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Bridging environmental stress and internal 
physiology to mosquito biology 

Abstract 

Mosquitoes rely on diverse internal and external cues to regulate key 
physiological processes and behaviour. Climate change alters the distribution 
and behaviour of mosquitoes, including Aedes aegypti, a primary vector of 
dengue and yellow fever. However, how vectoring females respond to 
climate change drivers, such as elevation in CO2, and abiotic stressors, 
including desiccation, remains unclear. This study shows that exposure to 
elevated CO2 levels combined with extended egg desiccation periods 
differentially alters larval development and survival, with carry-over effects 
on adult life-history traits and feeding behaviour (Paper I). Female 
mosquitoes use their peripheral olfactory system to locate nectar and blood 
resources. Transcriptomic and functional ontology analyses of olfactory 
tissues, the antennae and maxillary palp, reveal significant changes in gene 
expression related to stress and chemosensation, particularly in the CO2-
sensing maxillary palp, in response to elevated CO2 and extended egg 
quiescence (Paper II). Collectively, these findings show that climate change 
can impact mosquito population dynamics and adult foraging behaviours. 
Teneral females are attracted to floral sources to replenish their energy 
reserves, while ageing induces a gradual shift to host-seeking, correlated 
with a concerted increase in chemosensory receptor expression, with 
exceptions, such as odorant receptor, Or117 which follows an inverse 
expression pattern. The mechanism underlying Or117 gene expression and 
age-dependent floral-seeking was investigated through behavioural assays, 
electrophysiology, receptor characterisation and functional genomics. 
Females display an age- and mating-state-dependent floral seeking 
behaviour, in which Or117 and its ligand, camphor are required for the 
attraction in teneral unmated females (Paper III). As a whole, the findings 
broaden our understanding of mosquito adaptation to internal cues and 
environmental stressors, with implications for vector ecology and disease 
transmission. 



 4 

Keywords: Carbon dioxide, Egg quiescence, Climate change, Aedes aegypti, Life-
history, Olfactory system, Transcriptome, Floral-seeking, Internal state, CRISPR-
Cas9 

 
  



 5 

Integration av miljömässig stress och intern 
fysiologi i förståelsen av myggans biologi 

Abstrakt 

Myggor svarar på en rad interna signaler och yttre miljömässiga faktorer som 
reglerar viktiga fysiologiska processer och beteenden. Klimatförändringar påverkar 
myggors beteende och utbredning, inklusive Aedes aegypti, en huvudvektor för 
dengue och gula febern. Det är dock fortfarande oklart hur honor av denna art 
reagerar på klimatrelaterade faktorer, som ökade koldioxidnivåer (CO2) och 
abiotiska stressfaktorer som uttorkning. Denna studie visar att exponering till 
förhöjda CO2-nivåer i kombination med förlängda perioder av uttorkning av äggen 
påverkar larvutveckling och -överlevnad på olika sätt. Detta har även kvarstående 
effekter på vuxna individers livshistorieegenskaper och födointag (Paper I). 
Honmyggor använder sitt perifera luktsinne för att lokalisera nektar- och blodkällor. 
En transkriptomanalyser av myggans luktorgan – antenner och maxillarpalper – 
visar på betydande förändringar i genuttryck relaterat till stress och detektion av 
kemiska signaler, särskilt i den CO2-känsliga maxillarpalpen (Paper II), som svar på 
höga CO2-nivåer och förlängd äggdvala. Tillsammans visar dessa resultat på att 
klimatförändringar kan signifikant påverka myggpopulationers dynamik och vuxna 
individers födobeteenden. Nykläckta (tenerala) honor attraheras främst av blommor 
för att återställa sina energireserver, medan äldre honor gradvis övergår till att söka 
värddjur – en förändring som är kopplad till ett samordnat ökat uttryck av 
kemoreceptorer. Vissa receptorer, som doftreceptorn Or117, uppvisar dock ett 
omvänt uttrycksmönster. Mekanismen bakom Or117:s genuttryck och den 
åldersberoende blomattraktionen undersöktes med hjälp av beteendeanalys, 
elektrofysiologi och funktionell genomik. Honmyggors attraktion till blomdoft var 
ålders- och parningsberoende, där Or117 och dess ligand krävs för attraktion hos 
tenerala, oparade honor (Paper III). Sammantaget tillåter dessa resultat en fördjupad 
förståelse för hur myggor anpassar sig till både interna signaler och 
miljöstressfaktorer, vilket kan påverka såväl vektorernas ekologi som 
sjukdomsspridning. 

Keywords: Koldioxid, Äggdvala, Klimatförändringar, Aedes aegypti, Livshistoria, 
Luktorgan, Transkriptom, Blomsökande, Inre tillstånd, CRISPR-Cas9 
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1. Introduction 

Mosquitoes (Diptera: Culicidae) are recognised as the deadliest animals to 
humans due to the pathogens transmitted by blood-feeding females. Of the 
more than 3,700 mosquito species identified worldwide, only approximately 
2.5% are competent vectors of human disease-causing pathogens (Yee et al., 
2022). Despite the small proportion of disease-vectoring species, this subset, 
including species, such as Aedes aegypti and Anopheles gambiae, is a 
significant public threat. Collectively, these species place an estimated 80% 
of the global population at risk of one or more vector-borne diseases (WHO, 
2017; WHO, 2024). Among these diseases, malaria, transmitted by 
Anopheles mosquitoes, remains a major global concern, with an estimated 
263 million cases reported in 2023 (WHO, 2024). Concurrently, the 
incidence of dengue, predominantly transmitted by Ae. aegypti, has surged 
in recent years, contributing to the growing global socio-economic burden 
(Bhatt et al., 2013; WHO, 2024). In addition to dengue, Ae. aegypti is also a 
primary vector of other viral diseases, including yellow fever, Zika and 
chikungunya, all of which show increasing incidence and expanding 
geographical ranges (Charrel et al., 2014; Weaver, 2014; Kraemer et al., 
2015). The transmission dynamics of these viral pathogens are closely tied 
to the population dynamics of Ae. aegypti, which in turn depends on the 
plastic behaviour and adaptation to climatic factors of this species (Kraemer 
et al., 2015; Messina et al., 2019). 

The anthropophilic nature of Ae. aegypti has been shaped by a suite of 
key evolutionary pressures (Brown et al., 2014; Rose et al., 2020; Rose 
et  al., 2023). A critical driver of the domestication of Ae. aegypti was the 
species’ transition to utilising human-derived water sources for oviposition 
and larval breeding, particularly during periods of climatic desiccation in 
sub-Saharan Africa (Rose et al., 2020). This ecological shift was 
accompanied by the evolution of other adaptive traits, such as selective egg 
hatching in response to environmental cues typical of human-altered habitats 
and exceptional desiccation tolerance, features that have underpinned its 
successful geographic expansion and urban specialisation (Diniz et al., 2017; 
Rose et al., 2020; Hillery et al., 2022). In addition to external environmental 
adaptations, female Ae. aegypti, as well as other species studied, exhibit 



18 

remarkable behavioural plasticity in response to internal physiological states 
(Hill and Ignell, 2021). Such phenotypic plasticity likely plays a crucial role 
in facilitating both short-term survival and long-term evolutionary success 
across diverse ecological contexts (Agrawal, 2001). 

The vectorial capacity of mosquitoes is inherently tied to the feeding 
behaviour of females and the ensuing population dynamics (Brady et al., 
2015; Kramer and Ciota, 2015). Despite substantial progress in 
understanding mosquito biology, gaps remain in elucidating how 
environmental and internal factors modulate the physiology and behaviour 
of disease-vectoring mosquitoes. This thesis addresses these knowledge gaps 
by investigating how external environmental stressors, such as elevated 
atmospheric CO2 and extended periods of desiccation, as well as female 
internal physiological state, including aging and mating status, modulate the 
physiology and behaviour of Ae. aegypti. The studies presented herein 
integrate ecological, functional genomic and neuroethological approaches to 
dissect the mechanistic underpinnings of these effects. Collectively, these 
findings advance our understanding of the environmental and physiological 
drivers of mosquito behaviour and physiology, with direct implications for 
vector biology and disease transmission dynamics. 
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2. Background 

2.1 From eggs to adult hunters  
Mosquitoes are holometabolous insects, whose immatures stages, including 
larvae and pupae, are aquatic, while adults are terrestrial. Species from the 
Aedini tribe, including Ae. aegypti, lay their eggs near ephemeral water 
bodies, such as potholes and discarded tyres (Powell and Tabachnick, 2013). 
Within a gravid mosquito, egg development involves the sequential secretion 
of two protective layers, the endochorion and the exochorion, by the maternal 
follicular cells (Mathew and Rai, 1974; Clements, 1999). Upon oviposition, 
Ae. aegypti eggs are initially prone to water loss. However, the eggs rapidly 
develop desiccation resistance through processes involving sclerotisation, in 
which chorionic proteins cross-link and harden, as well as undergo 
melanisation (Clements, 1999). Additionally, during embryogenesis, extra-
embryonic cells produce a serosal cuticle inside the chorion, further 
enhancing the desiccation tolerance (Clements, 1999; Li and Li, 2006; 
Rezende, et al., 2008). Embryogenesis is typically completed within 2-to-4 
days post-oviposition, depending on ambient temperature (Farnesi et al., 
2009). This is followed by a phase of reduced metabolic activity in which 
fully-developed pharate larvae remain within the egg in a desiccation-
resistant state, a phenomenon known as egg quiescence (see 2.2.1. 
Desiccation and dormancy).  

While hatching from quiescence is primarily triggered by rehydration, 
additional signals, including decreasing oxygen levels, microbial activity and 
optimal temperature, are required to initiate successful emergence (Gjullin 
et al., 1941; Clements, 1999). Newly hatched pharate larvae represent one of 
the most vulnerable stages of the lifecycle of a mosquito, as they must 
quickly adjust to environmental changes when they transition from relying 
on internal reserves to actively feeding on available resources. Breeding sites 
are often unstable, subject to fluctuations in water volume, nutrient content, 
pH, presence of toxic metals, predators and competition (Clements, 1999; 
Clark et al., 2004; Perez and Noriega, 2012; Talaga et al., 2020; Kumar 
et  al., 2024). Such environmental stressors can profoundly influence larval 
development and survival (Perez and Noriega, 2012; Kumar et al., 2024). 
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During the larval stage, Aedes larvae feed on organic materials and 
microorganisms (Merritt et al., 1992), accumulating a threshold energy 
reserve and metamorphose into a non-feeding pupal stage (Chambers and 
Klowden, 1990).  

The larval environment can lead to carry-over effects on emerging adult 
survival, body size and energy reserves, which can influence female 
resource-seeking decisions critical for the disease transmission dynamics 
(Moller-Jacobs et al., 2014; Chandrasegaran et al., 2020; Paper I). The 
developmental trajectory of Ae. aegypti from egg to adult is thus profoundly 
shaped by early-life environmental conditions, particularly during egg 
quiescence and larval development (Vinauger and Chandrasegaran, 2024). 
Understanding how environmental variability during developmental time 
translates into phenotypic plasticity is thus essential in predicting mosquito 
population dynamics and disease transmission potential.  

2.2 Influence of environmental factors  
Under changing climatic conditions, much focus has been given to the effects 
of the increase in temperature on mosquito physiology; however, several 
other factors, such as elevation in CO2, changing rainfall patterns or water 
availability, also have the potential to influence mosquito biology. The 
success of mosquito species, such as Ae. aegypti, has been attributed to rapid 
adaptation to environmental changes through plastic life history traits, with 
serious implications for vector competence. This section will briefly address 
the two environmental factors: egg quiescence, in the context of water 
availability, and elevation in CO2 levels. 

2.2.1 Desiccation and dormancy 
Insects are prone to desiccation due to their high surface area to volume ratio 
(Hadley, 1994). Thus, adaptation to changing atmospheric humidity or water 
availability through desiccation tolerance is crucial (Holmes and Benoit, 
2019). While desiccation-tolerant dormancy periods can occur at different 
life stages of a mosquito, including egg, larva or adult, in Ae. aegypti this is 
predominantly observed in the egg stage (Diniz et al., 2017). Notably, 
desiccation-tolerant dormancy can be of two types: quiescence, a non-
seasonal, non-programmed state of reduced metabolism, and diapause, a 
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seasonal programmed state, both of which are adaptations to unfavourable 
environmental conditions (Diniz et al., 2017). In line with the scope of this 
thesis, this section will focus on egg quiescence in Ae. aegypti. 

Across evolutionary timescales, eggs have developed several adaptations 
to withstand periods of sub-optimal conditions. These include the formation 
of the serosal cuticle (Rezende et al., 2008), increased chitin formation 
(Clements, 1999) and altered metabolism (Prasad et al., 2023). While egg 
desiccation duration is dependent on various environmental factors, such as 
temperature and humidity (Farnesi et al., 2009), egg survival depends on 
morphological adaptation in the egg, as well as inherent maternal energy 
reserves (Diniz et al., 2017, also see 2.3.1. Energy reserves across life 
stages). 

Niche container-breeders, such as Aedes, are often exposed to abrupt and 
drastic fluctuations in water availability and other microclimatic conditions 
(Clements, 1999; Diniz et al., 2017). The desiccation-tolerant eggs of 
Ae. aegypti can survive harsh environments up to 3 months, without affecting 
hatching rates (Oliva et al., 2018). Population-level variation in egg 
quiescence period within Ae.  aegypti, indicate differential adaptations that 
are intrinsically regulated under different environmental pressures (Trpis, 
1972; Oliva et al., 2018). The differential success of Ae. aegypti over the 
invasive Aedes albopictus, at breeding habitats, has been linked to increased 
tolerance to desiccation, bypassing dry seasons (Juliano et al., 2002). 
Overall, extended quiescent periods pose an evolutionary advantage for Ae. 
aegypti in the microhabitats and at the global scale for range expansion 
(Diniz et al., 2018; Oliva et al., 2018).  

While quiescent periods may be advantageous (Yang, 2014), prolonged 
periods can reduce the maternal energy reserves, causing an imbalance in 
metabolic costs in pharate larvae (Perez and Noriega, 2012). Extended egg 
quiescent periods can increase the susceptibility of the emerging larvae to 
abiotic stressors, such as elevation in CO2 (Paper I), metal toxins (Perez and 
Noriega, 2012), as well as alter adult survival (Perez and Noriega, 2013) and 
insecticide resistance (Sachez, 2021). In insect species displaying early life 
stage-dormancy, the life history phenotype of emerging larvae displays 
anticipatory adaptive changes to accommodate changes in the environment, 
called anticipatory phenotypic plasticity (Esperk et al., 2012; Perez and 
Noriega, 2013). For an Ae. aegypti egg under quiescence, any prolongation 
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of quiescence could be a cue of the sub-optimal conditions that the pharate 
larvae have to inhabit. While less explored, anticipatory phenotypic plastic 
response to adapt to abiotic stressors, such as metal toxicity, has been 
observed in life history traits of Ae. aegypti adult emerging from extended 
egg quiescence (Perez and Noriega, 2013). Comparable effects have also 
been observed in adults, with increased survival under elevated CO2 levels 
when emerging from eggs subjected to prolonged quiescence (Paper I). 
However, the underlying mechanism of such adaptive response remains 
unclear. 

2.2.2 Anthropogenic increase in CO2 levels 
Atmospheric CO2 levels have been steadily rising and are projected to 
increase exponentially, reaching approximately 1000 ppm by the end of the 
century, up from the current ambient level of ~420 ppm (IPCC, 2018). For 
aquatic ecosystems, including freshwater bodies, this escalation translates 
into an increased partial pressure of CO2, leading to acidification and 
alterations in water chemistry (Hasler et al., 2017; Weiss et al., 2018). These 
physicochemical changes can cause physiological stress, including 
hypercapnia and oxidative stress, on freshwater organisms, affecting critical 
life history traits, such as survival, development, reproduction, as well as 
sensory function (Michaelidis et al., 2005; Kurihara, 2008; Munday et al., 
2009; Munday et al., 2010; Fitzer et al., 2012;  Abbey-Lambertz et al., 2014; 
Chung et al., 2014; Kowalewska et al., 2020; see also 2.6.2. The role of 
external environment).  

In stagnant water bodies, such as those exploited by mosquito larvae, the 
effects of elevated CO2 and associated acidification may be pronounced, 
impacting larval physiology and survival (Tuchman et al., 2003; Paper I). 
Direct effects of elevated CO2 exposure have been shown to reduce larval 
survival, delay development and affect adult life history traits in mosquitoes 
(Paper I). Indirect consequences of elevated CO2 on mosquito larvae have 
also been studied through their effects on plant litter quality. For instance, 
Tuchman et al. (2003) demonstrated that larvae feeding on leaf litter grown 
under elevated CO₂ conditions exhibited increased mortality and prolonged 
development duration. In contrast, other studies reported no significant 
effects on larval performance (Strand et al., 1999; Alto et al., 2005). These 
findings highlight the importance of disentangling direct physiological 
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effects from indirect ecological effects to better predict mosquito physiology 
for predicted climate changes. 

2.3 Energy reserves and metabolism 
Across all living organisms, nutrient acquisition, synthesis of necessary 
reserves and efficient utilisation determine individual success and population 
dynamics. Insects constantly require energy during foraging activities, as 
well as for general homeostasis (Arresse and Soulages, 2010). For 
holometabolous insects, the availability and quality of nutrients during early 
life stages profoundly shape life-history traits, such as developmental 
duration, survival, adult size, reproductive fitness and feeding behaviour 
(Nestel et al., 2016; Teder and Kaasik, 2023). In mosquitoes specifically, 
maternal nutrient investment into eggs significantly influences the overall 
fitness of the emerging immature and adult stages (Zirbel and Alto, 2018; 
Yanchul and Alto, 2021). These energy reserves serve as a foundation 
bridging environmental resource availability and mosquito biological 
outcomes. 

2.3.1 Energy reserves across life stages 
Embryogenesis is an energy-intensive process, requiring maternal metabolic 
reserves to fuel cell division and differentiation, as eggs function as a closed 
energy system (Nestel et al., 2016). In the desiccation-tolerant quiescent eggs 
of Ae. aegypti, lipid reserves decline as a function of quiescent duration 
(Perez and Noriega, 2012; Prasad et al., 2023). Additionally, the pharate first 
instar larvae inside the eggs enter a hypometabolic state, characterised by 
metabolic rewiring, ensuring survival of the pharate larvae, both during 
desiccation and subsequent hatching (Diniz et al., 2017; Prasad et al., 2023). 
This metabolic adaptation is a conserved mechanism among other dormant 
Aedes life stages, including temperate diapausing populations of Ae. aegypti, 
wherein dormant larvae exhibit reduced energy metabolism and increased 
lipid accumulation (Reynolds et al., 2012; Batz and Armbruster, 2018; 
Mensch et al., 2021). In diapausing or quiescent eggs, there is an 
upregulation of genes involved in long-chain fatty acid and polyamines 
biosynthesis (Urbanski et al., 2010; Reynolds et al., 2012; Prasad et al., 
2023), which aid in desiccation tolerance (Benoit and Denlinger, 2007; 
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Juarez and Fernandez, 2007) and likely ensure survival of emerging larvae 
on rehydration.  

Following hatching, larval nutrient acquisition is crucial for both 
immediate energy demands and reserve synthesis, primarily in the form of 
glycogen and lipids (Arresse and Soulages, 2010; Telang et al., 2007). The 
insect fat body, functionally analogous to the vertebrate liver, plays a central 
role in nutrient sensing, metabolic regulation and energy storage (Arresse 
and Soulages, 2010). Different mosquito species exhibit distinct metabolic 
strategies during larval development to adapt to the ecological niche they 
occupy (Timmermann and Briegel, 1999). Ae. aegypti larvae prioritise 
lipogenesis, as evident from exponential fat accumulation, whereas glycogen 
and protein synthesis follow a more linear trajectory with larval growth 
(Timmermann and Briegel, 1999). Notably, ~50% of the larval diet is utilised 
for lipogenesis and ~35% for glycogenesis (Zhou et al., 2004). This strategy 
has likely evolved to ensure maximum energy storage during a 
developmental “window of opportunity” to ensure survival during food 
shortages (Zhou et al., 2004). Furthermore, this ensures critical energy 
reserves necessary for metamorphosis into a non-feeding pupal stage that 
relies entirely on stored reserves (Chambers and Klowden, 1990; Telang 
et  al., 2007). The duration of larval feeding, particularly during late instars, 
directly impacts pupation commitment and energy reserves carried over from 
pupae to adult stages (Telang et al., 2007). 

Across the development of holometabolous insects, including 
mosquitoes, the metabolic trajectory, which is assessed by measured CO2 
emission rates post-puparium formation, is characterised by high metabolic 
rates at the onset of metamorphosis, a pronounced decline during mid-
metamorphosis and a final increase before adult emergence (Merkey et al., 
2011). In Drosophila melanogaster, a change in environmental temperature 
did not disrupt the overall metabolic pattern during pupae-to-adult transition 
but caused increased energy expenditure at temperature extremes (Merkey 
et al., 2011). Such metabolic shifts during this critical developmental time 
window can interfere with processes essential for successful adult 
emergence, including the development of the sensory system (see 2.6.1. 
Regulation of chemosensory gene expression). Teneral adult mosquitoes 
retain a proportion of the larval-derived energy reserves, which sustain early 
post-emergence activities, such as foraging flight (Clements, 1955) and even 
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contribute to first egg batch production (Telang and Wells, 2004). 
Environmental conditions during larval development, both abiotic, e.g., 
temperature, pH and CO2 concentration, and biotic, e.g., population density 
and nutrient availability, can have carry-over effects on adult traits, such as 
adult survival, body size and metabolic reserves (Takken et al., 1998; Briegel 
et al., 2001; Clark et al., 2004; Moller-Jacobs et al., 2014; Huxley 
et al.,2021; Huxley et al., 2022; Paper I). Thus, under optimal growth 
conditions, adult body size, which strongly reflects larval nutritional status, 
can serve as a robust proxy for assessing larval environmental quality, with 
direct implications for adult metabolic reserves and resource-seeking 
behaviour. (Briegel 1990; Briegel et al., 2001).  

Accumulated teneral adult glycogen and lipid reserves primarily serve as 
energy sources (Zhou et al., 2004). Fat body transcriptomic and metabolomic 
studies reveal that mosquitoes with reduced body size have altered 
expression of genes involved in immunity, reproduction and metabolism 
(Price et al., 2015). Notably, smaller females display reduced yolk protein 
synthesis following a blood meal, suggesting a trade-off between nutrient 
utilisation and reproductive benefit (Price et al., 2015). These findings, in the 
context of other life history studies, suggest that smaller females compensate 
for sub-optimal stored reserves through differential utilisation of feeding 
resources and metabolism rate (Takken et al., 1998; Takken et al., 2013). 
Reserve replenishment in adults can occur through either sugar or blood 
feeding (Van Handel and Lea, 1970; Van Handel, 1965). In Ae. aegypti 
females, independent of body size, early-life access to only blood has been 
shown to enhance the energy reserves to a higher level compared to females 
fed on both blood and sugar (Naksathit et al., 1998b). While early-life access 
to sugar and/or blood can initiate reserve synthesis, which generally 
enhances survival (Nayar & Sauermann, 1975), the allocation of imbibed 
resources to longevity and reproductive benefits might have species-specific 
patterns (Nayar & Sauermann, 1975c; Gary and Foster, 2001; Van Handel 
and Lea, 1970; Zhou et al., 2004). 

