⋆(β)
1
A
∑

i∈In

λ⋆(ui) − R⋆(β)z(ui)

π(ui)

+
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∑

i∈In

1
π(ui)

d1,k(ui)d2,l

−
1
A3

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∑

i∈In

z(ui)

π(ui)
d2,kd2,l.

As a consequence, 

Cov(D(β̂) ,D*(β̂) ) ≈ ES2

(

R⋆(β)
(

R̂
⋆
0 (β) − R⋆(β)

)
+

1
A2

∑q

k=1

∑q

l=1
CovS1

(

β̂k, β̂l

)
∑

i∈In

1
π(ui)

d1,k(ui)d2,l

−
1
A3

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∑

i∈In

z(ui)

π(ui)
d2,kd2,l − R⋆(β)

(
R̂

⋆
0 (β) − R⋆(β)

)
)

=
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)ES2

(
∑

i∈In

1
π(ui)

d1,k(ui)d2,l

)

−
1
A3

∑p

k=1

∑p

l=1
CovS1 (β̂k, β̂l)ES2

(
∑

i∈In

z(ui)

π(ui)
d2,kd2,l

)

=
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)d2,l

∫

U•

d1,k(u)du −
1
A3

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)d2,kd2,l

∫

U
z(u)du

=
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)d2,l

∫

U•

d1,k(u)du −
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)d2,kd2,l. (A.23)

Finally, putting (A.22), (A.14) and (A.23) together, 

Var
(

R̂
⋆
0 (β̂) − R⋆(β)

)
= Var(D(β̂) ) + Var(D*(β̂) ) + 2 Cov(D(β̂) ,D*(β̂) )

≈
1

2 A2

∫

U•

∫

U•

Δ
(
ui, uj

)
(

λ⋆(u) − R⋆(β)z(u)
π(u) −

λ⋆(u′) − R⋆(β)z(u′)

π(u′)

)2

+
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∫

U•

1
π(u)

(

d1,k(u) − z(u)d2,k
1
A

)(

d1,l(u) − z(u)d2,l
1
A

)

du

+
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)

∫

U•

∫

U•

π(u, u′)

π(u)π(u′)

(

d1,k(u) − z(u)d2,k
1
A

)(

d1,l(u′) − z(u′)d2,l
1
A

)

dudu′

+
2
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)d2,l

∫

U•

d1,k(u)du −
1
A2

∑q

k=1

∑q

l=1
CovS1 (β̂k, β̂l)d2,kd2,l.

By using Theorem 1 and the variance estimator based on the Sen-Yates-Grundy formula in Cordy (1993), this variance can be estimated by 

V̂ar
(

R̂
⋆
0 (β̂) − R⋆(β)

)
=

1
2Â2

∑

i∈In

∑

j∈Jn,i

Δ
(
ui, uj

)

π
(
ui, uj

)

(
λ̂⋆(ui) − R̂⋆(β̂)z(ui)

π(ui)
−

λ̂⋆( uj
)
− R̂⋆(β̂)z

(
uj
)

π
(
uj
)

)2

+
1
Â2

∑q

k=1

∑q

l=1
ĈovS1 (β̂k, β̂l)

∑

i∈In

1
π(ui)

2

(

d̂1,k(ui) − z(ui)d̂2,k
1
Â

)(

d̂1,l(ui) − z(ui)d̂2,l
1
Â

)

+
1
Â2

∑q

k=1

∑q

l=1
ĈovS1 (β̂k, β̂l)

∑

i∈In

∑

j∈Ji,n

1
π(ui)π

(
uj
)

(

d̂1,k(ui) − z(ui)d̂2,k
1
Â

)(

d̂1,l
(
uj
)
− z
(
uj
)

d̂2,l
1
Â

)

+
2
Â2

∑q

k=1

∑q

l=1
ĈovS1 (β̂k, β̂l)d̂2,l

∑

i∈In

d̂1,k(ui)

π(ui)
−

1
Â2

∑q

k=1

∑q

l=1
ĈovS1 (β̂k, β̂l)d̂2,k d̂2,l

=
1

2Â2

∑

i∈In

∑

j∈Jn,i

Δ
(
ui, uj

)

π
(
ui,uj

)

(
λ̂⋆(ui) − R̂⋆(β̂)z(ui)

π(ui)
−

λ̂⋆( uj
)
− R̂⋆(β̂)z

(
uj
)

π
(
uj
)

)2

+
1
Â2

∑q

k=1

∑q

l=1
ĈovS1 (β̂k, β̂l)

∑

i∈In

d̂1,k(ui) − z(ui)d̂2,k
/

Â
π(ui)

∑

j∈In

d̂1,l
(
uj
)
− z
(
uj
)

d̂2,l
/

Â
π
(
uj
)

+
2
Â2

∑q

k=1

∑q

l=1
ĈovS1 (β̂k, β̂l)d̂2,l

∑

i∈In

d̂1,k(ui)

π(ui)
−

1
Â2

∑q

k=1

∑q

l=1
ĈovS1 (β̂k, β̂l)d̂2,k d̂2,l, (A.24)

where d̂1,k and d̂2,k are as defined in (21). 
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Appendix B. Case with divided plots 

It can happen that sample plots are divided into several parts, for example if one part of the plot is in forests and other parts are in other landscape 
categories, or if the plot overlaps borders between different regions, strata or forest stands (for example in the Swedish NFI, Anon. 2014). In such cases, 
the covariate information is not the same in different parts of the plot. Let us consider a case where we want to study expected plant densities in forests, 
and consider a particular plot C(ui). Then let Iu be equal to 1 if u is in a forested area in U, and 0 otherwise. If the plot is divided and no part of the plot is 
in a forested area in U, 