Older starved Aedes females exhibit increased lipogenesis from an equal 
calorie meal of sugar or blood (Van Handel, 1965a; Briegel, 1990), though 
glycogenesis proceeds more rapidly in sugar-fed females (Van Handel and 
Lea, 1970). A starved Aedes female can imbibe up to two-thirds of her weight 
in sugar meal, resulting in a substantial increase in lipid and glycogen levels 
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(Van Handel et al., 1965). Fundamentally, a teneral Aedes adult possesses 
higher energy reserve content compared to Anopheles, which has profound 
consequences on adult resource allocation. A sugar meal is efficiently 
utilised by both Aedes and Anopheles females. However, unlike Aedes, 
Anopheles display less efficient blood meal utilisation for oogenesis, as a 
substantial portion of blood protein is utilised for maternal reserve synthesis 
(Briegel, 1990). In Aedes, energy reserve synthesis can be replenished either 
through a single, high-concentration sugar meal (Nayar and Sauerman et al., 
1975) or via frequent feeding over time (Naksathit et al., 1999a). When 
compared to Aedes, Anopheles females emerge with limited teneral reserves 
and often use the first blood meal for maternal reserve synthesis rather than 
immediate egg production. This results in multiple blood-feeding cycles as a 
reproductive strategy (Briegel 1990b; Briegel and Hörler, 1993), a pattern 
also observed in nutrient-deprived Ae. aegypti females, who may supplement 
with sugar feeding or increase blood feeding frequency (Feinsod and 
Spielman et al., 1980). Conversely, Anopheles females with ample energy 
reserves can support oogenesis with smaller blood meals (Briegel, 1990a). 
This dynamic relationship between teneral reserves, feeding frequency, and 
resource utilisation underlies the vectorial efficiency of Ae. aegypti and 
An.  gambiae. (Stone and Foster, 2013).  

The size and nutritional status of female Ae. aegypti significantly 
influence maternal reserve contributions to the eggs, a factor critical for the 
survival of desiccation-resistant quiescent eggs (Briegel, 1990a; Diniz et al., 
2017). During the first gonotrophic cycle, teneral reserves, as well as sugar 
and blood feeding, collectively contribute to protein and lipid accumulation 
in the egg (Briegel et al., 2001; Zhou et al., 2004). Prolonged dormancy or 
quiescence can be stressful for the pharate larvae as a result of limited energy 
reserves, oxidative stress and increased reactive oxygen species (Diniz et al., 
2017; Cornette et al., 2023). As a result, females emerging from extended 
egg quiescence had reduced reproductive output (Perez and Noriega, 2013). 
Moreover, the larvae offspring hatched from eggs laid by females that 
experienced prolonged egg quiescence exhibited reduced starvation 
tolerance, likely via a maternal effect (Perez and Noriega, 2013). The 
resilience of quiescent eggs fundamentally depends on precise metabolic and 
molecular adaptations, particularly lipid metabolism and polyamine 
synthesis during quiescence (Prasad et al., 2023). Notably, increased 
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synthesis of polyamine is necessary for desiccation tolerance in Aedes eggs, 
as inhibition of this pathway can render eggs vulnerable to desiccation 
(Prasad et al., 2023). 

2.3.2 Reserve mobilisation 
A dynamic balance of energy reserves is maintained by insects to support 
physiological functions, particularly during periods of stress and general 
activity. This section will briefly outline the current understanding of how 
reserves are mobilised. 

Insects mobilise glycogen, a stored form of carbohydrate, in the form of 
trehalose, the levels of which are indicative of the nutritional status of the 
insects and thus likely trigger various metabolic regulatory pathways in the 
fat body (Lum and Chino, 1990; Thompson, 2003). Studies conducted on 
lepidopteran larvae and migratory locusts demonstrate that low trehalose 
concentration, typically associated with starvation or the non-feeding stage, 
is linked to increased lipid mobilisation (Beenakkers et al.,1985; Ziegler, 
1991). Experimental injection of trehalose notably reduces the haemolymph 
lipid concentration, suggesting a shift in energy metabolism in times of 
urgency (Beenakkers et al., 1985; Arrese et al., 1996; Van der Horst et al., 
1997; Ziegler and Ibrahim, 2001). Haemolymph trehalose is also utilised by 
mosquitoes for foraging flights and swarming behaviours (Nayar and Van 
Handel, 1971). Additionally, under environmental stress, including 
dehydration, extreme temperatures and oxidative stress, stored glycogen is 
converted into trehalose and sugar alcohols, which are involved in protecting 
proteins and cellular membranes (Storey, 1997; Watanabe, 2002; Elben 
et  al., 2003). 

On starvation, teneral adult mosquitoes respond by metabolising stored 
larval reserves, primarily lipids, as long as access to water is possible 
(Briegel, 1990a; Briegel, 1990b). Beyond prolonged starvation, lipids are 
strategically mobilised to sustain long-term flight via trehalose- and proline 
synthesis (Arrese and Soulages, 2010). Dynamic changes occur in female 
lipid levels during the gonotrophic cycle (Pinch et al., 2021), during which a 
vast majority of maternal lipids are transferred to the ovaries and later to eggs 
(Briegel et al., 2002). These lipids are mobilised during embryogenesis and 
for further sustenance of pharate larvae during quiescence (Arrese and 
Soulages, 2010). 
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Female energy reserves largely determine feeding choices and success 
(Ma and Roitberg, 2008). For instance, differential lipid reserves set the 
physiological state for host-seeking in mosquitoes (Renshaw et al., 1995). 
Species-specific lipid threshold levels were proposed to be responsible for 
the differential initiation of blood seeking observed in two species of Aedes 
(Renshaw et al., 1995). Changes in climatic factors, including elevation in 
temperature or CO2 level, or reduction in humidity, can alter energy reserves 
(Sasmita et al., 2019; Hagan et al., 2018; Paper I) or metabolism (Van 
Handel, 1966), affecting the feeding behaviour of disease-vectoring 
mosquitoes (Hagan et al., 2018; Paper I). Such changes to resource-seeking 
behaviour warrant more investigation in the light of current anthropogenic 
climate change. 

2.4 Mosquito olfaction 
The sense of smell is vital for the survival of most insect species, and as with 
most insects, mosquitoes have a sophisticated olfactory system, which is 
adapted for detecting a myriad of volatile cues in the environment. While 
mosquito larvae rely on olfactory cues for foraging, this section will be 
biased towards adults, in line with the current literature. But for those 
interested in larval olfaction, relevant references are mentioned here 
(Clements, 1992; Riabinina et al., 2016; Lutz et al., 2017; Lutz et al., 2019). 

2.4.1 Structure and function of the olfactory system 
The peripheral olfactory system of adult mosquitoes consists of the antennae, 
maxillary palps and proboscis (Konopka et al., 2021; Wheelwright et al., 
2021). These olfactory tissues are covered by hair-like structures, sensilla, 
each hosting the dendrites of olfactory sensory neurons (OSNs), which 
translate the chemical signals into electrical signals (Wicher and Miazzi, 
2021). Odour detection in insects begins with a series of “peri-receptor 
events”, in which volatile organic compounds (VOCs) enter the sensillum 
lymph through either pores or spokes of a sensillum, and move across the 
lymph, facilitated by chemosensory binding proteins, including odorant 
binding proteins (OBPs) and chemosensory proteins (CSPs). The OBPs and 
CSPs are synthesised and released by the sensillum support cells, i.e., the 
thecogen, trichogen and tormogen cells, which ensheathe the OSNs 



29 
 

(Shanbhag et al., 2001; Larter et al., 2016; Prelic et al., 2022). The functional 
role of OBPs and CSPs is to bind, solubilise and transport the VOCs through 
the sensillum lymph to the chemosensory receptors residing in the dendrites 
of the OSNs (Vogt and Riddiford, 1981; Steinbrecht, 1996). Beyond their 
primary role in odorant transport, OBPs are also implicated in the modulation 
of the response of the OSN through gain control (Biessmann et al., 2010; 
Pelletier et al, 2010; Larter et al., 2016; Pelosi et al., 2018). The three-
dimensional structure of OBPs and CSPs is constituted of six α-helical 
domains, forming a hydrophobic binding cavity, in which odorants are bound 
(Lartigue et al., 2002; Pelosi et al., 2018). The underlying mechanism for 
transport across the sensillum lymph has been proposed to be pH-induced 
conformational change in the three-dimensional structure, leading to the 
uptake of odorants at the entry pore/spoke of the sensillum, and their release 
near the dendritic membrane of the OSN (Leal et al., 2005; Zubkov et al., 
2005; Manoharan et al., 2013). 

The dendritic membrane of mosquito OSNs, as opposed to other insects, 
expresses one or a combination of chemosensory membrane-bound proteins 
belonging to up to three different families, including odorant receptors 
(ORs), ionotropic receptors (IRs) and gustatory receptors (GRs) (Younger 
et  al., 2022; Adavi et al., 2024). The ORs and IRs function as ligand-gated 
ion channels by forming multimers with (a) highly conserved co-receptor 
unit(s) and a divergent ligand-selective tuning unit (Larsson et al., 2004; 
Abuin et al., 2011). Moreover, the highly conserved OR co-receptor (Orco) 
is required for the membrane trafficking of OR into the dendritic membrane 
(Benton et al., 2006). The OR-Orco complex, is proposed to be an 
asymmetric tetramer with a 1:3 stoichiometry of OR and Orco, with each 
having seven transmembrane domains (Wang et al., 2024; Zhao et al., 2024). 
On the other hand, the tuning IRs form heteromeric complexes with one or 
two highly conserved IR co-receptors, Ir25a, Ir76b and Ir8a (Benton et al., 
2009; Abuin et al., 2011). Both olfactory receptor pathways are tuned to a 
wide repertoire of VOCs belonging to distinct chemical classes, in which 
ORs generally detect aldehydes, alcohols, ketones, aromatics, esters and 
terpenes (Hallem and Carlson 2006, Carey et al., 2010; Wang et al., 2010; 
Omondi et al., 2019; Pullmann-Lindsley et al., 2024), whereas IRs detect 
carboxylic acids and amines (Pitts et al. 2017; Raji et al., 2019). These 
chemical classes are emitted from a wide variety of resources used by 
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mosquitoes, ranging from plants (Knudsen and Gershenzon, 2006), human 
or non-human hosts (Bernier, et al., 2008; De Obaldia et al. 2022; Zhao 
et  al., 2022; Hinze et al., 2022) to oviposition-sites (Afify and Galizia, 2015; 
Khan et al., 2022), and mediate behavioural attraction and discrimination 
(DeGennaro et al., 2013; De Obaldia et al. 2022; Zhao et al., 2022). While 
ORs solely detect VOCs, the functional role of IRs also include taste-, hygro- 
and temperature-sensing (Wicher and Miazzi, 2021; Laursen et al., 2023; 
Morita et al., 2025). Similar to ORs, GRs form seven transmembrane ion 
channels (Frank et al. 2024; Gomes et al., 2024; Ma et al., 2024), which 
consist of various functional subfamilies, including sugar-, salt- and bitter-
sensitive receptors (Sato et al., 2011; Kessler et al., 2013; Sanford et al., 
2013; Sparks and Dickens, 2016), as well as the extensively studied CO2-
sensitive receptors (Kwon et al., 2007; Jones, et al. 2007 Lu et al., 2007; 
Erdelyan et al., 2012; McMeniman et al., 2014;; Robertson, 2019; Liu et al., 
2020). The CO2 detection system in the maxillary palps of mosquitoes 
consists of three highly conserved Grs, i.e., Gr1, Gr2 and Gr3 in culicines 
(Erdelyan et al., 2012; McMeniman et al., 2014) and Gr21, Gr22 and Gr23 
in anophelines (Lu et al., 2007; Robertson, 2019; Liu et al., 2020), which 
form heterotrimers. While Gr1 and Gr3 have been demonstrated to be 
essential for the detection of CO2 (Erdelyan et al., 2012; McMeniman et al., 
2014; Kumar et al., 2020), Gr2 is proposed to function as a modulator 
(Kumar et al., 2020). Apart from CO2, this Gr pathway is involved in the 
detection of acetone, a component of exhaled breath (Ghaninia et al., 2019; 
Younger et al., 2022). Additionally, many structurally diverse chemical 
compounds, though studied in high concentration, have been shown to 
activate or inhibit the response of CO2-sensitive neurons (Tauxe et al., 2013). 
Whether other chemosensory receptors likely tuned to these VOCs are co-
expressed in the CO2-sensitive neurons remains unclear. 

The response profile of an OSN depends on the specificity and sensitivity 
of the ligand-sensitive tuning receptor(s). In mosquitoes, the co-expression 
of ORs and IRs within a single OSN broadens the tuning breadth of each 
OSN (Adavi et al., 2024). However, this complicates the deconvolution of 
individual receptor contributions to odour detection, thereby hampering 
precise characterisation of receptor-specific tuning in vivo. Functional 
characterisation of heterologously and ectopically expressed ORs and IRs of 
fruit flies and mosquitoes suggest a variation in binding affinity of tuning 
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receptors (Hallem et al., 2004; Hallem and Carlson, 2006; Carey, et al., 
2010; Wang et al., 2010). While broadly-tuned receptors are involved in the 
detection of overlapping chemical space in the environment, narrowly-tuned 
receptors play a critical role by detecting key chemical cues related to host, 
mating and danger (Stensmyr et al., 2012; Andersson et al., 2015), and are 
thus under positive selection pressure due to linked fitness benefits (Leary 
et  al., 2012). However, care must be taken when categorising receptors into 
broadly- or narrowly-tuned, as this is dependent on the heterologous 
expression system, concentration of the VOCs used and the number of 
compounds in the panel tested (Hallem et al., 2004; Carey et al., 2010;  Wang 
et al., 2010). In mosquitoes, specific ORs have been found to detect critical 
host or oviposition cues, including Or8 and its orthologs, which detect 1-
octen-3-ol (Bohbot et al., 2011), Or2, which detects indole (Xia et al., 2008; 
Pelletier et al., 2010) and Or10, which detects skatole (Xia et al., 2008). In 
contrast to narrowly-tuned receptors, chemosensory receptors, with a broad 
tuning width, likely provide flexibility in detecting the vast odour space 
surrounding the insect (Andersson et al., 2015). 

Besides the canonical chemosensory receptors described above, the 
mosquito OSN membrane may also express sensory neuron membrane 
proteins (SNMPs) and noncanonical chemosensory receptors, including 
transient receptor potential (TRP) and pickpocket (PPK) ion channels 
(Matthews et al. 2016; Hill et al., 2021). While SNMPs are involved in 
pheromone detection in Lepidoptera (Zhang et al., 2020) and Diptera 
(Benton et al., 2007; Zhang et al., 2020; Cassau and Krieger, 2021), the 
functional role of SNMPs in mosquitoes remains unclear. In insects, TRP 
channels form transmembrane cation channels, with multiple sensory 
modalities, including thermo-, hygro-, mechano-sensation, as well as hearing 
and nociception (Liu et al., 2007; Kang et al., 2010; Kwon et al., 2010; 
Fowler and Montell, 2013). Insect PPK ion channels are involved in the 
detection of environmental cues, including water, salts and odours (Liu et al., 
2003; Zhong et al., 2010; Matthews et al., 2019; Masague et al., 2020), as 
well as in olfactory signal amplification in select OSNs (Ng et al., 2019). 
The critical role that TRP and PPK channels play in assessing environmental 
signals calls for more research in characterising their functional role in 
mosquito sensory biology.  
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The chemosensory cues detected by membrane-bound receptors initiate a 
cascade of downstream signalling, leading to the generation of action 
potentials in each OSN (Sato and Touhara, 2008). At the periphery, timely 
termination of the olfactory signal transduction is required to ensure reliable 
coding of the temporal dynamics of the signal, and to enable free binding 
sites for a new set of VOCs and other chemosensory cues to be detected and 
for the OSNs to retain sensitivity (Leal, 2013). One way this is attained is by 
odorant degradation enzymes (ODEs), which include diverse protein 
families, including cytochrome P450 and carboxylesterases (Chertemps and 
Maïbèche, 2021), residing in the sensillum lymph. Excess odorants are 
trapped by ODEs and undergo enzymatic degradation to terminate the signal 
transduction pathway (Kaissling, 2001).  

The olfactory signal initiated at the OSN dendrites is relayed to the 
primary olfactory processing centre, the antennal lobe (AL), in which OSN 
axons converge onto structural units, called glomeruli (Vosshall and Stocker, 
2007). Glomeruli form functional units comprising OSNs, projection 
neurons (PNs) and local interneurons (LNs) (Ignell et al., 2005; Vosshall and 
Stocker, 2007), that process several features of the olfactory signal, including 
quality, quantity and temporal dynamics (Ignell et al., 2010). The spatial 
arrangement of OSNs in the AL generates a chemotopic map with distinct 
combinatorial glomerular activity pattern for each VOC (Ghaninia et al., 
2007; Galizia and Rössler, 2010; Zhao et al., 2022). The multi-glomerular 
LNs are involved in interglomerular signalling, mediating lateral inhibition 
to enhance odour discrimination (Seki et al., 2017). From the AL glomeruli, 
the PNs carry information to the mushroom bodies (MBs) and lateral horn 
(LH) of the protocerebrum (Stocker et al., 1997). The MBs are involved in 
learning, memory formation and contextualisation of the odour space 
(Heisenberg, 2003; Caron et al., 2013), whereas the LH mediates innate 
responses to VOCs (Das Chakraborty and Sachse, 2021). The information 
processing at the LH is spatially organised to integrate odour valence and 
intensity (Strutz et al., 2014; Das Chakraborty and Sachse, 2021). For 
insects, including mosquitoes, resource seeking is orchestrated through the 
integration of multimodal sensory cues, including olfactory, visual, thermal 
and gustatory at higher brain centres, including the MBs (Strausfield and 
Hildebrand, 1999) and LH (Galizia and Rössler, 2010; Strutz et al., 2014; 
Thiagarajan and Sachse, 2022). Thus, timely convergence and processing of 
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these signals are essential for the initiation of appropriate behavioural 
responses (McMeniman et al., 2014). 

2.5 Olfactory-guided behaviours 
Mosquitoes display a wide repertoire of dynamic, temporally and spatially 
distinct olfactory-guided behaviours (Hill and Ignell, 2021). The foraging 
decisions made are pertinent to adult internal physiology, including 
nutritional status, age and mating, as well as external environmental changes 
(Hill and Ignell, 2021; Lahondère et al., 2023). This section provides the 
context for one of the most important resource-seeking behaviours displayed 
by female mosquitoes, sugar seeking, as well as the dynamics involved, and 
the molecular determinants regulating this behaviour. 

2.5.1 Sugar-seeking 
Of the approximately 3700 mosquito species described worldwide, 
carbohydrate foraging is vital for both males and females (Clements, 1999), 
and adults of some species, including Toxorhynchites spp, are strictly 
nectarivorous (Collins and Blackwell, 2000). While males of all species are 
obligate nectar foragers, females of most species are “facultative” foragers, 
whose sugar foraging depends on physiological and environmental 
parameters (Gary and Foster, 2006; Fikrig et al., 2020). The sugar-seeking 
activity of mosquitoes varies not only depending on the species, but also on 
the availability of other food resources (Yee and Foster,1992; Gary and 
Foster, 2006; Ma and Roitberg, 2008), and, in some cases, on geographical 
location (Olson et al., 2020). Mosquitoes rely on sugars and secondary 
metabolites from plant sources, including floral nectars, extra floral nectaries 
and phloem, for flight energy, survival, reproduction and self-medication 
(Foster, 1995; Foster, 2022). Beyond sugar, floral nectar also contains amino 
acids, salts and vitamins ( Kevan, 1983; Nicolson, 2007; Baker and Baker, 
1983), which are metabolised and play a significant role in regulating 
mosquito physiology (Rivera-Perez et al., 2017).  

The investment in sugar-seeking relies on the energy demands of the 
female (Yee and Foster, 1992; Ma and Roitberg, 2008). On emergence, 
adults are deprived of carbohydrate and lipid reserves, and feeding on plant 
sugars can replenish these reserves (Foster, 1995; Briegel et al., 2001). 



34 

Teneral females are attracted to floral odours, while with maturation, females 
develop the competence to host seek to obtain a blood meal (Foster and 
Takken, 2004; Omondi et al., 2019; Tallon et al., 2019). Mating and other 
physiological changes, associated with each gonotrophic cycle, affect floral 
seeking, which is reflected in the avidity of females to sugar feed (Gary and 
Foster, 2006; Stone et al., 2011; Christ et al., 2017; Tenywa et al., 2024; 
Paper III). In general, mating shifts the nutritional demands in female insects, 
redirecting their resource-seeking behaviour for reproductive success 
(Carvalho et al., 2006). Similarly, in aging female mosquitoes, sugar 
foraging gradually decreases, owing to the shift in physiological 
requirements of a female to blood feed for egg development (Clements, 
1999). Moreover, following ingestion of a blood meal, there is a complete 
inhibition of sugar seeking (Stone et al., 2011; Christ et al., 2017). However, 
the avidity towards nectar sources is regained in gravid females (Klowden, 
1986), and post-oviposition before the next blood meal (Gary and Foster, 
2006).  

Besides the internal physiology of the mosquito, the external environment 
influences the sugar-foraging decisions. The availability and quality of 
suitable nectar sources are prone to seasonal changes, as well as affected by 
human interventions (Foster, 1995; Barredo and DeGennaro, 2020), thus 
influencing the mosquito feeding dynamics (Martinez-Ibarra et al., 1997; 
Fikrig et al., 2020). Furthermore, an increase in atmospheric temperature has 
been shown to interact with sugar-feeding behaviour in modulating the diel 
activity pattern, with access to sugar improving the survival of Ae. aegypti at 
higher temperatures (Upshur et al., 2019). How other climatic factors related 
to anthropogenic climate change, such as elevation in CO2, ozone and other 
pollutants, influence the nectar-seeking choices needs further investigation. 

2.5.2 Plant preferences 
Mosquitoes display differential preferences for plants, predominantly 
dependent on the availability of sugars (Foster, 1995; Foster, 2022). While 
mosquitoes prefer sugar sources that provide the maximum energy payoff 
and maximise fitness (Manda et al., 2007; Gouagna et al., 2014), this is not 
always the case (Pare et al., 2024), indicating that both intrinsic and extrinsic 
factors influence the host-plant preference of mosquitoes. However, it is 
hypothesised that mosquito plant preference is predominantly innate, with 
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plasticity allowing adaptation to the immediate environment through 
experience (Foster 1995; Barredo and DeGennaro 2020). A sugar-foraging 
mosquito is guided by multiple sensory modalities, including floral VOCs, 
CO2 and visual cues, which synergise to enhance the attraction of mosquitoes 
(Nyasembe et al., 2012; Peach et al., 2019). The plethora of volatile 
secondary metabolites, or VOCs, produced by plants is often indicative of 
the availability and nutritional value of the source (Goff and Klee, 2006).  

The hierarchy of mosquito plant preferences has been studied through 
various semi-field and laboratory assays, including visual scoring of feeding, 
testing the presence of sugar by either anthrone test or analytical chemistry, 
assessing attraction to plants and their volatile extracts and, in the last decade, 
through DNA barcoding of ingested plant material (Foster, 1995; Nyasembe 
et al., 2018; Foster 2022). Earlier semi-field studies on the mosquito plant 
ecology demonstrated both broad and narrow plant preferences across Aedes 
(Muller et al., 2011; Sissoko et al., 2019; Upshur et al., 2023), Anopheles 
(Impoinvil et al., 2004; Manda et al., 2007; Gouagna et al., 2014) and Culex 
species (Chen and Kearney, 2015). However, limited inferences were made 
on the availability of corresponding plant sources in the local environment, 
across seasons and, in other cases, the precise identification of the plant 
species (Foster, 1995). DNA barcoding resolves this limitation by identifying 
the specific plant species in field-collected mosquitoes (Nyasembe et al., 
2018). Further assessment of headspace volatiles and behavioural responses 
to these plants has enabled identification of bioactive VOCs that guide 
mosquitoes to plant sources (Nyasembe et al., 2018; Upshur et al., 2023).  

While VOCs emanate from both floral and vegetative parts of the plant, 
little is known about how the mosquito perceives these signals and the 
relative significance of different VOCs in mediating attraction. Headspace 
volatile profiles of preferred host plants reveal a diverse array of VOCs 
belonging to different chemical classes, predominantly terpenoids, 
aldehydes and aromatics (Otienoburu et al., 2012; Nyasembe et al., 2012; 
Nikbakhtzadeh et al., 2014; Nyasembe and Torto, 2014, Nyasembe et al., 
2018, Upshur et al. 2023; Omondi and Wondwosen et al., in review), which 
are the most abundant in majority of floral scents (Knudsen and Gershenzon, 
2006). Mosquitoes detect only a subset of these floral VOCs, evident from 
combined chemical and electrophysiological analyses, revealing the 
response profile of individual OSNs (Wondwosen et al., in prep) and 
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selective tuning of ORs (Zeng et al., 2019; Pullmann-Lindsley et al., 2024; 
Vainer et al., 2024; Omondi and Wondwosen et al., in review; Paper III). 
While different mosquito species detect different constituents of floral scent, 
likely due to differences in tuning of expressed ORs, they retain similar 
behavioural preferences (Omondi and Wondwosen et al., in review; 
Wondwosen et al., in prep). The shared detection of VOCs across 
evolutionarily divergent mosquito species suggests their role as conserved, 
generalist cues for plant location (Nyasembe et al.,  2018; Wondwosen et al., 
in prep). Species-specific bioactive VOCs, on the other hand, may facilitate 
discrimination between suitable plant sources (Nyasembe et al., 2018; 
Wondwosen et al., in review). Notably, numerous bioactive VOCs overlap 
between floral-, host- and oviposition-site-related resources, indicating the 
concept of chemical parsimony (Blum, 1996; Ignell and Hill 2020). 
Chemical parsimony refers to an insect's adaptive and efficient use of a finite 
number of VOCs in multiple ecological and behavioural contexts, as well as 
the restrictive biosynthesis pathways involved for the production of VOCs 
(Blum, 1996). These generic VOCs, detected through a few conserved 
olfactory receptors, and the more specific VOCs, detected by many species-
specific olfactory receptors, may guide mosquito attraction and 
discrimination of sugar sources (Hill and Ignell, 2021). 

Floral VOCs mediate the observed discrimination between sugar sources 
in both semi-field (Müller et al., 2010; Sissoko et al., 2019) and laboratory 
assays (Nyasembe et al., 2012; Nikbakhtzadeh et al., 2014; Wondwosen 
et  al., in prep). As such, these studies demonstrate the importance of blend 
composition and ratio of VOCs within the blend (Ignell and Hill 2020; Hill 
and Ignell 2021). For example, nonanal and lilac aldehyde mediate the 
differential attraction of Aedes species to different Platanthera orchid 
species, thereby facilitating pollination of these orchids (Lahondere, et al., 
2020). Furthermore, subtractive blends, in which individual VOCs are 
omitted, provide support for blend composition and the relative significance 
of individual VOCs in mosquito sugar-seeking (Otienoburu et al., 2012; 
Paper III). In laboratory and field assays, synthetic odour blends, containing 
bioactive VOCs in their natural ratio, are an efficient way to assess attraction 
and preference (Nyasembe et al., 2012; Wondwosen et al., 2016, 
Wondwosen et al., 2017; Wondwosen et al., 2018), and expand the use of 
plant/floral odour-baited traps for vector control (Nyasembe et al., 2014). 
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Other sensory modalities, including visual cues and CO2, which have 
been mostly studied in the context of host seeking, also influence floral-
seeking decisions (Peach et al., 2019). The plant-released CO2 is used by 
foraging insects for locating nectar sources (Goyret et al., 2007; Guerenstein 
and Hildebrand, 2008), and as a reliable indicator of nectar abundance (Thom 
et al., 2004; Guerenstein et al., 2004; Omondi and Wondwosen et al., in 
review). For example, in female Anopheles mosquitoes, the addition of CO2 
to a synthetic floral odour blend has a synergistic and contextual effect on 
attraction (Omondi and Wondwosen et al., in review). Moreover, in Aedes 
and other mosquito species, the addition of CO2 and visual cues, including 
floral colour and shape (Sandholm and Price, 1962; Magnarelli, 1977; 
Magnarelli, 1979), modulate mosquito attraction to floral inflorescences 
(Peach et al., 2019). 

2.5.3 The link between floral-seeking and host-seeking 
Both sugar and blood meals significantly shape the life history traits of 

females, and their preference for either resource is modulated by internal 
energy demands (Stone and Foster, 2013). Furthermore, the diel activity 
period for floral seeking often overlaps with host-seeking, emphasising the 
intertwined relationship between these two foraging decisions (Sissoko 
et  al., 2019). In females, there are parallel pathway for sugar- and blood 
meal involving distinct appendages and digestive tract (Gordon and 
Lumsden, 1939; Jove et al., 2020). Imbibed sugar meals are targeted to the 
crop, whereas blood is directed to the midgut (Gordon and Lumsden, 1939). 
This intricate behavioural interplay has evolutionary roots. Haematophagy is 
believed to have emerged independently numerous times among arthropods 
(Lehane, 2005). One prominent hypothesis proposes that blood-feeding 
mosquitoes evolved from ancestral phytophagous forms that possessed 
piercing or sucking mouth parts, originally evolved for feeding on either 
plants or insects (Peach and Gries, 2019). The transition from plant feeding 
to blood feeding is proposed to have been facilitated by chemical parsimony, 
i.e., shared VOCs between plant- and host-related resources (Peach and 
Matthews, 2022). Over evolutionary time, female mosquitoes evolved a 
dynamic relationship between sugar and host-seeking, shaped by both 
ecological pressures and resource availability. 
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The evolutionary flexibility to feed on plant- and host-related resources 
is evident in anthropophilic mosquito species, such as Ae. aegypti and 
An.  gambiae, which can rely almost exclusively on blood-derived nutrients 
to meet their reproductive and metabolic demands (Beier, 1996; Harrington 
et al., 2001). While Ae. aegypti females may survive exclusively on human 
blood, this strategy compromises longevity despite enhanced reproductive 
output (Harrington et al., 2001; Braks et al., 2006), and such a strategy is 
adaptive in environments with consistent access to blood hosts (Scott and 
Takken, 2012). Anthropophilic mosquitoes do, however, retain an inherent 
attraction to floral VOCs (Foster and Takken, 2004) and frequently visit 
plant sources throughout their gonotrophic cycle to replenish their energy 
reserves and maintain reproductive output (Hancock and Foster, 1993; 
Foster, 1995; Fernandes and Briegel, 2005; Stone et al., 2011; Sissoko et al., 
2019; Olson et al., 2020). Thus, for anthropophilic species, the proximity of 
human hosts and the presence of sugar sources may significantly influence 
the choice of sugar or blood meal (Stone and Foster, 2013). 

Sugar deprivation has profound consequences for mosquito biology, 
influencing survival, insemination rates, blood-feeding frequency and 
reproductive fitness (Stone and Foster, 2013). In addition to a reduced 
number of mature eggs, sugar-deprived smaller gravid females (Briegel, 
1985; Briegel,1990; Briegel et al., 2001) are burdened with energy demands 
that warrants additional blood meals before oviposition to meet both somatic 
and reproductive energy demands (Klowden, 1986; Hancock and Foster, 
1993). The presence of sugar in the crop can physically restrict the volume 
of blood meal, due to limited abdominal space in females (Stone and Foster, 
2013). Thus, sugar deprivation in females increases the blood meal volume 
imbibed and the frequency of biting (Fernandes and Briegel, 2005). Sugar 
feeding is also essential for both males and females to sustain flight energy 
expenditure, in the absence of which mating success, dispersal and foraging 
capabilities may be affected (Nayar and Van Handel, 1971; Spitzen and 
Takken, 2018). Sugar deprivation in males can, furthermore, reduce 
insemination performance and shorten the lifespan (Stone et al., 2009). Male 
nutritional status further exerts an indirect influence on female physiology 
and foraging choices (Villarreal et al., 2018; Huck et al., 2021). Male diet, 
i.e., plant sugars, can also affect the overall functioning of the male accessory 
glands (MAGs) (Baldini et al., 2012; Huck et al., 2021), which play a vital 
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role in regulating female reproductive physiology via the proteins transferred 
to females during mating (Fernandez and Klowden, 1995; Klowden, 1999; 
Villarreal et al., 2018). The nutritional stress in males can influence female 
reproductive output by altering resource allocation and ovarian physiology 
(Gillot, 2003; Clifton et al., 2014). The overall effect of sugar feeding on 
adult survival, biting rates and reproduction may have a significant effect on 
the overall population dynamics and vectorial capacity (Ferguson et al., 
2010; Stone and Foster, 2013).  

2.6 Modulation of olfactory-guided behaviours 
The transition from one behaviour to another across temporal and spatial 
scales requires a plastic sensory system (Gadenne et al., 2016). Insect 
behaviour is modulated by internal physiology, as well as the external 
environment. This section discusses modulatory changes occurring at the 
peripheral olfactory system to higher brain centres. 

2.6.1 Regulation of chemosensory gene expression 
Regulation at the peripheral chemosensory system level is one the most 
common cost-efficient ways an insect can adapt to a changing environment 
over different time scales (Bruce and Pickett, 2011; Hill and Ignell, 2021). 
Over longer evolutionary time scales, these changes include a change in OSN 
sensitivity or tuning, the number of OSNs and a complete loss or gain of an 
OSN type (Zhao and McBride, 2020). In contrast, over shorter time scales, 
transcriptional regulation of chemosensory gene expression may modify the 
OSN response profile (Zhao and McBride, 2020). In this section, the effect 
of intrinsic and extrinsic factors on the regulation of chemosensory gene 
expression is discussed. 

In holometabolous insects, such as mosquitoes, a vast majority of larval 
OSNs are eliminated during metamorphosis, with adult neuronal circuits 
emerging and maturing following pupation (Barish and Volkan, 2015; Yan 
et al., 2020). The OSN-specific olfactory receptor expression has historically 
been considered developmentally pre-determined, governed by a set of 
specific transcription factors and cis-regulatory elements located upstream 
of the chemosensory receptor genes, exhibiting no flexibility for post-
developmental modulation (Jafari and Alenius, 2015; Mika and Benton, 
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2021). However, recent studies in D. melanogaster and mosquitoes reveal 
that the developmental window for chemosensory receptor gene expression 
remains permissive into the early adult stage, facilitated by chromatin state 
regulation and post-transcriptional receptor feedback (Jafari and Alenius, 
2015; Jafari et al., 2021). Growing evidence highlights that internal 
physiology and external environmental changes, during later stages of the 
adult insect life, can also modulate the expression of chemosensory genes 
(Gadenne et al., 2016). 

2.6.2 Role of the external environment  
Environmental changes, including increases in temperature, CO2 and ozone 
levels, can modulate insect behaviour and modify intra- and interspecies 
chemical communication (Boullis et al., 2016; Vanderplanck et al., 2021; 
Knaden et al., 2022; Baleba et al., 2023; Jiang et al., 2024). For instance, 
temperature fluctuations can alter the volatility and concentration of VOCs 
(Zhou et al., 2017), while elevated ozone levels can modify the odour space 
by oxidation of double bonds (Knaden et al., 2022). While the impact of 
temperature and ozone has gained much attention with climate change, the 
impact of elevation in CO2, another major driver of anthropogenic climate 
change, on insect chemical communication seems comparatively under-
explored. However, current evidence highlights how elevation in CO2 can 
affect insect chemical communication indirectly via altered plant 
biochemistry (Zavala et al., 2017) and directly by altered sensory function 
(Sun and Ge, 2011; Majeed et al., 2014; Paper II). Notably, the changes in 
the environment are reflected in insect olfactory circuits (Riveron et al., 
2009; Martin et al., 2011) and at the molecular level (Riveron et al., 2013; 
Paper II). 

Transcriptome analyses of olfactory appendages demonstrate that 
environmental changes, including abiotic stressors, such as insecticides, 
VOCs, CO2 and temperature can modulate the olfactory machinery at the 
molecular level (Low et al., 2010; Riveron et al., 2013; Li et al., 2017; Li, 
et  al., 2019; Yang et al., 2021; Zhang et al., 2022; Guo et al., 2025; Paper 
II). However, the underlying mechanisms governing these responses remain 
poorly understood. While such stressors are known to broadly induce 
transcription of xenobiotic response genes (Mack and Attardo, 2023), 
evidence suggests that stressors may also exert specific and localised effects 
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within the olfactory system, though this requires further studies (Riveron 
et al., 2013; Wang et al., 2023; Guo et al., 2025; Paper II).  

Xenobiotic response genes, which are part of the insect detoxification 
system, have been studied in mosquitoes and other insect pests, 
predominantly in reference to the adaptation to insecticides (Poupardin et al., 
2008; Poupardin et al., 2010; Nkya et al., 2013; Gao et al., 2022). These 
genes are broadly expressed and include OBPs and proteins belonging to the 
cytochrome P450 (CYPs), insect cuticle proteins, glutathione-S-transferase 
(GSTs), glucuronosyl transferases (GTs) and carboxyl/cholinesterases 
(CCEs). Many of the xenobiotic response genes function as ODEs (Leal 
et al., 2013; Wu and Hoy, 2016; Balabanidou et al., 2018; Lu et al., 2021; 
Abendroth et al., 2023) and ensure timely clearing of the sensillum lymph to 
ensure detection of relevant VOCs.  

Exposure to noxious concentrations of VOCs in the environment requires 
rapid clearance of the sensillum lymph to protect OSNs from damage, 
maintain sensitivity and prevent overstimulation (Dalton, 2000; Mappin 
et  al., 2023). Prolonged exposure to a VOC can drive adaptation of the OSN, 
triggering differential regulation of chemosensory gene expression, 
including ORs, OBPs and ODEs (Koerte et al., 2018; Baldwin et al., 2021; 
Mappin et al., 2023). Furthermore, such prolonged exposure to a VOC is 
associated with alterations at the OSN level, including secondary messenger 
gene expression (Deshpande et al., 2000; Jafari and Alenius, 2021; Iyengar 
et al., 2010), as well as modulatory and morphological changes at higher 
brain centres (Devaud et al., 2003; Fabian and Sachse, 2023). All these 
adaptations may lead to altered detection and perception of the external 
environment by the insect. 

Carbon dioxide (CO2) is an important constituent of an insect odourscape, 
signalling resource location (Guerenstein and Hildebrand, 2008). 
Anthropogenic increases in CO2 concentrations affect the odour-mediated 
behaviours of insects, including host-, mate-, oviposition-site-seeking and 
alarm sensing (Stange et al., 1997; Sun et al., 2010; Majeed et al., 2014; 
Boullis et al., 2016; Choi et al., 2018). While in mosquitoes and some moth 
species, this negative impact is mediated through sensory constraints on the 
CO2 sensory system (Stange, 1997; Stange and Wong, 1993; Majeed et al., 
2014), implications of the interaction of elevated CO2 with the central 
nervous system have been reported (Sun et al., 2010; Choi et al., 2018). For 
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instance, in Helicoverpa armigera, males display a CO2 concentration-
dependent reduction in receptivity to sex pheromones, where CO2-mediated 
modulation at the AL was proposed as a possible mechanism (Choi et al., 
2018). Additionally, in aphids reared under elevated CO2 levels, changes to 
the activity of acetylcholinesterase were proposed to mediate the reduced 
escape behaviours (Sun et al., 2010). The underlying mechanism of elevated 
CO2 affecting these behaviours remains inconclusive. However, 
environmental changes in CO2 concentration seem to have a broad effect on 
the molecular gene expression level (Helenius et al., 2009; Paper II). 

Temperature is a key environmental stressor affecting both odour 
detection and odour-guided behaviour across insect species, including fruit 
flies, honeybees and mosquitoes (Riveron et al., 2009; Martin et al., 2011; 
Baleba et al., 2023; Lahondere et al., 2023; Guo et al., 2025). Besides altered 
OSN firing properties, temperature modulates chemosensory gene 
expression, affecting both peri-receptor events and the function of OSNs 
through OBP and membrane-bound receptor gene regulation, respectively 
(Riveron et al., 2013; Guo et al., 2025). Moreover, the regulatory mechanism 
underlying chemosensory receptor expression, including transcriptional 
factors and chromatin state regulation during early adult life, is sensitive to 
environmental stress, including temperature as well as nutrient deprivation 
(Jafari and Alenius, 2015, Gonzalez et al., 2019; Jafari et al., 2021), 
highlighting stress-induced plasticity in the peripheral olfactory system. 

2.6.3 Internal-state dependent plasticity 
Throughout the lifetime of a mosquito, across adult maturation and aging, 
the peripheral olfactory system undergoes changes in sensitivity and 
specificity reflecting the dynamic shifts in behaviour (Hill and Ignell, 2021). 
Across insect species, this physiological plasticity is correlated with 
modulation of the olfactory behavioural responses to different resource cues 
(Gadenne et al., 2016; Anton and Rossler, 2021). The following section will 
cover how the internal physiology of the female, including age, mating and 
feeding state, modulates the behavioural and physiological phenotype, as 
well as chemosensory gene expression. 

Newly-emerged female mosquitoes undergo a brief behavioural 
refractory period of resting when the peripheral olfactory system undergoes 
maturation, correlated with the expression of members of the major 
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chemosensory gene families (Davis, 1984a; Foster and Takken, 2004; Hill 
and Ignell, 2021). Following 24 h post-emergence, females display age-
dependent floral- and host-seeking (Foster, 1995; Omondi et al., 2019; 
Tallon et al., 2019; Hill et al., 2021; Paper III). The first meal imbibed by a 
female is generally a sugar-rich floral nectar meal to replenish their energy 
reserves (Foster, 1995; see 2.5.1 Sugar seeking). Teneral females are more 
responsive to floral odour compared to older females, which correlates with 
an altered perception of floral VOCs with aging (Foster and Takken, 2004; 
Omondi and Wondwosen et al., in review; Paper III). While teneral females 
are able to detect host odours, the behavioural response is often aversive 
(Omondi et al., 2019; Tallon et al., 2019). Females possess several ORs 
narrowly tuned to floral VOCs (Zeng et al., 2019; Pullmann-Lindsley et al., 
2024; Vainer et al., 2024; Paper III). However, the temporal dynamics of 
these Ors’ expression remain largely unknown, except for a few, such as 
Or117 in Ae. aegypti, the gene transcript abundance of which decreases with 
age (Tallon et al., 2019; Hill and Ignell, 2021; Paper III).  

 As females age, they gradually shift to host seeking for a blood meal (Hill 
and Ignell, 2021), during which they become more sensitive to host cues, 
such as CO2 and other salient host VOCs (Davis, 1984; Grant and O’Connell, 
2007; Omondi et al., 2015; Omondi et al., 2019). This behavioural shift 
correlates with a concerted upregulation of chemosensory gene transcript 
abundance, including ORs, IRs and OBPs (Omondi et al. 2015; Omondi 
et al., 2019; Tallon et al., 2019; Hill and Ignell 2021). While the majority of 
chemosensory genes follow this age-dependent expression pattern, a few 
exceptions exist, such as Or39 in An. coluzzii (Omondi, Ghaninia et al. 
2019). These receptors have been proposed to act as molecular switches that 
regulate female resource-seeking (Hill and Ignell 2021). Targeted gene 
knockout studies performed in Anopheles (Hinze et al., 2023) and Aedes 
(Paper III) provide insights into the causative molecular mechanisms 
underlying mosquito behaviour. 

While there is no distinction in timeline between sexual and 
chemosensory system maturation, in Ae. aegypti, males and females attain 
sexual maturity within 24 h post-emergence (Sanchez et al., 2023). Once 
males of Ae. aegypti attain sexual maturity, they take part in multiple 
inseminations (Jones, 1968; Alfonso-Parra et al., 2014), whereas mature 
females mate only once (Clements, 1999; Carvalho et al., 2018), with 
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successful mating ensuring refractoriness to subsequent mating (Duvall 
et  al., 2017). In numerous insects, including mosquitoes, mating induces 
physiological and behavioural changes in females (Jones, 1981; Gadenne 
et  al., 2016; League et al., 2021). During mating, in addition to sperm, males 
transfer male accessory gland-secretory proteins to the female, which 
enforces paternity, and causes physiological and behavioural changes in 
females (Naccarati et al., 2012; Duvall et al., 2017). In Ae. aegypti females, 
mating can modulate flight activity (Jones, 1981), increase blood feeding 
(Villareal et al., 2018; League et al., 2021), as well as enhance longevity and 
reproductive output (Helinski and Harrington, 2011). These changes are 
correlated with transcriptomic changes in the female reproductive tract and 
peripheral olfactory system (Alfonso-Parra et al., 2016; Alonso et al., 2019). 
During courtship, there is differential regulation of many chemosensory gene 
expression in females, particularly OBPs, that are downregulated on male 
contact and later upregulated following mating, suggestive of an 
intermediary state facilitating mating success (Alonso et al., 2019). Mating 
modulates host-seeking decisions, depending on the nutritional status of the 
female (Klowden and Lea, 1979) and stimulates egg production (Baldini 
et al., 2012). Notably, mating is not a prerequisite for blood feeding and can 
occur before or after a blood meal (Mayilsamy et al., 2021; Sanchez et al., 
2023). Mating in gravid females reduces the behavioural response to host 
stimuli, likely via seminal fluid proteins, a mechanism that requires further 
investigation (Lee and Klowden, 1999; Naccarati et al., 2012; Duvall et al., 
2017). 

While the onset of host-seeking is generally achieved 4-to-5 days post-
emergence, the dynamics of floral- and host-seeking may vary depending on 
energy demands and resource availability (Foster, 1995; Foster, 2022). 
However, other physiological changes, including mating or a blood feeding, 
may occur during this age window and can interact to modulate the 
expression of several chemosensory gene families at the periphery correlated 
with changes in physiological and behavioural responses to resource cues 
(Hill and Ignell, 2021; League et al., 2021). 

Host-seeking in female mosquitoes is governed by a complex interplay 
between external environmental cues and internal physiological states (Tung 
and Fonseca, 2024). Following ingestion of a blood meal, host seeking is 
rapidly suppressed until oviposition is completed (Klowden and Lea, 1979a; 
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Klowden and Lea, 1979b; Davies, 1984b; Brown et al., 1994; Takken et al., 
2001; Qiu et al., 2006a; Hill et al., 2021). This suppression is biphasic: an 
immediate phase mediated by mechanosensory input from abdominal stretch 
receptors (Klowden and Lea, 1979a), and a longer suppression period 
involving the activation of neuropeptide Y-like receptor 7 (NPYLR7), likely 
triggered by signals associated with oogenesis (Liesch et al., 2013; Duvall 
et  al., 2019).  