λ⋆(ui) =

∫

C(ui)

λβ(u)Iu

au
du = 0 and λ̂⋆(ui) = 0. (B.1)  

If only one part of the plot is in a forested area in U, and if we denote the area of this part by a(s)
i , 

λ⋆(ui) =

∫

C(ui)

λβ(u)Iu

au
du = λβ(u′

i)
a(s)

i

a
and λ̂⋆(ui) = λβ̂(u

′
i)

a(s)
i

a
, (B.2)  

where λβ̂(ui) = exp
(

β̂Tx(ui)
)
= exp

(
β̂Txi

)
and u′

i is an arbitrary point in the forested part of C(ui) ∩ U. If C(ui) has two parts that are in forests within U 

(with areas a(s1)
i and a(s2)

i respectively), then 

λ⋆(ui) = λβ(u′
i)

a(s1)
i

a
+ λβ(u″

i)
a(s2)

i

a
and λ̂⋆(ui) = λβ̂(u

′
i)

a(s1)
i

a
+ λβ̂(u

″
i)

a(s2)
i

a
(B.3)  

where u′
i is an arbitrary point in the first forest part of C(ui) ∩ U and u″

i is an arbitrary point in the second forest part of C(ui) ∩ U. And so on with three 
or more forest parts. Thus, the change of expression of ̂λ⋆(ui) will imply changes when applying formulas (16) and (A.24) for estimating the expected 
density and its variance estimator. Similar changes need to be done in the cluster sampling case presented in Section 2.5. 

Appendix C. Details of the proposed goodness-of-fit test 

Assume that there are two disjoint vegetation plots, Ai1 and Ai2, contained in each (main) plot i, where all Aij are of size aA, i = 1,…, n. Each 
vegetation plot Ai1 and Ai2 in a pair is separated by the same distance d. In each Aij, the presence or absence of the plant species of interest is registered. 
Let Mi be the number of plants in plot Ai, i = 1,…,n. Let Yij be 1 if presence in Aij, and 0 otherwise, i = 1,…,n, j = 1,2. In our case, the Mi are not 
observed, contrary to the Yij, hence the necessity to develop a test based on the latter. Based on the sample of Yij data and corresponding covariate data 
xi (assumed to be fixed in plot i), an estimator β̂ of the parameter vector β is obtained using a binary regression with a complementary log-log link 
function (5). Let Yi be 1 if there is at least one point in the union of Ai1 and Ai2, and 0 otherwise. Based on a binary regression with a complementary 
log-log link function, offset log(2aA), and the data {Yi, xi}, i = 1,…,n, another estimator of β is constructed, denoted by β̃ . 

If the inhomogeneous Poisson point process model assumption is correct, then so is the model for the Yij. The reverse is not necessarily true. 
However, if the model for the Yij is incorrect, then so is the Poisson model for the Mi. 

If the inhomogeneus Poisson point process model is correct, Yi1 and Yi2 will be independent conditional on the covariates, and binary regression 
model (5) implies the binary regression model based on the data {Yi,xi}. In this case, β̂ and ̃β will be close for large n. On the other hand, if Yi1 and Yi2 

are not independent conditional on the covariates, then this implication will not hold and ̂β and ̃β will likely differ even if n is large. Based on this idea, 
Ekström et al. (Unpublished results) suggested the test statistic 

S = ( β̂ − β̃)T Σ̂ − 1(β̂ − β̃), (C.1)  

where Σ̂ is an estimate of the covariance matrix of β̂ − β̃ given by 

Σ̂ = n
(

Î
− 1
1 (β̂ )+ Î

− 1
2 ( β̂) − 2 Î

− 1
1 ( β̂ )Ĉ (β̂ )Î

− 1
2 ( β̂ )

)
,

where 

Î1(β) =
1
n
∑n

i=1

2
[g′(qi1(β) ) ]2ti1(β)

xi xT
i ,

Î2(β) =
1
n
∑n

i=1

1
[g′(qi(β) ) ]2ti(β)

xi xT
i ,

Ĉ (β) =
2
n
∑n

i=1

1
g′(qi(β) )ti(β)

1
g′(qi1(β) )ti1(β)

qi1(β)(1 − qi(β) )xixT
i ,

qij(β) = 1 − exp
(
− aAexp

(
βT xi

) )
, tij(β) = qij

(
1 − qij

)
, qi(β) = 1 − exp

(
− 2aAexp

(
βTxi

) )
, ti(β) = qi(1 − qi), and g(p) = log( − log(1 − p) ). 

If the Poisson model is valid, S is asymptotically distributed according to a chi-squared distribution with q degrees of freedom, where q is the length 
of β. The binary model (5),and hence the Poisson model, is rejected if S is improbably large according to this chi-squared distribution. For small or 
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moderately large sample sizes, a better option might be to use parametric bootstrap (Davison and Hinkley, 1997). The bootstrap algorithm for 
computing the p-value of the test is given below. 

For b = 1,…,B, where B is a large integer:  

i) For Aij, generate points according to a Poisson point process with log intensity logλ̂i = β̂T xi, i = 1,…,n, j = 1,2.  
ii) Based on the point data obtained in i), let Y*

ijb be 1 if presence in Aij and 0 otherwise, and let Y*
ib = max

{
Y*

i1b,Y
*
i2b
}
, i = 1,…,n.  

iii) Let S* be defined as in (C.1), but based on 
{

Y*
ijb

}
and 

{
Y*

ib
}

rather than 
{
Yij
}

and {Yi}. 

The p-value of the test is given by the proportion of times S* is larger than or equal to S. 
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