A blood meal induces time-dependent transcriptional regulation of 
several chemosensory gene families, including ORs, IRs, OBPs and CSPs 
(Rinker et al. 2013; Taparia et al. 2017), likely via neuromodulatory peptide 
signalling (Klowden and Lea, 1979; Liesch et al., 2013; Christ et al., 2017; 
Duvall et  al., 2019). Notably, the antennal abundance of Ir75k, an ionotropic 
receptor tuned to short-chain carboxylic acids, a key oviposition site cue 
(Chen et al., 2019), increases post-blood meal and coincides with a 
heightened OSN sensitivity to these ligands, marking a shift from host- to 
oviposition-site-seeking (Hill et al., 2021). Moreover, the integration of OR 
gene transcript abundance with receptor tuning profiles (Carey et al., 2010) 
suggests that antennal detection capacity is dynamically restructured to 
support the behavioural transition from host- to oviposition-site-seeking 
(Rinker et al., 2013). Sugar meal ingestion also transiently suppresses host 
seeking, albeit over a shorter duration (Foster, 1995; Christ et al., 2017). 
However, it remains unknown whether sugar feeding induces transcriptional 
changes in chemosensory genes akin to those observed post-blood meal. 
Upon oviposition, females fully resume resource-seeking behaviours to 
replenish energetic reserves through either a subsequent sugar or blood meal 
(Foster, 1995). The cyclical modulation of chemosensory gene expression 
across the gonotrophic cycle likely provides females with the sensory 
plasticity required to alternate efficiently between floral-seeking, host-
seeking and oviposition-site-seeking (Hill and Ignell 2021; Hill et al., 2021). 

2.6.4 Regulation at higher brain centres 
Modulation of the central olfactory system has been extensively studied 
across insect species, demonstrating significant responsiveness to internal 
state and external environmental cues (Gadenne et al., 2016; Anton and 
Rossler, 2021). Only recently, Ae. aegypti is emerging as a model organism 
for studying the neural basis of behaviours in mosquitoes (Weiss and 
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McBride, 2024), and for this reason, very little is currently known about the 
link between the extensively studied peripheral olfactory system to the 
modulation at higher brain centres. However, a few cases of interest related 
to resource-seeking are discussed below. 

Within the antennal lobe, extrinsic neurons and local interneurons express 
a variety of biogenic amines and neuropeptides, which are implicated in 
olfactory modulation (Siju et al. 2008; Siju, 2009; Siju et al., 2014). In 
Ae.  aegypti, ingestion of blood and/ or sugar differentially affects the levels 
of neuropeptides in the antennal lobe (Christ et al., 2017). Notably, the 
artificial injection of a binary mixture of neuropeptides is sufficient to 
suppress host-seeking behaviour in females, suggesting a direct 
neuromodulatory role in the regulation of olfactory-guided behaviours 
(Christ et al., 2017; Christ et al., 2018).  

Experience-driven modulation of mosquito host preference has also been 
recognised as a factor influencing behavioural plasticity (Vinauger et al., 
2014; Vinauger et al., 2016). Prior feeding experience can override innate 
host preferences, suggesting that associative learning might play a role in 
shaping mosquito foraging behaviours (Vantaux et al., 2014). Moreover, 
mosquitoes can associate host- and plant-related volatiles in an aversive 
conditioning paradigm (Wolff et al., 2023). However, the extent of 
learnability is determined by multiple factors, including species, the 
ecological context, the innate valence of the odorant and dopaminergic 
innervations of the antennal lobe glomeruli (Wolff et al., 2023). For instance, 
mutagenesis of the dopamine-1 receptor, and pharmacological inhibition 
using dopamine receptor antagonists, both abolish learning in Ae. aegypti 
and Anopheles stephensi females, emphasising the role of dopamine 
signalling in olfactory learning and memory formation (Vinauger et al., 
2018; Wolff et al., 2023). 
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3. Aim and objectives 

The overall aim of this thesis was to investigate how environmental factors, 
as a result of climate change, and intrinsic factors modulate Aedes aegypti 
physiology and behaviour. 

The first objective was to determine the effect of predicted elevated CO2 
and extended egg quiescence period on Aedes aegypti life-history traits 
(Paper I). 

The second objective was to assess the effect of two environmental 
stressors, elevated CO2 and extended egg quiescence period on the peripheral 
olfactory system of Aedes aegypti (Paper II).  

The third objective was to elucidate the role of odorant receptor, Or117 
in modulating the age- and mating-dependent regulation of floral seeking in 
Aedes aegypti (Paper III). 
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4. Methodology 

This chapter outlines the methodologies employed to generate the results 
presented in Papers I-III. While additional methods, including 
electrophysiology, functional characterisation of receptor and mutagenesis, 
are discussed in the respective manuscripts, they are not included in this 
section. For comprehensive details, readers are kindly referred to the 
individual papers. 

4.1 Maintenance of Ae. aegypti colonies  
Colonies of all Ae. aegypti genotypes used for the experiments (Paper I-III) 
were maintained at 27 ± 2 °C and 65  ±  5% relative humidity, and a 12 h: 
12  h light: dark cycle. Larvae were reared in plastic trays (23.5 cm × 18 cm 
× 7.5 cm; filled with 600 ml water) and fed with fish food (TetraMin® 
Flakes, Melle, Germany). The emerging adults had ad libitum access to 10% 
sucrose solution and older females were given access to sheep blood 
(Håtunalab AB, Bro, Sweden) through a collagen membrane and a 
membrane feeding system (Hemotek Ltd, Blackburn, UK). Later, blood-fed 
females were presented with a wet filter paper atop a water-filled 30 mL cup 
(Nolato-Hertila, Åstorp, Sweden) for oviposition for 48 h. Collected eggs 
were subsequently dried, labelled and stored in containers for further 
experimental use (Papers I and II). Eggs were categorised as ‘new’ or ‘older’ 
based on their quiescent duration: two weeks for new eggs and 3–6 months 
for older eggs (Papers I and II). In all experimental setups, newly-emerged 
females (24 h-to-36 h post-emergence) had access to water only, while five-
day-old females (120 h-to-132 h post-emergence) were maintained on a 10% 
sucrose solution for four days before being deprived of sucrose for 24 h prior 
to the experiments (Paper III).  

4.2 Rearing of Ae. aegypti in CO2 climate chambers  
Experiments assessing the impact of elevated CO2 and extended egg 
quiescence duration on Ae. aegypti life history traits and peripheral olfactory 
system were conducted in high-precision climate chambers at SLU, Alnarp 
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campus (ca 11.5 m² with a free height of 2.3 m), maintained at 27 ± 2 °C and 
65  ±  5% relative humidity, and a 12 h: 12 h light: dark cycle. The CO2 level 
in the three chambers was maintained at ambient (~ 420 ppm, Paper I and 
II), 600 ppm (Paper I) and 1000 ppm (Paper I and II). A filter paper 
containing age-controlled eggs was divided equally across the three climate 
chambers. The eggs were placed in larval trays supplemented with a small 
quantity of fish food (TetraMin® Flakes) to induce hatching. After 18 h, 
hatched pharate larvae were counted and transferred to larval trays at a 
density of 100 larvae per 600 mL of water. Larvae were fed fish food 
(1 mg/larva) daily to maximise life-history trait parameters and minimise 
competition (Arrivilaaga and Barrera, 2006). Water was replaced every 
second day to control for microbial growth and accumulation of debris 
(Papers I and II).  

4.3 Assessing the life history traits of immature and adult 
stages 

4.3.1 Larval survival and developmental duration 
To investigate the impact of elevated CO₂ and extended egg quiescence 
duration on larval growth and survival, in each climate chamber, larvae were 
monitored for survival probability and developmental duration. Survival was 
assessed every 12 h by counting live individuals until all larvae either 
pupated or died. Developmental duration was determined by recording 
pupation time at 12 h intervals. Pupae were transferred to small plastic cups 
filled with distilled water and subsequently labelled and placed in BugDorm 
cages (17.5 cm × 17.5 cm × 17.5 cm; Megaview Science Co., Ltd, Taichung, 
Taiwan) for adult emergence.  

For investigating the underlying mode of action of elevation in CO2 on 
larval life history traits, artificially-induced acidity experiments were 
performed on larvae emerging from 2-week-old eggs. The pH of larval water 
was artificially decreased to levels measured in larval water acclimatised to 
1000 ppm CO2 level, by addition of 0.1 mL 0.1 N hydrochloric acid (Weiss 
et al., 2018). The pH of larval water was monitored, and larval survival and 
developmental duration assessed as mentioned above.  
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4.3.2 Adult survival, body size and fecundity 
Following emergence, adult mosquitoes were provided access to only 
distilled water, and mortality recorded every 12 h until all mosquitoes in a 
cage were deceased. For each experimental cage, no more than 50 
individuals were kept to ensure resource availability and reduce competition. 
Adult body size was measured by dissecting the right wing and measuring 
the length from the axillary incision to the apical margin (excluding the 
fringe) using an ocular micrometre (Bickley, 1981). 

4.3.1 Estimation of adult teneral energy reserves  
The teneral metabolic reserves accumulated by females in response to CO2 
level and egg quiescent duration were analysed by quantifying the 
carbohydrate, glycogen, lipid and protein content. For the analysis, 
individual adults (up to 12 h post-emergence) were freeze-killed and stored 
in 2 mL Eppendorf tubes at -20 °C. The biochemical quantification followed 
Van Handel’s calorimetric estimation methods, as modified by Foray et al. 
(2012). Protein content was assessed using Bradford’s method (Bradford, 
1976), using the Bio-Rad Protein Assay Kit II (Bio-Rad Laboratories, Inc., 
Copenhagen, Denmark), with bovine serum albumin serving as the standard. 
Total carbohydrate and glycogen contents were determined using anthrone 
reagent (CAS: 90448, Sigma-Aldrich, Stockholm, Sweden) prepared in 95% 
sulphuric acid, with D-glucose (1 mg mL-1) as a standard (Van Handel, 
1985). Lipid content was measured following a chloroform-methanol 
extraction step, using vanillin (CAS: 121335, Sigma-Aldrich), dissolved in 
85% phosphoric acid, with olive oil (1 mL mL-1) as a standard (Van Handel, 
1985). The absorbance readings for total carbohydrates (carbohydrate and 
glycogen), lipids and protein analyses were measured in 96 well plates at 
625 nm, 525 nm and 595 nm, respectively, using a Multiskan™ FC 
Microplate Photometer (Thermo Scientific™, Stockholm, Sweden). The 
concentration of carbohydrate, glycogen, lipid and protein was derived from 
standard curves, adjusted for the dilution, and normalised to the mean wing 
size of the mosquitoes from each treatment. For each treatment group, ten 
females were randomly selected and analysed. 
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4.4 Feeding assays 
To assess how external stressors, elevation in CO2 and extended egg 
quiescence period, affect the feeding behaviour of Ae. aegypti, no-choice 
feeding assays were conducted during the peak diel activity period of female 
mosquitoes at Zeitgeber time (ZT) 9-12 (Taylor and Jones, 1968), in the 
respective climate chambers. To assess the proportion of mosquitoes feeding 
and volume imbibed, females were given access to either honey or blood, 
while females with access to only water was used as controls for the 
volumetric analysis. After feeding, females were carefully placed into 
1.5 mL Eppendorf tubes and immediately frozen at -20 °C until further 
analysis.  

Honey feeding assays were performed on either teneral (Paper I and III) 
or five days post-emergence (Paper III) females, with 20-to-25 sugar-starved 
individuals per cage, for a duration of 3 h. The honey solution contained 
xylene cyanole (1 mg ml-1; FF; CAS 2650-17-1; Sigma-Aldrich), to 
facilitate scoring of engorged individuals and volumetric analysis of the 
imbibed meal. The calorimetric absorbance was measured at 620 nm in 96-
well plates, with unfed females as controls and a standard curve generated 
with different volumes of honey (Paper I and III). 

Blood feeding assays were performed on teneral females (Paper I), in 
which sugar-starved individuals were given access to sheep blood via an 
artificial membrane system for 1 h. The abdomens of fed and unfed females 
were dissected and volumetric analysis performed according to the 
haemoglobinometry method by Briegel et al. (1979). A standard curve was 
generated using different volumes of sheep blood (Paper I).  

4.5 Transcriptome analysis of the peripheral olfactory 
system  

The impact of two environmental stressors, including elevated CO2 and 
extended egg quiescence duration, on transcriptional regulation of genes in 
the peripheral olfactory tissues was assessed through transcriptomic analysis. 
Antennal and maxillary palp tissues were collected from teneral females 
(30 ± 6 h) at ZT 10-12, prepared and stored in RNAlater (Thermo Fisher 
Scientific, Gothenburg, Sweden) until RNA extraction. A total of 16 antennal 
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libraries were generated, with each library comprising pooled tissues from 
50 individuals per replicate from different cohorts, across two CO₂ 
conditions, two egg quiescence periods, and four biological replicates 800 
pairs of tissues. Similarly, 16 maxillary palp libraries were constructed using 
the same pooling strategy, yielding an additional 800 pairs of tissues. In total, 
1,600 pairs of tissues were collected for all 32 libraries. 

The total RNA extraction procedure was performed using the RNeasy 
microRNA kit (Qiagen, Hilden, Germany), following the manufacturer’s 
protocol (Paper II) and stored at -80 °C. Later, the quality and concentration 
of total RNA were quantified using the TapeStation system 4150 (Agilent 
Technologies, Inc, Santa Clara, US) and RNA samples shipped for 
sequencing. The total RNA was used to create INVIEW ultra-low 
transcriptome libraries, using NovaSeq Illumina genome sequencing 
(Illumina NovaSeq 6000 S4 PE150 XP). The cDNA was constructed using 
the Eurofins proprietary protocol, generating 2 ×150 bp coverage paired-end 
reads with a depth of 20 million paired-end reads. 

Prior to quantitative analyses on the library sequences, the raw reads 
underwent quality control steps involving the removal of adapter sequences 
and discarding sequences with a Phred score below 40, using CLC Genomics 
Workbench (23.0.5, Qiagen, Aarhus, Denmark). The cleaned sequences 
were mapped to the Ae. aegypti reference genome (VectorBase: Aedes 
aegypti LVP_AGWG, AaegL5.3). The transcript abundance is reported in 
transcripts per million (TPM), which accounts for differences in transcript 
length and sequencing depth across sample replicates.  

To assess the effect of the two environmental stressors, CO2 level and egg 
quiescent duration, on overall gene expression in the antennal and maxillary 
palp libraries, a principal component analysis (PCA) was performed. The 
high-dimensional dataset containing the antennal and maxillary palp libraries 
was projected onto two-dimensional components to determine the variance 
between libraries using the toolbox for RNA-seq data in CLC Genomics 
Workbench. Reliable expression of genes was determined at a threshold of 
1 TPM. Differential expression of genes was analysed, generating a mean 
abundance value, fold change (FC) and false discovery rate (FDR). Genes 
were considered significantly differentially expressed when the FC > 1.5 and 
FDR p-value < 0.05. 
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Functional ontology analyses, including gene ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) were performed on the 
differentially expressed genes across comparisons of CO2 levels and egg 
quiescence duration in VectorBase (AaegL5.3, Release 68). The VectorBase 
GO enrichment tool was used for assessing the molecular function, with both 
computed and curated evidence limited to GO slim terms. The VectorBase 
metabolic pathway enrichment was used for KEGG analysis. The 
significance cut-off was set to alpha (α) = 0.05. Additionally, targeted effects 
induced by elevation in CO2 and egg quiescence duration were investigated 
for select chemosensory gene families, including ORs, IRs, GRs, OBPs, 
CSPs and other non-canonical chemosensory gene families in the antennae 
and maxillary palps. 

4.6 Olfactory-guided behavioural analysis of female 
mosquitoes 

The behavioural response of females, of all genotypes, to synthetic floral 
odour blends was assessed in a two-choice Y-tube olfactometer (88 cm total 
length × 10 cm i.d.). The plexiglass Y-tube olfactometer was illuminated 
from above with white light (50 lx) (Fig. 1), and a charcoal-filtered 
humidified air stream (0.30 m s-1; 25 ± 2 °C; and 65 ± 2% relative humidity) 
entered the olfactometer from the upwind side. A synthetic odour blend or 
solvent control (pentane) was delivered at the upwind end of the olfactometer 
to either arm via TeflonTM tubing. The odour-delivery system consisted of a 
charcoal-filtered humidified air stream (1 L min-1), which was directed into 
two wash bottles (500 mL; Lenz Laborglas, Wertheim, Germany), each 
holding a wick dispenser (Karlsson et al., 2017) made up of a cotton wick in 
a Teflon tube (30 mm long × 1.5 mm i.d.), inserted through a hole in a cap 
of a 1.5 mL glass vial, from which the synthetic floral odour blend or pentane 
was released. The wick dispenser allows the release of compounds at a 
constant rate, while maintaining the blend composition throughout the 
duration of the experiment (Karlsson et al., 2017). An exhaust at the 
downwind end of the olfactometer removed excess odour.  

Age- and mating-state-controlled female mosquitoes, across all 
genotypes were deprived of sucrose 24 h prior to the experiment, but had ad 
libitum access to distilled water. Individual females were then aspirated into 
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release cages (8 cm × 9.3 cm i.d.) and allowed to acclimatise for 1 h. The 
release cage was inserted at the downwind end of the olfactometer, and 
females were allowed 2 min to acclimatise. The odour delivery tubes were 
then connected to each of the arms, and the release cage door was gently 
opened. Each mosquito was given 5 min to choose between the two arms, 
and mosquitoes that did not take off or make a choice were counted as “non-
responders” and were not included in future analysis. To avoid bias, controls 
were performed at each experimental day, before the onset of the 
experiments, in which individual mosquitoes were allowed to choose 
between two arms without any stimuli. Furthermore, the synthetic blend and 
solvent control were exchanged between each replicate. All experiments 
were conducted during the peak activity of the mosquitoes, at ZT 9-12 
(Taylor and Jones, 1968).  

Two synthetic floral odour blends were prepared based on the 
composition of bioactive compounds identified through previous combined 
GC-EAD analysis of the headspace extract of Lantana camara and 
Senna didymobotrya (Wondwosen et al., in prep). The Y-tube olfactometer 
experiments for females, of all genotypes, with the L. camara synthetic 
odour blend were performed to obtain a dose-response curve, and then an 
identified behaviourally active dose was used for subsequent experiments. 
Subtractive blend assays were designed to assess the importance of the 
natural ligand of the Or117 in eliciting the observed behavioural preference 
of unmated teneral females towards L. camara. The subtractive blends 
maintained the composition of the synthetic L. camara odour blend, with the 
same concentration of compounds, by making up the missing volume of 
camphor with pentane. The L. camara floral synthetic odour was used to 
assess the age-dependent behaviour in males towards floral odour. 
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5. Summary and discussion of results 

5.1.1 Environmental stressors affect larval and adult life history traits 
of Aedes aegypti (Paper I) 

Rising atmospheric CO2 levels are a leading driver of anthropogenic climate 
change (Nunes, 2023), with concentrations predicted to increase 
exponentially up to 1000 ppm by the end of the century (IPCC, 2018). This 
increase is expected to be accompanied by shifts in rainfall patterns, water 
availability and relative humidity (Trenberth, 2011), which can profoundly 
influence various phenotypic responses and population dynamics of insects 
(Bujan et al., 2016; Thorat and Nath, 2018). A crucial determinant of insect 
survival is their capacity to adapt to environmental changes through 
plasticity in life-history traits (Brass et al., 2021). Such adaptive responses 
may involve alterations in developmental duration, starvation tolerance, 
adult size, metabolic reserves and feeding strategies, all of which contribute 
to maintaining population stability in fluctuating environments (Nylin and 
Gotthard, 1998). This study investigates the effects of two environmental 
stressors on Ae. aegypti, demonstrating that elevated CO2 levels significantly 
impact both immature and adult life-history traits, an effect further 
modulated by the egg quiescence period. 

The effect of elevation in CO2 levels on larval developmental duration 
and larval survival was modulated by the extent of the egg quiescence period 
(Figure. 1). An extended egg desiccation period can exhaust maternally 
derived energy reserves supporting the pharate larvae, which increases the 
susceptibility of emerging larvae to suboptimal or stressful larval 
environments (Perez and Noriega, 2012). The delayed developmental 
duration and reduced survival observed in larvae that emerge from extended 
egg quiescence and are reared under elevated CO2 are suggestive of such an 
energy limitation (Hahn and Denlinger, 2007). During larval development, 
attaining a critical energy reserve through active feeding is vital for pupation 
(Chambers and Klowden, 1990). However, the threshold reserve requirement 
is subject to change to adapt to stressful environments (Chambers and 
Klowden, 1990). The two adaptive developmental time shifts employed by 
larvae from two egg quiescence periods, when reared under elevated CO2, 
indicate their cost-benefit strategy. Mosquito larvae display similar effects in 
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response to various environmental stressors, such as temperature, 
photoperiod, resource limitation and larval density (Couret et al., 2014; 
Couret and Benedict, 2014; Huxley et al., 2021). A delay in developmental 
duration observed in larvae that emerged from older eggs essentially 
increases their food foraging time, but with a trade-off of increased risk of 
predation and habitat fluctuations (Clements, 1999). However, larvae 
emerging from newer eggs respond to an elevation in CO2 level by a 
shortened developmental duration, likely a defence strategy metabolically 
affordable to larvae emerging from a short egg quiescence period. 

To understand the mechanism of how elevation in CO2 could affect 
aquatic life stages, an artificial increase in acidity was performed. Elevation 
in CO2 levels has been shown to cause acidification in freshwater and marine 
ecosystems (Orr et al., 2005; Hasler et al., 2018), affecting the physiology 
of inhabiting organisms (Michaelidis et al. 2005; Abbey-Lambertz et al., 
2014; Jeffrey et al., 2018) through either acidification of bodily fluids (Badre 
et al., 2005) or hypercapnia (Michaelidis et al., 2005). Artificial reduction in 
larval water pH, in the absence of CO2, did not affect the life history traits of 
Ae. aegypti (Figure. 5), similar to studies performed on other aquatic 
organisms (Weiss et al., 2018). This suggests that pH alone is not a stressor 
under elevated CO2 and that an underlying, yet unidentified, mechanism is 
at play. 

Environmental conditions experienced by larvae, including elevated CO2 

levels, influence the adult phenotype through carry-over effects on size, 
survival, energy reserves and feeding strategies (Takken et al., 2013; 
Dickson et al., 2017; Ezeakacha and Yee, 2019; Evans et al., 2021). While 
elevated CO2 levels during the aquatic stage differentially affected adult 
body size, the observed differential starvation tolerance is likely modulated 
by both carry-over effects and adult exposure during the starvation period, 
with an interaction with egg quiescent period (Figure. 2). One notable 
observation was the increased starvation tolerance in males and females 
emerging from extended egg quiescence periods, when reared under 
1000 ppm CO2 level, suggesting metabolic priming, i.e., an anticipatory 
metabolic adjustment in adults as a result of stress experienced during larval 
stages (Perez and Noriega, 2012; Dittmer and Gabrieli, 2020). In adults 
emerging from either of the two egg quiescence durations, when reared under 
1000 ppm CO2 levels, body size did not significantly correlate with survival 
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or energy reserves (Paper I), suggesting that metabolic priming is hampering 
the correlation between metabolic reserves and adult starvation tolerance. 

Metabolic reserves in teneral adults are carryovers from larval reserve 
synthesis and largely determine the adult foraging decisions (See 2.3. Energy 
reserves and metabolism). Teneral females accumulated differential amounts 
of glycogen and lipids from larval stages, in response to the experienced egg 
quiescence period and CO2 conditions (Figure. 3). The glycogen and lipid 
levels in teneral females emerging from different egg quiescence periods 
reveal distinct strategies of synthesis and utilisation of energy reserves in the 
transition from larval to adult stages in light of environmental stress. Overall, 
reduced carbohydrate and stored reserve levels in females in response to the 
two stress factors suggest low energy for flight, especially for foraging for 
their first meal (Nayar and Van Handel, 1971). However, no compensatory 
feeding on honey or blood was observed in relation to teneral reserves 
(Figure. 4), likely due to metabolic priming during the larval stage or a 
general low motivation to seek resources due to low energy. 

Together, these findings provide strong evidence that environmental 
factors, such as elevation in CO2 and desiccation duration, can interactively 
shape key life history traits of mosquitoes, with direct implications for 
population dynamics and vectorial capacity. Furthermore, adaptive 
responses, such as metabolic priming and altered feeding behaviours in 
response to environmental stressors, should be integrated into future 
predictive models to more accurately forecast vector ecology and disease 
transmission risk. 

5.1.2 Impact of environmental stress on gene expression in 
peripheral olfactory system of Aedes aegypti (Paper II) 

Predicted elevation in CO2 and extended egg quiescence period affected 
adult life history traits and the feeding response of Ae. aegypti (Paper I). The 
differential feeding strategy employed by females in response to two 
environmental stressors highlights the behavioural plasticity, which has 
serious implications for disease transmission (Scott and Takken, 2012). 
Female feeding behaviour is the end process of the resource-seeking strategy, 
which is predominantly guided by olfactory cues. The resource-seeking 
behaviour of mosquitoes is modulated by external environmental factors 
(Majeed et al., 2014; Hagan et al., 2018; Vanderplanck et al., 2021; 
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Lahondere et al., 2023). Short or developmental exposure of insect species 
to abiotic stressors, including elevated CO2, affect olfactory-guided 
behaviours (Stange, 1997; Sun and Ge, 2010; Majeed et al., 2014; Boullis et 
al., 2016; Boullis et al., 2017; Wang et al., 2023), sensory detection (Stange 
and Wong, 1993; Stange et al., 1995; Riveron et al., 2009; Martin et al., 
2011; Majeed et al., 2014), as well as chemosensory gene expression in the 
peripheral olfactory system (Riveron et al.,  2013; Guo et al., 2025; see also 
2.6.2 Role of external environment). 

A principal component analysis, followed by functional ontology 
enrichment analyses, revealed that both CO2 level, and egg quiescence period 
modulated the expression of genes in the peripheral olfactory system of 
teneral female Ae. aegypti (Figure. 6). The high number of differentially 
expressed genes observed in response to elevated CO2 level and egg 
quiescence period is indicative of the combined stress response in the 
olfactory tissues, especially the maxillary palp. The differentially expressed 
genes were primarily associated with energy metabolism, xenobiotic 
biodegradation and chemosensation. Notably, the influence of CO2 level was 
gene family-specific, whereas the egg quiescence period had a distinct and 
overall effect, especially in the maxillary palp. While CO2 level did not have 
a generalised overall effect on gene expression in the peripheral olfactory 
system, the differential feeding response displayed in response to the two 
stressors is likely mediated via the transcriptional regulation of specific gene 
families, as evident from the Gene Ontology (GO) and Kyoto Encyclopaedia 
of Genes and Genomes (KEGG) analyses (Figure. 7 and 8). The 
transcriptional regulation of genes involved in energy metabolism and 
xenobiotic response pathways, identified through KEGG analysis, 
predominantly in the maxillary palp is indicative of the stress response in an 
organ mediating detection of CO2 and other salient VOCs (Grant and 
O’Connell, 1995; Grant and Dickens, 2011; Vainer et al., 2024). Similar 
regulation of genes involved in metabolic pathways has been demonstrated 
in other insects, such as fruit flies and termites, under high CO2 levels 
(Helenius et al., 2009; Wu et al., 2016). The regulation of genes involved in 
energy metabolism is suggestive of high energy demands to adapt to the 
stressful environment (Arrese and Soulages, 2010). Elevation in CO2 could 
manifest in insects as oxidative stress (Li et al., 2017) and/or acidification of 
bodily fluid, including the sensillum lymph, by the accumulation of carbonic 
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acid (Brown et al., 1984). Such alteration of sensillum lymph can disturb the 
protein folding of OBPs, hindering their functional role (Zubkov et al., 2005; 
Manoharan et al., 2013; Mam et al., 2023). Such changes in the peri-receptor 
space may explain the observed transcriptional regulation of xenobiotic 
response genes, which also involve OBPs and ODEs (Lu et al., 2021; 
Abendroth et al., 2023). While mosquitoes can regulate ionic balance, how 
prolonged developmental exposure to elevated CO2 can affect membrane-
bound receptors and neuronal signalling (Chung et al., 2014; Porteus et al., 
2018; Porteus et al., 2021) warrants further investigation. 

Elevated CO2 and extended egg quiescence duration differentially affect 
the gene transcript abundance of soluble and membrane-bound 
chemosensory genes, which potentially may alter the female resource-
seeking behaviour (Figure 9). The observed transcriptional regulation of 
OBPs, particularly in the maxillary palp, is indicative of their role in elevated 
CO2-induced stress response. However, of the differentially expressed OBPs, 
the functional role of OBP22 and OBP39 is currently known to be involved 
in detection of long-chain fatty acids in host- and oviposition-site-seeking, 
respectively (Leal and Leal, 2014, Wang et al., 2020). The notable regulation 
of several OBPs and CSPs, primarily in the maxillary palp, indicates an 
altered peri-receptor environment surrounding the OSNs, in response to the 
two stressors. Thus, under external stressors, the observed OBP and CSP 
regulation will likely affect the interaction between VOCs and membrane-
bound receptors. 

The observed differential regulation of membrane-bound receptors, 
including ORs in the antennae, in response to the two external stressors 
support the hypothesis that OR gene regulation mechanism is sensitive to 
early life environmental stressors (Jafari and Alenius, 2015). Although the 
functional implications of these transcriptional regulations remain largely 
unresolved, it is noteworthy that the majority of OR gene expression in both 
antennae and maxillary palps is unaffected. Acute exposure to elevated 
background CO2 levels has been shown to affect the resource-seeking 
behaviour in mosquitoes through sensory constraints (Majeed et al., 2014). 
However, developmental exposure to high CO2 levels does not modulate the 
expression of CO2 receptor genes, Gr1, Gr2 and Gr3 (Erdelyan et al., 2012; 
McMeniman et al., 2014). This suggests that behavioural or 
electrophysiological changes, similar to those observed during short-term 
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elevated CO2 exposure (Majeed et al., 2014) may underlie the effects of long-
term exposure. 

This study demonstrates that predicted climate change factors, 
particularly elevated atmospheric CO2 interact with other stressors, such as 
prolonged egg quiescence period, to modulate gene expression and elicit a 
stress response in the peripheral olfactory system of female Ae. aegypti. 
These molecular changes may impair the female mosquito’s ability to detect 
ecologically-relevant VOCs, potentially disrupting critical resource-seeking 
behaviours. While prior studies have shown that increased CO2 levels and 
extended egg desiccation duration negatively affect life-history traits across 
aquatic and terrestrial stages of Ae. aegypti, with documented carry-over 
effects on adult feeding strategies, their combined impact on olfactory 
function at the electrophysiological and behavioural level warrants further 
investigation. 

5.1.3 Odorant receptor Or117 regulates female floral-seeking (Paper 
III) 

As mentioned above, female Ae. aegypti display a wide repertoire of odour-
mediated behaviours that are temporally dynamic and correlated with the 
regulation of chemosensory genes, including ORs, in the peripheral olfactory 
system (See 2.5.3. Internal state dependent plasticity). While there is a 
general concerted increase in chemosensory gene transcript abundance with 
age, the ones not following this regulated pattern have been proposed to 
function as molecular switches, modulating the transition from one 
behavioural state to another (Hill and Ignell, 2021). The differential 
modulation of chemosensory receptors, including ORs and IRs, which are 
involved in regulating attraction and discrimination, may lead to altered 
perception of odours through altered combinatorial receptor codes. In 
Ae. aegypti, the age-dependent behavioural plasticity displayed by females 
towards floral sources coincides with the downregulation of Or117, one of 
the two Ors defying the concerted upregulation of chemosensory gene 
expression pattern (Tallon et al., 2019; Hill and Ignell, 2021).  

The functional characterisation of Or117, by heterologous expression in 
the empty neuron system of Drosophila, identified 1R-(+)-camphor and 1S-
(-)-camphor, constituent of Lantana camara floral scent, one of the most-
preferred nectar sources of Ae. aegypti (Wondwosen et al., in prep), as 
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eliciting the highest excitatory response. This is followed by terpenoids, 
including (+/-)-α-terpineol, (+)-limonene oxide, α-copaene, and 
benzaldehyde, as additional ligands, which form major chemical classes 
constituting a floral odour (Knudsen and Gershenzon, 2006). The decline in 
female reliance on floral sources for metabolic needs with age, correlated 
with the regulation of Or117, and its functional role, poses this receptor as a 
potential molecular switch regulating floral-seeking in teneral females. 

To investigate the mechanism underlying this regulation, a targeted null 
mutation in Ae. aegypti Or117 was performed using the CRISPR/Cas9 gene 
editing system (Figure 10). In a Y-tube olfactometer, wildtype females 
displayed an age- and mating-state-dependent response towards L. camara 
synthetic floral odour blend. Furthermore, this effect was reflected in the 
differential volume of honey imbibed by females in response to their internal 
physiology and energy demands (Foster, 1995). The targeted knockout of 
Or117 abolished the attraction of teneral females towards the synthetic floral 
L. camara odour, while feeding behaviour of homozygous mutants did not 
differ from their wildtype counterparts. To further assess the role of Or117 
and its ligand, camphor, the response of wildtype females was tested to a 
subtractive L. camara synthetic floral odour blend, deprived of camphor, 
demonstrating the requirement of the ligand in mediating floral seeking. The 
observed abolishment of attraction in unmated teneral homozygous females 
establishes a causal relationship between the chemosensory receptor gene 
regulation and ensuing floral-seeking in Ae. aegypti females, similar to the 
causal relationships established in regulating odour-guided behaviours, 
including host seeking in Drosophila (Auer et al., 2020) and repellence in 
Ae. aegypti (Liu et al., 2021), respectively. 

The effect of ageing, mating and mutation of Or117 on the detection of 
L. camara floral VOCs was assessed through electrophysiological 
recordings. Wildtype females displayed differential age- and mating-
dependent responses to the L. camara synthetic floral odour blend, to which 
there was an off-and-on response to six out of ten L. camara floral VOCs as 
a function of the internal physiology of the female. However, the sensitivity 
of antennal OSN to the rest of the four compounds, including camphor, did 
not alter in response to age or mating (Paper III). 

The knockout of Or117 rendered females anosmic to camphor across all 
ages and mating states, emphasising the requirement of this receptor for the 
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antennal detection of this floral VOC. Notably, the knockout of Or117 also 
affected the detection of β-ocimene and 4-terpineol in an age- and mating-
dependent manner, indicating a plausible feedback mechanism mediated by 
Or117 affecting gene stability and expression of co-expressed Ors in the 
OSN (Maguire et al., 2022). Single-nucleus RNA transcriptome analysis 
reveals that the Or117-expressing OSN co-expresses two other Ors, Or116 
and Or130 (Adavi et al., 2024). However, whether these receptors are tuned 
to β-ocimene and 4-terpineol (Chen et al., 2025) remains to be investigated. 
The observed age- and mating-dependent response to two above-mentioned 
VOCs in homozygous mutants suggests that their cognate receptor 
expression is modulated in response to internal physiological states, which 
demands further investigation. 

This study demonstrates that female Ae. aegypti display age- and mating-
dependent floral-seeking behaviour in relation to their energy and 
reproductive demands. The odorant receptor, Or117 and its ligand, camphor, 
is required for the attraction of teneral females towards a synthetic L. camara 
floral odour blend, which demonstrates a direct causal molecular switch 
regulating resource-seeking behaviour. Such regulation in the peripheral 
olfactory system to accommodate dynamic behavioural state changes is 
likely an evolutionarily energy-efficient mechanism (Bruce and Pickett, 
2011; Hill and Ignell, 2021). 
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Figure 1. The effect of extended egg quiescence and elevated CO2 level on immature 
stage development and survival. 

 (a) Developmental duration of the immature stage from larvae to pupae. For 
comparison between groups, a Kruskal-Wallis test followed by Dunn’s 
multiple comparisons test was performed. The whiskers denote minimum to 
maximum, and asterisks indicate significant differences between the groups 
(N = 3, n = 300 larvae, p < 0.05). (b) Survival probability of the larvae 
originating from 2-week- and 3-6 months-old (older) eggs. The curves were 
analysed using a Cox regression model, followed by a log-rank post-hoc test 
using the ‘survival’ package (N = 3, n = 300 larvae, p < 0.05). 
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Figure 2. The interactive effect of extended quiescence and elevation in CO2 level on the 
survival of adult Aedes aegypti.  

Survival probability curves of the adults are separated by sex and egg 
quiescence period. The curves were analysed using a mixed-effects Cox 
regression model, followed by a log-rank post-hoc test using the ‘survival’ 
package (n (per group) = 245-250, p < 0.05). 
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Figure 3. Metabolic reserves accumulated by teneral females in response to elevated CO2 

levels and egg quiescence.  

The amount of soluble (a) carbohydrate, (b) glycogen, (c) lipid and (d) 
protein content normalised for body size. The error bars represent the 
standard error of the mean, and asterisks denote significant differences 
between the groups. For comparison between groups, a Kruskal-Wallis test 
followed by Dunn’s multiple comparisons test was performed (n = 10, p < 
0.05). 
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Figure 4. Differential feeding of female Aedes aegypti in response to elevated CO2 

conditions and extended egg quiescence.  

(a) The proportion of teneral females that fed on honey (left) and blood 
(right) was differentially and significantly affected by extended egg 
quiescence and elevation in CO2 level. The bars represent mean (± SE) of 
proportion of females feeding and letters denote significant differences in 
pairwise comparisons using ‘emmeans’ Tukey method (n = 160-170 females, 
p < 0.05). (b) Volumetric analysis of imbibed honey (left) and blood (right) 
normalised for body size. For comparison between groups, a Kruskal-Wallis 
test followed by Dunn’s multiple comparisons test was performed. The 
whiskers denote the minimum to maximum values and asterisks indicate 
significant differences between the groups (n = 50 females, p < 0.05). 
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Figure 5. The effect of water acidification on the life history parameters of immature and 
adult stages of Aedes aegypti. 

(a) Developmental duration of the immature stage from larvae to pupae. For 
comparison between groups, a Kruskal-Wallis test followed by Dunn’s 
multiple comparisons test was performed. The whiskers denote minimum to 
maximum values, and asterisks indicate significant differences between the 
groups (N = 3, n = 300 larvae, p < 0.05). (b) Survival probability of the larvae 
originating from 2-week-old eggs reared under ambient and 1000 ppm CO2 
conditions, as well as at pH 6.5. (c) Adult survival probability curves are 
separated by sex. The curves were analysed using a mixed-effect Cox 
regression model, followed by a log-rank post-hoc test using the ‘survival’ 
package (n = 245-250, p < 0.05). The data shown for ambient (pH 7.8) and 
1000 ppm (pH 6.5) CO2 are the same as in Figures 1 and 2. 
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Figure 6. Overall effect of elevated CO2, and egg quiescence, on gene expression in the 
peripheral olfactory organs of Aedes aegypti.  

Principal component analysis of antennal and maxillary palp libraries of 
females emerging from new and older eggs, with short and extended egg 
quiescent duration, respectively, reared under ambient and elevated CO2 
conditions. A total of 29 libraries were analysed to estimate the change in 
overall gene expression, in which Principal Component (PC) 1 (43.2%) and 
PC 9 (1.9%) accounted for the variance between the libraries. 
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Figure 7. Gene ontology analysis of differentially expressed genes in the antennae and 
maxillary palps of Aedes aegypti.  

The olfactory tissues were collected from females reared under ambient and 
extreme CO2 conditions, as well as short and extended egg quiescence 
duration, referred to as new and older eggs, respectively. Pairwise 
comparisons are arranged in a matrix in response to CO2 conditions and egg 
quiescence period. The differentially expressed genes are classified into 
molecular function ontology, using gene ontology slim categorisation. n.s.: 
non-significant. 
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Figure 8. Kyoto Encyclopedia of Genes and Genomes pathway analysis of differentially 
expressed genes in the antennae and maxillary palps of Aedes aegypti.  

The olfactory tissues were collected from females reared under ambient and 
extreme CO2 conditions, as well as short and extended egg quiescence 
duration, referred to as new and older eggs, respectively. Pairwise 
comparisons are arranged in a matrix in relation to the response to CO2 
conditions (eCO2) and egg quiescence period. The categories are annotated 
from Vectorbase and further classified into pathways designated by Kyoto 
Encyclopedia of Genes and Genomes database 
(https://www.genome.jp/kegg/). 
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Figure 9. Differential abundance of chemosensory genes in Aedes aegypti in response to 
extreme CO2 conditions and extended egg quiescence period  

The olfactory tissues were collected from females reared under ambient and 
extreme CO2 conditions, as well as short and extended egg quiescence 
duration, referred to as new and older eggs, respectively. The abundance of 
reliably expressed (>1 transcript per million) chemosensory genes was 
compared between ambient and elevated CO2 (eCO2) levels, as well as egg 
quiescent periods, in antennal (a) and maxillary palp (b) libraries, and 
demonstrated by fold-change (> 1.5-fold change; FDR > 0.05). Asterisks on 
fold change denote significant differences between pairwise comparisons. 
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Figure 10. Or117 regulates the floral seeking in Aedes aegypti 

(A and C) Females display an age- and mating-state-dependent behaviour 
towards a synthetic floral blend of L. camara, in which Or117 is necessary 
for the behavioural attraction of teneral females. Behavioural response of age 
and mating-state controlled, wild-type and mutant females towards a 
synthetic floral blend of L. camara assessed in a Y-tube olfactometer. The 
bars represent choice index (± SE) and different letters denote significant 
differences between the genotypes (pairwise comparison using ‘emmeans,’ 
corrected with the Tukey method). (n = 30, p < 0.05). (B and D). Differential 
feeding of wild-type and mutant females as an effect of age and mating 
status. The proportion of females that fed on honey displays no effect of age 
or mating (above). The bars represent mean (± SE) proportion of females 
feeding and letters denote significant differences in pairwise comparisons 
using ‘emmeans’ Tukey method (n = 200 females, p < 0.05). Volumetric 
analysis demonstrated differential effect of age and mating on volume 
imbibed by females (below). For comparison of volume imbibed by females, 
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a Kruskal-Wallis test followed by Dunn’s multiple comparisons test was 
performed. The asterisks indicate significant differences between the groups 
(n = 80 females, p < 0.05). (E) Camphor is necessary for the attraction of 
unmated teneral wild-type females towards L. camara synthetic floral odour 
source. Behavioural response of wildtype unmated teneral and older females 
towards the subtractive synthetic blend of L. camara. (F) Combined gas 
chromatography and electroantennographic detection (GC-EAD) analyses of 
wild-type (top) and mutant (bottom) mosquitoes demonstrate an age- and 
mating-state-dependent response towards a synthetic floral blend of L. 
camara. The FID trace is depicted above and sample trace from a single 
mosquito belonging to each physiological state and strain is depicted below 
(G). Electroantennographic analysis of age- and mating-state-controlled 
wildtype and mutant females demonstrates that mutant females are anosmic 
to camphor and no significant effect of age or mating on the sensitivity of 
females towards ecologically relevant doses of camphor (n=10 per group). 
The bars represent mean amplitude (± SE) of neuronal response and letters 
denote significant differences in pairwise comparisons Tukey’s method. 
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Popular science summary 

Mosquitoes, the tiny, deadly hunters, have shaped human history through the 
widespread impact of mosquito-borne diseases. Their remarkable success as 
disease vectors has made them a critical focus of global public health 
research. Today, human-driven climate change is rapidly altering the 
environments mosquitoes inhabit, through rising temperatures, elevated CO₂ 
levels, shifting rainfall patterns, and changes in water biochemistry. These 
environmental shifts can profoundly influence multiple aspects of mosquito 
biology. In addition to external factors, internal physiological changes such 
as ageing and mating also modulate the behavioural repertoire displayed by 
female mosquitoes. This thesis investigates how both external environmental 
cues and internal physiological states shape mosquito biology, using 
approaches that span ecology, molecular biology, and neuroethology. 

Under natural conditions, anthropogenic climate change introduces a 
complex array of interacting variables that affect both the larval and adult 
stages of mosquitoes. Among these, elevated atmospheric CO2 levels and 
prolonged mosquito egg desiccation periods, resulting from unpredictable 
water availability, have been shown to interactively and negatively affect 
survival across both aquatic and terrestrial life stages. These environmental 
pressures not only regulate how energy reserves are synthesised and utilised, 
but also influence feeding strategies in female mosquitoes. Collectively, 
these changes have serious implications for mosquito population dynamics 
and the future spread of mosquito-borne diseases. 

Female Aedes aegypti mosquitoes rely on their highly developed 
olfactory system to locate essential resources, including plants for sugar 
meals, human hosts for blood feeding, and suitable sites for egg-laying. Their 
resource-seeking behaviour dynamically shifts between plants and humans 
depending on internal physiological states and energy demands, potentially 
influenced by external environmental factors. However, the extent to which 
external stressors affect mosquito sensory systems remains poorly 
understood. 

Evidence from other organisms, including insects, suggests that elevated 
CO2 levels can impair olfactory-guided behaviours and alter the functioning 
of sensory neurons.  To investigate this in mosquitoes, the effects of elevated 
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CO2 levels and extended egg dormancy were assessed via transcriptome 
analyses on female olfactory tissues, the antennae and maxillary palp. These 
analyses revealed that exposure to environmental stressors resulted in 
significant changes in gene expression, most prominently within the CO2-
sensitive olfactory organ. Differentially expressed genes were associated 
with energy metabolism, xenobiotic detoxification, and olfactory processes. 
These findings point towards stress-induced affects at the level of gene 
regulation, with potential consequences for the olfactory capabilities and 
resource-finding efficiency of female mosquitoes. 

From the resource-seeking perspective, the sugar-seeking behaviour in 
female mosquitoes has received less attention compared to blood-seeking 
behaviour. As noted earlier, the dynamics of sugar- and blood-seeking are 
closely linked to the internal physiological state of the female. Newly 
emerged adults primarily seek a plant sugar to meet the high energy demands 
required immediately after emergence. As females age, there is a gradual 
transition towards blood-seeking behaviour necessary for egg development. 
Correspondingly, there is a concerted upregulation of olfactory gene 
expression in the antennae and maxillary palps to support this behavioural 
shift. Interestingly, one olfactory receptor gene, Or117, defies this general 
trend. The expression of Or117 gene decreases with female age. Functional 
characterisation of Or117 through heterologous expression systems revealed 
that its primary ligand is a floral volatile found in Lantana camara, a highly 
preferred nectar source for female Ae. aegypti. We show that females display 
an age- and mating-dependent floral seeking. Using mutagenesis, 
behavioural assays, and electrophysiological analyses, we demonstrated that 
Or117 plays a critical role in modulating age-dependent floral-seeking 
behaviour. Specifically, the odorant receptor, Or117 and its ligand are 
required for the attraction of unmated newly emerged females. The study 
provides a direct causal link between changes in the peripheral olfactory 
system and the flexible resource-seeking behaviour in female mosquitoes. 
Such plasticity in the olfactory system offers mosquitoes the ability to rapidly 
or gradually adjust their behaviours in response to internal physiological 
changes or external environmental pressures, a flexibility that likely 
contributes to their remarkable ecological success. 
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Populärvetenskaplig sammanfattning 

Myggor, dessa små men dödliga jägare, har format människans historia 
genom en omfattande påverkan av myggburna sjukdomar. Deras 
anmärkningsvärda framgång som sjukdomsvektorer har gjort dem till ett 
centralt fokus inom global folkhälsoforskning. Idag förändrar 
människodriven klimatförändringar snabbt de miljöer som myggor bebor, 
genom stigande temperaturer, förhöjda CO₂-nivåer, förändrade 
nederbördsmönster och förändringar i vattenkemi. Dessa miljöförändringar 
kan i hög grad påverka flera aspekter av myggans biologi. Utöver yttre 
faktorer moduleras även honmyggans beteenderepertoar av interna 
fysiologiska förändringar som åldrande och parning. Denna avhandling 
undersöker hur både yttre miljösignaler och interna fysiologiska tillstånd 
formar myggans biologi, med hjälp av metoder som spänner över ekologi, 
molekylärbiologi och neuroetologi.  

Under naturliga förhållanden introducerar klimatförändringar en komplex 
uppsättning av interagerande variabler som påverkar både larver och vuxna 
myggor. Bland dessa har förhöjda atmosfäriska CO₂-nivåer och förlängda 
uttorkningsperioder hos ägg, som uppstår till följd av oförutsägbar tillgång 
på vatten, visat sig interagera och negativt påverka överlevnaden av både 
akvatiska och terrestra livsstadier. Dessa miljörelaterade stressfaktorer styr 
inte bara hur energireserver syntetiseras och används, utan påverkar även 
födostrategier hos honmyggor. Sammanlagt kan dessa förändringar ha 
allvarliga konsekvenser på myggpopulationernas dynamik och den framtida 
spridningen av myggburna sjukdomar. 

Honmyggor av Aedes aegypti är beroende av ett högt utvecklat luktsinne 
för att lokalisera viktiga resurser, inklusive växter för sockerintag, mänskliga 
värdar för blodmål och lämpliga platser för äggläggning. Deras resursökande 
beteende växlar dynamiskt mellan växter och människor beroende på interna 
fysiologiska tillstånd och energibehov, vilket potentiellt kan påverkas av 
yttre miljöfaktorer. Däremot är det fortfarande dåligt förstått i vilken 
utsträckning externa stressfaktorer påverkar myggans sensoriska system. 

Evidens från andra organismer, inklusive insekter, tyder på att förhöjda 
CO₂-nivåer kan försämra luktstyrda beteenden och förändra sinnescellers 
funktion. För att undersöka detta i myggor analyserades effekterna av förhöjd 
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CO₂ och förlängd äggdvala genom transkriptomanalyser av det perifera 
doftsystemet, det vill säga antennerna och maxillarpalperna. Denna analys 
visade att exponering för miljöstressfaktorer leder till signifikanta 
förändringar i genuttryck, särskilt inom det CO₂-känsliga luktorganet. De 
differentiellt uttryckta generna var associerade med energimetabolism, 
avgiftning av xenobiotiska substanser och processer involverade i 
dofttigenkänning. Dessa fynd tyder på en tydlig stressinducerad effekt på 
genregleringsnivå, med potentiella konsekvenser för honornas kapacitet att 
detektera dofter och effektivt lokalisera resurser.  

Från ett resurssöksperspektiv har honmyggors sockersökande fått mindre 
uppmärksamhet än deras blodletande. Som tidigare nämnts är dynamiken 
mellan socker- och blodletande nära kopplat till honans interna fysiologiska 
tillstånd. Nykläckta vuxna söker främst växtsocker för att möta de höga 
energibehov som krävs omedelbart efter kläckning. I takt med att honan 
åldras sker en gradvis övergång till blodletande, som är nödvändigt för 
äggutveckling. Denna förändring i beteende åtföljs av en samordnad 
uppreglering av gener som kodar för protein som binder in olika doftämnen 
i antennerna och maxillarpalperna. Intressant nog avviker en lav dessa gener, 
Or117, från detta generella mönster. Uttrycket av Or117 minskar med åldern. 
Funktionell karakterisering av Or117 genom ett så kallat heterologt 
uttryckssystem visade att dess primära ligand är en blomdoft som finns i 
Lantana camara, en växt som föredras av Ae. aegypti honor. Vi visar att 
honor uppvisar ett sockersöksbeteende som är beroende av ålder och 
parningsstatus. Genom mutagenes, beteendeanalyser och elektrofysiologiska 
tester visar vi att Or117 spelar en avgörande roll i att reglera detta 
åldersberoende beteendet. Specifikt krävs doftreceptorn Or117 och dess 
ligand för att attrahera oparade, nykläckta honor. Studien etablerar en direkt 
kausal koppling mellan förändringar i det perifera luktsystemet och den 
flexibla resursökande beteenderepertoaren hos honmyggor. Denna plasticitet 
i doftsystemet ger myggor en möjlighet att snabbt eller gradvis anpassa sina 
beteenden beroende av interna fysiologiska förändringar eller yttre 
miljöförändringar—en flexibilitet som sannolikt bidrar till deras 
anmärkningsvärda ekologiska framgång. 
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്രപബന്ധസം്രഗഹം  
െകാതുകുകൾ പകരുന്ന േരാഗങ്ങൾ മനുഷ� സമൂഹെത്ത 
വളെര ്രപതികൂലമായി ബാധിച്ചിട്ട�ണ്ട്. േരാഗ വാഹകർ 
എന്ന നിലയിൽ അവയുെട ആഘാതം ആേഗാള 
െപാതുജനാേരാഗ� ഗേവഷണത്തിന്െറ ്രശദ്ധ 
പിടിച്ച�പറ്റിയിരിക്കുന്നു.  എന്നിരിേക്ക, മനുഷ�ർ സൃഷ്ടിച്ച 
കാലാവസ്ഥാ വ�തിയാനം, ഉയർന്ന താപനില, വർദ്ധിച്ച 
കാർബൺ ൈഡ ഓക്ൈസഡ് (CO₂) അളവ്, മഴയുെട 
രീതിയിലുള്ള മാറ്റങ്ങൾ, ജലത്തിന്െറ രാസഗുണത്തിെല 
മാറ്റങ്ങൾ എന്നിവ െകാതുകുകൾ ജീവിക്കുന്ന 
സാഹചര�ങ്ങെളയും, അവയുെട ജീവശാസ്്രതത്തിന്െറ 
വിവിധ വശങ്ങെളയും സ�ാധിനിക്കുന്നു.  ബാഹ� 
ഘടകങ്ങൾക്ക് പുറേമ, ്രപായം, ഇണേചരൽ തുടങ്ങിയ 
ആന്തരിക ശാരീരിക മാറ്റങ്ങള�ം െപൺ െകാതുകുകള�െട 
െപരുമാറ്റങ്ങെള നിയ്രന്തിക്കുന്നു. പരിസ്ഥിതി, തന്മാ്രതാ 
ജീവശാസ്്രതം, ന�ൂേറാഎേത്താളജി തുടങ്ങിയ വിവിധ 
സമീപനങ്ങളിലൂെട ഈ പഠനം ബാഹ�വും 
ആന്തരികവുമായ ഘടകങ്ങൾ െകാതുകുകള�െട 
ജീവശാസ്്രതെത്ത എങ്ങെന സ�ാധീനിക്കുന്നു എന്ന് 
പരിേശാധിക്കുന്നു. 

കാലാവസ്ഥാ വ�തിയാനം കാരണം ഉയർന്ന CO₂ 
നിലകള�ം, െവള്ളം ലഭിക്കാെത വരണ്ട സാഹചര�ങ്ങളിൽ 
മുട്ടകൾക്കുണ്ടാകുന്ന ദീർഘകാല ്രപശ്നങ്ങള�ം 
െകാതുകുകള�െട ജീവൻ നിലനിർത്താനുള്ള കഴിവിെന 
്രപതികൂലമായി ബാധിക്കുന്നു. ഈ സാഹചര�ങ്ങൾ 
െകാതുകുകള�െട ഊർജ്ജ സംഭരണവും, ഭക്ഷണ രീതികള�ം 
നിയ്രന്തിക്കുന്നു. ഇത് െകാതുകുകള�െട എണ്ണം 
വർദ്ധിപ്പിക്കുന്നതിലും േരാഗങ്ങൾ വ�ാപിക്കുന്നതിലും 
ഗൗരവമായ സ�ാധീനം െചലുത്തുന്നു. 
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െപൺ െകാതുകുകൾ അവയുെട ആന്തരിക ശാരീരിക 
അവസ്ഥകള�ം ഊർജ ആവശ�കതകള�ം അനുസരിച്ച് 
ആവശ�മായ വിഭവങ്ങൾ കെണ്ടത്തുന്നു. ഉദാഹരണത്തിന്, 
പുതുതായി ഉയർന്നുവന്ന െപൺ െകാതുകുകൾക്ക് ഊർജം 
ലഭിക്കാനായി സസ�ങ്ങളിൽ നിന്ന് േതൻ കുടിക്കണം, 
എന്നാൽ ്രപായമായാൽ മുട്ടകൾ വികസിപ്പിക്കാനായി 
മനുഷ�രിൽ നിന്ന് രക്തം കുടിക്കാൻ അവയുെട 
െപരുമാറ്റം മാറുന്നു. ഈ െപരുമാറ്റ വ�തിയാനങ്ങൾ 
ബാഹ� പരിസ്ഥിതി ഘടകങ്ങളാലും 
സ�ാധീനിക്കെപ്പടാറുണ്ട്. എന്നാൽ, ഇത്തരത്തിലുള്ള ബാഹ� 
സമ്മർദ്ദങ്ങൾ െകാതുകുകള�െട  ഇ്രന്ദിയ സംവിധാനങ്ങെള 
എ്രതേത്താളം ബാധിക്കുന്നു എന്ന് ഇേപ്പാഴും വ�ക്തമല�. 

ഈ പഠനത്തിൽ, ഉയർന്ന CO₂ നിലകള�ം മുട്ടകൾക്ക് 
േനരിടുന്ന വരണ്ട സാഹചര�ങ്ങള�ം െകാതുകുകള�െട 
ഗന്ധജ്ഞാന അവയവങ്ങെള (ആന്റിനയും മാക്സില�റി 
പാൽപ്പ്) എങ്ങെന ബാധിക്കുന്നു എന്ന് ്രടാൻസ്്രകിപ്േറ്റാം 
വിശകലനത്തിലൂെട പരിേശാധിച്ച�. ഇതിലൂെട 
കെണ്ടത്തിയത്, ഈ സമ്മർദ്ദങ്ങൾ െകാണ്ട് 
ഗന്ധജ്ഞാനവുമായി ബന്ധെപ്പട്ട ജീനുകള�െട ്രപവർത്തനം 
ഗണ�മായി മാറുന്നു എന്നാണ്. ഇതിന്െറ ഫലമായി, 
െകാതുകുകള�െട ഗന്ധം തിരിച്ചറിയാനുള്ള കഴിവിൽ 
മാറ്റങ്ങൾ വരാം., 

െപൺ െകാതുകുകള�െട ്രപായം കൂടുേമ്പാൾ, മുട്ടകള�െട 
വളർച്ചയ്ക്കായി രക്തം േതടുന്ന െപരുമാറ്റത്തിേലക്ക് അവ 
്രകേമണ മാറുന്നു. ഈ സമയത്ത്, െകാതുകിന്െറ 
ആന്റിനകളിെല ഗന്ധം തിരിച്ചറിയുന്നതിനാവശ�മായ പല 
ജീനുകള�െട ്രപകടനവും വർദ്ധിക്കുന്നതായി കാണെപ്പടുന്നു. 
എന്നാൽ, Or117 എന്ന ്രപേത�ക ഗന്ധ്രഗാഹി ജീനിന്െറ 
്രപകടനം ്രപായം കൂടുന്നതിനനുസരിച്ച് കുറയുന്നു. 
െപരുമാറ്റപരവും നാഡീസംബന്ധവുമായ വിവിധ 



117 
 

പരീക്ഷണങ്ങൾ വഴി, Or117 ജീനും അതുമായി ബന്ധെപ്പട്ട 
പുഷ്പഗന്ധ ഘടകവും, ്രപായം കുറഞ്ഞ െപൺ 
െകാതുകുകെള േതൻ ഉറവിടങ്ങളിേലക്ക് ആകർഷിക്കാൻ 
നിർണായകമാെണന്ന് കെണ്ടത്തിയിട്ട�ണ്ട്. 

ഗന്ധജ്ഞാനത്തിന്െറ ഈ വഴക്കം (�ാസ്റ്റിസിറ്റി) 
െകാണ്ടാണ് െകാതുകുകൾക്ക് ആന്തരികവും 
ബാഹ�വുമായ മാറ്റങ്ങൾക്ക് അനുസരിച്ച് െപരുമാറ്റം 
്രകമീകരിച്ച്, അതിേവഗം പരിസ്ഥിതിയിേലക്ക് മാറാനുള്ള 
കഴിവ് ൈകവരുന്നത്.. 
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Effect of extended egg quiescence 
and elevation in carbon dioxide on 
life history traits of Aedes aegypti
Sukritha Nalikkaramal1,2, Sharon Rose Hill1,2 & Rickard Ignell1,2

Elevation in carbon dioxide is a global threat, driving anthropogenic climate change. How disease-
vectoring mosquitoes respond to these changes is currently largely unknown. The dengue vector, 
Aedes aegypti, has adapted to urban environments, which are more affected by climatic changes, 
especially CO2. Aedes aegypti lay eggs around ephemeral water bodies that are prone to desiccation, 
with the pharate larvae possessing the ability to resist the desiccation, during which the permeability 
across the chorion is compromised. The study investigates the combined effects of elevated 
atmospheric CO2 and extended egg quiescence duration on life-history traits of immature and adult 
stages, including development rate, survival and size. Furthermore, we analysed the metabolic 
reserves of newly emerged females and whether mosquitoes display compensatory feeding in 
response to restricted reserves. Extended egg quiescence duration, combined with elevated CO2 level, 
differentially affected developmental duration and larval survival, with carry-over effects on adult 
metabolic reserves, size and survival. The interaction of elevated CO2 conditions and egg quiescence 
period differentially impact life-history traits of Ae. aegypti. The findings of this study provide 
evidential support for assertion that changing climatic conditions significantly impact survival and 
population dynamics, as well as feeding propensity, which directly affect the vectorial capacity of Ae. 
aegypti.

Keywords Aedes aegypti, Carbon dioxide, Climate change, Egg quiescence, Feeding, Life-history, Metabolic 
reserves

Global climate change, due to anthropogenic activities, is predicted to change the distribution of insects, 
including mosquitoes that vector disease, across spatial and temporal scales1–3. A major driver of this predicted 
change is the elevation in atmospheric carbon dioxide (CO2)4. Since the industrial revolution, the average 
CO2 level has almost doubled (420 ppm)5, and is predicted to increase to 600 ppm by 2050 and 1000 ppm by 
21006. The increase in global CO2 levels to date has led to a significant reduction in pH through acidification of 
oceans7,8 and freshwater bodies9,10 which adversely affects the residing organisms. Despite the growing concerns 
regarding the expanding geographic distribution of disease-vectoring mosquitoes, such as the primary vector 
of dengue, yellow fever, chikungunya and Zika, Aedes aegypti11–15, which can adapt to and occupy various 
ecological niches, little is known about how predicted elevation in CO2 levels will affect life history traits2,16. 
Such information may increase our understanding of the factors affecting population dynamics17 and feeding 
avidity, which intrinsically regulate vectorial capacity18,19.

Breeding water bodies of mosquitoes present both biotic and abiotic stresses that influence the survival and 
development of the immature stages20. For example, Aedes aegypti lay eggs in ephemeral water bodies that are 
prone to desiccation. As a result, the eggs have evolved to withstand periods of dormancy and desiccation, 
through egg quiescence21,22, the duration of which is regulated by environmental factors, such as temperature 
and humidity20,23,24. During the egg quiescence period, the larva depends on the maternal reserves for survival, 
and will hatch when favourable conditions arise25. Extended egg quiescence duration has been shown to affect 
the permeability of the chorion, as well as larval susceptibility to abiotic stressors, ultimately affecting adult 
fitness26,27. Weather conditions related to climate change, including warmer, wetter and drier conditions, have 
been demonstrated to affect larval hatching, survival and development, as well as adult fitness28,29. Moreover, 
water chemistry is known to affect life history traits, either directly27,30–32 or indirectly33–35. For example, 
elevated CO2 levels can reduce larval survival and increase developmental duration, as well as affect leaf litter 
decomposition29, although contradictory data has also been reported34,35. While elevation in CO2 has been 
shown to affect the physiology and behaviour of other freshwater-dwelling invertebrate life forms, including 
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Planck Center Next Generation Insect Chemical Ecology, Alnarp, Sweden. email: rickard.ignell@slu.se
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daphnia8,36,37, mussels38,39 and midget larvae37, their effect on mosquito life-history traits remain poorly 
understood.

This study investigated how extended pharate larval quiescence duration and elevated CO2 levels affect the 
life history traits of larval and adult stages of Ae. aegypti, including larval survival and developmental duration, 
as well as the carry-over effects on adult survival and body size. Additionally, the teneral metabolic reserves of 
females and their resource-feeding behaviour were assessed. The findings expand our understanding of how 
extended egg quiescence and elevation in CO2 levels interact to affect the development and survival of both 
immature and adult stages. These stress factors also affect the teneral reserves of female mosquitoes, regulating 
their feeding behaviour, which could have important implications for vectorial capacity.

Results
Developmental duration of immature stages and larval survival
Elevation in CO2 level and the extent of egg quiescence significantly varied the developmental duration of 
immature stages from larvae to pupae (Kruskal–Wallis test; p < 0.0001; Fig. 1a). The developmental duration 
of immature stages, originating from 2-week-old eggs, was significantly reduced when reared under 1000 ppm 
CO2 condition (Fig. 1a). In contrast, the developmental duration of immature stages, originating from older 
eggs, increased significantly when reared under 600 ppm and 1000 ppm, compared to ambient CO2 condition 
(Fig. 1a).

The probability of larval survival varied significantly with an interaction between the level of CO2 (2-week-
old eggs: Analysis of deviance, χ2 = 21.54, p < 0.001; older eggs: χ2 = 28.0, p < 0.0001, Fig. 1b) and extended egg 
quiescence (Analysis of deviance, χ2 = 1540.4, p < 0.0001, Fig. 1b). The survival probability of larvae originating 
from 2-week-old eggs reduced significantly at 1000  ppm CO2, whereas larvae reared under 600  ppm had a 
similar survival probability as those reared under ambient CO2 level (Fig. 1b). Similarly, the survival probability 
of larvae originating from older eggs, decreased when reared under 1000 ppm CO2, as well as 600 ppm CO2, 
compared to those reared under ambient CO2 condition (Fig. 1b).

Effect on adult starvation tolerance and size
Adult starvation tolerance varied significantly with the increase in CO2 level (2-week-old eggs: Analysis of 
deviance, χ2 = 365.7, p < 0.0001; older eggs: Analysis of deviance, χ2 = 149.8, p < 0.0001; Fig. 2) and extended egg 
quiescence, with an interaction between the two factors (Analysis of deviance, χ2 = 150.5, p < 0.0001; Fig. 2). The 
starvation tolerance of females originating from 2-week-old eggs, increased at 600 ppm CO2, while starvation 
tolerance of both males and females reduced at 1000 ppm CO2, compared to adults reared under ambient CO2 
conditions (Fig. 2), with significant differences observed between the sexes (Analysis of deviance, χ2 = 171.1; 
p < 0.0001; Fig. 2). In contrast, the starvation tolerance of females and males originating from older eggs was 
significantly different from each other (Analysis of deviance, χ 2 = 405; p < 0.0001; Fig. 2), and increased when 
reared under 1000 ppm CO2, when compared to 600 ppm CO2 and ambient CO2 conditions (Fig. 2).

Adult size varied significantly with the increase in CO2 level and extended egg quiescence, (Kruskal–Wallis 
test; p < 0.0001; Supplementary Figure S1). The effect of elevated CO2 levels and extended egg quiescence was 
female-specific (Supplementary Figure S1), where the body size of females originating from 2-week-old eggs 
significantly decreased in response to an elevation in CO2 level (Supplementary Figure S1). Contrastingly, the 
size of females originating from older eggs did not differ across CO2 conditions and were significantly smaller 
than females originating from 2-week-old eggs, when reared under 600  ppm and ambient CO2 conditions 
(Supplementary Figure S1).

Effect on total energy reserves
Teneral metabolic reserves of individual females were analysed to quantify the total content of carbohydrates, 
glycogen, lipids and proteins accumulated during the aquatic stage in response to extended egg quiescence 
duration and elevated CO2 levels (Fig.  3). The soluble carbohydrate content varied significantly in response 
to both egg quiescence duration and CO2 conditions (Kruskal–Wallis test; p < 0.0001; Fig.  3a). The soluble 
carbohydrate content of females, irrespective of egg quiescence duration, was significantly lower when reared 
under 1000 ppm CO2 condition (Fig. 3a). The content of glycogen, which is a stored form of carbohydrate, differed 
significantly between females in response to egg quiescence duration and CO2 conditions (Kruskal–Wallis test; 
p = 0.0003; Fig. 3b). The glycogen content of females originating from 2-week-old eggs was significantly lower 
in response to elevated CO2 conditions, as opposed to the glycogen content of females originating from older 
eggs, that was not affected by CO2 conditions (Fig. 4b). The lipid content in females differed significantly in 
response to egg quiescence and CO2 conditions (Kruskal–Wallis test; p < 0.0001; Fig. 3c). The only significant 
pairwise comparisons were observed between females originating from older eggs, reared under 1000 ppm CO2 
level, in which the lipid content was lower compared to the counterparts reared under 600 ppm and ambient 
CO2 conditions (Fig. 3c). The total protein content of females differed significantly in response to egg quiescence 
period and CO2 conditions (Kruskal–Wallis test; p < 0.0001; Fig. 3d). While the total protein content of females, 
originating from either egg quiescence conditions, remained similar across the CO2 conditions, females 
originating from older eggs had higher protein content compared to females originating from 2-week-old eggs 
when reared at 600 ppm CO2 (Fig. 3d).

Feeding response of teneral females
No-choice feeding assays (Fig.  4A) were conducted to assess a potential compensatory feeding response by 
newly emerged female mosquitoes, as a consequence of the carry-over effects resulting from the stress caused 
by extended egg quiescence duration and elevated CO2 conditions. The proportion of females, which originated 
from 2-week-old eggs, that fed on either honey (Fig. 4a, left) or blood (Fig. 4a, right), was not significantly different 
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between CO2 conditions. In contrast, females originating from older eggs fed significantly and proportionately 
less on honey with an increase in CO2 level (Fig. 4a, left). Moreover, the proportion of females emerging from 
older eggs, feeding on blood, was significantly reduced when reared under 1000 ppm CO2 compared to those 
reared under 600 ppm CO2 condition (Fig. 4a, right), as well as in comparisons with females emerging from 
2-week-old eggs reared under 1000 ppm CO2 condition (Fig. 4a, right).

Colorimetric analysis was performed to quantify the volume that the females imbibed during the differential 
feeding on honey (Fig. 4b, left) and blood (Fig. 4b, right). Females originating from 2-week-old eggs reared 
at 1000 ppm CO2 imbibed a significantly lower volume of honey compared to females reared under 600 ppm 
and ambient CO2 conditions (Fig.  4b, left). In contrast, females originating from older eggs, irrespective of 
CO2 conditions, imbibed a similar volume of honey, while those reared from the younger eggs imbibed less at 
1000 ppm CO2 (Fig. 4b, left). Females originating from both 2-week-old and older eggs, irrespective of CO2 
conditions, generally imbibed a similar volume of blood (Fig. 4b, right). However, females originating from older 

Fig. 1. The effect of extended egg quiescence and elevated CO2 levels on immature stage development and 
survival. (A) Developmental duration of the immature stage from larvae to pupae. For comparison between 
groups, a Kruskal–Wallis test followed by Dunn’s multiple comparisons test was performed. The whiskers 
denote minimum to maximum, and asterisks indicate significant differences between the groups (N = 3, n = 300 
larvae, p < 0.05). (B) Survival probability of the larvae originating from 2-week- and 3–6 months-old (older) 
eggs. The curves were analysed using a Cox regression model, followed by a log-rank post-hoc test using the 
‘survival’ package (N = 3, n = 300 larvae, p < 0.05).
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eggs reared under ambient CO2 conditions, generally imbibed significantly higher volumes of blood compared 
to females reared under other CO2 conditions (Fig. 4b, right).

Effect of artificial manipulation of water acidity
The effect of artificially manipulated larval water pH was assessed on immature development duration, survival 
and adult starvation tolerance (Fig. 5). Artificial manipulation of water acidity did not have a significant effect 
on immature development duration (Kruskal–Wallis test; p = 0.90 Fig. 5a), larval survival (Analysis of deviance, 

Fig. 2. The interactive effect of extended quiescence and elevation in CO2 levels on the survival of adult Aedes 
aegypti. Survival probability curves of the adults are separated by sex and egg quiescence period. The curves 
were analysed using a mixed-effects Cox regression model, followed by a log-rank post-hoc test using the 
‘survival’ package (n (per group) = 245–250, p < 0.05).
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χ2 = 1.05; p = 0.31 Fig. 5b) or adult starvation tolerance (Females: Analysis of deviance; χ2 = 1.78; p > 0.05, Males: 
Analysis of deviance; χ2 = 4.38; p > 0.05; Fig. 5c) when compared to ambient CO2 condition.

Discussion
The atmospheric CO2 level is predicted to increase up to 1000 ppm within the next century. This increase, and 
even that predicted within a shorter period of time, significantly affects several life-history traits and feeding 
response of Ae. aegypti, an affect modulated by the extent of egg quiescence duration. While elevated CO2 
conditions and extended egg quiescence duration negatively affected the aquatic stages, the carry-over effects to 
adults were differential. We present our findings below, in the context of what is known about the effects of CO2 

Fig. 3. Metabolic reserves accumulated by teneral females in response to elevated CO2 levels and egg 
quiescence duration. The amount of soluble (A) carbohydrate, (B) glycogen, (C) lipid and (D) protein content 
normalized for body size. The error bars represent the standard error of the mean, and asterisks denote the 
significant differences between the groups. For comparison between groups, a Kruskal–Wallis test followed by 
Dunn’s multiple comparisons test was performed (n = 10, p < 0.05).
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and other climatic factors on mosquito life history traits, and what consequence this may have for population 
dynamics and vectorial capacity.

Elevation in CO2 directly and differentially affects larval development duration33 and survival, as well as adult 
survival and size, an effect that is dependent on the extent of egg quiescence duration. Whereas the negative effects 
of elevated CO2 levels observed in this study is in line with previous studies on other aquatic organisms9,37,39,40, 
the positive effect on adult survival has not been previously reported. When reared under elevated CO2 
conditions, larvae that emerge from an extended egg quiescence duration had a delayed developmental duration. 
As pharate larvae depend on maternally-derived reserves, an extended egg quiescent duration leads to reduced 

Fig. 4. Differential feeding of female Aedes aegypti in response to elevated CO2 conditions and extended 
egg quiescence duration. (A) The proportion of teneral females that fed on honey (left) and blood (right) 
was differentially and significantly affected by extended egg quiescence duration and elevation in CO2 level. 
The bars represent mean (± SE) of proportion of females feeding and letters denote significant differences 
in pairwise comparisons using ‘emmeans’ Tukey method (n = 160–170 females, p < 0.05). (B) Volumetric 
analysis of imbibed honey (left) and blood (right) normalised for body size. For comparison between groups, 
a Kruskal–Wallis test followed by Dunn’s multiple comparisons test was performed. The whiskers denote the 
minimum to maximum values and asterisks indicate the significant differences between the groups (n = 50 
females, p < 0.05).
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energy reserves, increasing the vulnerability of larvae to sub-optimal or stressful conditions27. This limitation 
in energy reserves likely contribute to the significant reduction in survival of larvae emerging from an extended 
egg quiescence duration in response to elevated CO2 conditions, compared to those emerging from newer 
eggs, by negatively impacting the homeostasis41. Similar observations of higher mortality and delayed growth 
following exposure to elevated CO2 in copepods were attributed to additional energy demands42. To compensate 
for limited energy reserves upon emergence, larvae need to accumulate carbohydrate and lipid reserves, by 
feeding on, e.g., detritus, to allow them to metamorphose into pupae43. This could explain the observed delay in 
developmental duration of larvae that emerged from an extended egg quiescence, at elevated CO2 conditions. 
Similar observations have been observed in mosquitoes and other aquatic organisms in response to various 

Fig. 5. The effect of water acidification on the life history parameters of immature and adult stages of Aedes 
aegypti. (A) Developmental duration of the immature stage from larvae to pupae. For comparison between 
groups, a Kruskal–Wallis test followed by Dunn’s multiple comparisons test was performed. The whiskers 
denote minimum to maximum values, and asterisks indicate significant differences between the groups (N = 3, 
n = 300 larvae, p < 0.05). (B) Survival probability of the larvae originating from 2-week-old eggs reared under 
ambient and 1000 ppm CO2 conditions, as well as at pH 6.5. (C) Adult survival probability curves are separated 
by sex. The curves were analysed using a mixed-effect Cox regression model, followed by a log-rank post-hoc 
test using the ‘survival’ package (n = 245–250, p < 0.05). The data shown for ambient (pH 7.8) and 1000 ppm 
(pH 6.5) CO2 are the same as in Figs. 1 and 2.
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abiotic and biotic environmental stressors, including temperature, photoperiod and larval density44–46. An 
increased developmental time, not only increases foraging, thereby increasing the risk of predation, but also 
exposes the aquatic stages to habitat changes, such as drought20. In contrast to larvae emerging from extended 
egg quiescence duration, the larvae emerging from new eggs and reared at 1000 ppm CO2 had a significantly 
shorter development duration, which could be a defence strategy, in which larvae with higher maternal reserves 
pupate earlier and escape the stressful larval habitat47. Thus, larvae emerging from shorter or extended quiescence 
duration appear to have different adaptation strategies to environmental stress. These findings highlight the 
importance of considering the interactive effects of climatic factors, which play a critical role in influencing 
immature stage development and survival47,48, this study.

An elevation of CO2 in stagnant freshwater bodies cause physiological stress in aquatic organisms39,49,50, 
including mosquito larvae35, this study, through acidification of either the bodily fluids or the water30,51, or 
hypercapnia49,52. While elevation in CO2 can cause weak acidification in freshwater ecosystems10, water 
acidification in the absence of CO2 had no effect on the life history parameters of Ae. aegypti [this study], similar 
to what has been observed in Daphnia9 and freshwater zooplankton36. Hypercapnia-induced narcotic effects 
and associated effects on survival have been studied in other invertebrates49,53 and fish54. The mode of action of 
CO2, elevated to levels that reflect predicted changes, as used in this study, and how these affect the observed life 
history parameters, is unclear and requires further study.

Larval environmental parameters dictate the carry-over effects to emerging adults55–58, with significant 
effects on survival, size and reproductive success, as well as vectoral capacity59. Elevated CO2 levels during the 
aquatic phase significantly and differentially affected the survival and size of emerging males and females, an 
affect modulated by the interaction between egg quiescence duration and larval development duration. Similar 
interactive effects of environmental parameters with other abiotic stressors have been reported across other 
mosquito species47,60. The seemingly counterintuitive higher starvation tolerance in adults, following rearing 
at elevated CO2 conditions, could be indicative of metabolic priming, i.e., adults emerging from stressful larval 
environments display anticipatory priming on their metabolic reserves61,62, which requires further investigation. 
We hypothesise that this metabolic priming likely obscures the correlation between metabolic reserves in teneral 
adults and survival, with body size having no significant effect.

Teneral mosquitoes differentially metabolise lipids or glycogen into carbohydrates depending on 
experienced egg quiescence period and CO2 conditions, but the low levels of accumulated reserves are not 
offset by compensatory feeding on either honey or blood. The glycogen and lipid content in teneral females 
originating from 2-week-old or older eggs, respectively, was significantly lower at elevated CO2 levels. Teneral 
females that originated from different egg quiescence periods appear to employ different metabolic strategies 
to cope with environmental stress, likely regulated at the metabolic enzyme activity level62, which requires 
further investigation. Similar to lipids and glycogen, the carbohydrate content in females was significantly low in 
response to the two stress factors, suggesting low energy reserves for locomotion during non-feeding periods63. 
While an expected response to this would be an increased compensatory feeding on either honey or blood, 
which is often used as an energy resource by nutritionally deprived mosquitoes20 the opposite was demonstrated, 
likely due to metabolic priming during the larval stage. Alternatively, nutritionally deprived mosquitoes may not 
be sufficiently motivated to spend energy to seek energy under the current conditions.

The vectorial capacity of mosquitoes hinges directly on the life history traits of the aquatic and adult stages, 
as well as the propensity of adult females to feed on human hosts. A slight reduction in development duration 
and survival in response to climatic change, although subtle, may have a significant and differential effect on 
mosquito population dynamics, which needs to be considered in future models. Moreover, these models need 
to take into consideration the effect of metabolic priming on starvation tolerance, and how elevated CO2 in 
combination with other climatic factors affect feeding patterns. Future semi-field and field studies will be 
required to further elucidate the effects of elevated CO2 on the life history trait of disease vectoring mosquitoes.

Materials and methods
Rearing of Aedes aegypti
For colony maintenance, Ae. aegypti (Rockefeller) were reared at 27 ± 2 °C and 65 ± 5% relative humidity, and 
a 12 h: 12 h light: dark cycle. Adult mosquitoes were provided ad libitum access to 10% sucrose solution, and 
females were allowed access to sheep blood (Håtunalab AB, Bro, Sweden), in a 1.5 ml reservoir covered with 
a collagen membrane using a membrane feeding system (Hemotek Ltd, Blackburn, UK), for egg production. 
Blood-fed females were given access to a wet conical filter paper placed above plastic cups filled with distilled 
water. Eggs laid on filter paper until 48 h were collected, labelled and stored in the rearing chamber until further 
use.

Carbon dioxide acclimatisation
For the experiments, three high-precision climate chambers (ca 11.5 m2 with a free height of 2.3 m) were used, 
in which temperature, humidity and light were maintained as in the main rearing. The CO2 concentration 
in the chambers was set to ambient (ca. 400  ppm), 600  ppm and 1000  ppm, respectively, delivered through 
cylinders containing pure CO2 (Strandmöllen, Ljungby, Sweden), and regulated by the climate system. A filter 
paper containing age-controlled eggs (2-week and 3-to-6-month quiescent periods, respectively) from the main 
rearing was divided into approximately three equal parts and transferred to each of the climate chambers. The 
eggs were then placed in plastic larval trays (24  cm × 17.5  cm × 8  cm) filled with water (600  ml), previously 
acclimatised in the chambers for 48 h. A pinch of fish food (TetraMin® Flakes, Melle, Germany) was added to 
each tray to stimulate hatching24. The larvae that hatched within 18 h were divided into individual larval trays, 
with a density of 100 larvae in 600 ml of water. The larvae were fed fish food daily (1 mg larvae-1) to provide 
favourable conditions to maximise life-history parameters and reduce competition47,64,65, with food quantity 
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adjusted to account for a reduction of larvae due to mortality. The water was changed every second day to control 
for microbial growth and accumulation of debris.

Immature development and survival
Developmental duration, i.e., the time from egg hatching to pupation, was assessed from observations done every 
12 h, and differences between treatments analysed using a non-parametric test, Kruskal–Wallis test followed by 
Dunn’s multiple comparison test for select comparisons (GraphPad Prism, for Macbook 10.0.0 (131)). The pupae 
were collected every 12 h and transferred into small plastic cups with distilled water, and placed in Bugdorm 
cages (17.5 cm × 17.5 cm × 17.5 cm; Megaview Science Co., Ltd, Taichung, Taiwan) for further analysis of adult 
life history parameters. The larval survival probability was estimated by counting the number of live larvae 
every 12 h until all the larvae either pupated or died. Three independent replicates, each with 100 larvae, were 
conducted for each treatment and repeated thrice (Supplementary Figure S2). A mixed-effect Cox regression 
survival model was used to analyze the effect of elevated CO2 levels and egg quiescence on larval survival, with 
the replicate number and larval tray as fixed variables. A post-hoc test was then performed separately for the two 
egg quiescence periods with a log-rank test using the ‘survival’53 package in RStudio54.

Adult starvation tolerance and size
Survival assays were conducted to assess adult starvation tolerance as a consequence of the metabolic reserves 
carried over from the immature stages. Emerging adult mosquitoes were provided access to distilled water, and 
the number of dead mosquitoes monitored every 12 h until all the mosquitoes in a cage were dead. To limit 
competition, each cage contained not more than 50 adult mosquitoes. A mixed-effect Cox regression survival 
model was used to analyze the effect of elevated CO2 levels and egg quiescence on adult survival with replicate 
number and cage as the fixed variable. A post-hoc test was then performed separately for the egg quiescence 
period and sexes with a log-rank test using the ‘survival’66 package in RStudio. For adult body size, the right wing 
of individual male and female mosquitoes was dissected under a stereomicroscope, and the distance from the 
axillary incision to the apical margin, excluding the wing fringes68, was measured using an ocular micrometre. 
For the analysis, Kruskal–Wallis test was performed followed by Dunn’s multiple comparison test for select 
comparisons (GraphPad Prism, for Macbook 10.0.0 (131).

Estimation of teneral metabolic reserves
The teneral metabolic reserves were analysed by quantifying the carbohydrate, glycogen, lipid and protein 
content of individual adult female mosquitoes. For the analysis, adult females (up to 12 h post-emergence) were 
freeze-killed and stored in 2 ml Eppendorf tubes at -20 °C. The biochemical analysis was done according to van 
Handel’s calorimetric estimation methods modified by Foray et al.69. Protein analysis was performed according 
to Bradford’s method70, using the Bio-Rad Protein Assay Kit II (Bio-Rad Laboratories, Inc., Copenhagen, 
Denmark) with bovine serum albumin as a standard. Total carbohydrate and glycogen analyses were performed 
using anthrone (CAS: 90448, Sigma-Aldrich, Stockholm, Sweden) prepared in 95% sulphuric acid, with 
D-glucose (1 mg ml-1) as a standard71. Total lipid analysis was performed following a chloroform–methanol 
step, using vanillin (CAS: 121335, Sigma-Aldrich), prepared in 85% phosphoric acid, with olive oil (1 ml ml-1) 
as a standard72. The absorbance for the total carbohydrates (carbohydrate and glycogen), lipids and protein 
analyses were measured in 96 well plates at 625 nm, 525 nm and 595 nm, respectively, using a microplate reader 
(Multiskan ™ FC Microplate Photometer, Thermo Scientific™, Stockholm, Sweden). The content of carbohydrate, 
glycogen, lipid and protein was calculated based on comparisons with standard curves, adjusted for the dilution 
factor, and normalised for the mean wing size of the mosquito. For the experiment, ten females were randomly 
analysed for each treatment group. A comparison of medians was conducted with Kruskal–Wallis test followed 
by Dunn’s multiple comparisons test for select comparisons (GraphPad Prism, for Macbook 10.0.0 (131)).

Feeding assays
No-choice feeding assays were conducted to correlate hypothesised compensatory feeding of females due to 
constraints posed by the metabolic reserves. Mosquitoes (24  h-to-48  h post-emergence) were aspirated into 
BugDorm cages in groups of 20-to-25 individuals per cage, and starved for 24 h with ad libitum access to water 
until 2  h prior to the start of the experiments. Experiments were conducted during the peak activity of the 
mosquitoes at Zeitgeber time 9–12[73, in the respective Biotron chambers. To assess the proportion of mosquitoes 
feeding and volume imbibed, all experiments were repeated six times, including two replicates of each egg 
batch. In addition, 20–25 mosquitoes from the same egg batch were provided access to water, and were used as 
controls for the volumetric analysis. After feeding, mosquitoes were carefully placed into 1.5 ml Eppendorf tubes 
and immediately frozen at-20 °C until further analysis. For the feeding proportion comparison, a generalised 
linear model with a binomial distribution followed by a post-hoc pairwise comparison with Bonferroni p value 
correction performed using the ‘emmeans’ package in RStudio67.

Honey (60% honey, prepared in distilled water) was used as the carbohydrate-rich source. To quantify the 
volume of honey imbibed, 1 mg ml-1 xylene cyanole (FF; CAS 2650–17-1; Sigma-Aldrich) was added, and fresh 
solutions prepared on the day of experiments. Mosquitoes were given access to the honey solution for 3 h. To 
quantify the volume imbibed, 230 µl of distilled water was added to the Eppendorf tubes containing the females 
provided with the honey solution. The tissues were then homogenised using a disposable pestle attached to a 
cordless motor (VWR®, Lund, Sweden), and then centrifuged at 6720 rcf for 10 min. The supernatant (200 µl) 
was transferred into individual wells of 96-well microplates (Sigma-Aldrich), and the absorbance measured at 
620 nm using a spectrophotometer-based microplate reader. A standard curve was generated by preparing serial 
dilutions from 0.1 µl to 2.4 µl of 1 mg ml-1 xylene cyanol, and used to determine the volume of honey imbibed 
by each mosquito.
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Sheep blood was used as the protein source, which was provided to the females for 1 h using the artificial 
membrane system described above. To quantify the volume of blood imbibed, the haemoglobinometry method74 
was used. The abdomens of fed and unfed were dissected and homogenised in Drabkin’s reagent (prepared as 
detailed in74), followed by the addition of chloroform. The supernatant (200 µl) was pipetted into individual wells 
of 96-well microplates, and the absorbance measured at 540 nm using a spectrophotometer-based microplate 
reader. The absorbance of unfed mosquitoes was used as a control and subtracted from the absorbance of the 
blood-fed individuals. To determine the individual volume imbibed, a standard curve was generated using 
different volumes of blood. For the volumetric analysis, a comparison of medians was conducted with Kruskal–
Wallis test followed by Dunn’s multiple comparisons test for select comparisons (GraphPad Prism).

Artificial manipulation of water acidity
To determine the effect of change in acidity on life history parameters, the pH of the larval water used in this 
experiment was decreased to the level measured in the larval water maintained under 1000 ppm CO2, by the 
addition of 0.1 ml 0.1 N hydrochloric acid8; the pH was monitored throughout the experiment. Then, 2-week-
old eggs were placed in the water and the life history traits of the emerging larvae and adults were assessed as 
described above.

Data availability
All data generated or analysed during this study are included in this published article.
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Impact of elevated CO2 level 
and egg quiescence duration on 
gene expression in the peripheral 
olfactory system of Aedes aegypti
Sukritha Nalikkaramal1,2, Sharon Rose Hill1,2 & Rickard Ignell1,2

Elevation in CO2 can significantly impact the biology of various organisms, affecting life-history traits 
of both aquatic and terrestrial forms, including disease-vectoring mosquitoes. For mosquitoes, this 
effect is accentuated by egg quiescence duration, resulting in a change in foraging of adult females. 
Female mosquitoes rely on their olfactory system for locating resources, such as nectar and blood. This 
study employs a transcriptomic approach to investigate how a projected elevation in CO2 level, under 
a worst-case scenario, interacts with extended egg quiescence duration to modulate the molecular 
machinery of the peripheral olfactory system, the antennae and maxillary palps, of the yellow 
fever mosquito, Aedes aegypti. The transcriptome analysis demonstrates significant changes in the 
abundance of genes related to metabolism, xenobiotics degradation and chemosensory function, with 
the most pronounced effects observed in the CO2 sensing tissue, the maxillary palp. The study provides 
novel insights into how anthropogenic climate change can modulate the olfactory sensory system of 
disease vectors, which may have cascading effects on resource-seeking behaviour.

Keywords Mosquitoes, Carbon dioxide, Climate change, Egg quiescence, Olfactory system, Transcriptome

Global climate change, due to anthropogenic activities, is predicted to change the distribution and behaviour 
of insects, including mosquitoes that vector disease1–3. A key factor driving this change is the elevation 
in atmospheric carbon dioxide (CO2), which inadvertently affects life history traits across both aquatic and 
terrestrial stages of invertebrates4–6. For example, in the dengue vector, Aedes aegypti, an exponential increase 
in atmospheric CO2 level, reflecting those projected within recent time and those predicted under extreme 
conditions, if targets are not met, for the next century7, significantly affects key life-history traits, including larval 
survival and development, as well as adult survival and the feeding response of females6. These effects are further 
modulated by the extent of egg quiescence, i.e., the ability of eggs to withstand extended periods of desiccation 
or dormancy8, which is determined by environmental factors, such as temperature and humidity9–11. Prolonged 
egg quiescent duration increases the susceptibility of emerging larvae to abiotic stressors12,13, which may have 
significant effects on mosquito population dynamics and feeding behaviour, thus affecting vectorial capacity14. 
The feeding response of insects is the ultimate stage in a process regulating resource seeking, which for most 
insects is mediated predominantly by olfaction and influenced by the internal physiological state15,16. Resource-
seeking behaviours, as well as the detection of ecologically relevant sensory cues, in insects are affected by both 
short- and long-term exposure to elevated levels of CO2

17–21.
Many insect species use CO2 as a reliable cue for nectar22,23, host24,25, and oviposition site seeking26, as 

well as threat avoidance27,28. An elevation in ambient CO2 negatively affects host-seeking in mosquitoes21 and 
oviposition site selection in moths, due to sensory constraints imposed on the CO2-sensory system21,26. Long-
term developmental exposure to elevated CO2 also reduces the alarm-pheromone escape behaviour in aphids29, 
although no significant effects on olfactory perception have been described30. In addition, studies on aquatic 
invertebrates show an impairment in olfactory-guided behaviours as a consequence of elevated CO2

31, however, 
the underlying neuronal mechanism remains unclear32. Exposure to elevated CO2 in Helicoverpa moths affects 
the CO2-sensory neurons, which become promiscuous and respond to fluctuations in temperature, as well 
as to CO2

33, demonstrating that exposure to elevated CO2 likely has a broad effect on sensory systems and 
gene expression34. The aim of this study was to assess how predicted levels of elevated CO2 and extended egg 
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quiescence affect chemosensory gene expression to identify molecular correlates underlying changes in resource-
seeking behaviours in female Ae. aegypti.

The antennae and maxillary palps constitute the main peripheral olfactory system of mosquitoes, with hair-
like structures, sensilla, on the surface acting as the smallest functional units35. Volatile odorants enter the 
sensilla, where they are recognized and transported by odorant binding proteins (OBPs) and chemosensory 
proteins (CSPs) to receptors in the dendritic membrane of olfactory sensory neurons (OSNs)36,37. Each OSN 
expresses one or a combination of olfactory receptor proteins from three different families: odorant receptors 
(ORs), ionotropic receptors (IRs) and gustatory receptors (GRs)38,39, as well as sensory neuron membrane 
proteins (SNMPs)36. The ORs and IRs form heterotetrameric complexes with conserved co-receptors, Orco, as 
well as Ir25a, Ir8a and Ir76b, respectively, and ligand-selective subunits, ORs and IRs40,41. The overall role of ORs 
and IRs in mosquitoes is to regulate host attraction and discrimination42–45. Although GRs are primarily involved 
in contact chemoreception, CO2 is detected by a heteromeric complex of Grs46,47, and involved in activation and 
attraction48,49. Apart from the canonical chemosensory gene families, pickpocket (PPK) and transient receptor 
potential (TRP) channels, involved in risk assessment50–52, are also expressed in the OSN dendritic membrane37. 
Several members of these chemosensory gene families are differentially regulated in response to a change in 
internal state of female mosquitoes16,53–55, however, there is currently limited information on how the external 
environment modulates the molecular machinery of the peripheral olfactory system.

To achieve the aim of this study, RNA sequencing was performed using antennal and maxillary palp tissues 
collected from females reared under current ambient and extreme CO2 conditions and originating from eggs 
following different egg quiescent periods. The transcriptome analysis demonstrated an overall effect on the 
differential expression within select gene ontologies, including metabolism, xenobiotics and chemosensory, 
predominantly in the maxillary palp, in response to elevated CO2 conditions, an affect exacerbated by egg 
quiescence duration. The findings of this study demonstrate that predicted changes in climate, driven by factors, 
such as elevation in CO2, affect the peripheral olfactory system of insects, which in turn may affect the resource-
seeking behaviours.

Results
RNA sequencing
The RNA sequencing detected a total of 17,439 genes of the 19,804 annotated genes in the genome of Ae. aegypti, 
of which 10,226 were reliably expressed (Supplementary Table S1). Of these, 8,833 and 9,510 were reliably 
expressed in the antennae and maxillary palps, respectively. To assess the quality and depth of the sequencing, 
the core eukaryotic gene mapping approach was performed, demonstrating that 450 and 447 (of the total 450) 
genes were detected reliably above the 1 TPM expression level in the antennal and maxillary palp libraries, 
respectively (Supplementary Table S2).

Overall and differential expression
Overall gene expression was assessed using Principal Component Analysis (PCA) with the 29 libraries of tissue 
collected from females reared under ambient and elevated CO2 conditions, and shorter and extended egg 
quiescent periods (Fig. 1). The analysis revealed that 43.2% of the variance among libraries was based on the type 
of olfactory organ (PC 1), and 1.9% of the variance between maxillary palp libraries was based on CO2 condition 
(PC 9) (Fig. 1). There was no significant effect on overall antennal gene expression in response to CO2 level 
(F = 1.01, R2 = 0.064, p = 0.38) or egg quiescent duration (F = 1.68, R2 = 0.10, p = 0.17), individually or interactively 
(F = 2.07, R2 = 0.13, p = 0.09, Supplementary Figure S1). In contrast, the egg quiescence period (F = 3.43, R2 = 0.20, 
p = 0.02) significantly affected the overall gene expression in the maxillary palp (Supplementary Figure S1). 
However, neither CO2 level (F = 1.01, R2 = 0.06, p = 0.38) nor the interaction of the two stress factors (F = 2.07, 
R2 = 0.13, p = 0.09) had a significant effect on the overall maxillary palp gene expression (Supplementary Figure 
S1).

The gene ontology (GO) analysis identified various molecular functional categories, based on differentially 
expressed genes (DEGs), which changed in both numbers and direction in the antennal and maxillary palp 
libraries in response to the interaction of an elevation in CO2 and extended egg quiescence (Fig. 2). Comparisons 
between ambient and elevated CO2, as well as between egg quiescence periods for antennal and maxillary palp 
libraries under ambient conditions, identified too few DEGs for drawing any overall findings (Fig. 2). In response 
to elevated CO2 and extended egg quiescence, > 85% of the DEGs in the antennal and maxillary palp libraries 
were categorised as molecular function (GO:0,003,674), followed by oxidoreductase activity (GO:0,016,491), 
peptidase activity (GO:0,008,233) and hydrolase activity, acting on carbon–nitrogen (but not peptide) bonds 
(GO:0,016,810) (Fig. 2, right). In addition, in the maxillary palp libraries, the 1% DEGs were categorised as 
hydrolase activity, acting on glycosyl bonds (GO:0,016,798) (Fig. 2). Within the molecular function category, 
several differentially expressed chemosensory genes, including Ors, Irs and Obps, were represented.

The KEGG pathway analysis identified 39 unique metabolic pathway terms, 17 of which were from the 
metabolism pathways, 9 from biosynthesis of secondary metabolites, four from metabolism of terpenoids and 
polyketides, and nine identified in the xenobiotic biodegradation pathway (Fig. 3). In the antennal libraries, 
four DEGs were categorised as xenobiotic response pathway in females reared under ambient CO2 conditions, 
in response to extended egg quiescence. Moreover, in the maxillary palp, six and 28 DEGs contributed to the 
xenobiotic biodegradation pathway, when reared under ambient and elevated CO2, in response to extended egg 
quiescence (Fig. 3, Supplementary Table S3). Within the xenobiotic response pathway, several stress response 
genes, including cytochrome P450 and UDP-glycosyl transferases, were represented across the comparisons in 
relation to CO2 conditions and egg quiescence period.
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Regulation of peripheral chemosensory genes
Elevation in CO2 and extended egg quiescence period differentially modulated the expression profile of 
chemosensory genes, with the highest differential regulation occurring in the maxillary palps.

Odorant receptors
Among the 97 annotated Ors, 88 and 3, including Orco, were reliably expressed in the antennae and maxillary 
palps of female Ae. aegypti, respectively (Supplementary Table S4). While Orco was not significantly regulated, 
the antennally-expressed Or50 and Or86 significantly increased in abundance in females emerging from older 
eggs, in response to elevated CO2 conditions (Fig. 4a). The three Ors expressed in the maxillary palps were not 
regulated in response to an elevation in CO2 or egg quiescence period (Fig. 4b).

Ionotropic receptors
Of the 52 annotated Irs, 33 and 4 were reliably expressed in the antennal and maxillary palp libraries, respectively 
(Supplementary Table S4). The three co-receptors were reliably expressed, with Ir25a having a significantly lower 
abundance in maxillary palps of females originating from eggs that underwent an extended egg quiescence 
period and then reared under elevated CO2 conditions (Supplementary Table S4, Fig. 4b). Of the 30 tuning Irs 
expressed in the antennal libraries, Ir75k increased in abundance in response to an extended egg quiescence 
period, when females were reared under ambient CO2 conditions (Fig. 4b).

Gustatory receptors
Among the 41 annotated Grs, 9 and 5 were reliably expressed in the antenna and maxillary palps libraries, 
respectively (Supplementary Table S4). No Grs were differentially regulated in the antennal or maxillary palp 
libraries (Supplementary Table S4).

Non-canonical chemoreceptor-related families
Of the 14 annotated Trps, 7 and 6 were reliably expressed in the antennal and maxillary palp libraries, respectively, 
none of which were differentially regulated (Supplementary Table S4). Similarly, of the 46 annotated pickpocket 
genes, 15 and 9 were reliably expressed in the antennal and maxillary palp libraries, respectively, none of which 
showed differential expression in response to elevated CO2 conditions or egg quiescence period (Supplementary 
Table S4).

The genes coding for sensory neuron membrane proteins (SNMPs), of which SNMP1 and SNMP2 were 
among the 10 and 11, out of the 13 annotated, reliably expressed SCRBs in the antennal and maxillary palp 
libraries, respectively (Supplementary Table S4). The expression of SCRB6 and SNMP1 was downregulated in 

Fig. 1. Elevated CO2, but not egg quiescence, differentially affects overall gene expression in the peripheral 
olfactory organs of Aedes aegypti. Principal component analysis of antennal and maxillary palp libraries of 
females emerging from new and older eggs, with short and extended egg quiescent duration, respectively, 
reared under ambient and elevated CO2 conditions. A total of 29 libraries were analysed to estimate the change 
in overall gene expression, in which Principal Component (PC) 1 (43.2%) and PC 9 (1.9%) accounted for the 
variance between the libraries.
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the maxillary palps of females reared under elevated and ambient CO2 conditions, respectively, in response to 
extended egg quiescence period (Fig. 4b).

Soluble odorant-binding proteins
The genes encoding for OBPs and CSPs were highly abundant in the antennae and maxillary palps libraries. 
Out of the 52 annotated OBPs, 33 and 35 were reliably expressed in the antennal and maxillary palp libraries, 
respectively (Supplementary Table S4). Only one OBP, OBP25, increased in abundance in the antennae of 
females reared under elevated CO2 conditions in response to an extended egg quiescence period (Fig. 4a). In 
the maxillary palp libraries, OBPs were differentially regulated in response to elevated CO2: seven OBPs were 
significantly lower in abundance in females emerging from new eggs, while four OBPs were higher in abundance 
in females emerging from older eggs, in response to elevated CO2 conditions (Fig. 4b). In response to extended 
egg quiescence period, the abundance of OBPs were differentially regulated in relation to CO2 condition: seven 
out of the ten differentially expressed OBPs in the maxillary palp libraries of females reared under ambient 

Fig. 2. Gene ontology analysis of differentially expressed genes in the antennae and maxillary palps of Aedes 
aegypti. The olfactory tissues were collected from females reared under ambient and elevated CO2 conditions, 
as well as short and extended egg quiescence duration, referred to as new and older eggs, respectively. 
Pairwise comparisons are arranged in a matrix in response to CO2 conditions and egg quiescence period. 
The differentially expressed genes are classified into molecular function ontology, using gene ontology slim 
categorisation. n.s.: non-significant.
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CO2 conditions were lower in abundance, while nine OBPs were higher in abundance in females reared under 
elevated CO2 conditions (Fig. 4b).

Out of the 17 annotated CSPs, seven and ten were reliably expressed in the antennal and maxillary palp 
libraries, respectively (Supplementary Table S4). The CSPs did not display any differential expression in response 
to CO2 conditions and egg quiescence period in the antennal libraries. However, in the maxillary palp libraries, 
one and three CSPs decreased in abundance in females when reared under ambient and elevated CO2 conditions, 
respectively, in response to an extended egg quiescence period (Fig. 4b).

Discussion
Based on this transcriptome analysis, the effect of an elevation in CO2 level, to that predicted under extreme 
conditions7, appears to be gene-family specific, while egg quiescent duration has a distinct and overall impact 
on gene expression, particularly in the maxillary palp. Differential expression of genes in both antennae and 
maxillary palps involved in metabolism and xenobiotics emphasise a stress response as a consequence of 
elevated CO2 and extended egg quiescence duration, similar to the systemic response shown in other insects to 
environmental stressors56. Contrasting regulation of select members of chemosensory gene families, ORs, IRs, 
SNMPs, OBPs and CSPs, in the antennae and maxillary palp, may regulate the observed differences in resource-
seeking behaviour in response to the two external stressors in female Ae. aegypti6. Overall, this study provides 
insights into how environmental stress impacts the peripheral olfactory system of insects and ensuing behaviour.

The differential feeding behaviour of Ae. aegypti as a result of different egg quiescence durations, and when 
reared under elevated CO2

6, while appearing to have no significant generalised effect on gene expression, is 

Fig. 3. Kyoto Encyclopedia of Genes and Genomes pathway analysis of differentially expressed genes in the 
antennae and maxillary palps of Aedes aegypti. The olfactory tissues were collected from females reared under 
ambient and elevated CO2 conditions, as well as short and extended egg quiescence duration, referred to as 
new and older eggs, respectively. Pairwise comparisons are arranged in a matrix in relation to the response to 
CO2 conditions (eCO2) and egg quiescence period. The categories are annotated from Vectorbase and further 
classified into pathways designated by Kyoto Encyclopedia of Genes and Genomes database  (   h t t p s : / / w w w . g e n o 
m e . j p / k e g g /     ) .    
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likely a result of more targeted regulation of genes as indicated in the GO slim and KEGG analyses. The high 
number of significant DEGs, characterised by GO slim analysis, emphasises an interactive effect of elevated 
CO2 conditions and extended egg quiescence period on gene regulation in the peripheral olfactory system. The 
differentially regulated genes, predominantly in the maxillary palp, divides into categories including energy 
metabolism and xenobiotic response pathways, which is highlighted through KEGG analysis, and emphasises 
a significant transcriptional regulation of stress-induced genes in an organ that is involved in the detection of 
CO2 and other host-related chemosensory signals57,58. A similar transcriptional regulation of metabolic genes, in 
response to elevated CO2, has been demonstrated in aquatic invertebrates and insects59,60. Tissue-specific effect 
on gene expression regulation in the olfactory system, in response to elevated CO2, has also been demonstrated 
in salmon61. While elevated CO2 levels do not appear to directly trigger the xenobiotic response pathways, 
elevated CO2 upregulates the transcription of genes encoding for detoxifying enzymes, including cytochrome 
P450s62,63, [this study]. Xenobiotic response genes, including members of the cytochrome P450 family, are 
regulated in response to a variety of environmental stressors, including volatile compounds64,65, prolonged 
exposure to insecticides66,67, and abiotic stressors68–70. Cytochrome P450s act as odorant degrading enzymes in 
the insect peripheral olfactory system71. Hence, the oxidative stress and potential acidification of the sensillum 
lymph, as a result of the conversion of CO2 into carbonic acid72, may explain the observed response in this 
degradation pathway. Acidification of the sensillum lymph influences the folding of OBPs73–75, which can lead 
to alterations in protein function. Although mosquitoes acid–base regulate under varying pH conditions76,77, it 
remains unclear how the buffering capacity is impacted by prolonged exposure to elevated CO2. Furthermore, 
how this affects the membrane-bound receptors78, and the cascading effects on neuronal signalling79,80, remains 
to be studied.

Elevated CO2 levels, accentuated by egg quiescence duration, differentially affected the expression of soluble 
and membrane-bound chemosensory genes, which may directly affect the behaviour of disease-transmitting 
mosquitoes6, [this study]. Of the soluble odorant-binding proteins, insect OBPs facilitate odorant transport, 
odorant-receptor interactions and gain control81, as well as xenobiotic adaptations82. The significant differential 
regulation of OBPs, predominantly in the maxillary palp, emphasises the important role of these genes in 
response to elevated CO2 levels and extended egg quiescence duration. Of the 12 differentially regulated OBPs, 
only OBP22 and OBP39 have been functionally characterised, and demonstrated to detect long-chain fatty acids 
involved in host- and oviposition-site seeking, respectively83,84. The abundance of a subset of OBPs, including 
OBP56, OBP39, OBP34 and OBP38, shifted in response to elevated CO2, from low in new eggs to high in older 
eggs, suggesting a conserved regulatory pathway for these OBPs in response to stress. Considering the role of 

Fig. 4. Differential abundance of chemosensory genes in Aedes aegypti in response to elevated CO2 conditions 
and extended egg quiescence period. The olfactory tissues were collected from females reared under ambient 
and elevated CO2 conditions, as well as short and extended egg quiescence duration, referred to as new and 
older eggs, respectively. The abundance of reliably expressed (> 1 transcript per million) chemosensory genes 
compared between ambient and elevated CO2 (eCO2) levels, as well as egg quiescent periods, in the antennal 
(a) and maxillary palp (b) libraries, and demonstrated by fold-change (> 1.5-fold change; FDR > 0.05). Asterisks 
on fold change denote significant differences between pairwise comparisons.
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OBPs, the demonstrated regulation of genes will likely affect the interaction between odorant ligands and the 
membrane-bound receptors.

Among the membrane-bound receptors, the differential regulation of Ors in the antenna provides an insight 
into the regulatory mechanism regulating Or expression in response to environmental stress85, despite the 
unknown functional relevance of these changes for Ae. aegypti44,86–89. The absence of regulation in other Ors 
in both antennae53,90 and maxillary palps91 suggests that core Or-mediated sensory detection remains largely 
unaffected, as is the case for other membrane-bound receptors. Among the differentially regulated Irs that have 
been functionally characterised, the Ir co-receptor Ir25a is involved in the detection of amines92,93, whereas the 
tuning Ir, Ir75k, is sensitive to short-chain carboxylic acids94. These chemical classes play important roles in 
host- and oviposition-site selection95,96, and the differential regulation of the receptors detecting these odorants 
may affect the efficient resource seeking by mosquitoes. In Drosophila, Ir25a is required for context-dependent 
attraction to CO2

97, and in female Ae. aegypti, Ir25a is co-expressed in the maxillary palp CO2 sensitive OSN38. 
The functional significance of the lower abundance of Ir25a in response to stress requires further investigation. 
While short-term exposure to elevated CO2 significantly impact host seeking, as a consequence of sensory 
constraint21, the genes encoding for the subunits forming the CO2 receptor98 were not regulated in response 
to developmental exposure to high CO2. Whether long-term exposure to high CO2 levels has a similar affect, 
and how this is regulated is yet unknown. Taken together, the interaction of elevated CO2 and extended egg 
quiescence differentially affect the expression of chemosensory genes that likely play key roles in regulating 
mosquito behaviours.

This study provides evidence that anthropogenic climate change factors, such as elevated CO2, interact with 
other stress factors, such as egg quiescence duration, elicit a stress response in the peripheral olfactory system 
of mosquitoes and that the capacity of females to detect ecologically-relevant volatile organic compounds may 
be hampered. While previous studies have demonstrated negative effects of elevated CO2 and egg quiescence 
duration on life-history parameters of both aquatic and terrestrial stages of Ae. aegypti, and subsequent carry-
over effect on the feeding response of adult females, future experiments are required to assess how these stress 
factors affect odour-mediated behaviour and physiology.

Methods
Mosquito rearing and tissue collection
For general colony maintenance, Ae. aegypti (Rockefeller) were maintained under 27 ± 2  °C, 65 ± 5% relative 
humidity and a 12 h: 12 h light: dark cycle. The adults had ad libitum access to 10% sucrose (w/v). Females 
were blood fed with defibrinated sheep blood (Håtunalab AB, Bro, Sweden), using a membrane feeding system 
(Hemotek Ltd, Blackburn, UK) for egg production. The eggs, deposited on moist filter paper, were collected, 
dried, labelled and stored for subsequent experiments to account for different egg quiescent periods. The CO2 
acclimatization experiments were conducted in two high-precision climate chambers, in which temperature, 
humidity and light conditions were maintained as above. The CO2 concentration in the chambers was 400 ppm 
(current ambient), and 1000  ppm (elevated CO2), respectively, in which pure CO2 (Strandmöllen, Ljungby, 
Sweden) was delivered and mixed into the ventilation system. Age-controlled eggs (2-week or 3–6-month 
quiescent periods) were introduced to each experimental chamber, in which eggs from the same cohort were 
divided equally between two chambers, resulting in a larval density of 100 larvae per 600 ml of water, in each 
rearing tray. The larvae were fed with fish food (TetraMin® Flakes, Melle, Germany) daily (1  mg larvae-1), 
normalised for larval mortality. Upon pupation, individual pupae were collected into small (30 ml) plastic cups 
with distilled water and placed into Bugdorm cages (17.5 cm × 17.5 cm × 17.5 cm; Megaview Science Co., Ltd, 
Taichung, Taiwan). The emerging adults had ad libitum access to water until tissue was collected.

Collection of teneral (30 ± 6  h) female antennae and maxillary palp were done at Zeitgeber time 10–12, 
i.e., the peak diel activity period of Ae. aegypti99. For the dissection, females were anesthetised on ice, and the 
tissues removed using a pair of fine sterilised forceps, with separate pairs of forceps used for each olfactory tissue 
type, and then placed into 200 µl of RNAlater (Thermo Fisher Scientific, Gothenburg, Sweden). Forceps were 
sterilised in between each biological replicate using 70% ethanol. The tissue was stored at room temperature 
overnight, then at -20 °C overnight, and thereafter at -80 °C until RNA extraction. A total of 16 antennal libraries 
were generated, with each library comprising pooled tissues from 50 individuals per replicate from different 
cohorts, across two CO2 conditions, two egg quiescence periods, and four biological replicates (50 tissues × 2 
CO2 levels × 2 quiescent periods × 4 replicates = 800 pairs of tissues). Similarly, 16 maxillary palp libraries were 
constructed using the same pooling strategy, yielding an additional 800 pairs of tissues. In total, 1,600 pairs of 
tissues were collected for all (32) libraries.

RNA extraction and sequencing
Total RNA extraction was performed using the RNeasy microRNA kit (Qiagen, Hilden, Germany) following 
the manufacturer’s protocol with an additional step of quick freezing with liquid nitrogen to facilitate the 
homogenisation of the tissues. The RNA extracted was immediately stored at -80 °C and later quantified using 
the TapeStation system 4150 (Agilent Technologies, Inc, Santa Clara, US). The samples were shipped on dry ice to 
Eurofins Genomics (Constance, Germany), where INVIEW ultra-low transcriptome libraries were constructed 
using NovaSeq Illumina genome sequencing technology (Illumina NovaSeq 6000 S4 PE150 XP). The cDNA 
library construction was realised using Eurofins proprietary protocol, generating 2 × 150 bp coverage paired-end 
reads with a depth of 20 million paired-end reads (Supplementary Table S5).

Read mapping and annotation
Prior to the quantitative assessment of the library sequences, the samples underwent quality control steps 
involving the removal of adapter sequences, and discarding sequences with a Phred score of below 40, using CLC 
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Genomics Workbench (23.0.5, Qiagen, Aarhus, Denmark). Three libraries were removed from further analysis 
due to cross-contamination between tissues (Supplementary Table 1)100. The sequences were mapped to the Ae. 
aegypti reference genome (VectorBase: Aedes aegypti LVP_AGWG, AaegL5.3).

PCA analysis
Principal component analysis (PCA) was performed to estimate the effect of elevated CO2 and egg quiescence 
period on the overall expression profile. The high-dimensional dataset containing the antennal and maxillary 
palp libraries was projected onto two-dimensional components to determine the variance between libraries 
using the toolbox for RNA-seq data in CLC Genomics Workbench. The individual and interactive effect of CO2 
level and egg quiescent period on each olfactory tissue was assessed through permutational multivariate analysis 
of variance (PERMOVA) using “adonis2” function under the vegan package in RStudio.

RNA seq and differential expression analysis
For the transcriptome analysis, transcripts per million (TPM) was used, with a reliable expression of genes 
determined to be above a threshold of 1 TPM. Differential transcript abundance was analysed using a negative 
binomial distribution with a gamma-Poisson mixed distribution in CLC Genomics Workbench  (   h t t p s : / / d i g i t a 
l i n s i g h t s . q i a g e n . c o m /     ) . To account for false positives during the statistical tests, the false discovery rate (FDR) 
with p-value correction was performed using the Benjamin-Hochberg method101. The analysis generated a mean 
abundance value, fold change (FC) and FDR p-values that were accessed for differential expression. Genes were 
considered significantly differentially expressed when fold change > 1.5 and FDR p-value < 0.05.

Functional enrichment analyses
To assess the effects of elevated CO2 and extended egg quiescence period on molecular function level and 
metabolic pathways, a gene ontology (GO) analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) 
analysis were performed. The GO and KEGG terms used for the identified differentially expressed genes (DEGs) 
in the antennae and maxillary palps, were identified from VectorBase (AaegL5.3, Release 68). The VectorBase 
GO enrichment tool was used for assessing the molecular function, with both computed and curated evidence 
limited to GO slim terms. The VectorBase metabolic pathway enrichment was used for KEGG analysis. The 
significance cut-off was set to alpha (α) = 0.05.

Data availability
All data generated are presented in the publication. The transcriptome data generated and analysed during this 
study is available in the NCBI project database, with BioProject ID:  PRJNA1195965.  h t t p s : / / w w w . n c b i . n l m . n i h 
. g o v / s r a / P R J N A 1 1 9 5 9 6 5     .  
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